]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/asan.c
Makefile.in (OBJS): Add sanopt.o.
[thirdparty/gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "tm.h"
33 #include "hard-reg-set.h"
34 #include "input.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-expr.h"
43 #include "is-a.h"
44 #include "inchash.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "calls.h"
49 #include "varasm.h"
50 #include "stor-layout.h"
51 #include "tree-iterator.h"
52 #include "hash-map.h"
53 #include "plugin-api.h"
54 #include "ipa-ref.h"
55 #include "cgraph.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "tree-pass.h"
59 #include "asan.h"
60 #include "gimple-pretty-print.h"
61 #include "target.h"
62 #include "expr.h"
63 #include "insn-codes.h"
64 #include "optabs.h"
65 #include "output.h"
66 #include "tm_p.h"
67 #include "langhooks.h"
68 #include "alloc-pool.h"
69 #include "cfgloop.h"
70 #include "gimple-builder.h"
71 #include "ubsan.h"
72 #include "params.h"
73 #include "builtins.h"
74
75 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
76 with <2x slowdown on average.
77
78 The tool consists of two parts:
79 instrumentation module (this file) and a run-time library.
80 The instrumentation module adds a run-time check before every memory insn.
81 For a 8- or 16- byte load accessing address X:
82 ShadowAddr = (X >> 3) + Offset
83 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
84 if (ShadowValue)
85 __asan_report_load8(X);
86 For a load of N bytes (N=1, 2 or 4) from address X:
87 ShadowAddr = (X >> 3) + Offset
88 ShadowValue = *(char*)ShadowAddr;
89 if (ShadowValue)
90 if ((X & 7) + N - 1 > ShadowValue)
91 __asan_report_loadN(X);
92 Stores are instrumented similarly, but using __asan_report_storeN functions.
93 A call too __asan_init_vN() is inserted to the list of module CTORs.
94 N is the version number of the AddressSanitizer API. The changes between the
95 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
96
97 The run-time library redefines malloc (so that redzone are inserted around
98 the allocated memory) and free (so that reuse of free-ed memory is delayed),
99 provides __asan_report* and __asan_init_vN functions.
100
101 Read more:
102 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
103
104 The current implementation supports detection of out-of-bounds and
105 use-after-free in the heap, on the stack and for global variables.
106
107 [Protection of stack variables]
108
109 To understand how detection of out-of-bounds and use-after-free works
110 for stack variables, lets look at this example on x86_64 where the
111 stack grows downward:
112
113 int
114 foo ()
115 {
116 char a[23] = {0};
117 int b[2] = {0};
118
119 a[5] = 1;
120 b[1] = 2;
121
122 return a[5] + b[1];
123 }
124
125 For this function, the stack protected by asan will be organized as
126 follows, from the top of the stack to the bottom:
127
128 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
129
130 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
131 the next slot be 32 bytes aligned; this one is called Partial
132 Redzone; this 32 bytes alignment is an asan constraint]
133
134 Slot 3/ [24 bytes for variable 'a']
135
136 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
137
138 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
139
140 Slot 6/ [8 bytes for variable 'b']
141
142 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
143 'LEFT RedZone']
144
145 The 32 bytes of LEFT red zone at the bottom of the stack can be
146 decomposed as such:
147
148 1/ The first 8 bytes contain a magical asan number that is always
149 0x41B58AB3.
150
151 2/ The following 8 bytes contains a pointer to a string (to be
152 parsed at runtime by the runtime asan library), which format is
153 the following:
154
155 "<function-name> <space> <num-of-variables-on-the-stack>
156 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
157 <length-of-var-in-bytes> ){n} "
158
159 where '(...){n}' means the content inside the parenthesis occurs 'n'
160 times, with 'n' being the number of variables on the stack.
161
162 3/ The following 8 bytes contain the PC of the current function which
163 will be used by the run-time library to print an error message.
164
165 4/ The following 8 bytes are reserved for internal use by the run-time.
166
167 The shadow memory for that stack layout is going to look like this:
168
169 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
170 The F1 byte pattern is a magic number called
171 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
172 the memory for that shadow byte is part of a the LEFT red zone
173 intended to seat at the bottom of the variables on the stack.
174
175 - content of shadow memory 8 bytes for slots 6 and 5:
176 0xF4F4F400. The F4 byte pattern is a magic number
177 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
178 memory region for this shadow byte is a PARTIAL red zone
179 intended to pad a variable A, so that the slot following
180 {A,padding} is 32 bytes aligned.
181
182 Note that the fact that the least significant byte of this
183 shadow memory content is 00 means that 8 bytes of its
184 corresponding memory (which corresponds to the memory of
185 variable 'b') is addressable.
186
187 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
188 The F2 byte pattern is a magic number called
189 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
190 region for this shadow byte is a MIDDLE red zone intended to
191 seat between two 32 aligned slots of {variable,padding}.
192
193 - content of shadow memory 8 bytes for slot 3 and 2:
194 0xF4000000. This represents is the concatenation of
195 variable 'a' and the partial red zone following it, like what we
196 had for variable 'b'. The least significant 3 bytes being 00
197 means that the 3 bytes of variable 'a' are addressable.
198
199 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
200 The F3 byte pattern is a magic number called
201 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
202 region for this shadow byte is a RIGHT red zone intended to seat
203 at the top of the variables of the stack.
204
205 Note that the real variable layout is done in expand_used_vars in
206 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
207 stack variables as well as the different red zones, emits some
208 prologue code to populate the shadow memory as to poison (mark as
209 non-accessible) the regions of the red zones and mark the regions of
210 stack variables as accessible, and emit some epilogue code to
211 un-poison (mark as accessible) the regions of red zones right before
212 the function exits.
213
214 [Protection of global variables]
215
216 The basic idea is to insert a red zone between two global variables
217 and install a constructor function that calls the asan runtime to do
218 the populating of the relevant shadow memory regions at load time.
219
220 So the global variables are laid out as to insert a red zone between
221 them. The size of the red zones is so that each variable starts on a
222 32 bytes boundary.
223
224 Then a constructor function is installed so that, for each global
225 variable, it calls the runtime asan library function
226 __asan_register_globals_with an instance of this type:
227
228 struct __asan_global
229 {
230 // Address of the beginning of the global variable.
231 const void *__beg;
232
233 // Initial size of the global variable.
234 uptr __size;
235
236 // Size of the global variable + size of the red zone. This
237 // size is 32 bytes aligned.
238 uptr __size_with_redzone;
239
240 // Name of the global variable.
241 const void *__name;
242
243 // Name of the module where the global variable is declared.
244 const void *__module_name;
245
246 // 1 if it has dynamic initialization, 0 otherwise.
247 uptr __has_dynamic_init;
248
249 // A pointer to struct that contains source location, could be NULL.
250 __asan_global_source_location *__location;
251 }
252
253 A destructor function that calls the runtime asan library function
254 _asan_unregister_globals is also installed. */
255
256 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
257 static bool asan_shadow_offset_computed;
258
259 /* Sets shadow offset to value in string VAL. */
260
261 bool
262 set_asan_shadow_offset (const char *val)
263 {
264 char *endp;
265
266 errno = 0;
267 #ifdef HAVE_LONG_LONG
268 asan_shadow_offset_value = strtoull (val, &endp, 0);
269 #else
270 asan_shadow_offset_value = strtoul (val, &endp, 0);
271 #endif
272 if (!(*val != '\0' && *endp == '\0' && errno == 0))
273 return false;
274
275 asan_shadow_offset_computed = true;
276
277 return true;
278 }
279
280 /* Returns Asan shadow offset. */
281
282 static unsigned HOST_WIDE_INT
283 asan_shadow_offset ()
284 {
285 if (!asan_shadow_offset_computed)
286 {
287 asan_shadow_offset_computed = true;
288 asan_shadow_offset_value = targetm.asan_shadow_offset ();
289 }
290 return asan_shadow_offset_value;
291 }
292
293 alias_set_type asan_shadow_set = -1;
294
295 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
296 alias set is used for all shadow memory accesses. */
297 static GTY(()) tree shadow_ptr_types[2];
298
299 /* Decl for __asan_option_detect_stack_use_after_return. */
300 static GTY(()) tree asan_detect_stack_use_after_return;
301
302 /* Various flags for Asan builtins. */
303 enum asan_check_flags
304 {
305 ASAN_CHECK_STORE = 1 << 0,
306 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
307 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
308 ASAN_CHECK_LAST = 1 << 3
309 };
310
311 /* Hashtable support for memory references used by gimple
312 statements. */
313
314 /* This type represents a reference to a memory region. */
315 struct asan_mem_ref
316 {
317 /* The expression of the beginning of the memory region. */
318 tree start;
319
320 /* The size of the access. */
321 HOST_WIDE_INT access_size;
322 };
323
324 static alloc_pool asan_mem_ref_alloc_pool;
325
326 /* This creates the alloc pool used to store the instances of
327 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
328
329 static alloc_pool
330 asan_mem_ref_get_alloc_pool ()
331 {
332 if (asan_mem_ref_alloc_pool == NULL)
333 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
334 sizeof (asan_mem_ref),
335 10);
336 return asan_mem_ref_alloc_pool;
337
338 }
339
340 /* Initializes an instance of asan_mem_ref. */
341
342 static void
343 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
344 {
345 ref->start = start;
346 ref->access_size = access_size;
347 }
348
349 /* Allocates memory for an instance of asan_mem_ref into the memory
350 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
351 START is the address of (or the expression pointing to) the
352 beginning of memory reference. ACCESS_SIZE is the size of the
353 access to the referenced memory. */
354
355 static asan_mem_ref*
356 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
357 {
358 asan_mem_ref *ref =
359 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
360
361 asan_mem_ref_init (ref, start, access_size);
362 return ref;
363 }
364
365 /* This builds and returns a pointer to the end of the memory region
366 that starts at START and of length LEN. */
367
368 tree
369 asan_mem_ref_get_end (tree start, tree len)
370 {
371 if (len == NULL_TREE || integer_zerop (len))
372 return start;
373
374 if (!ptrofftype_p (len))
375 len = convert_to_ptrofftype (len);
376
377 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
378 }
379
380 /* Return a tree expression that represents the end of the referenced
381 memory region. Beware that this function can actually build a new
382 tree expression. */
383
384 tree
385 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
386 {
387 return asan_mem_ref_get_end (ref->start, len);
388 }
389
390 struct asan_mem_ref_hasher
391 : typed_noop_remove <asan_mem_ref>
392 {
393 typedef asan_mem_ref value_type;
394 typedef asan_mem_ref compare_type;
395
396 static inline hashval_t hash (const value_type *);
397 static inline bool equal (const value_type *, const compare_type *);
398 };
399
400 /* Hash a memory reference. */
401
402 inline hashval_t
403 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
404 {
405 return iterative_hash_expr (mem_ref->start, 0);
406 }
407
408 /* Compare two memory references. We accept the length of either
409 memory references to be NULL_TREE. */
410
411 inline bool
412 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
413 const asan_mem_ref *m2)
414 {
415 return operand_equal_p (m1->start, m2->start, 0);
416 }
417
418 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
419
420 /* Returns a reference to the hash table containing memory references.
421 This function ensures that the hash table is created. Note that
422 this hash table is updated by the function
423 update_mem_ref_hash_table. */
424
425 static hash_table<asan_mem_ref_hasher> *
426 get_mem_ref_hash_table ()
427 {
428 if (!asan_mem_ref_ht)
429 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
430
431 return asan_mem_ref_ht;
432 }
433
434 /* Clear all entries from the memory references hash table. */
435
436 static void
437 empty_mem_ref_hash_table ()
438 {
439 if (asan_mem_ref_ht)
440 asan_mem_ref_ht->empty ();
441 }
442
443 /* Free the memory references hash table. */
444
445 static void
446 free_mem_ref_resources ()
447 {
448 delete asan_mem_ref_ht;
449 asan_mem_ref_ht = NULL;
450
451 if (asan_mem_ref_alloc_pool)
452 {
453 free_alloc_pool (asan_mem_ref_alloc_pool);
454 asan_mem_ref_alloc_pool = NULL;
455 }
456 }
457
458 /* Return true iff the memory reference REF has been instrumented. */
459
460 static bool
461 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
462 {
463 asan_mem_ref r;
464 asan_mem_ref_init (&r, ref, access_size);
465
466 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
467 return saved_ref && saved_ref->access_size >= access_size;
468 }
469
470 /* Return true iff the memory reference REF has been instrumented. */
471
472 static bool
473 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
474 {
475 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
476 }
477
478 /* Return true iff access to memory region starting at REF and of
479 length LEN has been instrumented. */
480
481 static bool
482 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
483 {
484 HOST_WIDE_INT size_in_bytes
485 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
486
487 return size_in_bytes != -1
488 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
489 }
490
491 /* Set REF to the memory reference present in a gimple assignment
492 ASSIGNMENT. Return true upon successful completion, false
493 otherwise. */
494
495 static bool
496 get_mem_ref_of_assignment (const gimple assignment,
497 asan_mem_ref *ref,
498 bool *ref_is_store)
499 {
500 gcc_assert (gimple_assign_single_p (assignment));
501
502 if (gimple_store_p (assignment)
503 && !gimple_clobber_p (assignment))
504 {
505 ref->start = gimple_assign_lhs (assignment);
506 *ref_is_store = true;
507 }
508 else if (gimple_assign_load_p (assignment))
509 {
510 ref->start = gimple_assign_rhs1 (assignment);
511 *ref_is_store = false;
512 }
513 else
514 return false;
515
516 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
517 return true;
518 }
519
520 /* Return the memory references contained in a gimple statement
521 representing a builtin call that has to do with memory access. */
522
523 static bool
524 get_mem_refs_of_builtin_call (const gimple call,
525 asan_mem_ref *src0,
526 tree *src0_len,
527 bool *src0_is_store,
528 asan_mem_ref *src1,
529 tree *src1_len,
530 bool *src1_is_store,
531 asan_mem_ref *dst,
532 tree *dst_len,
533 bool *dst_is_store,
534 bool *dest_is_deref,
535 bool *intercepted_p)
536 {
537 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
538
539 tree callee = gimple_call_fndecl (call);
540 tree source0 = NULL_TREE, source1 = NULL_TREE,
541 dest = NULL_TREE, len = NULL_TREE;
542 bool is_store = true, got_reference_p = false;
543 HOST_WIDE_INT access_size = 1;
544
545 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
546
547 switch (DECL_FUNCTION_CODE (callee))
548 {
549 /* (s, s, n) style memops. */
550 case BUILT_IN_BCMP:
551 case BUILT_IN_MEMCMP:
552 source0 = gimple_call_arg (call, 0);
553 source1 = gimple_call_arg (call, 1);
554 len = gimple_call_arg (call, 2);
555 break;
556
557 /* (src, dest, n) style memops. */
558 case BUILT_IN_BCOPY:
559 source0 = gimple_call_arg (call, 0);
560 dest = gimple_call_arg (call, 1);
561 len = gimple_call_arg (call, 2);
562 break;
563
564 /* (dest, src, n) style memops. */
565 case BUILT_IN_MEMCPY:
566 case BUILT_IN_MEMCPY_CHK:
567 case BUILT_IN_MEMMOVE:
568 case BUILT_IN_MEMMOVE_CHK:
569 case BUILT_IN_MEMPCPY:
570 case BUILT_IN_MEMPCPY_CHK:
571 dest = gimple_call_arg (call, 0);
572 source0 = gimple_call_arg (call, 1);
573 len = gimple_call_arg (call, 2);
574 break;
575
576 /* (dest, n) style memops. */
577 case BUILT_IN_BZERO:
578 dest = gimple_call_arg (call, 0);
579 len = gimple_call_arg (call, 1);
580 break;
581
582 /* (dest, x, n) style memops*/
583 case BUILT_IN_MEMSET:
584 case BUILT_IN_MEMSET_CHK:
585 dest = gimple_call_arg (call, 0);
586 len = gimple_call_arg (call, 2);
587 break;
588
589 case BUILT_IN_STRLEN:
590 source0 = gimple_call_arg (call, 0);
591 len = gimple_call_lhs (call);
592 break ;
593
594 /* And now the __atomic* and __sync builtins.
595 These are handled differently from the classical memory memory
596 access builtins above. */
597
598 case BUILT_IN_ATOMIC_LOAD_1:
599 case BUILT_IN_ATOMIC_LOAD_2:
600 case BUILT_IN_ATOMIC_LOAD_4:
601 case BUILT_IN_ATOMIC_LOAD_8:
602 case BUILT_IN_ATOMIC_LOAD_16:
603 is_store = false;
604 /* fall through. */
605
606 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
607 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
608 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
609 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
610 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
611
612 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
613 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
615 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
616 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
617
618 case BUILT_IN_SYNC_FETCH_AND_OR_1:
619 case BUILT_IN_SYNC_FETCH_AND_OR_2:
620 case BUILT_IN_SYNC_FETCH_AND_OR_4:
621 case BUILT_IN_SYNC_FETCH_AND_OR_8:
622 case BUILT_IN_SYNC_FETCH_AND_OR_16:
623
624 case BUILT_IN_SYNC_FETCH_AND_AND_1:
625 case BUILT_IN_SYNC_FETCH_AND_AND_2:
626 case BUILT_IN_SYNC_FETCH_AND_AND_4:
627 case BUILT_IN_SYNC_FETCH_AND_AND_8:
628 case BUILT_IN_SYNC_FETCH_AND_AND_16:
629
630 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
631 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
632 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
633 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
634 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
635
636 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
637 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
638 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
639 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
640
641 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
642 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
643 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
644 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
645 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
646
647 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
648 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
649 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
650 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
651 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
652
653 case BUILT_IN_SYNC_OR_AND_FETCH_1:
654 case BUILT_IN_SYNC_OR_AND_FETCH_2:
655 case BUILT_IN_SYNC_OR_AND_FETCH_4:
656 case BUILT_IN_SYNC_OR_AND_FETCH_8:
657 case BUILT_IN_SYNC_OR_AND_FETCH_16:
658
659 case BUILT_IN_SYNC_AND_AND_FETCH_1:
660 case BUILT_IN_SYNC_AND_AND_FETCH_2:
661 case BUILT_IN_SYNC_AND_AND_FETCH_4:
662 case BUILT_IN_SYNC_AND_AND_FETCH_8:
663 case BUILT_IN_SYNC_AND_AND_FETCH_16:
664
665 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
666 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
667 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
668 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
669 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
670
671 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
672 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
673 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
674 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
675
676 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
677 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
678 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
679 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
680 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
681
682 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
683 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
684 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
685 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
686 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
687
688 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
689 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
690 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
691 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
692 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
693
694 case BUILT_IN_SYNC_LOCK_RELEASE_1:
695 case BUILT_IN_SYNC_LOCK_RELEASE_2:
696 case BUILT_IN_SYNC_LOCK_RELEASE_4:
697 case BUILT_IN_SYNC_LOCK_RELEASE_8:
698 case BUILT_IN_SYNC_LOCK_RELEASE_16:
699
700 case BUILT_IN_ATOMIC_EXCHANGE_1:
701 case BUILT_IN_ATOMIC_EXCHANGE_2:
702 case BUILT_IN_ATOMIC_EXCHANGE_4:
703 case BUILT_IN_ATOMIC_EXCHANGE_8:
704 case BUILT_IN_ATOMIC_EXCHANGE_16:
705
706 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
707 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
708 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
709 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
710 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
711
712 case BUILT_IN_ATOMIC_STORE_1:
713 case BUILT_IN_ATOMIC_STORE_2:
714 case BUILT_IN_ATOMIC_STORE_4:
715 case BUILT_IN_ATOMIC_STORE_8:
716 case BUILT_IN_ATOMIC_STORE_16:
717
718 case BUILT_IN_ATOMIC_ADD_FETCH_1:
719 case BUILT_IN_ATOMIC_ADD_FETCH_2:
720 case BUILT_IN_ATOMIC_ADD_FETCH_4:
721 case BUILT_IN_ATOMIC_ADD_FETCH_8:
722 case BUILT_IN_ATOMIC_ADD_FETCH_16:
723
724 case BUILT_IN_ATOMIC_SUB_FETCH_1:
725 case BUILT_IN_ATOMIC_SUB_FETCH_2:
726 case BUILT_IN_ATOMIC_SUB_FETCH_4:
727 case BUILT_IN_ATOMIC_SUB_FETCH_8:
728 case BUILT_IN_ATOMIC_SUB_FETCH_16:
729
730 case BUILT_IN_ATOMIC_AND_FETCH_1:
731 case BUILT_IN_ATOMIC_AND_FETCH_2:
732 case BUILT_IN_ATOMIC_AND_FETCH_4:
733 case BUILT_IN_ATOMIC_AND_FETCH_8:
734 case BUILT_IN_ATOMIC_AND_FETCH_16:
735
736 case BUILT_IN_ATOMIC_NAND_FETCH_1:
737 case BUILT_IN_ATOMIC_NAND_FETCH_2:
738 case BUILT_IN_ATOMIC_NAND_FETCH_4:
739 case BUILT_IN_ATOMIC_NAND_FETCH_8:
740 case BUILT_IN_ATOMIC_NAND_FETCH_16:
741
742 case BUILT_IN_ATOMIC_XOR_FETCH_1:
743 case BUILT_IN_ATOMIC_XOR_FETCH_2:
744 case BUILT_IN_ATOMIC_XOR_FETCH_4:
745 case BUILT_IN_ATOMIC_XOR_FETCH_8:
746 case BUILT_IN_ATOMIC_XOR_FETCH_16:
747
748 case BUILT_IN_ATOMIC_OR_FETCH_1:
749 case BUILT_IN_ATOMIC_OR_FETCH_2:
750 case BUILT_IN_ATOMIC_OR_FETCH_4:
751 case BUILT_IN_ATOMIC_OR_FETCH_8:
752 case BUILT_IN_ATOMIC_OR_FETCH_16:
753
754 case BUILT_IN_ATOMIC_FETCH_ADD_1:
755 case BUILT_IN_ATOMIC_FETCH_ADD_2:
756 case BUILT_IN_ATOMIC_FETCH_ADD_4:
757 case BUILT_IN_ATOMIC_FETCH_ADD_8:
758 case BUILT_IN_ATOMIC_FETCH_ADD_16:
759
760 case BUILT_IN_ATOMIC_FETCH_SUB_1:
761 case BUILT_IN_ATOMIC_FETCH_SUB_2:
762 case BUILT_IN_ATOMIC_FETCH_SUB_4:
763 case BUILT_IN_ATOMIC_FETCH_SUB_8:
764 case BUILT_IN_ATOMIC_FETCH_SUB_16:
765
766 case BUILT_IN_ATOMIC_FETCH_AND_1:
767 case BUILT_IN_ATOMIC_FETCH_AND_2:
768 case BUILT_IN_ATOMIC_FETCH_AND_4:
769 case BUILT_IN_ATOMIC_FETCH_AND_8:
770 case BUILT_IN_ATOMIC_FETCH_AND_16:
771
772 case BUILT_IN_ATOMIC_FETCH_NAND_1:
773 case BUILT_IN_ATOMIC_FETCH_NAND_2:
774 case BUILT_IN_ATOMIC_FETCH_NAND_4:
775 case BUILT_IN_ATOMIC_FETCH_NAND_8:
776 case BUILT_IN_ATOMIC_FETCH_NAND_16:
777
778 case BUILT_IN_ATOMIC_FETCH_XOR_1:
779 case BUILT_IN_ATOMIC_FETCH_XOR_2:
780 case BUILT_IN_ATOMIC_FETCH_XOR_4:
781 case BUILT_IN_ATOMIC_FETCH_XOR_8:
782 case BUILT_IN_ATOMIC_FETCH_XOR_16:
783
784 case BUILT_IN_ATOMIC_FETCH_OR_1:
785 case BUILT_IN_ATOMIC_FETCH_OR_2:
786 case BUILT_IN_ATOMIC_FETCH_OR_4:
787 case BUILT_IN_ATOMIC_FETCH_OR_8:
788 case BUILT_IN_ATOMIC_FETCH_OR_16:
789 {
790 dest = gimple_call_arg (call, 0);
791 /* DEST represents the address of a memory location.
792 instrument_derefs wants the memory location, so lets
793 dereference the address DEST before handing it to
794 instrument_derefs. */
795 if (TREE_CODE (dest) == ADDR_EXPR)
796 dest = TREE_OPERAND (dest, 0);
797 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
798 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
799 dest, build_int_cst (TREE_TYPE (dest), 0));
800 else
801 gcc_unreachable ();
802
803 access_size = int_size_in_bytes (TREE_TYPE (dest));
804 }
805
806 default:
807 /* The other builtins memory access are not instrumented in this
808 function because they either don't have any length parameter,
809 or their length parameter is just a limit. */
810 break;
811 }
812
813 if (len != NULL_TREE)
814 {
815 if (source0 != NULL_TREE)
816 {
817 src0->start = source0;
818 src0->access_size = access_size;
819 *src0_len = len;
820 *src0_is_store = false;
821 }
822
823 if (source1 != NULL_TREE)
824 {
825 src1->start = source1;
826 src1->access_size = access_size;
827 *src1_len = len;
828 *src1_is_store = false;
829 }
830
831 if (dest != NULL_TREE)
832 {
833 dst->start = dest;
834 dst->access_size = access_size;
835 *dst_len = len;
836 *dst_is_store = true;
837 }
838
839 got_reference_p = true;
840 }
841 else if (dest)
842 {
843 dst->start = dest;
844 dst->access_size = access_size;
845 *dst_len = NULL_TREE;
846 *dst_is_store = is_store;
847 *dest_is_deref = true;
848 got_reference_p = true;
849 }
850
851 return got_reference_p;
852 }
853
854 /* Return true iff a given gimple statement has been instrumented.
855 Note that the statement is "defined" by the memory references it
856 contains. */
857
858 static bool
859 has_stmt_been_instrumented_p (gimple stmt)
860 {
861 if (gimple_assign_single_p (stmt))
862 {
863 bool r_is_store;
864 asan_mem_ref r;
865 asan_mem_ref_init (&r, NULL, 1);
866
867 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
868 return has_mem_ref_been_instrumented (&r);
869 }
870 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
871 {
872 asan_mem_ref src0, src1, dest;
873 asan_mem_ref_init (&src0, NULL, 1);
874 asan_mem_ref_init (&src1, NULL, 1);
875 asan_mem_ref_init (&dest, NULL, 1);
876
877 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
878 bool src0_is_store = false, src1_is_store = false,
879 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
880 if (get_mem_refs_of_builtin_call (stmt,
881 &src0, &src0_len, &src0_is_store,
882 &src1, &src1_len, &src1_is_store,
883 &dest, &dest_len, &dest_is_store,
884 &dest_is_deref, &intercepted_p))
885 {
886 if (src0.start != NULL_TREE
887 && !has_mem_ref_been_instrumented (&src0, src0_len))
888 return false;
889
890 if (src1.start != NULL_TREE
891 && !has_mem_ref_been_instrumented (&src1, src1_len))
892 return false;
893
894 if (dest.start != NULL_TREE
895 && !has_mem_ref_been_instrumented (&dest, dest_len))
896 return false;
897
898 return true;
899 }
900 }
901 return false;
902 }
903
904 /* Insert a memory reference into the hash table. */
905
906 static void
907 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
908 {
909 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
910
911 asan_mem_ref r;
912 asan_mem_ref_init (&r, ref, access_size);
913
914 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
915 if (*slot == NULL || (*slot)->access_size < access_size)
916 *slot = asan_mem_ref_new (ref, access_size);
917 }
918
919 /* Initialize shadow_ptr_types array. */
920
921 static void
922 asan_init_shadow_ptr_types (void)
923 {
924 asan_shadow_set = new_alias_set ();
925 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
926 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
927 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
928 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
929 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
930 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
931 initialize_sanitizer_builtins ();
932 }
933
934 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
935
936 static tree
937 asan_pp_string (pretty_printer *pp)
938 {
939 const char *buf = pp_formatted_text (pp);
940 size_t len = strlen (buf);
941 tree ret = build_string (len + 1, buf);
942 TREE_TYPE (ret)
943 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
944 build_index_type (size_int (len)));
945 TREE_READONLY (ret) = 1;
946 TREE_STATIC (ret) = 1;
947 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
948 }
949
950 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
951
952 static rtx
953 asan_shadow_cst (unsigned char shadow_bytes[4])
954 {
955 int i;
956 unsigned HOST_WIDE_INT val = 0;
957 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
958 for (i = 0; i < 4; i++)
959 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
960 << (BITS_PER_UNIT * i);
961 return gen_int_mode (val, SImode);
962 }
963
964 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
965 though. */
966
967 static void
968 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
969 {
970 rtx_insn *insn, *insns, *jump;
971 rtx_code_label *top_label;
972 rtx end, addr, tmp;
973
974 start_sequence ();
975 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
976 insns = get_insns ();
977 end_sequence ();
978 for (insn = insns; insn; insn = NEXT_INSN (insn))
979 if (CALL_P (insn))
980 break;
981 if (insn == NULL_RTX)
982 {
983 emit_insn (insns);
984 return;
985 }
986
987 gcc_assert ((len & 3) == 0);
988 top_label = gen_label_rtx ();
989 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
990 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
991 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
992 emit_label (top_label);
993
994 emit_move_insn (shadow_mem, const0_rtx);
995 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
996 true, OPTAB_LIB_WIDEN);
997 if (tmp != addr)
998 emit_move_insn (addr, tmp);
999 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1000 jump = get_last_insn ();
1001 gcc_assert (JUMP_P (jump));
1002 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1003 }
1004
1005 void
1006 asan_function_start (void)
1007 {
1008 section *fnsec = function_section (current_function_decl);
1009 switch_to_section (fnsec);
1010 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1011 current_function_funcdef_no);
1012 }
1013
1014 /* Insert code to protect stack vars. The prologue sequence should be emitted
1015 directly, epilogue sequence returned. BASE is the register holding the
1016 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1017 array contains pairs of offsets in reverse order, always the end offset
1018 of some gap that needs protection followed by starting offset,
1019 and DECLS is an array of representative decls for each var partition.
1020 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1021 elements long (OFFSETS include gap before the first variable as well
1022 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1023 register which stack vars DECL_RTLs are based on. Either BASE should be
1024 assigned to PBASE, when not doing use after return protection, or
1025 corresponding address based on __asan_stack_malloc* return value. */
1026
1027 rtx_insn *
1028 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1029 HOST_WIDE_INT *offsets, tree *decls, int length)
1030 {
1031 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1032 rtx_code_label *lab;
1033 rtx_insn *insns;
1034 char buf[30];
1035 unsigned char shadow_bytes[4];
1036 HOST_WIDE_INT base_offset = offsets[length - 1];
1037 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1038 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1039 HOST_WIDE_INT last_offset, last_size;
1040 int l;
1041 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1042 tree str_cst, decl, id;
1043 int use_after_return_class = -1;
1044
1045 if (shadow_ptr_types[0] == NULL_TREE)
1046 asan_init_shadow_ptr_types ();
1047
1048 /* First of all, prepare the description string. */
1049 pretty_printer asan_pp;
1050
1051 pp_decimal_int (&asan_pp, length / 2 - 1);
1052 pp_space (&asan_pp);
1053 for (l = length - 2; l; l -= 2)
1054 {
1055 tree decl = decls[l / 2 - 1];
1056 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1057 pp_space (&asan_pp);
1058 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1059 pp_space (&asan_pp);
1060 if (DECL_P (decl) && DECL_NAME (decl))
1061 {
1062 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1063 pp_space (&asan_pp);
1064 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1065 }
1066 else
1067 pp_string (&asan_pp, "9 <unknown>");
1068 pp_space (&asan_pp);
1069 }
1070 str_cst = asan_pp_string (&asan_pp);
1071
1072 /* Emit the prologue sequence. */
1073 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1074 && ASAN_USE_AFTER_RETURN)
1075 {
1076 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1077 /* __asan_stack_malloc_N guarantees alignment
1078 N < 6 ? (64 << N) : 4096 bytes. */
1079 if (alignb > (use_after_return_class < 6
1080 ? (64U << use_after_return_class) : 4096U))
1081 use_after_return_class = -1;
1082 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1083 base_align_bias = ((asan_frame_size + alignb - 1)
1084 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1085 }
1086 /* Align base if target is STRICT_ALIGNMENT. */
1087 if (STRICT_ALIGNMENT)
1088 base = expand_binop (Pmode, and_optab, base,
1089 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1090 << ASAN_SHADOW_SHIFT)
1091 / BITS_PER_UNIT), Pmode), NULL_RTX,
1092 1, OPTAB_DIRECT);
1093
1094 if (use_after_return_class == -1 && pbase)
1095 emit_move_insn (pbase, base);
1096
1097 base = expand_binop (Pmode, add_optab, base,
1098 gen_int_mode (base_offset - base_align_bias, Pmode),
1099 NULL_RTX, 1, OPTAB_DIRECT);
1100 orig_base = NULL_RTX;
1101 if (use_after_return_class != -1)
1102 {
1103 if (asan_detect_stack_use_after_return == NULL_TREE)
1104 {
1105 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1106 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1107 integer_type_node);
1108 SET_DECL_ASSEMBLER_NAME (decl, id);
1109 TREE_ADDRESSABLE (decl) = 1;
1110 DECL_ARTIFICIAL (decl) = 1;
1111 DECL_IGNORED_P (decl) = 1;
1112 DECL_EXTERNAL (decl) = 1;
1113 TREE_STATIC (decl) = 1;
1114 TREE_PUBLIC (decl) = 1;
1115 TREE_USED (decl) = 1;
1116 asan_detect_stack_use_after_return = decl;
1117 }
1118 orig_base = gen_reg_rtx (Pmode);
1119 emit_move_insn (orig_base, base);
1120 ret = expand_normal (asan_detect_stack_use_after_return);
1121 lab = gen_label_rtx ();
1122 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1123 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1124 VOIDmode, 0, lab, very_likely);
1125 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1126 use_after_return_class);
1127 ret = init_one_libfunc (buf);
1128 rtx addr = convert_memory_address (ptr_mode, base);
1129 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1130 GEN_INT (asan_frame_size
1131 + base_align_bias),
1132 TYPE_MODE (pointer_sized_int_node),
1133 addr, ptr_mode);
1134 ret = convert_memory_address (Pmode, ret);
1135 emit_move_insn (base, ret);
1136 emit_label (lab);
1137 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1138 gen_int_mode (base_align_bias
1139 - base_offset, Pmode),
1140 NULL_RTX, 1, OPTAB_DIRECT));
1141 }
1142 mem = gen_rtx_MEM (ptr_mode, base);
1143 mem = adjust_address (mem, VOIDmode, base_align_bias);
1144 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1145 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1146 emit_move_insn (mem, expand_normal (str_cst));
1147 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1148 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1149 id = get_identifier (buf);
1150 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1151 VAR_DECL, id, char_type_node);
1152 SET_DECL_ASSEMBLER_NAME (decl, id);
1153 TREE_ADDRESSABLE (decl) = 1;
1154 TREE_READONLY (decl) = 1;
1155 DECL_ARTIFICIAL (decl) = 1;
1156 DECL_IGNORED_P (decl) = 1;
1157 TREE_STATIC (decl) = 1;
1158 TREE_PUBLIC (decl) = 0;
1159 TREE_USED (decl) = 1;
1160 DECL_INITIAL (decl) = decl;
1161 TREE_ASM_WRITTEN (decl) = 1;
1162 TREE_ASM_WRITTEN (id) = 1;
1163 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1164 shadow_base = expand_binop (Pmode, lshr_optab, base,
1165 GEN_INT (ASAN_SHADOW_SHIFT),
1166 NULL_RTX, 1, OPTAB_DIRECT);
1167 shadow_base
1168 = plus_constant (Pmode, shadow_base,
1169 asan_shadow_offset ()
1170 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1171 gcc_assert (asan_shadow_set != -1
1172 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1173 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1174 set_mem_alias_set (shadow_mem, asan_shadow_set);
1175 if (STRICT_ALIGNMENT)
1176 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1177 prev_offset = base_offset;
1178 for (l = length; l; l -= 2)
1179 {
1180 if (l == 2)
1181 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1182 offset = offsets[l - 1];
1183 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1184 {
1185 int i;
1186 HOST_WIDE_INT aoff
1187 = base_offset + ((offset - base_offset)
1188 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1189 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1190 (aoff - prev_offset)
1191 >> ASAN_SHADOW_SHIFT);
1192 prev_offset = aoff;
1193 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1194 if (aoff < offset)
1195 {
1196 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1197 shadow_bytes[i] = 0;
1198 else
1199 shadow_bytes[i] = offset - aoff;
1200 }
1201 else
1202 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1203 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1204 offset = aoff;
1205 }
1206 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1207 {
1208 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1209 (offset - prev_offset)
1210 >> ASAN_SHADOW_SHIFT);
1211 prev_offset = offset;
1212 memset (shadow_bytes, cur_shadow_byte, 4);
1213 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1214 offset += ASAN_RED_ZONE_SIZE;
1215 }
1216 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1217 }
1218 do_pending_stack_adjust ();
1219
1220 /* Construct epilogue sequence. */
1221 start_sequence ();
1222
1223 lab = NULL;
1224 if (use_after_return_class != -1)
1225 {
1226 rtx_code_label *lab2 = gen_label_rtx ();
1227 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1228 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1229 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1230 VOIDmode, 0, lab2, very_likely);
1231 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1232 set_mem_alias_set (shadow_mem, asan_shadow_set);
1233 mem = gen_rtx_MEM (ptr_mode, base);
1234 mem = adjust_address (mem, VOIDmode, base_align_bias);
1235 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1236 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1237 if (use_after_return_class < 5
1238 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1239 BITS_PER_UNIT, true))
1240 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1241 BITS_PER_UNIT, true, 0);
1242 else if (use_after_return_class >= 5
1243 || !set_storage_via_setmem (shadow_mem,
1244 GEN_INT (sz),
1245 gen_int_mode (c, QImode),
1246 BITS_PER_UNIT, BITS_PER_UNIT,
1247 -1, sz, sz, sz))
1248 {
1249 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1250 use_after_return_class);
1251 ret = init_one_libfunc (buf);
1252 rtx addr = convert_memory_address (ptr_mode, base);
1253 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1254 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1255 GEN_INT (asan_frame_size + base_align_bias),
1256 TYPE_MODE (pointer_sized_int_node),
1257 orig_addr, ptr_mode);
1258 }
1259 lab = gen_label_rtx ();
1260 emit_jump (lab);
1261 emit_label (lab2);
1262 }
1263
1264 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1265 set_mem_alias_set (shadow_mem, asan_shadow_set);
1266
1267 if (STRICT_ALIGNMENT)
1268 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1269
1270 prev_offset = base_offset;
1271 last_offset = base_offset;
1272 last_size = 0;
1273 for (l = length; l; l -= 2)
1274 {
1275 offset = base_offset + ((offsets[l - 1] - base_offset)
1276 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1277 if (last_offset + last_size != offset)
1278 {
1279 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1280 (last_offset - prev_offset)
1281 >> ASAN_SHADOW_SHIFT);
1282 prev_offset = last_offset;
1283 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1284 last_offset = offset;
1285 last_size = 0;
1286 }
1287 last_size += base_offset + ((offsets[l - 2] - base_offset)
1288 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1289 - offset;
1290 }
1291 if (last_size)
1292 {
1293 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1294 (last_offset - prev_offset)
1295 >> ASAN_SHADOW_SHIFT);
1296 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1297 }
1298
1299 do_pending_stack_adjust ();
1300 if (lab)
1301 emit_label (lab);
1302
1303 insns = get_insns ();
1304 end_sequence ();
1305 return insns;
1306 }
1307
1308 /* Return true if DECL, a global var, might be overridden and needs
1309 therefore a local alias. */
1310
1311 static bool
1312 asan_needs_local_alias (tree decl)
1313 {
1314 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1315 }
1316
1317 /* Return true if DECL is a VAR_DECL that should be protected
1318 by Address Sanitizer, by appending a red zone with protected
1319 shadow memory after it and aligning it to at least
1320 ASAN_RED_ZONE_SIZE bytes. */
1321
1322 bool
1323 asan_protect_global (tree decl)
1324 {
1325 if (!ASAN_GLOBALS)
1326 return false;
1327
1328 rtx rtl, symbol;
1329
1330 if (TREE_CODE (decl) == STRING_CST)
1331 {
1332 /* Instrument all STRING_CSTs except those created
1333 by asan_pp_string here. */
1334 if (shadow_ptr_types[0] != NULL_TREE
1335 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1336 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1337 return false;
1338 return true;
1339 }
1340 if (TREE_CODE (decl) != VAR_DECL
1341 /* TLS vars aren't statically protectable. */
1342 || DECL_THREAD_LOCAL_P (decl)
1343 /* Externs will be protected elsewhere. */
1344 || DECL_EXTERNAL (decl)
1345 || !DECL_RTL_SET_P (decl)
1346 /* Comdat vars pose an ABI problem, we can't know if
1347 the var that is selected by the linker will have
1348 padding or not. */
1349 || DECL_ONE_ONLY (decl)
1350 /* Similarly for common vars. People can use -fno-common. */
1351 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1352 /* Don't protect if using user section, often vars placed
1353 into user section from multiple TUs are then assumed
1354 to be an array of such vars, putting padding in there
1355 breaks this assumption. */
1356 || (DECL_SECTION_NAME (decl) != NULL
1357 && !symtab_node::get (decl)->implicit_section)
1358 || DECL_SIZE (decl) == 0
1359 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1360 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1361 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1362 || TREE_TYPE (decl) == ubsan_get_source_location_type ())
1363 return false;
1364
1365 rtl = DECL_RTL (decl);
1366 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1367 return false;
1368 symbol = XEXP (rtl, 0);
1369
1370 if (CONSTANT_POOL_ADDRESS_P (symbol)
1371 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1372 return false;
1373
1374 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1375 return false;
1376
1377 #ifndef ASM_OUTPUT_DEF
1378 if (asan_needs_local_alias (decl))
1379 return false;
1380 #endif
1381
1382 return true;
1383 }
1384
1385 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1386 IS_STORE is either 1 (for a store) or 0 (for a load). */
1387
1388 static tree
1389 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1390 int *nargs)
1391 {
1392 static enum built_in_function report[2][2][6]
1393 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1394 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1395 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1396 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1397 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1398 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1399 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1400 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1401 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1402 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1403 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1404 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1405 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1406 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1407 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1408 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1409 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1410 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1411 if (size_in_bytes == -1)
1412 {
1413 *nargs = 2;
1414 return builtin_decl_implicit (report[recover_p][is_store][5]);
1415 }
1416 *nargs = 1;
1417 int size_log2 = exact_log2 (size_in_bytes);
1418 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1419 }
1420
1421 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1422 IS_STORE is either 1 (for a store) or 0 (for a load). */
1423
1424 static tree
1425 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1426 int *nargs)
1427 {
1428 static enum built_in_function check[2][2][6]
1429 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1430 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1431 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1432 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1433 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1434 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1435 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1436 BUILT_IN_ASAN_LOAD2_NOABORT,
1437 BUILT_IN_ASAN_LOAD4_NOABORT,
1438 BUILT_IN_ASAN_LOAD8_NOABORT,
1439 BUILT_IN_ASAN_LOAD16_NOABORT,
1440 BUILT_IN_ASAN_LOADN_NOABORT },
1441 { BUILT_IN_ASAN_STORE1_NOABORT,
1442 BUILT_IN_ASAN_STORE2_NOABORT,
1443 BUILT_IN_ASAN_STORE4_NOABORT,
1444 BUILT_IN_ASAN_STORE8_NOABORT,
1445 BUILT_IN_ASAN_STORE16_NOABORT,
1446 BUILT_IN_ASAN_STOREN_NOABORT } } };
1447 if (size_in_bytes == -1)
1448 {
1449 *nargs = 2;
1450 return builtin_decl_implicit (check[recover_p][is_store][5]);
1451 }
1452 *nargs = 1;
1453 int size_log2 = exact_log2 (size_in_bytes);
1454 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1455 }
1456
1457 /* Split the current basic block and create a condition statement
1458 insertion point right before or after the statement pointed to by
1459 ITER. Return an iterator to the point at which the caller might
1460 safely insert the condition statement.
1461
1462 THEN_BLOCK must be set to the address of an uninitialized instance
1463 of basic_block. The function will then set *THEN_BLOCK to the
1464 'then block' of the condition statement to be inserted by the
1465 caller.
1466
1467 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1468 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1469
1470 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1471 block' of the condition statement to be inserted by the caller.
1472
1473 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1474 statements starting from *ITER, and *THEN_BLOCK is a new empty
1475 block.
1476
1477 *ITER is adjusted to point to always point to the first statement
1478 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1479 same as what ITER was pointing to prior to calling this function,
1480 if BEFORE_P is true; otherwise, it is its following statement. */
1481
1482 gimple_stmt_iterator
1483 create_cond_insert_point (gimple_stmt_iterator *iter,
1484 bool before_p,
1485 bool then_more_likely_p,
1486 bool create_then_fallthru_edge,
1487 basic_block *then_block,
1488 basic_block *fallthrough_block)
1489 {
1490 gimple_stmt_iterator gsi = *iter;
1491
1492 if (!gsi_end_p (gsi) && before_p)
1493 gsi_prev (&gsi);
1494
1495 basic_block cur_bb = gsi_bb (*iter);
1496
1497 edge e = split_block (cur_bb, gsi_stmt (gsi));
1498
1499 /* Get a hold on the 'condition block', the 'then block' and the
1500 'else block'. */
1501 basic_block cond_bb = e->src;
1502 basic_block fallthru_bb = e->dest;
1503 basic_block then_bb = create_empty_bb (cond_bb);
1504 if (current_loops)
1505 {
1506 add_bb_to_loop (then_bb, cond_bb->loop_father);
1507 loops_state_set (LOOPS_NEED_FIXUP);
1508 }
1509
1510 /* Set up the newly created 'then block'. */
1511 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1512 int fallthrough_probability
1513 = then_more_likely_p
1514 ? PROB_VERY_UNLIKELY
1515 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1516 e->probability = PROB_ALWAYS - fallthrough_probability;
1517 if (create_then_fallthru_edge)
1518 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1519
1520 /* Set up the fallthrough basic block. */
1521 e = find_edge (cond_bb, fallthru_bb);
1522 e->flags = EDGE_FALSE_VALUE;
1523 e->count = cond_bb->count;
1524 e->probability = fallthrough_probability;
1525
1526 /* Update dominance info for the newly created then_bb; note that
1527 fallthru_bb's dominance info has already been updated by
1528 split_bock. */
1529 if (dom_info_available_p (CDI_DOMINATORS))
1530 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1531
1532 *then_block = then_bb;
1533 *fallthrough_block = fallthru_bb;
1534 *iter = gsi_start_bb (fallthru_bb);
1535
1536 return gsi_last_bb (cond_bb);
1537 }
1538
1539 /* Insert an if condition followed by a 'then block' right before the
1540 statement pointed to by ITER. The fallthrough block -- which is the
1541 else block of the condition as well as the destination of the
1542 outcoming edge of the 'then block' -- starts with the statement
1543 pointed to by ITER.
1544
1545 COND is the condition of the if.
1546
1547 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1548 'then block' is higher than the probability of the edge to the
1549 fallthrough block.
1550
1551 Upon completion of the function, *THEN_BB is set to the newly
1552 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1553 fallthrough block.
1554
1555 *ITER is adjusted to still point to the same statement it was
1556 pointing to initially. */
1557
1558 static void
1559 insert_if_then_before_iter (gimple cond,
1560 gimple_stmt_iterator *iter,
1561 bool then_more_likely_p,
1562 basic_block *then_bb,
1563 basic_block *fallthrough_bb)
1564 {
1565 gimple_stmt_iterator cond_insert_point =
1566 create_cond_insert_point (iter,
1567 /*before_p=*/true,
1568 then_more_likely_p,
1569 /*create_then_fallthru_edge=*/true,
1570 then_bb,
1571 fallthrough_bb);
1572 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1573 }
1574
1575 /* Build
1576 (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset (). */
1577
1578 static tree
1579 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1580 tree base_addr, tree shadow_ptr_type)
1581 {
1582 tree t, uintptr_type = TREE_TYPE (base_addr);
1583 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1584 gimple g;
1585
1586 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1587 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1588 make_ssa_name (uintptr_type, NULL),
1589 base_addr, t);
1590 gimple_set_location (g, location);
1591 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1592
1593 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1594 g = gimple_build_assign_with_ops (PLUS_EXPR,
1595 make_ssa_name (uintptr_type, NULL),
1596 gimple_assign_lhs (g), t);
1597 gimple_set_location (g, location);
1598 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1599
1600 g = gimple_build_assign_with_ops (NOP_EXPR,
1601 make_ssa_name (shadow_ptr_type, NULL),
1602 gimple_assign_lhs (g), NULL_TREE);
1603 gimple_set_location (g, location);
1604 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1605
1606 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1607 build_int_cst (shadow_ptr_type, 0));
1608 g = gimple_build_assign_with_ops (MEM_REF,
1609 make_ssa_name (shadow_type, NULL),
1610 t, NULL_TREE);
1611 gimple_set_location (g, location);
1612 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1613 return gimple_assign_lhs (g);
1614 }
1615
1616 /* BASE can already be an SSA_NAME; in that case, do not create a
1617 new SSA_NAME for it. */
1618
1619 static tree
1620 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1621 bool before_p)
1622 {
1623 if (TREE_CODE (base) == SSA_NAME)
1624 return base;
1625 gimple g
1626 = gimple_build_assign_with_ops (TREE_CODE (base),
1627 make_ssa_name (TREE_TYPE (base), NULL),
1628 base, NULL_TREE);
1629 gimple_set_location (g, loc);
1630 if (before_p)
1631 gsi_insert_before (iter, g, GSI_SAME_STMT);
1632 else
1633 gsi_insert_after (iter, g, GSI_NEW_STMT);
1634 return gimple_assign_lhs (g);
1635 }
1636
1637 /* LEN can already have necessary size and precision;
1638 in that case, do not create a new variable. */
1639
1640 tree
1641 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1642 bool before_p)
1643 {
1644 if (ptrofftype_p (len))
1645 return len;
1646 gimple g
1647 = gimple_build_assign_with_ops (NOP_EXPR,
1648 make_ssa_name (pointer_sized_int_node, NULL),
1649 len, NULL);
1650 gimple_set_location (g, loc);
1651 if (before_p)
1652 gsi_insert_before (iter, g, GSI_SAME_STMT);
1653 else
1654 gsi_insert_after (iter, g, GSI_NEW_STMT);
1655 return gimple_assign_lhs (g);
1656 }
1657
1658 /* Instrument the memory access instruction BASE. Insert new
1659 statements before or after ITER.
1660
1661 Note that the memory access represented by BASE can be either an
1662 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1663 location. IS_STORE is TRUE for a store, FALSE for a load.
1664 BEFORE_P is TRUE for inserting the instrumentation code before
1665 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1666 for a scalar memory access and FALSE for memory region access.
1667 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1668 length. ALIGN tells alignment of accessed memory object.
1669
1670 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1671 memory region have already been instrumented.
1672
1673 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1674 statement it was pointing to prior to calling this function,
1675 otherwise, it points to the statement logically following it. */
1676
1677 static void
1678 build_check_stmt (location_t loc, tree base, tree len,
1679 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1680 bool is_non_zero_len, bool before_p, bool is_store,
1681 bool is_scalar_access, unsigned int align = 0)
1682 {
1683 gimple_stmt_iterator gsi = *iter;
1684 gimple g;
1685
1686 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1687
1688 gsi = *iter;
1689
1690 base = unshare_expr (base);
1691 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1692
1693 if (len)
1694 {
1695 len = unshare_expr (len);
1696 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1697 }
1698 else
1699 {
1700 gcc_assert (size_in_bytes != -1);
1701 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1702 }
1703
1704 if (size_in_bytes > 1)
1705 {
1706 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1707 || size_in_bytes > 16)
1708 is_scalar_access = false;
1709 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1710 {
1711 /* On non-strict alignment targets, if
1712 16-byte access is just 8-byte aligned,
1713 this will result in misaligned shadow
1714 memory 2 byte load, but otherwise can
1715 be handled using one read. */
1716 if (size_in_bytes != 16
1717 || STRICT_ALIGNMENT
1718 || align < 8 * BITS_PER_UNIT)
1719 is_scalar_access = false;
1720 }
1721 }
1722
1723 HOST_WIDE_INT flags = 0;
1724 if (is_store)
1725 flags |= ASAN_CHECK_STORE;
1726 if (is_non_zero_len)
1727 flags |= ASAN_CHECK_NON_ZERO_LEN;
1728 if (is_scalar_access)
1729 flags |= ASAN_CHECK_SCALAR_ACCESS;
1730
1731 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1732 build_int_cst (integer_type_node, flags),
1733 base, len,
1734 build_int_cst (integer_type_node,
1735 align / BITS_PER_UNIT));
1736 gimple_set_location (g, loc);
1737 if (before_p)
1738 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1739 else
1740 {
1741 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1742 gsi_next (&gsi);
1743 *iter = gsi;
1744 }
1745 }
1746
1747 /* If T represents a memory access, add instrumentation code before ITER.
1748 LOCATION is source code location.
1749 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1750
1751 static void
1752 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1753 location_t location, bool is_store)
1754 {
1755 if (is_store && !ASAN_INSTRUMENT_WRITES)
1756 return;
1757 if (!is_store && !ASAN_INSTRUMENT_READS)
1758 return;
1759
1760 tree type, base;
1761 HOST_WIDE_INT size_in_bytes;
1762
1763 type = TREE_TYPE (t);
1764 switch (TREE_CODE (t))
1765 {
1766 case ARRAY_REF:
1767 case COMPONENT_REF:
1768 case INDIRECT_REF:
1769 case MEM_REF:
1770 case VAR_DECL:
1771 case BIT_FIELD_REF:
1772 break;
1773 /* FALLTHRU */
1774 default:
1775 return;
1776 }
1777
1778 size_in_bytes = int_size_in_bytes (type);
1779 if (size_in_bytes <= 0)
1780 return;
1781
1782 HOST_WIDE_INT bitsize, bitpos;
1783 tree offset;
1784 machine_mode mode;
1785 int volatilep = 0, unsignedp = 0;
1786 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1787 &mode, &unsignedp, &volatilep, false);
1788
1789 if (TREE_CODE (t) == COMPONENT_REF
1790 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1791 {
1792 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1793 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1794 TREE_OPERAND (t, 0), repr,
1795 NULL_TREE), location, is_store);
1796 return;
1797 }
1798
1799 if (bitpos % BITS_PER_UNIT
1800 || bitsize != size_in_bytes * BITS_PER_UNIT)
1801 return;
1802
1803 if (TREE_CODE (inner) == VAR_DECL
1804 && offset == NULL_TREE
1805 && bitpos >= 0
1806 && DECL_SIZE (inner)
1807 && tree_fits_shwi_p (DECL_SIZE (inner))
1808 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1809 {
1810 if (DECL_THREAD_LOCAL_P (inner))
1811 return;
1812 if (!TREE_STATIC (inner))
1813 {
1814 /* Automatic vars in the current function will be always
1815 accessible. */
1816 if (decl_function_context (inner) == current_function_decl)
1817 return;
1818 }
1819 /* Always instrument external vars, they might be dynamically
1820 initialized. */
1821 else if (!DECL_EXTERNAL (inner))
1822 {
1823 /* For static vars if they are known not to be dynamically
1824 initialized, they will be always accessible. */
1825 varpool_node *vnode = varpool_node::get (inner);
1826 if (vnode && !vnode->dynamically_initialized)
1827 return;
1828 }
1829 }
1830
1831 base = build_fold_addr_expr (t);
1832 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1833 {
1834 unsigned int align = get_object_alignment (t);
1835 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1836 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1837 is_store, /*is_scalar_access*/true, align);
1838 update_mem_ref_hash_table (base, size_in_bytes);
1839 update_mem_ref_hash_table (t, size_in_bytes);
1840 }
1841
1842 }
1843
1844 /* Insert a memory reference into the hash table if access length
1845 can be determined in compile time. */
1846
1847 static void
1848 maybe_update_mem_ref_hash_table (tree base, tree len)
1849 {
1850 if (!POINTER_TYPE_P (TREE_TYPE (base))
1851 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1852 return;
1853
1854 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1855
1856 if (size_in_bytes != -1)
1857 update_mem_ref_hash_table (base, size_in_bytes);
1858 }
1859
1860 /* Instrument an access to a contiguous memory region that starts at
1861 the address pointed to by BASE, over a length of LEN (expressed in
1862 the sizeof (*BASE) bytes). ITER points to the instruction before
1863 which the instrumentation instructions must be inserted. LOCATION
1864 is the source location that the instrumentation instructions must
1865 have. If IS_STORE is true, then the memory access is a store;
1866 otherwise, it's a load. */
1867
1868 static void
1869 instrument_mem_region_access (tree base, tree len,
1870 gimple_stmt_iterator *iter,
1871 location_t location, bool is_store)
1872 {
1873 if (!POINTER_TYPE_P (TREE_TYPE (base))
1874 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1875 || integer_zerop (len))
1876 return;
1877
1878 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1879
1880 if ((size_in_bytes == -1)
1881 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1882 {
1883 build_check_stmt (location, base, len, size_in_bytes, iter,
1884 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1885 is_store, /*is_scalar_access*/false, /*align*/0);
1886 }
1887
1888 maybe_update_mem_ref_hash_table (base, len);
1889 *iter = gsi_for_stmt (gsi_stmt (*iter));
1890 }
1891
1892 /* Instrument the call to a built-in memory access function that is
1893 pointed to by the iterator ITER.
1894
1895 Upon completion, return TRUE iff *ITER has been advanced to the
1896 statement following the one it was originally pointing to. */
1897
1898 static bool
1899 instrument_builtin_call (gimple_stmt_iterator *iter)
1900 {
1901 if (!ASAN_MEMINTRIN)
1902 return false;
1903
1904 bool iter_advanced_p = false;
1905 gimple call = gsi_stmt (*iter);
1906
1907 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1908
1909 location_t loc = gimple_location (call);
1910
1911 asan_mem_ref src0, src1, dest;
1912 asan_mem_ref_init (&src0, NULL, 1);
1913 asan_mem_ref_init (&src1, NULL, 1);
1914 asan_mem_ref_init (&dest, NULL, 1);
1915
1916 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1917 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1918 dest_is_deref = false, intercepted_p = true;
1919
1920 if (get_mem_refs_of_builtin_call (call,
1921 &src0, &src0_len, &src0_is_store,
1922 &src1, &src1_len, &src1_is_store,
1923 &dest, &dest_len, &dest_is_store,
1924 &dest_is_deref, &intercepted_p))
1925 {
1926 if (dest_is_deref)
1927 {
1928 instrument_derefs (iter, dest.start, loc, dest_is_store);
1929 gsi_next (iter);
1930 iter_advanced_p = true;
1931 }
1932 else if (!intercepted_p
1933 && (src0_len || src1_len || dest_len))
1934 {
1935 if (src0.start != NULL_TREE)
1936 instrument_mem_region_access (src0.start, src0_len,
1937 iter, loc, /*is_store=*/false);
1938 if (src1.start != NULL_TREE)
1939 instrument_mem_region_access (src1.start, src1_len,
1940 iter, loc, /*is_store=*/false);
1941 if (dest.start != NULL_TREE)
1942 instrument_mem_region_access (dest.start, dest_len,
1943 iter, loc, /*is_store=*/true);
1944
1945 *iter = gsi_for_stmt (call);
1946 gsi_next (iter);
1947 iter_advanced_p = true;
1948 }
1949 else
1950 {
1951 if (src0.start != NULL_TREE)
1952 maybe_update_mem_ref_hash_table (src0.start, src0_len);
1953 if (src1.start != NULL_TREE)
1954 maybe_update_mem_ref_hash_table (src1.start, src1_len);
1955 if (dest.start != NULL_TREE)
1956 maybe_update_mem_ref_hash_table (dest.start, dest_len);
1957 }
1958 }
1959 return iter_advanced_p;
1960 }
1961
1962 /* Instrument the assignment statement ITER if it is subject to
1963 instrumentation. Return TRUE iff instrumentation actually
1964 happened. In that case, the iterator ITER is advanced to the next
1965 logical expression following the one initially pointed to by ITER,
1966 and the relevant memory reference that which access has been
1967 instrumented is added to the memory references hash table. */
1968
1969 static bool
1970 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1971 {
1972 gimple s = gsi_stmt (*iter);
1973
1974 gcc_assert (gimple_assign_single_p (s));
1975
1976 tree ref_expr = NULL_TREE;
1977 bool is_store, is_instrumented = false;
1978
1979 if (gimple_store_p (s))
1980 {
1981 ref_expr = gimple_assign_lhs (s);
1982 is_store = true;
1983 instrument_derefs (iter, ref_expr,
1984 gimple_location (s),
1985 is_store);
1986 is_instrumented = true;
1987 }
1988
1989 if (gimple_assign_load_p (s))
1990 {
1991 ref_expr = gimple_assign_rhs1 (s);
1992 is_store = false;
1993 instrument_derefs (iter, ref_expr,
1994 gimple_location (s),
1995 is_store);
1996 is_instrumented = true;
1997 }
1998
1999 if (is_instrumented)
2000 gsi_next (iter);
2001
2002 return is_instrumented;
2003 }
2004
2005 /* Instrument the function call pointed to by the iterator ITER, if it
2006 is subject to instrumentation. At the moment, the only function
2007 calls that are instrumented are some built-in functions that access
2008 memory. Look at instrument_builtin_call to learn more.
2009
2010 Upon completion return TRUE iff *ITER was advanced to the statement
2011 following the one it was originally pointing to. */
2012
2013 static bool
2014 maybe_instrument_call (gimple_stmt_iterator *iter)
2015 {
2016 gimple stmt = gsi_stmt (*iter);
2017 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2018
2019 if (is_builtin && instrument_builtin_call (iter))
2020 return true;
2021
2022 if (gimple_call_noreturn_p (stmt))
2023 {
2024 if (is_builtin)
2025 {
2026 tree callee = gimple_call_fndecl (stmt);
2027 switch (DECL_FUNCTION_CODE (callee))
2028 {
2029 case BUILT_IN_UNREACHABLE:
2030 case BUILT_IN_TRAP:
2031 /* Don't instrument these. */
2032 return false;
2033 default:
2034 break;
2035 }
2036 }
2037 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2038 gimple g = gimple_build_call (decl, 0);
2039 gimple_set_location (g, gimple_location (stmt));
2040 gsi_insert_before (iter, g, GSI_SAME_STMT);
2041 }
2042 return false;
2043 }
2044
2045 /* Walk each instruction of all basic block and instrument those that
2046 represent memory references: loads, stores, or function calls.
2047 In a given basic block, this function avoids instrumenting memory
2048 references that have already been instrumented. */
2049
2050 static void
2051 transform_statements (void)
2052 {
2053 basic_block bb, last_bb = NULL;
2054 gimple_stmt_iterator i;
2055 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2056
2057 FOR_EACH_BB_FN (bb, cfun)
2058 {
2059 basic_block prev_bb = bb;
2060
2061 if (bb->index >= saved_last_basic_block) continue;
2062
2063 /* Flush the mem ref hash table, if current bb doesn't have
2064 exactly one predecessor, or if that predecessor (skipping
2065 over asan created basic blocks) isn't the last processed
2066 basic block. Thus we effectively flush on extended basic
2067 block boundaries. */
2068 while (single_pred_p (prev_bb))
2069 {
2070 prev_bb = single_pred (prev_bb);
2071 if (prev_bb->index < saved_last_basic_block)
2072 break;
2073 }
2074 if (prev_bb != last_bb)
2075 empty_mem_ref_hash_table ();
2076 last_bb = bb;
2077
2078 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2079 {
2080 gimple s = gsi_stmt (i);
2081
2082 if (has_stmt_been_instrumented_p (s))
2083 gsi_next (&i);
2084 else if (gimple_assign_single_p (s)
2085 && !gimple_clobber_p (s)
2086 && maybe_instrument_assignment (&i))
2087 /* Nothing to do as maybe_instrument_assignment advanced
2088 the iterator I. */;
2089 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2090 /* Nothing to do as maybe_instrument_call
2091 advanced the iterator I. */;
2092 else
2093 {
2094 /* No instrumentation happened.
2095
2096 If the current instruction is a function call that
2097 might free something, let's forget about the memory
2098 references that got instrumented. Otherwise we might
2099 miss some instrumentation opportunities. */
2100 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2101 empty_mem_ref_hash_table ();
2102
2103 gsi_next (&i);
2104 }
2105 }
2106 }
2107 free_mem_ref_resources ();
2108 }
2109
2110 /* Build
2111 __asan_before_dynamic_init (module_name)
2112 or
2113 __asan_after_dynamic_init ()
2114 call. */
2115
2116 tree
2117 asan_dynamic_init_call (bool after_p)
2118 {
2119 tree fn = builtin_decl_implicit (after_p
2120 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2121 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2122 tree module_name_cst = NULL_TREE;
2123 if (!after_p)
2124 {
2125 pretty_printer module_name_pp;
2126 pp_string (&module_name_pp, main_input_filename);
2127
2128 if (shadow_ptr_types[0] == NULL_TREE)
2129 asan_init_shadow_ptr_types ();
2130 module_name_cst = asan_pp_string (&module_name_pp);
2131 module_name_cst = fold_convert (const_ptr_type_node,
2132 module_name_cst);
2133 }
2134
2135 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2136 }
2137
2138 /* Build
2139 struct __asan_global
2140 {
2141 const void *__beg;
2142 uptr __size;
2143 uptr __size_with_redzone;
2144 const void *__name;
2145 const void *__module_name;
2146 uptr __has_dynamic_init;
2147 __asan_global_source_location *__location;
2148 } type. */
2149
2150 static tree
2151 asan_global_struct (void)
2152 {
2153 static const char *field_names[7]
2154 = { "__beg", "__size", "__size_with_redzone",
2155 "__name", "__module_name", "__has_dynamic_init", "__location"};
2156 tree fields[7], ret;
2157 int i;
2158
2159 ret = make_node (RECORD_TYPE);
2160 for (i = 0; i < 7; i++)
2161 {
2162 fields[i]
2163 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2164 get_identifier (field_names[i]),
2165 (i == 0 || i == 3) ? const_ptr_type_node
2166 : pointer_sized_int_node);
2167 DECL_CONTEXT (fields[i]) = ret;
2168 if (i)
2169 DECL_CHAIN (fields[i - 1]) = fields[i];
2170 }
2171 TYPE_FIELDS (ret) = fields[0];
2172 TYPE_NAME (ret) = get_identifier ("__asan_global");
2173 layout_type (ret);
2174 return ret;
2175 }
2176
2177 /* Append description of a single global DECL into vector V.
2178 TYPE is __asan_global struct type as returned by asan_global_struct. */
2179
2180 static void
2181 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2182 {
2183 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2184 unsigned HOST_WIDE_INT size;
2185 tree str_cst, module_name_cst, refdecl = decl;
2186 vec<constructor_elt, va_gc> *vinner = NULL;
2187
2188 pretty_printer asan_pp, module_name_pp;
2189
2190 if (DECL_NAME (decl))
2191 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2192 else
2193 pp_string (&asan_pp, "<unknown>");
2194 str_cst = asan_pp_string (&asan_pp);
2195
2196 pp_string (&module_name_pp, main_input_filename);
2197 module_name_cst = asan_pp_string (&module_name_pp);
2198
2199 if (asan_needs_local_alias (decl))
2200 {
2201 char buf[20];
2202 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2203 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2204 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2205 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2206 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2207 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2208 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2209 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2210 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2211 TREE_STATIC (refdecl) = 1;
2212 TREE_PUBLIC (refdecl) = 0;
2213 TREE_USED (refdecl) = 1;
2214 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2215 }
2216
2217 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2218 fold_convert (const_ptr_type_node,
2219 build_fold_addr_expr (refdecl)));
2220 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2221 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2222 size += asan_red_zone_size (size);
2223 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2224 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2225 fold_convert (const_ptr_type_node, str_cst));
2226 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2227 fold_convert (const_ptr_type_node, module_name_cst));
2228 varpool_node *vnode = varpool_node::get (decl);
2229 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2230 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2231 build_int_cst (uptr, has_dynamic_init));
2232 tree locptr = NULL_TREE;
2233 location_t loc = DECL_SOURCE_LOCATION (decl);
2234 expanded_location xloc = expand_location (loc);
2235 if (xloc.file != NULL)
2236 {
2237 static int lasanloccnt = 0;
2238 char buf[25];
2239 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2240 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2241 ubsan_get_source_location_type ());
2242 TREE_STATIC (var) = 1;
2243 TREE_PUBLIC (var) = 0;
2244 DECL_ARTIFICIAL (var) = 1;
2245 DECL_IGNORED_P (var) = 1;
2246 pretty_printer filename_pp;
2247 pp_string (&filename_pp, xloc.file);
2248 tree str = asan_pp_string (&filename_pp);
2249 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2250 NULL_TREE, str, NULL_TREE,
2251 build_int_cst (unsigned_type_node,
2252 xloc.line), NULL_TREE,
2253 build_int_cst (unsigned_type_node,
2254 xloc.column));
2255 TREE_CONSTANT (ctor) = 1;
2256 TREE_STATIC (ctor) = 1;
2257 DECL_INITIAL (var) = ctor;
2258 varpool_node::finalize_decl (var);
2259 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2260 }
2261 else
2262 locptr = build_int_cst (uptr, 0);
2263 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2264 init = build_constructor (type, vinner);
2265 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2266 }
2267
2268 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2269 void
2270 initialize_sanitizer_builtins (void)
2271 {
2272 tree decl;
2273
2274 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2275 return;
2276
2277 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2278 tree BT_FN_VOID_PTR
2279 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2280 tree BT_FN_VOID_CONST_PTR
2281 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2282 tree BT_FN_VOID_PTR_PTR
2283 = build_function_type_list (void_type_node, ptr_type_node,
2284 ptr_type_node, NULL_TREE);
2285 tree BT_FN_VOID_PTR_PTR_PTR
2286 = build_function_type_list (void_type_node, ptr_type_node,
2287 ptr_type_node, ptr_type_node, NULL_TREE);
2288 tree BT_FN_VOID_PTR_PTRMODE
2289 = build_function_type_list (void_type_node, ptr_type_node,
2290 pointer_sized_int_node, NULL_TREE);
2291 tree BT_FN_VOID_INT
2292 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2293 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2294 tree BT_FN_IX_CONST_VPTR_INT[5];
2295 tree BT_FN_IX_VPTR_IX_INT[5];
2296 tree BT_FN_VOID_VPTR_IX_INT[5];
2297 tree vptr
2298 = build_pointer_type (build_qualified_type (void_type_node,
2299 TYPE_QUAL_VOLATILE));
2300 tree cvptr
2301 = build_pointer_type (build_qualified_type (void_type_node,
2302 TYPE_QUAL_VOLATILE
2303 |TYPE_QUAL_CONST));
2304 tree boolt
2305 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2306 int i;
2307 for (i = 0; i < 5; i++)
2308 {
2309 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2310 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2311 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2312 integer_type_node, integer_type_node,
2313 NULL_TREE);
2314 BT_FN_IX_CONST_VPTR_INT[i]
2315 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2316 BT_FN_IX_VPTR_IX_INT[i]
2317 = build_function_type_list (ix, vptr, ix, integer_type_node,
2318 NULL_TREE);
2319 BT_FN_VOID_VPTR_IX_INT[i]
2320 = build_function_type_list (void_type_node, vptr, ix,
2321 integer_type_node, NULL_TREE);
2322 }
2323 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2324 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2325 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2326 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2327 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2328 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2329 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2330 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2331 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2332 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2333 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2334 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2335 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2336 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2337 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2338 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2339 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2340 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2341 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2342 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2343 #undef ATTR_NOTHROW_LEAF_LIST
2344 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2345 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2346 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2347 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2348 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2349 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2350 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2351 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2352 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2353 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2354 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2355 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2356 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2357 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2358 #undef DEF_SANITIZER_BUILTIN
2359 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2360 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2361 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2362 set_call_expr_flags (decl, ATTRS); \
2363 set_builtin_decl (ENUM, decl, true);
2364
2365 #include "sanitizer.def"
2366
2367 #undef DEF_SANITIZER_BUILTIN
2368 }
2369
2370 /* Called via htab_traverse. Count number of emitted
2371 STRING_CSTs in the constant hash table. */
2372
2373 int
2374 count_string_csts (constant_descriptor_tree **slot,
2375 unsigned HOST_WIDE_INT *data)
2376 {
2377 struct constant_descriptor_tree *desc = *slot;
2378 if (TREE_CODE (desc->value) == STRING_CST
2379 && TREE_ASM_WRITTEN (desc->value)
2380 && asan_protect_global (desc->value))
2381 ++*data;
2382 return 1;
2383 }
2384
2385 /* Helper structure to pass two parameters to
2386 add_string_csts. */
2387
2388 struct asan_add_string_csts_data
2389 {
2390 tree type;
2391 vec<constructor_elt, va_gc> *v;
2392 };
2393
2394 /* Called via hash_table::traverse. Call asan_add_global
2395 on emitted STRING_CSTs from the constant hash table. */
2396
2397 int
2398 add_string_csts (constant_descriptor_tree **slot,
2399 asan_add_string_csts_data *aascd)
2400 {
2401 struct constant_descriptor_tree *desc = *slot;
2402 if (TREE_CODE (desc->value) == STRING_CST
2403 && TREE_ASM_WRITTEN (desc->value)
2404 && asan_protect_global (desc->value))
2405 {
2406 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2407 aascd->type, aascd->v);
2408 }
2409 return 1;
2410 }
2411
2412 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2413 invoke ggc_collect. */
2414 static GTY(()) tree asan_ctor_statements;
2415
2416 /* Module-level instrumentation.
2417 - Insert __asan_init_vN() into the list of CTORs.
2418 - TODO: insert redzones around globals.
2419 */
2420
2421 void
2422 asan_finish_file (void)
2423 {
2424 varpool_node *vnode;
2425 unsigned HOST_WIDE_INT gcount = 0;
2426
2427 if (shadow_ptr_types[0] == NULL_TREE)
2428 asan_init_shadow_ptr_types ();
2429 /* Avoid instrumenting code in the asan ctors/dtors.
2430 We don't need to insert padding after the description strings,
2431 nor after .LASAN* array. */
2432 flag_sanitize &= ~SANITIZE_ADDRESS;
2433
2434 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2435 {
2436 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2437 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2438 }
2439 FOR_EACH_DEFINED_VARIABLE (vnode)
2440 if (TREE_ASM_WRITTEN (vnode->decl)
2441 && asan_protect_global (vnode->decl))
2442 ++gcount;
2443 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2444 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2445 (&gcount);
2446 if (gcount)
2447 {
2448 tree type = asan_global_struct (), var, ctor;
2449 tree dtor_statements = NULL_TREE;
2450 vec<constructor_elt, va_gc> *v;
2451 char buf[20];
2452
2453 type = build_array_type_nelts (type, gcount);
2454 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2455 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2456 type);
2457 TREE_STATIC (var) = 1;
2458 TREE_PUBLIC (var) = 0;
2459 DECL_ARTIFICIAL (var) = 1;
2460 DECL_IGNORED_P (var) = 1;
2461 vec_alloc (v, gcount);
2462 FOR_EACH_DEFINED_VARIABLE (vnode)
2463 if (TREE_ASM_WRITTEN (vnode->decl)
2464 && asan_protect_global (vnode->decl))
2465 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2466 struct asan_add_string_csts_data aascd;
2467 aascd.type = TREE_TYPE (type);
2468 aascd.v = v;
2469 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2470 (&aascd);
2471 ctor = build_constructor (type, v);
2472 TREE_CONSTANT (ctor) = 1;
2473 TREE_STATIC (ctor) = 1;
2474 DECL_INITIAL (var) = ctor;
2475 varpool_node::finalize_decl (var);
2476
2477 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2478 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2479 append_to_statement_list (build_call_expr (fn, 2,
2480 build_fold_addr_expr (var),
2481 gcount_tree),
2482 &asan_ctor_statements);
2483
2484 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2485 append_to_statement_list (build_call_expr (fn, 2,
2486 build_fold_addr_expr (var),
2487 gcount_tree),
2488 &dtor_statements);
2489 cgraph_build_static_cdtor ('D', dtor_statements,
2490 MAX_RESERVED_INIT_PRIORITY - 1);
2491 }
2492 if (asan_ctor_statements)
2493 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2494 MAX_RESERVED_INIT_PRIORITY - 1);
2495 flag_sanitize |= SANITIZE_ADDRESS;
2496 }
2497
2498 /* Expand the ASAN_{LOAD,STORE} builtins. */
2499
2500 bool
2501 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2502 {
2503 gimple g = gsi_stmt (*iter);
2504 location_t loc = gimple_location (g);
2505
2506 bool recover_p
2507 = (flag_sanitize & flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2508
2509 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2510 gcc_assert (flags < ASAN_CHECK_LAST);
2511 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2512 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2513 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2514
2515 tree base = gimple_call_arg (g, 1);
2516 tree len = gimple_call_arg (g, 2);
2517 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2518
2519 HOST_WIDE_INT size_in_bytes
2520 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2521
2522 if (use_calls)
2523 {
2524 /* Instrument using callbacks. */
2525 gimple g
2526 = gimple_build_assign_with_ops (NOP_EXPR,
2527 make_ssa_name (pointer_sized_int_node,
2528 NULL),
2529 base, NULL_TREE);
2530 gimple_set_location (g, loc);
2531 gsi_insert_before (iter, g, GSI_SAME_STMT);
2532 tree base_addr = gimple_assign_lhs (g);
2533
2534 int nargs;
2535 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2536 if (nargs == 1)
2537 g = gimple_build_call (fun, 1, base_addr);
2538 else
2539 {
2540 gcc_assert (nargs == 2);
2541 g = gimple_build_assign_with_ops (NOP_EXPR,
2542 make_ssa_name (pointer_sized_int_node,
2543 NULL),
2544 len, NULL_TREE);
2545 gimple_set_location (g, loc);
2546 gsi_insert_before (iter, g, GSI_SAME_STMT);
2547 tree sz_arg = gimple_assign_lhs (g);
2548 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2549 }
2550 gimple_set_location (g, loc);
2551 gsi_replace (iter, g, false);
2552 return false;
2553 }
2554
2555 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2556
2557 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2558 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2559
2560 gimple_stmt_iterator gsi = *iter;
2561
2562 if (!is_non_zero_len)
2563 {
2564 /* So, the length of the memory area to asan-protect is
2565 non-constant. Let's guard the generated instrumentation code
2566 like:
2567
2568 if (len != 0)
2569 {
2570 //asan instrumentation code goes here.
2571 }
2572 // falltrough instructions, starting with *ITER. */
2573
2574 g = gimple_build_cond (NE_EXPR,
2575 len,
2576 build_int_cst (TREE_TYPE (len), 0),
2577 NULL_TREE, NULL_TREE);
2578 gimple_set_location (g, loc);
2579
2580 basic_block then_bb, fallthrough_bb;
2581 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2582 &then_bb, &fallthrough_bb);
2583 /* Note that fallthrough_bb starts with the statement that was
2584 pointed to by ITER. */
2585
2586 /* The 'then block' of the 'if (len != 0) condition is where
2587 we'll generate the asan instrumentation code now. */
2588 gsi = gsi_last_bb (then_bb);
2589 }
2590
2591 /* Get an iterator on the point where we can add the condition
2592 statement for the instrumentation. */
2593 basic_block then_bb, else_bb;
2594 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2595 /*then_more_likely_p=*/false,
2596 /*create_then_fallthru_edge*/recover_p,
2597 &then_bb,
2598 &else_bb);
2599
2600 g = gimple_build_assign_with_ops (NOP_EXPR,
2601 make_ssa_name (pointer_sized_int_node,
2602 NULL),
2603 base, NULL_TREE);
2604 gimple_set_location (g, loc);
2605 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2606 tree base_addr = gimple_assign_lhs (g);
2607
2608 tree t = NULL_TREE;
2609 if (real_size_in_bytes >= 8)
2610 {
2611 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2612 shadow_ptr_type);
2613 t = shadow;
2614 }
2615 else
2616 {
2617 /* Slow path for 1, 2 and 4 byte accesses. */
2618 /* Test (shadow != 0)
2619 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2620 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2621 shadow_ptr_type);
2622 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2623 gimple_seq seq = NULL;
2624 gimple_seq_add_stmt (&seq, shadow_test);
2625 /* Aligned (>= 8 bytes) can test just
2626 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2627 to be 0. */
2628 if (align < 8)
2629 {
2630 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2631 base_addr, 7));
2632 gimple_seq_add_stmt (&seq,
2633 build_type_cast (shadow_type,
2634 gimple_seq_last (seq)));
2635 if (real_size_in_bytes > 1)
2636 gimple_seq_add_stmt (&seq,
2637 build_assign (PLUS_EXPR,
2638 gimple_seq_last (seq),
2639 real_size_in_bytes - 1));
2640 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2641 }
2642 else
2643 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2644 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2645 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2646 gimple_seq_last (seq)));
2647 t = gimple_assign_lhs (gimple_seq_last (seq));
2648 gimple_seq_set_location (seq, loc);
2649 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2650
2651 /* For non-constant, misaligned or otherwise weird access sizes,
2652 check first and last byte. */
2653 if (size_in_bytes == -1)
2654 {
2655 g = gimple_build_assign_with_ops (MINUS_EXPR,
2656 make_ssa_name (pointer_sized_int_node, NULL),
2657 len,
2658 build_int_cst (pointer_sized_int_node, 1));
2659 gimple_set_location (g, loc);
2660 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2661 tree last = gimple_assign_lhs (g);
2662 g = gimple_build_assign_with_ops (PLUS_EXPR,
2663 make_ssa_name (pointer_sized_int_node, NULL),
2664 base_addr,
2665 last);
2666 gimple_set_location (g, loc);
2667 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2668 tree base_end_addr = gimple_assign_lhs (g);
2669
2670 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2671 shadow_ptr_type);
2672 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2673 gimple_seq seq = NULL;
2674 gimple_seq_add_stmt (&seq, shadow_test);
2675 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2676 base_end_addr, 7));
2677 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2678 gimple_seq_last (seq)));
2679 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2680 gimple_seq_last (seq),
2681 shadow));
2682 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2683 gimple_seq_last (seq)));
2684 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2685 gimple_seq_last (seq)));
2686 t = gimple_assign_lhs (gimple_seq_last (seq));
2687 gimple_seq_set_location (seq, loc);
2688 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2689 }
2690 }
2691
2692 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2693 NULL_TREE, NULL_TREE);
2694 gimple_set_location (g, loc);
2695 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2696
2697 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2698 gsi = gsi_start_bb (then_bb);
2699 int nargs;
2700 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
2701 g = gimple_build_call (fun, nargs, base_addr, len);
2702 gimple_set_location (g, loc);
2703 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2704
2705 gsi_remove (iter, true);
2706 *iter = gsi_start_bb (else_bb);
2707
2708 return true;
2709 }
2710
2711 /* Instrument the current function. */
2712
2713 static unsigned int
2714 asan_instrument (void)
2715 {
2716 if (shadow_ptr_types[0] == NULL_TREE)
2717 asan_init_shadow_ptr_types ();
2718 transform_statements ();
2719 return 0;
2720 }
2721
2722 static bool
2723 gate_asan (void)
2724 {
2725 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2726 && !lookup_attribute ("no_sanitize_address",
2727 DECL_ATTRIBUTES (current_function_decl));
2728 }
2729
2730 namespace {
2731
2732 const pass_data pass_data_asan =
2733 {
2734 GIMPLE_PASS, /* type */
2735 "asan", /* name */
2736 OPTGROUP_NONE, /* optinfo_flags */
2737 TV_NONE, /* tv_id */
2738 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2739 0, /* properties_provided */
2740 0, /* properties_destroyed */
2741 0, /* todo_flags_start */
2742 TODO_update_ssa, /* todo_flags_finish */
2743 };
2744
2745 class pass_asan : public gimple_opt_pass
2746 {
2747 public:
2748 pass_asan (gcc::context *ctxt)
2749 : gimple_opt_pass (pass_data_asan, ctxt)
2750 {}
2751
2752 /* opt_pass methods: */
2753 opt_pass * clone () { return new pass_asan (m_ctxt); }
2754 virtual bool gate (function *) { return gate_asan (); }
2755 virtual unsigned int execute (function *) { return asan_instrument (); }
2756
2757 }; // class pass_asan
2758
2759 } // anon namespace
2760
2761 gimple_opt_pass *
2762 make_pass_asan (gcc::context *ctxt)
2763 {
2764 return new pass_asan (ctxt);
2765 }
2766
2767 namespace {
2768
2769 const pass_data pass_data_asan_O0 =
2770 {
2771 GIMPLE_PASS, /* type */
2772 "asan0", /* name */
2773 OPTGROUP_NONE, /* optinfo_flags */
2774 TV_NONE, /* tv_id */
2775 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2776 0, /* properties_provided */
2777 0, /* properties_destroyed */
2778 0, /* todo_flags_start */
2779 TODO_update_ssa, /* todo_flags_finish */
2780 };
2781
2782 class pass_asan_O0 : public gimple_opt_pass
2783 {
2784 public:
2785 pass_asan_O0 (gcc::context *ctxt)
2786 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2787 {}
2788
2789 /* opt_pass methods: */
2790 virtual bool gate (function *) { return !optimize && gate_asan (); }
2791 virtual unsigned int execute (function *) { return asan_instrument (); }
2792
2793 }; // class pass_asan_O0
2794
2795 } // anon namespace
2796
2797 gimple_opt_pass *
2798 make_pass_asan_O0 (gcc::context *ctxt)
2799 {
2800 return new pass_asan_O0 (ctxt);
2801 }
2802
2803 #include "gt-asan.h"