]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/asan.c
Merger of git branch "gimple-classes-v2-option-3"
[thirdparty/gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "tm.h"
33 #include "hard-reg-set.h"
34 #include "input.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-expr.h"
43 #include "is-a.h"
44 #include "inchash.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "calls.h"
49 #include "varasm.h"
50 #include "stor-layout.h"
51 #include "tree-iterator.h"
52 #include "hash-map.h"
53 #include "plugin-api.h"
54 #include "ipa-ref.h"
55 #include "cgraph.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "tree-pass.h"
59 #include "asan.h"
60 #include "gimple-pretty-print.h"
61 #include "target.h"
62 #include "expr.h"
63 #include "insn-codes.h"
64 #include "optabs.h"
65 #include "output.h"
66 #include "tm_p.h"
67 #include "langhooks.h"
68 #include "alloc-pool.h"
69 #include "cfgloop.h"
70 #include "gimple-builder.h"
71 #include "ubsan.h"
72 #include "params.h"
73 #include "builtins.h"
74
75 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
76 with <2x slowdown on average.
77
78 The tool consists of two parts:
79 instrumentation module (this file) and a run-time library.
80 The instrumentation module adds a run-time check before every memory insn.
81 For a 8- or 16- byte load accessing address X:
82 ShadowAddr = (X >> 3) + Offset
83 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
84 if (ShadowValue)
85 __asan_report_load8(X);
86 For a load of N bytes (N=1, 2 or 4) from address X:
87 ShadowAddr = (X >> 3) + Offset
88 ShadowValue = *(char*)ShadowAddr;
89 if (ShadowValue)
90 if ((X & 7) + N - 1 > ShadowValue)
91 __asan_report_loadN(X);
92 Stores are instrumented similarly, but using __asan_report_storeN functions.
93 A call too __asan_init_vN() is inserted to the list of module CTORs.
94 N is the version number of the AddressSanitizer API. The changes between the
95 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
96
97 The run-time library redefines malloc (so that redzone are inserted around
98 the allocated memory) and free (so that reuse of free-ed memory is delayed),
99 provides __asan_report* and __asan_init_vN functions.
100
101 Read more:
102 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
103
104 The current implementation supports detection of out-of-bounds and
105 use-after-free in the heap, on the stack and for global variables.
106
107 [Protection of stack variables]
108
109 To understand how detection of out-of-bounds and use-after-free works
110 for stack variables, lets look at this example on x86_64 where the
111 stack grows downward:
112
113 int
114 foo ()
115 {
116 char a[23] = {0};
117 int b[2] = {0};
118
119 a[5] = 1;
120 b[1] = 2;
121
122 return a[5] + b[1];
123 }
124
125 For this function, the stack protected by asan will be organized as
126 follows, from the top of the stack to the bottom:
127
128 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
129
130 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
131 the next slot be 32 bytes aligned; this one is called Partial
132 Redzone; this 32 bytes alignment is an asan constraint]
133
134 Slot 3/ [24 bytes for variable 'a']
135
136 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
137
138 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
139
140 Slot 6/ [8 bytes for variable 'b']
141
142 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
143 'LEFT RedZone']
144
145 The 32 bytes of LEFT red zone at the bottom of the stack can be
146 decomposed as such:
147
148 1/ The first 8 bytes contain a magical asan number that is always
149 0x41B58AB3.
150
151 2/ The following 8 bytes contains a pointer to a string (to be
152 parsed at runtime by the runtime asan library), which format is
153 the following:
154
155 "<function-name> <space> <num-of-variables-on-the-stack>
156 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
157 <length-of-var-in-bytes> ){n} "
158
159 where '(...){n}' means the content inside the parenthesis occurs 'n'
160 times, with 'n' being the number of variables on the stack.
161
162 3/ The following 8 bytes contain the PC of the current function which
163 will be used by the run-time library to print an error message.
164
165 4/ The following 8 bytes are reserved for internal use by the run-time.
166
167 The shadow memory for that stack layout is going to look like this:
168
169 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
170 The F1 byte pattern is a magic number called
171 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
172 the memory for that shadow byte is part of a the LEFT red zone
173 intended to seat at the bottom of the variables on the stack.
174
175 - content of shadow memory 8 bytes for slots 6 and 5:
176 0xF4F4F400. The F4 byte pattern is a magic number
177 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
178 memory region for this shadow byte is a PARTIAL red zone
179 intended to pad a variable A, so that the slot following
180 {A,padding} is 32 bytes aligned.
181
182 Note that the fact that the least significant byte of this
183 shadow memory content is 00 means that 8 bytes of its
184 corresponding memory (which corresponds to the memory of
185 variable 'b') is addressable.
186
187 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
188 The F2 byte pattern is a magic number called
189 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
190 region for this shadow byte is a MIDDLE red zone intended to
191 seat between two 32 aligned slots of {variable,padding}.
192
193 - content of shadow memory 8 bytes for slot 3 and 2:
194 0xF4000000. This represents is the concatenation of
195 variable 'a' and the partial red zone following it, like what we
196 had for variable 'b'. The least significant 3 bytes being 00
197 means that the 3 bytes of variable 'a' are addressable.
198
199 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
200 The F3 byte pattern is a magic number called
201 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
202 region for this shadow byte is a RIGHT red zone intended to seat
203 at the top of the variables of the stack.
204
205 Note that the real variable layout is done in expand_used_vars in
206 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
207 stack variables as well as the different red zones, emits some
208 prologue code to populate the shadow memory as to poison (mark as
209 non-accessible) the regions of the red zones and mark the regions of
210 stack variables as accessible, and emit some epilogue code to
211 un-poison (mark as accessible) the regions of red zones right before
212 the function exits.
213
214 [Protection of global variables]
215
216 The basic idea is to insert a red zone between two global variables
217 and install a constructor function that calls the asan runtime to do
218 the populating of the relevant shadow memory regions at load time.
219
220 So the global variables are laid out as to insert a red zone between
221 them. The size of the red zones is so that each variable starts on a
222 32 bytes boundary.
223
224 Then a constructor function is installed so that, for each global
225 variable, it calls the runtime asan library function
226 __asan_register_globals_with an instance of this type:
227
228 struct __asan_global
229 {
230 // Address of the beginning of the global variable.
231 const void *__beg;
232
233 // Initial size of the global variable.
234 uptr __size;
235
236 // Size of the global variable + size of the red zone. This
237 // size is 32 bytes aligned.
238 uptr __size_with_redzone;
239
240 // Name of the global variable.
241 const void *__name;
242
243 // Name of the module where the global variable is declared.
244 const void *__module_name;
245
246 // 1 if it has dynamic initialization, 0 otherwise.
247 uptr __has_dynamic_init;
248
249 // A pointer to struct that contains source location, could be NULL.
250 __asan_global_source_location *__location;
251 }
252
253 A destructor function that calls the runtime asan library function
254 _asan_unregister_globals is also installed. */
255
256 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
257 static bool asan_shadow_offset_computed;
258
259 /* Sets shadow offset to value in string VAL. */
260
261 bool
262 set_asan_shadow_offset (const char *val)
263 {
264 char *endp;
265
266 errno = 0;
267 #ifdef HAVE_LONG_LONG
268 asan_shadow_offset_value = strtoull (val, &endp, 0);
269 #else
270 asan_shadow_offset_value = strtoul (val, &endp, 0);
271 #endif
272 if (!(*val != '\0' && *endp == '\0' && errno == 0))
273 return false;
274
275 asan_shadow_offset_computed = true;
276
277 return true;
278 }
279
280 /* Returns Asan shadow offset. */
281
282 static unsigned HOST_WIDE_INT
283 asan_shadow_offset ()
284 {
285 if (!asan_shadow_offset_computed)
286 {
287 asan_shadow_offset_computed = true;
288 asan_shadow_offset_value = targetm.asan_shadow_offset ();
289 }
290 return asan_shadow_offset_value;
291 }
292
293 alias_set_type asan_shadow_set = -1;
294
295 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
296 alias set is used for all shadow memory accesses. */
297 static GTY(()) tree shadow_ptr_types[2];
298
299 /* Decl for __asan_option_detect_stack_use_after_return. */
300 static GTY(()) tree asan_detect_stack_use_after_return;
301
302 /* Various flags for Asan builtins. */
303 enum asan_check_flags
304 {
305 ASAN_CHECK_STORE = 1 << 0,
306 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
307 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
308 ASAN_CHECK_LAST = 1 << 3
309 };
310
311 /* Hashtable support for memory references used by gimple
312 statements. */
313
314 /* This type represents a reference to a memory region. */
315 struct asan_mem_ref
316 {
317 /* The expression of the beginning of the memory region. */
318 tree start;
319
320 /* The size of the access. */
321 HOST_WIDE_INT access_size;
322 };
323
324 static alloc_pool asan_mem_ref_alloc_pool;
325
326 /* This creates the alloc pool used to store the instances of
327 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
328
329 static alloc_pool
330 asan_mem_ref_get_alloc_pool ()
331 {
332 if (asan_mem_ref_alloc_pool == NULL)
333 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
334 sizeof (asan_mem_ref),
335 10);
336 return asan_mem_ref_alloc_pool;
337
338 }
339
340 /* Initializes an instance of asan_mem_ref. */
341
342 static void
343 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
344 {
345 ref->start = start;
346 ref->access_size = access_size;
347 }
348
349 /* Allocates memory for an instance of asan_mem_ref into the memory
350 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
351 START is the address of (or the expression pointing to) the
352 beginning of memory reference. ACCESS_SIZE is the size of the
353 access to the referenced memory. */
354
355 static asan_mem_ref*
356 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
357 {
358 asan_mem_ref *ref =
359 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
360
361 asan_mem_ref_init (ref, start, access_size);
362 return ref;
363 }
364
365 /* This builds and returns a pointer to the end of the memory region
366 that starts at START and of length LEN. */
367
368 tree
369 asan_mem_ref_get_end (tree start, tree len)
370 {
371 if (len == NULL_TREE || integer_zerop (len))
372 return start;
373
374 if (!ptrofftype_p (len))
375 len = convert_to_ptrofftype (len);
376
377 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
378 }
379
380 /* Return a tree expression that represents the end of the referenced
381 memory region. Beware that this function can actually build a new
382 tree expression. */
383
384 tree
385 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
386 {
387 return asan_mem_ref_get_end (ref->start, len);
388 }
389
390 struct asan_mem_ref_hasher
391 : typed_noop_remove <asan_mem_ref>
392 {
393 typedef asan_mem_ref value_type;
394 typedef asan_mem_ref compare_type;
395
396 static inline hashval_t hash (const value_type *);
397 static inline bool equal (const value_type *, const compare_type *);
398 };
399
400 /* Hash a memory reference. */
401
402 inline hashval_t
403 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
404 {
405 return iterative_hash_expr (mem_ref->start, 0);
406 }
407
408 /* Compare two memory references. We accept the length of either
409 memory references to be NULL_TREE. */
410
411 inline bool
412 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
413 const asan_mem_ref *m2)
414 {
415 return operand_equal_p (m1->start, m2->start, 0);
416 }
417
418 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
419
420 /* Returns a reference to the hash table containing memory references.
421 This function ensures that the hash table is created. Note that
422 this hash table is updated by the function
423 update_mem_ref_hash_table. */
424
425 static hash_table<asan_mem_ref_hasher> *
426 get_mem_ref_hash_table ()
427 {
428 if (!asan_mem_ref_ht)
429 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
430
431 return asan_mem_ref_ht;
432 }
433
434 /* Clear all entries from the memory references hash table. */
435
436 static void
437 empty_mem_ref_hash_table ()
438 {
439 if (asan_mem_ref_ht)
440 asan_mem_ref_ht->empty ();
441 }
442
443 /* Free the memory references hash table. */
444
445 static void
446 free_mem_ref_resources ()
447 {
448 delete asan_mem_ref_ht;
449 asan_mem_ref_ht = NULL;
450
451 if (asan_mem_ref_alloc_pool)
452 {
453 free_alloc_pool (asan_mem_ref_alloc_pool);
454 asan_mem_ref_alloc_pool = NULL;
455 }
456 }
457
458 /* Return true iff the memory reference REF has been instrumented. */
459
460 static bool
461 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
462 {
463 asan_mem_ref r;
464 asan_mem_ref_init (&r, ref, access_size);
465
466 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
467 return saved_ref && saved_ref->access_size >= access_size;
468 }
469
470 /* Return true iff the memory reference REF has been instrumented. */
471
472 static bool
473 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
474 {
475 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
476 }
477
478 /* Return true iff access to memory region starting at REF and of
479 length LEN has been instrumented. */
480
481 static bool
482 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
483 {
484 HOST_WIDE_INT size_in_bytes
485 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
486
487 return size_in_bytes != -1
488 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
489 }
490
491 /* Set REF to the memory reference present in a gimple assignment
492 ASSIGNMENT. Return true upon successful completion, false
493 otherwise. */
494
495 static bool
496 get_mem_ref_of_assignment (const gassign *assignment,
497 asan_mem_ref *ref,
498 bool *ref_is_store)
499 {
500 gcc_assert (gimple_assign_single_p (assignment));
501
502 if (gimple_store_p (assignment)
503 && !gimple_clobber_p (assignment))
504 {
505 ref->start = gimple_assign_lhs (assignment);
506 *ref_is_store = true;
507 }
508 else if (gimple_assign_load_p (assignment))
509 {
510 ref->start = gimple_assign_rhs1 (assignment);
511 *ref_is_store = false;
512 }
513 else
514 return false;
515
516 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
517 return true;
518 }
519
520 /* Return the memory references contained in a gimple statement
521 representing a builtin call that has to do with memory access. */
522
523 static bool
524 get_mem_refs_of_builtin_call (const gcall *call,
525 asan_mem_ref *src0,
526 tree *src0_len,
527 bool *src0_is_store,
528 asan_mem_ref *src1,
529 tree *src1_len,
530 bool *src1_is_store,
531 asan_mem_ref *dst,
532 tree *dst_len,
533 bool *dst_is_store,
534 bool *dest_is_deref,
535 bool *intercepted_p)
536 {
537 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
538
539 tree callee = gimple_call_fndecl (call);
540 tree source0 = NULL_TREE, source1 = NULL_TREE,
541 dest = NULL_TREE, len = NULL_TREE;
542 bool is_store = true, got_reference_p = false;
543 HOST_WIDE_INT access_size = 1;
544
545 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
546
547 switch (DECL_FUNCTION_CODE (callee))
548 {
549 /* (s, s, n) style memops. */
550 case BUILT_IN_BCMP:
551 case BUILT_IN_MEMCMP:
552 source0 = gimple_call_arg (call, 0);
553 source1 = gimple_call_arg (call, 1);
554 len = gimple_call_arg (call, 2);
555 break;
556
557 /* (src, dest, n) style memops. */
558 case BUILT_IN_BCOPY:
559 source0 = gimple_call_arg (call, 0);
560 dest = gimple_call_arg (call, 1);
561 len = gimple_call_arg (call, 2);
562 break;
563
564 /* (dest, src, n) style memops. */
565 case BUILT_IN_MEMCPY:
566 case BUILT_IN_MEMCPY_CHK:
567 case BUILT_IN_MEMMOVE:
568 case BUILT_IN_MEMMOVE_CHK:
569 case BUILT_IN_MEMPCPY:
570 case BUILT_IN_MEMPCPY_CHK:
571 dest = gimple_call_arg (call, 0);
572 source0 = gimple_call_arg (call, 1);
573 len = gimple_call_arg (call, 2);
574 break;
575
576 /* (dest, n) style memops. */
577 case BUILT_IN_BZERO:
578 dest = gimple_call_arg (call, 0);
579 len = gimple_call_arg (call, 1);
580 break;
581
582 /* (dest, x, n) style memops*/
583 case BUILT_IN_MEMSET:
584 case BUILT_IN_MEMSET_CHK:
585 dest = gimple_call_arg (call, 0);
586 len = gimple_call_arg (call, 2);
587 break;
588
589 case BUILT_IN_STRLEN:
590 source0 = gimple_call_arg (call, 0);
591 len = gimple_call_lhs (call);
592 break ;
593
594 /* And now the __atomic* and __sync builtins.
595 These are handled differently from the classical memory memory
596 access builtins above. */
597
598 case BUILT_IN_ATOMIC_LOAD_1:
599 case BUILT_IN_ATOMIC_LOAD_2:
600 case BUILT_IN_ATOMIC_LOAD_4:
601 case BUILT_IN_ATOMIC_LOAD_8:
602 case BUILT_IN_ATOMIC_LOAD_16:
603 is_store = false;
604 /* fall through. */
605
606 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
607 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
608 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
609 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
610 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
611
612 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
613 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
615 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
616 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
617
618 case BUILT_IN_SYNC_FETCH_AND_OR_1:
619 case BUILT_IN_SYNC_FETCH_AND_OR_2:
620 case BUILT_IN_SYNC_FETCH_AND_OR_4:
621 case BUILT_IN_SYNC_FETCH_AND_OR_8:
622 case BUILT_IN_SYNC_FETCH_AND_OR_16:
623
624 case BUILT_IN_SYNC_FETCH_AND_AND_1:
625 case BUILT_IN_SYNC_FETCH_AND_AND_2:
626 case BUILT_IN_SYNC_FETCH_AND_AND_4:
627 case BUILT_IN_SYNC_FETCH_AND_AND_8:
628 case BUILT_IN_SYNC_FETCH_AND_AND_16:
629
630 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
631 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
632 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
633 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
634 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
635
636 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
637 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
638 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
639 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
640
641 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
642 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
643 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
644 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
645 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
646
647 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
648 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
649 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
650 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
651 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
652
653 case BUILT_IN_SYNC_OR_AND_FETCH_1:
654 case BUILT_IN_SYNC_OR_AND_FETCH_2:
655 case BUILT_IN_SYNC_OR_AND_FETCH_4:
656 case BUILT_IN_SYNC_OR_AND_FETCH_8:
657 case BUILT_IN_SYNC_OR_AND_FETCH_16:
658
659 case BUILT_IN_SYNC_AND_AND_FETCH_1:
660 case BUILT_IN_SYNC_AND_AND_FETCH_2:
661 case BUILT_IN_SYNC_AND_AND_FETCH_4:
662 case BUILT_IN_SYNC_AND_AND_FETCH_8:
663 case BUILT_IN_SYNC_AND_AND_FETCH_16:
664
665 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
666 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
667 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
668 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
669 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
670
671 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
672 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
673 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
674 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
675
676 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
677 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
678 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
679 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
680 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
681
682 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
683 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
684 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
685 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
686 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
687
688 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
689 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
690 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
691 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
692 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
693
694 case BUILT_IN_SYNC_LOCK_RELEASE_1:
695 case BUILT_IN_SYNC_LOCK_RELEASE_2:
696 case BUILT_IN_SYNC_LOCK_RELEASE_4:
697 case BUILT_IN_SYNC_LOCK_RELEASE_8:
698 case BUILT_IN_SYNC_LOCK_RELEASE_16:
699
700 case BUILT_IN_ATOMIC_EXCHANGE_1:
701 case BUILT_IN_ATOMIC_EXCHANGE_2:
702 case BUILT_IN_ATOMIC_EXCHANGE_4:
703 case BUILT_IN_ATOMIC_EXCHANGE_8:
704 case BUILT_IN_ATOMIC_EXCHANGE_16:
705
706 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
707 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
708 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
709 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
710 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
711
712 case BUILT_IN_ATOMIC_STORE_1:
713 case BUILT_IN_ATOMIC_STORE_2:
714 case BUILT_IN_ATOMIC_STORE_4:
715 case BUILT_IN_ATOMIC_STORE_8:
716 case BUILT_IN_ATOMIC_STORE_16:
717
718 case BUILT_IN_ATOMIC_ADD_FETCH_1:
719 case BUILT_IN_ATOMIC_ADD_FETCH_2:
720 case BUILT_IN_ATOMIC_ADD_FETCH_4:
721 case BUILT_IN_ATOMIC_ADD_FETCH_8:
722 case BUILT_IN_ATOMIC_ADD_FETCH_16:
723
724 case BUILT_IN_ATOMIC_SUB_FETCH_1:
725 case BUILT_IN_ATOMIC_SUB_FETCH_2:
726 case BUILT_IN_ATOMIC_SUB_FETCH_4:
727 case BUILT_IN_ATOMIC_SUB_FETCH_8:
728 case BUILT_IN_ATOMIC_SUB_FETCH_16:
729
730 case BUILT_IN_ATOMIC_AND_FETCH_1:
731 case BUILT_IN_ATOMIC_AND_FETCH_2:
732 case BUILT_IN_ATOMIC_AND_FETCH_4:
733 case BUILT_IN_ATOMIC_AND_FETCH_8:
734 case BUILT_IN_ATOMIC_AND_FETCH_16:
735
736 case BUILT_IN_ATOMIC_NAND_FETCH_1:
737 case BUILT_IN_ATOMIC_NAND_FETCH_2:
738 case BUILT_IN_ATOMIC_NAND_FETCH_4:
739 case BUILT_IN_ATOMIC_NAND_FETCH_8:
740 case BUILT_IN_ATOMIC_NAND_FETCH_16:
741
742 case BUILT_IN_ATOMIC_XOR_FETCH_1:
743 case BUILT_IN_ATOMIC_XOR_FETCH_2:
744 case BUILT_IN_ATOMIC_XOR_FETCH_4:
745 case BUILT_IN_ATOMIC_XOR_FETCH_8:
746 case BUILT_IN_ATOMIC_XOR_FETCH_16:
747
748 case BUILT_IN_ATOMIC_OR_FETCH_1:
749 case BUILT_IN_ATOMIC_OR_FETCH_2:
750 case BUILT_IN_ATOMIC_OR_FETCH_4:
751 case BUILT_IN_ATOMIC_OR_FETCH_8:
752 case BUILT_IN_ATOMIC_OR_FETCH_16:
753
754 case BUILT_IN_ATOMIC_FETCH_ADD_1:
755 case BUILT_IN_ATOMIC_FETCH_ADD_2:
756 case BUILT_IN_ATOMIC_FETCH_ADD_4:
757 case BUILT_IN_ATOMIC_FETCH_ADD_8:
758 case BUILT_IN_ATOMIC_FETCH_ADD_16:
759
760 case BUILT_IN_ATOMIC_FETCH_SUB_1:
761 case BUILT_IN_ATOMIC_FETCH_SUB_2:
762 case BUILT_IN_ATOMIC_FETCH_SUB_4:
763 case BUILT_IN_ATOMIC_FETCH_SUB_8:
764 case BUILT_IN_ATOMIC_FETCH_SUB_16:
765
766 case BUILT_IN_ATOMIC_FETCH_AND_1:
767 case BUILT_IN_ATOMIC_FETCH_AND_2:
768 case BUILT_IN_ATOMIC_FETCH_AND_4:
769 case BUILT_IN_ATOMIC_FETCH_AND_8:
770 case BUILT_IN_ATOMIC_FETCH_AND_16:
771
772 case BUILT_IN_ATOMIC_FETCH_NAND_1:
773 case BUILT_IN_ATOMIC_FETCH_NAND_2:
774 case BUILT_IN_ATOMIC_FETCH_NAND_4:
775 case BUILT_IN_ATOMIC_FETCH_NAND_8:
776 case BUILT_IN_ATOMIC_FETCH_NAND_16:
777
778 case BUILT_IN_ATOMIC_FETCH_XOR_1:
779 case BUILT_IN_ATOMIC_FETCH_XOR_2:
780 case BUILT_IN_ATOMIC_FETCH_XOR_4:
781 case BUILT_IN_ATOMIC_FETCH_XOR_8:
782 case BUILT_IN_ATOMIC_FETCH_XOR_16:
783
784 case BUILT_IN_ATOMIC_FETCH_OR_1:
785 case BUILT_IN_ATOMIC_FETCH_OR_2:
786 case BUILT_IN_ATOMIC_FETCH_OR_4:
787 case BUILT_IN_ATOMIC_FETCH_OR_8:
788 case BUILT_IN_ATOMIC_FETCH_OR_16:
789 {
790 dest = gimple_call_arg (call, 0);
791 /* DEST represents the address of a memory location.
792 instrument_derefs wants the memory location, so lets
793 dereference the address DEST before handing it to
794 instrument_derefs. */
795 if (TREE_CODE (dest) == ADDR_EXPR)
796 dest = TREE_OPERAND (dest, 0);
797 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
798 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
799 dest, build_int_cst (TREE_TYPE (dest), 0));
800 else
801 gcc_unreachable ();
802
803 access_size = int_size_in_bytes (TREE_TYPE (dest));
804 }
805
806 default:
807 /* The other builtins memory access are not instrumented in this
808 function because they either don't have any length parameter,
809 or their length parameter is just a limit. */
810 break;
811 }
812
813 if (len != NULL_TREE)
814 {
815 if (source0 != NULL_TREE)
816 {
817 src0->start = source0;
818 src0->access_size = access_size;
819 *src0_len = len;
820 *src0_is_store = false;
821 }
822
823 if (source1 != NULL_TREE)
824 {
825 src1->start = source1;
826 src1->access_size = access_size;
827 *src1_len = len;
828 *src1_is_store = false;
829 }
830
831 if (dest != NULL_TREE)
832 {
833 dst->start = dest;
834 dst->access_size = access_size;
835 *dst_len = len;
836 *dst_is_store = true;
837 }
838
839 got_reference_p = true;
840 }
841 else if (dest)
842 {
843 dst->start = dest;
844 dst->access_size = access_size;
845 *dst_len = NULL_TREE;
846 *dst_is_store = is_store;
847 *dest_is_deref = true;
848 got_reference_p = true;
849 }
850
851 return got_reference_p;
852 }
853
854 /* Return true iff a given gimple statement has been instrumented.
855 Note that the statement is "defined" by the memory references it
856 contains. */
857
858 static bool
859 has_stmt_been_instrumented_p (gimple stmt)
860 {
861 if (gimple_assign_single_p (stmt))
862 {
863 bool r_is_store;
864 asan_mem_ref r;
865 asan_mem_ref_init (&r, NULL, 1);
866
867 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
868 &r_is_store))
869 return has_mem_ref_been_instrumented (&r);
870 }
871 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
872 {
873 asan_mem_ref src0, src1, dest;
874 asan_mem_ref_init (&src0, NULL, 1);
875 asan_mem_ref_init (&src1, NULL, 1);
876 asan_mem_ref_init (&dest, NULL, 1);
877
878 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
879 bool src0_is_store = false, src1_is_store = false,
880 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
881 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
882 &src0, &src0_len, &src0_is_store,
883 &src1, &src1_len, &src1_is_store,
884 &dest, &dest_len, &dest_is_store,
885 &dest_is_deref, &intercepted_p))
886 {
887 if (src0.start != NULL_TREE
888 && !has_mem_ref_been_instrumented (&src0, src0_len))
889 return false;
890
891 if (src1.start != NULL_TREE
892 && !has_mem_ref_been_instrumented (&src1, src1_len))
893 return false;
894
895 if (dest.start != NULL_TREE
896 && !has_mem_ref_been_instrumented (&dest, dest_len))
897 return false;
898
899 return true;
900 }
901 }
902 return false;
903 }
904
905 /* Insert a memory reference into the hash table. */
906
907 static void
908 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
909 {
910 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
911
912 asan_mem_ref r;
913 asan_mem_ref_init (&r, ref, access_size);
914
915 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
916 if (*slot == NULL || (*slot)->access_size < access_size)
917 *slot = asan_mem_ref_new (ref, access_size);
918 }
919
920 /* Initialize shadow_ptr_types array. */
921
922 static void
923 asan_init_shadow_ptr_types (void)
924 {
925 asan_shadow_set = new_alias_set ();
926 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
927 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
928 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
929 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
930 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
931 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
932 initialize_sanitizer_builtins ();
933 }
934
935 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
936
937 static tree
938 asan_pp_string (pretty_printer *pp)
939 {
940 const char *buf = pp_formatted_text (pp);
941 size_t len = strlen (buf);
942 tree ret = build_string (len + 1, buf);
943 TREE_TYPE (ret)
944 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
945 build_index_type (size_int (len)));
946 TREE_READONLY (ret) = 1;
947 TREE_STATIC (ret) = 1;
948 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
949 }
950
951 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
952
953 static rtx
954 asan_shadow_cst (unsigned char shadow_bytes[4])
955 {
956 int i;
957 unsigned HOST_WIDE_INT val = 0;
958 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
959 for (i = 0; i < 4; i++)
960 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
961 << (BITS_PER_UNIT * i);
962 return gen_int_mode (val, SImode);
963 }
964
965 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
966 though. */
967
968 static void
969 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
970 {
971 rtx_insn *insn, *insns, *jump;
972 rtx_code_label *top_label;
973 rtx end, addr, tmp;
974
975 start_sequence ();
976 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
977 insns = get_insns ();
978 end_sequence ();
979 for (insn = insns; insn; insn = NEXT_INSN (insn))
980 if (CALL_P (insn))
981 break;
982 if (insn == NULL_RTX)
983 {
984 emit_insn (insns);
985 return;
986 }
987
988 gcc_assert ((len & 3) == 0);
989 top_label = gen_label_rtx ();
990 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
991 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
992 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
993 emit_label (top_label);
994
995 emit_move_insn (shadow_mem, const0_rtx);
996 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
997 true, OPTAB_LIB_WIDEN);
998 if (tmp != addr)
999 emit_move_insn (addr, tmp);
1000 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1001 jump = get_last_insn ();
1002 gcc_assert (JUMP_P (jump));
1003 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1004 }
1005
1006 void
1007 asan_function_start (void)
1008 {
1009 section *fnsec = function_section (current_function_decl);
1010 switch_to_section (fnsec);
1011 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1012 current_function_funcdef_no);
1013 }
1014
1015 /* Insert code to protect stack vars. The prologue sequence should be emitted
1016 directly, epilogue sequence returned. BASE is the register holding the
1017 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1018 array contains pairs of offsets in reverse order, always the end offset
1019 of some gap that needs protection followed by starting offset,
1020 and DECLS is an array of representative decls for each var partition.
1021 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1022 elements long (OFFSETS include gap before the first variable as well
1023 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1024 register which stack vars DECL_RTLs are based on. Either BASE should be
1025 assigned to PBASE, when not doing use after return protection, or
1026 corresponding address based on __asan_stack_malloc* return value. */
1027
1028 rtx_insn *
1029 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1030 HOST_WIDE_INT *offsets, tree *decls, int length)
1031 {
1032 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1033 rtx_code_label *lab;
1034 rtx_insn *insns;
1035 char buf[30];
1036 unsigned char shadow_bytes[4];
1037 HOST_WIDE_INT base_offset = offsets[length - 1];
1038 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1039 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1040 HOST_WIDE_INT last_offset, last_size;
1041 int l;
1042 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1043 tree str_cst, decl, id;
1044 int use_after_return_class = -1;
1045
1046 if (shadow_ptr_types[0] == NULL_TREE)
1047 asan_init_shadow_ptr_types ();
1048
1049 /* First of all, prepare the description string. */
1050 pretty_printer asan_pp;
1051
1052 pp_decimal_int (&asan_pp, length / 2 - 1);
1053 pp_space (&asan_pp);
1054 for (l = length - 2; l; l -= 2)
1055 {
1056 tree decl = decls[l / 2 - 1];
1057 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1058 pp_space (&asan_pp);
1059 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1060 pp_space (&asan_pp);
1061 if (DECL_P (decl) && DECL_NAME (decl))
1062 {
1063 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1064 pp_space (&asan_pp);
1065 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1066 }
1067 else
1068 pp_string (&asan_pp, "9 <unknown>");
1069 pp_space (&asan_pp);
1070 }
1071 str_cst = asan_pp_string (&asan_pp);
1072
1073 /* Emit the prologue sequence. */
1074 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1075 && ASAN_USE_AFTER_RETURN)
1076 {
1077 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1078 /* __asan_stack_malloc_N guarantees alignment
1079 N < 6 ? (64 << N) : 4096 bytes. */
1080 if (alignb > (use_after_return_class < 6
1081 ? (64U << use_after_return_class) : 4096U))
1082 use_after_return_class = -1;
1083 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1084 base_align_bias = ((asan_frame_size + alignb - 1)
1085 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1086 }
1087 /* Align base if target is STRICT_ALIGNMENT. */
1088 if (STRICT_ALIGNMENT)
1089 base = expand_binop (Pmode, and_optab, base,
1090 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1091 << ASAN_SHADOW_SHIFT)
1092 / BITS_PER_UNIT), Pmode), NULL_RTX,
1093 1, OPTAB_DIRECT);
1094
1095 if (use_after_return_class == -1 && pbase)
1096 emit_move_insn (pbase, base);
1097
1098 base = expand_binop (Pmode, add_optab, base,
1099 gen_int_mode (base_offset - base_align_bias, Pmode),
1100 NULL_RTX, 1, OPTAB_DIRECT);
1101 orig_base = NULL_RTX;
1102 if (use_after_return_class != -1)
1103 {
1104 if (asan_detect_stack_use_after_return == NULL_TREE)
1105 {
1106 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1107 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1108 integer_type_node);
1109 SET_DECL_ASSEMBLER_NAME (decl, id);
1110 TREE_ADDRESSABLE (decl) = 1;
1111 DECL_ARTIFICIAL (decl) = 1;
1112 DECL_IGNORED_P (decl) = 1;
1113 DECL_EXTERNAL (decl) = 1;
1114 TREE_STATIC (decl) = 1;
1115 TREE_PUBLIC (decl) = 1;
1116 TREE_USED (decl) = 1;
1117 asan_detect_stack_use_after_return = decl;
1118 }
1119 orig_base = gen_reg_rtx (Pmode);
1120 emit_move_insn (orig_base, base);
1121 ret = expand_normal (asan_detect_stack_use_after_return);
1122 lab = gen_label_rtx ();
1123 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1124 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1125 VOIDmode, 0, lab, very_likely);
1126 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1127 use_after_return_class);
1128 ret = init_one_libfunc (buf);
1129 rtx addr = convert_memory_address (ptr_mode, base);
1130 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1131 GEN_INT (asan_frame_size
1132 + base_align_bias),
1133 TYPE_MODE (pointer_sized_int_node),
1134 addr, ptr_mode);
1135 ret = convert_memory_address (Pmode, ret);
1136 emit_move_insn (base, ret);
1137 emit_label (lab);
1138 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1139 gen_int_mode (base_align_bias
1140 - base_offset, Pmode),
1141 NULL_RTX, 1, OPTAB_DIRECT));
1142 }
1143 mem = gen_rtx_MEM (ptr_mode, base);
1144 mem = adjust_address (mem, VOIDmode, base_align_bias);
1145 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1146 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1147 emit_move_insn (mem, expand_normal (str_cst));
1148 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1149 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1150 id = get_identifier (buf);
1151 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1152 VAR_DECL, id, char_type_node);
1153 SET_DECL_ASSEMBLER_NAME (decl, id);
1154 TREE_ADDRESSABLE (decl) = 1;
1155 TREE_READONLY (decl) = 1;
1156 DECL_ARTIFICIAL (decl) = 1;
1157 DECL_IGNORED_P (decl) = 1;
1158 TREE_STATIC (decl) = 1;
1159 TREE_PUBLIC (decl) = 0;
1160 TREE_USED (decl) = 1;
1161 DECL_INITIAL (decl) = decl;
1162 TREE_ASM_WRITTEN (decl) = 1;
1163 TREE_ASM_WRITTEN (id) = 1;
1164 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1165 shadow_base = expand_binop (Pmode, lshr_optab, base,
1166 GEN_INT (ASAN_SHADOW_SHIFT),
1167 NULL_RTX, 1, OPTAB_DIRECT);
1168 shadow_base
1169 = plus_constant (Pmode, shadow_base,
1170 asan_shadow_offset ()
1171 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1172 gcc_assert (asan_shadow_set != -1
1173 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1174 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1175 set_mem_alias_set (shadow_mem, asan_shadow_set);
1176 if (STRICT_ALIGNMENT)
1177 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1178 prev_offset = base_offset;
1179 for (l = length; l; l -= 2)
1180 {
1181 if (l == 2)
1182 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1183 offset = offsets[l - 1];
1184 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1185 {
1186 int i;
1187 HOST_WIDE_INT aoff
1188 = base_offset + ((offset - base_offset)
1189 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1190 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1191 (aoff - prev_offset)
1192 >> ASAN_SHADOW_SHIFT);
1193 prev_offset = aoff;
1194 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1195 if (aoff < offset)
1196 {
1197 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1198 shadow_bytes[i] = 0;
1199 else
1200 shadow_bytes[i] = offset - aoff;
1201 }
1202 else
1203 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1204 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1205 offset = aoff;
1206 }
1207 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1208 {
1209 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1210 (offset - prev_offset)
1211 >> ASAN_SHADOW_SHIFT);
1212 prev_offset = offset;
1213 memset (shadow_bytes, cur_shadow_byte, 4);
1214 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1215 offset += ASAN_RED_ZONE_SIZE;
1216 }
1217 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1218 }
1219 do_pending_stack_adjust ();
1220
1221 /* Construct epilogue sequence. */
1222 start_sequence ();
1223
1224 lab = NULL;
1225 if (use_after_return_class != -1)
1226 {
1227 rtx_code_label *lab2 = gen_label_rtx ();
1228 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1229 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1230 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1231 VOIDmode, 0, lab2, very_likely);
1232 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1233 set_mem_alias_set (shadow_mem, asan_shadow_set);
1234 mem = gen_rtx_MEM (ptr_mode, base);
1235 mem = adjust_address (mem, VOIDmode, base_align_bias);
1236 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1237 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1238 if (use_after_return_class < 5
1239 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1240 BITS_PER_UNIT, true))
1241 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1242 BITS_PER_UNIT, true, 0);
1243 else if (use_after_return_class >= 5
1244 || !set_storage_via_setmem (shadow_mem,
1245 GEN_INT (sz),
1246 gen_int_mode (c, QImode),
1247 BITS_PER_UNIT, BITS_PER_UNIT,
1248 -1, sz, sz, sz))
1249 {
1250 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1251 use_after_return_class);
1252 ret = init_one_libfunc (buf);
1253 rtx addr = convert_memory_address (ptr_mode, base);
1254 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1255 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1256 GEN_INT (asan_frame_size + base_align_bias),
1257 TYPE_MODE (pointer_sized_int_node),
1258 orig_addr, ptr_mode);
1259 }
1260 lab = gen_label_rtx ();
1261 emit_jump (lab);
1262 emit_label (lab2);
1263 }
1264
1265 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1266 set_mem_alias_set (shadow_mem, asan_shadow_set);
1267
1268 if (STRICT_ALIGNMENT)
1269 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1270
1271 prev_offset = base_offset;
1272 last_offset = base_offset;
1273 last_size = 0;
1274 for (l = length; l; l -= 2)
1275 {
1276 offset = base_offset + ((offsets[l - 1] - base_offset)
1277 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1278 if (last_offset + last_size != offset)
1279 {
1280 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1281 (last_offset - prev_offset)
1282 >> ASAN_SHADOW_SHIFT);
1283 prev_offset = last_offset;
1284 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1285 last_offset = offset;
1286 last_size = 0;
1287 }
1288 last_size += base_offset + ((offsets[l - 2] - base_offset)
1289 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1290 - offset;
1291 }
1292 if (last_size)
1293 {
1294 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1295 (last_offset - prev_offset)
1296 >> ASAN_SHADOW_SHIFT);
1297 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1298 }
1299
1300 do_pending_stack_adjust ();
1301 if (lab)
1302 emit_label (lab);
1303
1304 insns = get_insns ();
1305 end_sequence ();
1306 return insns;
1307 }
1308
1309 /* Return true if DECL, a global var, might be overridden and needs
1310 therefore a local alias. */
1311
1312 static bool
1313 asan_needs_local_alias (tree decl)
1314 {
1315 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1316 }
1317
1318 /* Return true if DECL is a VAR_DECL that should be protected
1319 by Address Sanitizer, by appending a red zone with protected
1320 shadow memory after it and aligning it to at least
1321 ASAN_RED_ZONE_SIZE bytes. */
1322
1323 bool
1324 asan_protect_global (tree decl)
1325 {
1326 if (!ASAN_GLOBALS)
1327 return false;
1328
1329 rtx rtl, symbol;
1330
1331 if (TREE_CODE (decl) == STRING_CST)
1332 {
1333 /* Instrument all STRING_CSTs except those created
1334 by asan_pp_string here. */
1335 if (shadow_ptr_types[0] != NULL_TREE
1336 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1337 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1338 return false;
1339 return true;
1340 }
1341 if (TREE_CODE (decl) != VAR_DECL
1342 /* TLS vars aren't statically protectable. */
1343 || DECL_THREAD_LOCAL_P (decl)
1344 /* Externs will be protected elsewhere. */
1345 || DECL_EXTERNAL (decl)
1346 || !DECL_RTL_SET_P (decl)
1347 /* Comdat vars pose an ABI problem, we can't know if
1348 the var that is selected by the linker will have
1349 padding or not. */
1350 || DECL_ONE_ONLY (decl)
1351 /* Similarly for common vars. People can use -fno-common. */
1352 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1353 /* Don't protect if using user section, often vars placed
1354 into user section from multiple TUs are then assumed
1355 to be an array of such vars, putting padding in there
1356 breaks this assumption. */
1357 || (DECL_SECTION_NAME (decl) != NULL
1358 && !symtab_node::get (decl)->implicit_section)
1359 || DECL_SIZE (decl) == 0
1360 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1361 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1362 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1363 || TREE_TYPE (decl) == ubsan_get_source_location_type ())
1364 return false;
1365
1366 rtl = DECL_RTL (decl);
1367 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1368 return false;
1369 symbol = XEXP (rtl, 0);
1370
1371 if (CONSTANT_POOL_ADDRESS_P (symbol)
1372 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1373 return false;
1374
1375 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1376 return false;
1377
1378 #ifndef ASM_OUTPUT_DEF
1379 if (asan_needs_local_alias (decl))
1380 return false;
1381 #endif
1382
1383 return true;
1384 }
1385
1386 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1387 IS_STORE is either 1 (for a store) or 0 (for a load). */
1388
1389 static tree
1390 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1391 int *nargs)
1392 {
1393 static enum built_in_function report[2][2][6]
1394 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1395 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1396 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1397 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1398 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1399 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1400 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1401 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1402 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1403 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1404 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1405 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1406 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1407 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1408 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1409 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1410 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1411 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1412 if (size_in_bytes == -1)
1413 {
1414 *nargs = 2;
1415 return builtin_decl_implicit (report[recover_p][is_store][5]);
1416 }
1417 *nargs = 1;
1418 int size_log2 = exact_log2 (size_in_bytes);
1419 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1420 }
1421
1422 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1423 IS_STORE is either 1 (for a store) or 0 (for a load). */
1424
1425 static tree
1426 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1427 int *nargs)
1428 {
1429 static enum built_in_function check[2][2][6]
1430 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1431 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1432 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1433 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1434 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1435 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1436 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1437 BUILT_IN_ASAN_LOAD2_NOABORT,
1438 BUILT_IN_ASAN_LOAD4_NOABORT,
1439 BUILT_IN_ASAN_LOAD8_NOABORT,
1440 BUILT_IN_ASAN_LOAD16_NOABORT,
1441 BUILT_IN_ASAN_LOADN_NOABORT },
1442 { BUILT_IN_ASAN_STORE1_NOABORT,
1443 BUILT_IN_ASAN_STORE2_NOABORT,
1444 BUILT_IN_ASAN_STORE4_NOABORT,
1445 BUILT_IN_ASAN_STORE8_NOABORT,
1446 BUILT_IN_ASAN_STORE16_NOABORT,
1447 BUILT_IN_ASAN_STOREN_NOABORT } } };
1448 if (size_in_bytes == -1)
1449 {
1450 *nargs = 2;
1451 return builtin_decl_implicit (check[recover_p][is_store][5]);
1452 }
1453 *nargs = 1;
1454 int size_log2 = exact_log2 (size_in_bytes);
1455 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1456 }
1457
1458 /* Split the current basic block and create a condition statement
1459 insertion point right before or after the statement pointed to by
1460 ITER. Return an iterator to the point at which the caller might
1461 safely insert the condition statement.
1462
1463 THEN_BLOCK must be set to the address of an uninitialized instance
1464 of basic_block. The function will then set *THEN_BLOCK to the
1465 'then block' of the condition statement to be inserted by the
1466 caller.
1467
1468 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1469 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1470
1471 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1472 block' of the condition statement to be inserted by the caller.
1473
1474 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1475 statements starting from *ITER, and *THEN_BLOCK is a new empty
1476 block.
1477
1478 *ITER is adjusted to point to always point to the first statement
1479 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1480 same as what ITER was pointing to prior to calling this function,
1481 if BEFORE_P is true; otherwise, it is its following statement. */
1482
1483 gimple_stmt_iterator
1484 create_cond_insert_point (gimple_stmt_iterator *iter,
1485 bool before_p,
1486 bool then_more_likely_p,
1487 bool create_then_fallthru_edge,
1488 basic_block *then_block,
1489 basic_block *fallthrough_block)
1490 {
1491 gimple_stmt_iterator gsi = *iter;
1492
1493 if (!gsi_end_p (gsi) && before_p)
1494 gsi_prev (&gsi);
1495
1496 basic_block cur_bb = gsi_bb (*iter);
1497
1498 edge e = split_block (cur_bb, gsi_stmt (gsi));
1499
1500 /* Get a hold on the 'condition block', the 'then block' and the
1501 'else block'. */
1502 basic_block cond_bb = e->src;
1503 basic_block fallthru_bb = e->dest;
1504 basic_block then_bb = create_empty_bb (cond_bb);
1505 if (current_loops)
1506 {
1507 add_bb_to_loop (then_bb, cond_bb->loop_father);
1508 loops_state_set (LOOPS_NEED_FIXUP);
1509 }
1510
1511 /* Set up the newly created 'then block'. */
1512 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1513 int fallthrough_probability
1514 = then_more_likely_p
1515 ? PROB_VERY_UNLIKELY
1516 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1517 e->probability = PROB_ALWAYS - fallthrough_probability;
1518 if (create_then_fallthru_edge)
1519 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1520
1521 /* Set up the fallthrough basic block. */
1522 e = find_edge (cond_bb, fallthru_bb);
1523 e->flags = EDGE_FALSE_VALUE;
1524 e->count = cond_bb->count;
1525 e->probability = fallthrough_probability;
1526
1527 /* Update dominance info for the newly created then_bb; note that
1528 fallthru_bb's dominance info has already been updated by
1529 split_bock. */
1530 if (dom_info_available_p (CDI_DOMINATORS))
1531 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1532
1533 *then_block = then_bb;
1534 *fallthrough_block = fallthru_bb;
1535 *iter = gsi_start_bb (fallthru_bb);
1536
1537 return gsi_last_bb (cond_bb);
1538 }
1539
1540 /* Insert an if condition followed by a 'then block' right before the
1541 statement pointed to by ITER. The fallthrough block -- which is the
1542 else block of the condition as well as the destination of the
1543 outcoming edge of the 'then block' -- starts with the statement
1544 pointed to by ITER.
1545
1546 COND is the condition of the if.
1547
1548 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1549 'then block' is higher than the probability of the edge to the
1550 fallthrough block.
1551
1552 Upon completion of the function, *THEN_BB is set to the newly
1553 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1554 fallthrough block.
1555
1556 *ITER is adjusted to still point to the same statement it was
1557 pointing to initially. */
1558
1559 static void
1560 insert_if_then_before_iter (gcond *cond,
1561 gimple_stmt_iterator *iter,
1562 bool then_more_likely_p,
1563 basic_block *then_bb,
1564 basic_block *fallthrough_bb)
1565 {
1566 gimple_stmt_iterator cond_insert_point =
1567 create_cond_insert_point (iter,
1568 /*before_p=*/true,
1569 then_more_likely_p,
1570 /*create_then_fallthru_edge=*/true,
1571 then_bb,
1572 fallthrough_bb);
1573 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1574 }
1575
1576 /* Build
1577 (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset (). */
1578
1579 static tree
1580 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1581 tree base_addr, tree shadow_ptr_type)
1582 {
1583 tree t, uintptr_type = TREE_TYPE (base_addr);
1584 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1585 gimple g;
1586
1587 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1588 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1589 make_ssa_name (uintptr_type, NULL),
1590 base_addr, t);
1591 gimple_set_location (g, location);
1592 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1593
1594 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1595 g = gimple_build_assign_with_ops (PLUS_EXPR,
1596 make_ssa_name (uintptr_type, NULL),
1597 gimple_assign_lhs (g), t);
1598 gimple_set_location (g, location);
1599 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1600
1601 g = gimple_build_assign_with_ops (NOP_EXPR,
1602 make_ssa_name (shadow_ptr_type, NULL),
1603 gimple_assign_lhs (g));
1604 gimple_set_location (g, location);
1605 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1606
1607 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1608 build_int_cst (shadow_ptr_type, 0));
1609 g = gimple_build_assign_with_ops (MEM_REF,
1610 make_ssa_name (shadow_type, NULL), t);
1611 gimple_set_location (g, location);
1612 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1613 return gimple_assign_lhs (g);
1614 }
1615
1616 /* BASE can already be an SSA_NAME; in that case, do not create a
1617 new SSA_NAME for it. */
1618
1619 static tree
1620 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1621 bool before_p)
1622 {
1623 if (TREE_CODE (base) == SSA_NAME)
1624 return base;
1625 gimple g
1626 = gimple_build_assign_with_ops (TREE_CODE (base),
1627 make_ssa_name (TREE_TYPE (base), NULL),
1628 base);
1629 gimple_set_location (g, loc);
1630 if (before_p)
1631 gsi_insert_before (iter, g, GSI_SAME_STMT);
1632 else
1633 gsi_insert_after (iter, g, GSI_NEW_STMT);
1634 return gimple_assign_lhs (g);
1635 }
1636
1637 /* LEN can already have necessary size and precision;
1638 in that case, do not create a new variable. */
1639
1640 tree
1641 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1642 bool before_p)
1643 {
1644 if (ptrofftype_p (len))
1645 return len;
1646 gimple g
1647 = gimple_build_assign_with_ops (NOP_EXPR,
1648 make_ssa_name (pointer_sized_int_node,
1649 NULL), len);
1650 gimple_set_location (g, loc);
1651 if (before_p)
1652 gsi_insert_before (iter, g, GSI_SAME_STMT);
1653 else
1654 gsi_insert_after (iter, g, GSI_NEW_STMT);
1655 return gimple_assign_lhs (g);
1656 }
1657
1658 /* Instrument the memory access instruction BASE. Insert new
1659 statements before or after ITER.
1660
1661 Note that the memory access represented by BASE can be either an
1662 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1663 location. IS_STORE is TRUE for a store, FALSE for a load.
1664 BEFORE_P is TRUE for inserting the instrumentation code before
1665 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1666 for a scalar memory access and FALSE for memory region access.
1667 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1668 length. ALIGN tells alignment of accessed memory object.
1669
1670 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1671 memory region have already been instrumented.
1672
1673 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1674 statement it was pointing to prior to calling this function,
1675 otherwise, it points to the statement logically following it. */
1676
1677 static void
1678 build_check_stmt (location_t loc, tree base, tree len,
1679 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1680 bool is_non_zero_len, bool before_p, bool is_store,
1681 bool is_scalar_access, unsigned int align = 0)
1682 {
1683 gimple_stmt_iterator gsi = *iter;
1684 gimple g;
1685
1686 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1687
1688 gsi = *iter;
1689
1690 base = unshare_expr (base);
1691 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1692
1693 if (len)
1694 {
1695 len = unshare_expr (len);
1696 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1697 }
1698 else
1699 {
1700 gcc_assert (size_in_bytes != -1);
1701 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1702 }
1703
1704 if (size_in_bytes > 1)
1705 {
1706 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1707 || size_in_bytes > 16)
1708 is_scalar_access = false;
1709 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1710 {
1711 /* On non-strict alignment targets, if
1712 16-byte access is just 8-byte aligned,
1713 this will result in misaligned shadow
1714 memory 2 byte load, but otherwise can
1715 be handled using one read. */
1716 if (size_in_bytes != 16
1717 || STRICT_ALIGNMENT
1718 || align < 8 * BITS_PER_UNIT)
1719 is_scalar_access = false;
1720 }
1721 }
1722
1723 HOST_WIDE_INT flags = 0;
1724 if (is_store)
1725 flags |= ASAN_CHECK_STORE;
1726 if (is_non_zero_len)
1727 flags |= ASAN_CHECK_NON_ZERO_LEN;
1728 if (is_scalar_access)
1729 flags |= ASAN_CHECK_SCALAR_ACCESS;
1730
1731 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1732 build_int_cst (integer_type_node, flags),
1733 base, len,
1734 build_int_cst (integer_type_node,
1735 align / BITS_PER_UNIT));
1736 gimple_set_location (g, loc);
1737 if (before_p)
1738 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1739 else
1740 {
1741 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1742 gsi_next (&gsi);
1743 *iter = gsi;
1744 }
1745 }
1746
1747 /* If T represents a memory access, add instrumentation code before ITER.
1748 LOCATION is source code location.
1749 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1750
1751 static void
1752 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1753 location_t location, bool is_store)
1754 {
1755 if (is_store && !ASAN_INSTRUMENT_WRITES)
1756 return;
1757 if (!is_store && !ASAN_INSTRUMENT_READS)
1758 return;
1759
1760 tree type, base;
1761 HOST_WIDE_INT size_in_bytes;
1762
1763 type = TREE_TYPE (t);
1764 switch (TREE_CODE (t))
1765 {
1766 case ARRAY_REF:
1767 case COMPONENT_REF:
1768 case INDIRECT_REF:
1769 case MEM_REF:
1770 case VAR_DECL:
1771 case BIT_FIELD_REF:
1772 break;
1773 /* FALLTHRU */
1774 default:
1775 return;
1776 }
1777
1778 size_in_bytes = int_size_in_bytes (type);
1779 if (size_in_bytes <= 0)
1780 return;
1781
1782 HOST_WIDE_INT bitsize, bitpos;
1783 tree offset;
1784 machine_mode mode;
1785 int volatilep = 0, unsignedp = 0;
1786 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1787 &mode, &unsignedp, &volatilep, false);
1788
1789 if (TREE_CODE (t) == COMPONENT_REF
1790 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1791 {
1792 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1793 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1794 TREE_OPERAND (t, 0), repr,
1795 NULL_TREE), location, is_store);
1796 return;
1797 }
1798
1799 if (bitpos % BITS_PER_UNIT
1800 || bitsize != size_in_bytes * BITS_PER_UNIT)
1801 return;
1802
1803 if (TREE_CODE (inner) == VAR_DECL
1804 && offset == NULL_TREE
1805 && bitpos >= 0
1806 && DECL_SIZE (inner)
1807 && tree_fits_shwi_p (DECL_SIZE (inner))
1808 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1809 {
1810 if (DECL_THREAD_LOCAL_P (inner))
1811 return;
1812 if (!TREE_STATIC (inner))
1813 {
1814 /* Automatic vars in the current function will be always
1815 accessible. */
1816 if (decl_function_context (inner) == current_function_decl)
1817 return;
1818 }
1819 /* Always instrument external vars, they might be dynamically
1820 initialized. */
1821 else if (!DECL_EXTERNAL (inner))
1822 {
1823 /* For static vars if they are known not to be dynamically
1824 initialized, they will be always accessible. */
1825 varpool_node *vnode = varpool_node::get (inner);
1826 if (vnode && !vnode->dynamically_initialized)
1827 return;
1828 }
1829 }
1830
1831 base = build_fold_addr_expr (t);
1832 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1833 {
1834 unsigned int align = get_object_alignment (t);
1835 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1836 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1837 is_store, /*is_scalar_access*/true, align);
1838 update_mem_ref_hash_table (base, size_in_bytes);
1839 update_mem_ref_hash_table (t, size_in_bytes);
1840 }
1841
1842 }
1843
1844 /* Insert a memory reference into the hash table if access length
1845 can be determined in compile time. */
1846
1847 static void
1848 maybe_update_mem_ref_hash_table (tree base, tree len)
1849 {
1850 if (!POINTER_TYPE_P (TREE_TYPE (base))
1851 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1852 return;
1853
1854 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1855
1856 if (size_in_bytes != -1)
1857 update_mem_ref_hash_table (base, size_in_bytes);
1858 }
1859
1860 /* Instrument an access to a contiguous memory region that starts at
1861 the address pointed to by BASE, over a length of LEN (expressed in
1862 the sizeof (*BASE) bytes). ITER points to the instruction before
1863 which the instrumentation instructions must be inserted. LOCATION
1864 is the source location that the instrumentation instructions must
1865 have. If IS_STORE is true, then the memory access is a store;
1866 otherwise, it's a load. */
1867
1868 static void
1869 instrument_mem_region_access (tree base, tree len,
1870 gimple_stmt_iterator *iter,
1871 location_t location, bool is_store)
1872 {
1873 if (!POINTER_TYPE_P (TREE_TYPE (base))
1874 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1875 || integer_zerop (len))
1876 return;
1877
1878 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1879
1880 if ((size_in_bytes == -1)
1881 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1882 {
1883 build_check_stmt (location, base, len, size_in_bytes, iter,
1884 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1885 is_store, /*is_scalar_access*/false, /*align*/0);
1886 }
1887
1888 maybe_update_mem_ref_hash_table (base, len);
1889 *iter = gsi_for_stmt (gsi_stmt (*iter));
1890 }
1891
1892 /* Instrument the call to a built-in memory access function that is
1893 pointed to by the iterator ITER.
1894
1895 Upon completion, return TRUE iff *ITER has been advanced to the
1896 statement following the one it was originally pointing to. */
1897
1898 static bool
1899 instrument_builtin_call (gimple_stmt_iterator *iter)
1900 {
1901 if (!ASAN_MEMINTRIN)
1902 return false;
1903
1904 bool iter_advanced_p = false;
1905 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
1906
1907 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1908
1909 location_t loc = gimple_location (call);
1910
1911 asan_mem_ref src0, src1, dest;
1912 asan_mem_ref_init (&src0, NULL, 1);
1913 asan_mem_ref_init (&src1, NULL, 1);
1914 asan_mem_ref_init (&dest, NULL, 1);
1915
1916 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1917 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1918 dest_is_deref = false, intercepted_p = true;
1919
1920 if (get_mem_refs_of_builtin_call (call,
1921 &src0, &src0_len, &src0_is_store,
1922 &src1, &src1_len, &src1_is_store,
1923 &dest, &dest_len, &dest_is_store,
1924 &dest_is_deref, &intercepted_p))
1925 {
1926 if (dest_is_deref)
1927 {
1928 instrument_derefs (iter, dest.start, loc, dest_is_store);
1929 gsi_next (iter);
1930 iter_advanced_p = true;
1931 }
1932 else if (!intercepted_p
1933 && (src0_len || src1_len || dest_len))
1934 {
1935 if (src0.start != NULL_TREE)
1936 instrument_mem_region_access (src0.start, src0_len,
1937 iter, loc, /*is_store=*/false);
1938 if (src1.start != NULL_TREE)
1939 instrument_mem_region_access (src1.start, src1_len,
1940 iter, loc, /*is_store=*/false);
1941 if (dest.start != NULL_TREE)
1942 instrument_mem_region_access (dest.start, dest_len,
1943 iter, loc, /*is_store=*/true);
1944
1945 *iter = gsi_for_stmt (call);
1946 gsi_next (iter);
1947 iter_advanced_p = true;
1948 }
1949 else
1950 {
1951 if (src0.start != NULL_TREE)
1952 maybe_update_mem_ref_hash_table (src0.start, src0_len);
1953 if (src1.start != NULL_TREE)
1954 maybe_update_mem_ref_hash_table (src1.start, src1_len);
1955 if (dest.start != NULL_TREE)
1956 maybe_update_mem_ref_hash_table (dest.start, dest_len);
1957 }
1958 }
1959 return iter_advanced_p;
1960 }
1961
1962 /* Instrument the assignment statement ITER if it is subject to
1963 instrumentation. Return TRUE iff instrumentation actually
1964 happened. In that case, the iterator ITER is advanced to the next
1965 logical expression following the one initially pointed to by ITER,
1966 and the relevant memory reference that which access has been
1967 instrumented is added to the memory references hash table. */
1968
1969 static bool
1970 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1971 {
1972 gimple s = gsi_stmt (*iter);
1973
1974 gcc_assert (gimple_assign_single_p (s));
1975
1976 tree ref_expr = NULL_TREE;
1977 bool is_store, is_instrumented = false;
1978
1979 if (gimple_store_p (s))
1980 {
1981 ref_expr = gimple_assign_lhs (s);
1982 is_store = true;
1983 instrument_derefs (iter, ref_expr,
1984 gimple_location (s),
1985 is_store);
1986 is_instrumented = true;
1987 }
1988
1989 if (gimple_assign_load_p (s))
1990 {
1991 ref_expr = gimple_assign_rhs1 (s);
1992 is_store = false;
1993 instrument_derefs (iter, ref_expr,
1994 gimple_location (s),
1995 is_store);
1996 is_instrumented = true;
1997 }
1998
1999 if (is_instrumented)
2000 gsi_next (iter);
2001
2002 return is_instrumented;
2003 }
2004
2005 /* Instrument the function call pointed to by the iterator ITER, if it
2006 is subject to instrumentation. At the moment, the only function
2007 calls that are instrumented are some built-in functions that access
2008 memory. Look at instrument_builtin_call to learn more.
2009
2010 Upon completion return TRUE iff *ITER was advanced to the statement
2011 following the one it was originally pointing to. */
2012
2013 static bool
2014 maybe_instrument_call (gimple_stmt_iterator *iter)
2015 {
2016 gimple stmt = gsi_stmt (*iter);
2017 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2018
2019 if (is_builtin && instrument_builtin_call (iter))
2020 return true;
2021
2022 if (gimple_call_noreturn_p (stmt))
2023 {
2024 if (is_builtin)
2025 {
2026 tree callee = gimple_call_fndecl (stmt);
2027 switch (DECL_FUNCTION_CODE (callee))
2028 {
2029 case BUILT_IN_UNREACHABLE:
2030 case BUILT_IN_TRAP:
2031 /* Don't instrument these. */
2032 return false;
2033 default:
2034 break;
2035 }
2036 }
2037 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2038 gimple g = gimple_build_call (decl, 0);
2039 gimple_set_location (g, gimple_location (stmt));
2040 gsi_insert_before (iter, g, GSI_SAME_STMT);
2041 }
2042 return false;
2043 }
2044
2045 /* Walk each instruction of all basic block and instrument those that
2046 represent memory references: loads, stores, or function calls.
2047 In a given basic block, this function avoids instrumenting memory
2048 references that have already been instrumented. */
2049
2050 static void
2051 transform_statements (void)
2052 {
2053 basic_block bb, last_bb = NULL;
2054 gimple_stmt_iterator i;
2055 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2056
2057 FOR_EACH_BB_FN (bb, cfun)
2058 {
2059 basic_block prev_bb = bb;
2060
2061 if (bb->index >= saved_last_basic_block) continue;
2062
2063 /* Flush the mem ref hash table, if current bb doesn't have
2064 exactly one predecessor, or if that predecessor (skipping
2065 over asan created basic blocks) isn't the last processed
2066 basic block. Thus we effectively flush on extended basic
2067 block boundaries. */
2068 while (single_pred_p (prev_bb))
2069 {
2070 prev_bb = single_pred (prev_bb);
2071 if (prev_bb->index < saved_last_basic_block)
2072 break;
2073 }
2074 if (prev_bb != last_bb)
2075 empty_mem_ref_hash_table ();
2076 last_bb = bb;
2077
2078 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2079 {
2080 gimple s = gsi_stmt (i);
2081
2082 if (has_stmt_been_instrumented_p (s))
2083 gsi_next (&i);
2084 else if (gimple_assign_single_p (s)
2085 && !gimple_clobber_p (s)
2086 && maybe_instrument_assignment (&i))
2087 /* Nothing to do as maybe_instrument_assignment advanced
2088 the iterator I. */;
2089 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2090 /* Nothing to do as maybe_instrument_call
2091 advanced the iterator I. */;
2092 else
2093 {
2094 /* No instrumentation happened.
2095
2096 If the current instruction is a function call that
2097 might free something, let's forget about the memory
2098 references that got instrumented. Otherwise we might
2099 miss some instrumentation opportunities. */
2100 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2101 empty_mem_ref_hash_table ();
2102
2103 gsi_next (&i);
2104 }
2105 }
2106 }
2107 free_mem_ref_resources ();
2108 }
2109
2110 /* Build
2111 __asan_before_dynamic_init (module_name)
2112 or
2113 __asan_after_dynamic_init ()
2114 call. */
2115
2116 tree
2117 asan_dynamic_init_call (bool after_p)
2118 {
2119 tree fn = builtin_decl_implicit (after_p
2120 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2121 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2122 tree module_name_cst = NULL_TREE;
2123 if (!after_p)
2124 {
2125 pretty_printer module_name_pp;
2126 pp_string (&module_name_pp, main_input_filename);
2127
2128 if (shadow_ptr_types[0] == NULL_TREE)
2129 asan_init_shadow_ptr_types ();
2130 module_name_cst = asan_pp_string (&module_name_pp);
2131 module_name_cst = fold_convert (const_ptr_type_node,
2132 module_name_cst);
2133 }
2134
2135 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2136 }
2137
2138 /* Build
2139 struct __asan_global
2140 {
2141 const void *__beg;
2142 uptr __size;
2143 uptr __size_with_redzone;
2144 const void *__name;
2145 const void *__module_name;
2146 uptr __has_dynamic_init;
2147 __asan_global_source_location *__location;
2148 } type. */
2149
2150 static tree
2151 asan_global_struct (void)
2152 {
2153 static const char *field_names[7]
2154 = { "__beg", "__size", "__size_with_redzone",
2155 "__name", "__module_name", "__has_dynamic_init", "__location"};
2156 tree fields[7], ret;
2157 int i;
2158
2159 ret = make_node (RECORD_TYPE);
2160 for (i = 0; i < 7; i++)
2161 {
2162 fields[i]
2163 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2164 get_identifier (field_names[i]),
2165 (i == 0 || i == 3) ? const_ptr_type_node
2166 : pointer_sized_int_node);
2167 DECL_CONTEXT (fields[i]) = ret;
2168 if (i)
2169 DECL_CHAIN (fields[i - 1]) = fields[i];
2170 }
2171 tree type_decl = build_decl (input_location, TYPE_DECL,
2172 get_identifier ("__asan_global"), ret);
2173 DECL_IGNORED_P (type_decl) = 1;
2174 DECL_ARTIFICIAL (type_decl) = 1;
2175 TYPE_FIELDS (ret) = fields[0];
2176 TYPE_NAME (ret) = type_decl;
2177 TYPE_STUB_DECL (ret) = type_decl;
2178 layout_type (ret);
2179 return ret;
2180 }
2181
2182 /* Append description of a single global DECL into vector V.
2183 TYPE is __asan_global struct type as returned by asan_global_struct. */
2184
2185 static void
2186 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2187 {
2188 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2189 unsigned HOST_WIDE_INT size;
2190 tree str_cst, module_name_cst, refdecl = decl;
2191 vec<constructor_elt, va_gc> *vinner = NULL;
2192
2193 pretty_printer asan_pp, module_name_pp;
2194
2195 if (DECL_NAME (decl))
2196 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2197 else
2198 pp_string (&asan_pp, "<unknown>");
2199 str_cst = asan_pp_string (&asan_pp);
2200
2201 pp_string (&module_name_pp, main_input_filename);
2202 module_name_cst = asan_pp_string (&module_name_pp);
2203
2204 if (asan_needs_local_alias (decl))
2205 {
2206 char buf[20];
2207 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2208 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2209 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2210 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2211 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2212 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2213 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2214 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2215 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2216 TREE_STATIC (refdecl) = 1;
2217 TREE_PUBLIC (refdecl) = 0;
2218 TREE_USED (refdecl) = 1;
2219 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2220 }
2221
2222 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2223 fold_convert (const_ptr_type_node,
2224 build_fold_addr_expr (refdecl)));
2225 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2226 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2227 size += asan_red_zone_size (size);
2228 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2229 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2230 fold_convert (const_ptr_type_node, str_cst));
2231 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2232 fold_convert (const_ptr_type_node, module_name_cst));
2233 varpool_node *vnode = varpool_node::get (decl);
2234 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2235 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2236 build_int_cst (uptr, has_dynamic_init));
2237 tree locptr = NULL_TREE;
2238 location_t loc = DECL_SOURCE_LOCATION (decl);
2239 expanded_location xloc = expand_location (loc);
2240 if (xloc.file != NULL)
2241 {
2242 static int lasanloccnt = 0;
2243 char buf[25];
2244 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2245 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2246 ubsan_get_source_location_type ());
2247 TREE_STATIC (var) = 1;
2248 TREE_PUBLIC (var) = 0;
2249 DECL_ARTIFICIAL (var) = 1;
2250 DECL_IGNORED_P (var) = 1;
2251 pretty_printer filename_pp;
2252 pp_string (&filename_pp, xloc.file);
2253 tree str = asan_pp_string (&filename_pp);
2254 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2255 NULL_TREE, str, NULL_TREE,
2256 build_int_cst (unsigned_type_node,
2257 xloc.line), NULL_TREE,
2258 build_int_cst (unsigned_type_node,
2259 xloc.column));
2260 TREE_CONSTANT (ctor) = 1;
2261 TREE_STATIC (ctor) = 1;
2262 DECL_INITIAL (var) = ctor;
2263 varpool_node::finalize_decl (var);
2264 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2265 }
2266 else
2267 locptr = build_int_cst (uptr, 0);
2268 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2269 init = build_constructor (type, vinner);
2270 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2271 }
2272
2273 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2274 void
2275 initialize_sanitizer_builtins (void)
2276 {
2277 tree decl;
2278
2279 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2280 return;
2281
2282 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2283 tree BT_FN_VOID_PTR
2284 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2285 tree BT_FN_VOID_CONST_PTR
2286 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2287 tree BT_FN_VOID_PTR_PTR
2288 = build_function_type_list (void_type_node, ptr_type_node,
2289 ptr_type_node, NULL_TREE);
2290 tree BT_FN_VOID_PTR_PTR_PTR
2291 = build_function_type_list (void_type_node, ptr_type_node,
2292 ptr_type_node, ptr_type_node, NULL_TREE);
2293 tree BT_FN_VOID_PTR_PTRMODE
2294 = build_function_type_list (void_type_node, ptr_type_node,
2295 pointer_sized_int_node, NULL_TREE);
2296 tree BT_FN_VOID_INT
2297 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2298 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2299 tree BT_FN_IX_CONST_VPTR_INT[5];
2300 tree BT_FN_IX_VPTR_IX_INT[5];
2301 tree BT_FN_VOID_VPTR_IX_INT[5];
2302 tree vptr
2303 = build_pointer_type (build_qualified_type (void_type_node,
2304 TYPE_QUAL_VOLATILE));
2305 tree cvptr
2306 = build_pointer_type (build_qualified_type (void_type_node,
2307 TYPE_QUAL_VOLATILE
2308 |TYPE_QUAL_CONST));
2309 tree boolt
2310 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2311 int i;
2312 for (i = 0; i < 5; i++)
2313 {
2314 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2315 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2316 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2317 integer_type_node, integer_type_node,
2318 NULL_TREE);
2319 BT_FN_IX_CONST_VPTR_INT[i]
2320 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2321 BT_FN_IX_VPTR_IX_INT[i]
2322 = build_function_type_list (ix, vptr, ix, integer_type_node,
2323 NULL_TREE);
2324 BT_FN_VOID_VPTR_IX_INT[i]
2325 = build_function_type_list (void_type_node, vptr, ix,
2326 integer_type_node, NULL_TREE);
2327 }
2328 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2329 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2330 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2331 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2332 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2333 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2334 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2335 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2336 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2337 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2338 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2339 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2340 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2341 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2342 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2343 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2344 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2345 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2346 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2347 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2348 #undef ATTR_NOTHROW_LEAF_LIST
2349 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2350 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2351 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2352 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2353 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2354 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2355 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2356 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2357 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2358 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2359 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2360 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2361 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2362 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2363 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2364 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2365 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2366 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2367 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2368 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2369 #undef DEF_SANITIZER_BUILTIN
2370 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2371 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2372 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2373 set_call_expr_flags (decl, ATTRS); \
2374 set_builtin_decl (ENUM, decl, true);
2375
2376 #include "sanitizer.def"
2377
2378 #undef DEF_SANITIZER_BUILTIN
2379 }
2380
2381 /* Called via htab_traverse. Count number of emitted
2382 STRING_CSTs in the constant hash table. */
2383
2384 int
2385 count_string_csts (constant_descriptor_tree **slot,
2386 unsigned HOST_WIDE_INT *data)
2387 {
2388 struct constant_descriptor_tree *desc = *slot;
2389 if (TREE_CODE (desc->value) == STRING_CST
2390 && TREE_ASM_WRITTEN (desc->value)
2391 && asan_protect_global (desc->value))
2392 ++*data;
2393 return 1;
2394 }
2395
2396 /* Helper structure to pass two parameters to
2397 add_string_csts. */
2398
2399 struct asan_add_string_csts_data
2400 {
2401 tree type;
2402 vec<constructor_elt, va_gc> *v;
2403 };
2404
2405 /* Called via hash_table::traverse. Call asan_add_global
2406 on emitted STRING_CSTs from the constant hash table. */
2407
2408 int
2409 add_string_csts (constant_descriptor_tree **slot,
2410 asan_add_string_csts_data *aascd)
2411 {
2412 struct constant_descriptor_tree *desc = *slot;
2413 if (TREE_CODE (desc->value) == STRING_CST
2414 && TREE_ASM_WRITTEN (desc->value)
2415 && asan_protect_global (desc->value))
2416 {
2417 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2418 aascd->type, aascd->v);
2419 }
2420 return 1;
2421 }
2422
2423 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2424 invoke ggc_collect. */
2425 static GTY(()) tree asan_ctor_statements;
2426
2427 /* Module-level instrumentation.
2428 - Insert __asan_init_vN() into the list of CTORs.
2429 - TODO: insert redzones around globals.
2430 */
2431
2432 void
2433 asan_finish_file (void)
2434 {
2435 varpool_node *vnode;
2436 unsigned HOST_WIDE_INT gcount = 0;
2437
2438 if (shadow_ptr_types[0] == NULL_TREE)
2439 asan_init_shadow_ptr_types ();
2440 /* Avoid instrumenting code in the asan ctors/dtors.
2441 We don't need to insert padding after the description strings,
2442 nor after .LASAN* array. */
2443 flag_sanitize &= ~SANITIZE_ADDRESS;
2444
2445 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2446 {
2447 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2448 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2449 }
2450 FOR_EACH_DEFINED_VARIABLE (vnode)
2451 if (TREE_ASM_WRITTEN (vnode->decl)
2452 && asan_protect_global (vnode->decl))
2453 ++gcount;
2454 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2455 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2456 (&gcount);
2457 if (gcount)
2458 {
2459 tree type = asan_global_struct (), var, ctor;
2460 tree dtor_statements = NULL_TREE;
2461 vec<constructor_elt, va_gc> *v;
2462 char buf[20];
2463
2464 type = build_array_type_nelts (type, gcount);
2465 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2466 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2467 type);
2468 TREE_STATIC (var) = 1;
2469 TREE_PUBLIC (var) = 0;
2470 DECL_ARTIFICIAL (var) = 1;
2471 DECL_IGNORED_P (var) = 1;
2472 vec_alloc (v, gcount);
2473 FOR_EACH_DEFINED_VARIABLE (vnode)
2474 if (TREE_ASM_WRITTEN (vnode->decl)
2475 && asan_protect_global (vnode->decl))
2476 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2477 struct asan_add_string_csts_data aascd;
2478 aascd.type = TREE_TYPE (type);
2479 aascd.v = v;
2480 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2481 (&aascd);
2482 ctor = build_constructor (type, v);
2483 TREE_CONSTANT (ctor) = 1;
2484 TREE_STATIC (ctor) = 1;
2485 DECL_INITIAL (var) = ctor;
2486 varpool_node::finalize_decl (var);
2487
2488 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2489 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2490 append_to_statement_list (build_call_expr (fn, 2,
2491 build_fold_addr_expr (var),
2492 gcount_tree),
2493 &asan_ctor_statements);
2494
2495 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2496 append_to_statement_list (build_call_expr (fn, 2,
2497 build_fold_addr_expr (var),
2498 gcount_tree),
2499 &dtor_statements);
2500 cgraph_build_static_cdtor ('D', dtor_statements,
2501 MAX_RESERVED_INIT_PRIORITY - 1);
2502 }
2503 if (asan_ctor_statements)
2504 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2505 MAX_RESERVED_INIT_PRIORITY - 1);
2506 flag_sanitize |= SANITIZE_ADDRESS;
2507 }
2508
2509 /* Expand the ASAN_{LOAD,STORE} builtins. */
2510
2511 bool
2512 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2513 {
2514 gimple g = gsi_stmt (*iter);
2515 location_t loc = gimple_location (g);
2516
2517 bool recover_p
2518 = (flag_sanitize & flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2519
2520 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2521 gcc_assert (flags < ASAN_CHECK_LAST);
2522 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2523 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2524 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2525
2526 tree base = gimple_call_arg (g, 1);
2527 tree len = gimple_call_arg (g, 2);
2528 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2529
2530 HOST_WIDE_INT size_in_bytes
2531 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2532
2533 if (use_calls)
2534 {
2535 /* Instrument using callbacks. */
2536 gimple g
2537 = gimple_build_assign_with_ops (NOP_EXPR,
2538 make_ssa_name (pointer_sized_int_node,
2539 NULL), base);
2540 gimple_set_location (g, loc);
2541 gsi_insert_before (iter, g, GSI_SAME_STMT);
2542 tree base_addr = gimple_assign_lhs (g);
2543
2544 int nargs;
2545 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2546 if (nargs == 1)
2547 g = gimple_build_call (fun, 1, base_addr);
2548 else
2549 {
2550 gcc_assert (nargs == 2);
2551 g = gimple_build_assign_with_ops (NOP_EXPR,
2552 make_ssa_name (pointer_sized_int_node,
2553 NULL), len);
2554 gimple_set_location (g, loc);
2555 gsi_insert_before (iter, g, GSI_SAME_STMT);
2556 tree sz_arg = gimple_assign_lhs (g);
2557 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2558 }
2559 gimple_set_location (g, loc);
2560 gsi_replace (iter, g, false);
2561 return false;
2562 }
2563
2564 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2565
2566 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2567 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2568
2569 gimple_stmt_iterator gsi = *iter;
2570
2571 if (!is_non_zero_len)
2572 {
2573 /* So, the length of the memory area to asan-protect is
2574 non-constant. Let's guard the generated instrumentation code
2575 like:
2576
2577 if (len != 0)
2578 {
2579 //asan instrumentation code goes here.
2580 }
2581 // falltrough instructions, starting with *ITER. */
2582
2583 g = gimple_build_cond (NE_EXPR,
2584 len,
2585 build_int_cst (TREE_TYPE (len), 0),
2586 NULL_TREE, NULL_TREE);
2587 gimple_set_location (g, loc);
2588
2589 basic_block then_bb, fallthrough_bb;
2590 insert_if_then_before_iter (as_a <gcond *> (g), iter,
2591 /*then_more_likely_p=*/true,
2592 &then_bb, &fallthrough_bb);
2593 /* Note that fallthrough_bb starts with the statement that was
2594 pointed to by ITER. */
2595
2596 /* The 'then block' of the 'if (len != 0) condition is where
2597 we'll generate the asan instrumentation code now. */
2598 gsi = gsi_last_bb (then_bb);
2599 }
2600
2601 /* Get an iterator on the point where we can add the condition
2602 statement for the instrumentation. */
2603 basic_block then_bb, else_bb;
2604 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2605 /*then_more_likely_p=*/false,
2606 /*create_then_fallthru_edge*/recover_p,
2607 &then_bb,
2608 &else_bb);
2609
2610 g = gimple_build_assign_with_ops (NOP_EXPR,
2611 make_ssa_name (pointer_sized_int_node,
2612 NULL), base);
2613 gimple_set_location (g, loc);
2614 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2615 tree base_addr = gimple_assign_lhs (g);
2616
2617 tree t = NULL_TREE;
2618 if (real_size_in_bytes >= 8)
2619 {
2620 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2621 shadow_ptr_type);
2622 t = shadow;
2623 }
2624 else
2625 {
2626 /* Slow path for 1, 2 and 4 byte accesses. */
2627 /* Test (shadow != 0)
2628 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2629 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2630 shadow_ptr_type);
2631 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2632 gimple_seq seq = NULL;
2633 gimple_seq_add_stmt (&seq, shadow_test);
2634 /* Aligned (>= 8 bytes) can test just
2635 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2636 to be 0. */
2637 if (align < 8)
2638 {
2639 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2640 base_addr, 7));
2641 gimple_seq_add_stmt (&seq,
2642 build_type_cast (shadow_type,
2643 gimple_seq_last (seq)));
2644 if (real_size_in_bytes > 1)
2645 gimple_seq_add_stmt (&seq,
2646 build_assign (PLUS_EXPR,
2647 gimple_seq_last (seq),
2648 real_size_in_bytes - 1));
2649 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2650 }
2651 else
2652 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2653 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2654 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2655 gimple_seq_last (seq)));
2656 t = gimple_assign_lhs (gimple_seq_last (seq));
2657 gimple_seq_set_location (seq, loc);
2658 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2659
2660 /* For non-constant, misaligned or otherwise weird access sizes,
2661 check first and last byte. */
2662 if (size_in_bytes == -1)
2663 {
2664 g = gimple_build_assign_with_ops (MINUS_EXPR,
2665 make_ssa_name (pointer_sized_int_node, NULL),
2666 len,
2667 build_int_cst (pointer_sized_int_node, 1));
2668 gimple_set_location (g, loc);
2669 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2670 tree last = gimple_assign_lhs (g);
2671 g = gimple_build_assign_with_ops (PLUS_EXPR,
2672 make_ssa_name (pointer_sized_int_node, NULL),
2673 base_addr,
2674 last);
2675 gimple_set_location (g, loc);
2676 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2677 tree base_end_addr = gimple_assign_lhs (g);
2678
2679 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2680 shadow_ptr_type);
2681 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2682 gimple_seq seq = NULL;
2683 gimple_seq_add_stmt (&seq, shadow_test);
2684 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2685 base_end_addr, 7));
2686 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2687 gimple_seq_last (seq)));
2688 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2689 gimple_seq_last (seq),
2690 shadow));
2691 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2692 gimple_seq_last (seq)));
2693 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2694 gimple_seq_last (seq)));
2695 t = gimple_assign_lhs (gimple_seq_last (seq));
2696 gimple_seq_set_location (seq, loc);
2697 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2698 }
2699 }
2700
2701 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2702 NULL_TREE, NULL_TREE);
2703 gimple_set_location (g, loc);
2704 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2705
2706 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2707 gsi = gsi_start_bb (then_bb);
2708 int nargs;
2709 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
2710 g = gimple_build_call (fun, nargs, base_addr, len);
2711 gimple_set_location (g, loc);
2712 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2713
2714 gsi_remove (iter, true);
2715 *iter = gsi_start_bb (else_bb);
2716
2717 return true;
2718 }
2719
2720 /* Instrument the current function. */
2721
2722 static unsigned int
2723 asan_instrument (void)
2724 {
2725 if (shadow_ptr_types[0] == NULL_TREE)
2726 asan_init_shadow_ptr_types ();
2727 transform_statements ();
2728 return 0;
2729 }
2730
2731 static bool
2732 gate_asan (void)
2733 {
2734 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2735 && !lookup_attribute ("no_sanitize_address",
2736 DECL_ATTRIBUTES (current_function_decl));
2737 }
2738
2739 namespace {
2740
2741 const pass_data pass_data_asan =
2742 {
2743 GIMPLE_PASS, /* type */
2744 "asan", /* name */
2745 OPTGROUP_NONE, /* optinfo_flags */
2746 TV_NONE, /* tv_id */
2747 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2748 0, /* properties_provided */
2749 0, /* properties_destroyed */
2750 0, /* todo_flags_start */
2751 TODO_update_ssa, /* todo_flags_finish */
2752 };
2753
2754 class pass_asan : public gimple_opt_pass
2755 {
2756 public:
2757 pass_asan (gcc::context *ctxt)
2758 : gimple_opt_pass (pass_data_asan, ctxt)
2759 {}
2760
2761 /* opt_pass methods: */
2762 opt_pass * clone () { return new pass_asan (m_ctxt); }
2763 virtual bool gate (function *) { return gate_asan (); }
2764 virtual unsigned int execute (function *) { return asan_instrument (); }
2765
2766 }; // class pass_asan
2767
2768 } // anon namespace
2769
2770 gimple_opt_pass *
2771 make_pass_asan (gcc::context *ctxt)
2772 {
2773 return new pass_asan (ctxt);
2774 }
2775
2776 namespace {
2777
2778 const pass_data pass_data_asan_O0 =
2779 {
2780 GIMPLE_PASS, /* type */
2781 "asan0", /* name */
2782 OPTGROUP_NONE, /* optinfo_flags */
2783 TV_NONE, /* tv_id */
2784 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2785 0, /* properties_provided */
2786 0, /* properties_destroyed */
2787 0, /* todo_flags_start */
2788 TODO_update_ssa, /* todo_flags_finish */
2789 };
2790
2791 class pass_asan_O0 : public gimple_opt_pass
2792 {
2793 public:
2794 pass_asan_O0 (gcc::context *ctxt)
2795 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2796 {}
2797
2798 /* opt_pass methods: */
2799 virtual bool gate (function *) { return !optimize && gate_asan (); }
2800 virtual unsigned int execute (function *) { return asan_instrument (); }
2801
2802 }; // class pass_asan_O0
2803
2804 } // anon namespace
2805
2806 gimple_opt_pass *
2807 make_pass_asan_O0 (gcc::context *ctxt)
2808 {
2809 return new pass_asan_O0 (ctxt);
2810 }
2811
2812 #include "gt-asan.h"