]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/asan.c
profile-count.h (profile_probability::from_reg_br_prob_note, [...]): New functions.
[thirdparty/gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "asan.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "langhooks.h"
56 #include "cfgloop.h"
57 #include "gimple-builder.h"
58 #include "gimple-fold.h"
59 #include "ubsan.h"
60 #include "params.h"
61 #include "builtins.h"
62 #include "fnmatch.h"
63 #include "tree-inline.h"
64
65 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
66 with <2x slowdown on average.
67
68 The tool consists of two parts:
69 instrumentation module (this file) and a run-time library.
70 The instrumentation module adds a run-time check before every memory insn.
71 For a 8- or 16- byte load accessing address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
74 if (ShadowValue)
75 __asan_report_load8(X);
76 For a load of N bytes (N=1, 2 or 4) from address X:
77 ShadowAddr = (X >> 3) + Offset
78 ShadowValue = *(char*)ShadowAddr;
79 if (ShadowValue)
80 if ((X & 7) + N - 1 > ShadowValue)
81 __asan_report_loadN(X);
82 Stores are instrumented similarly, but using __asan_report_storeN functions.
83 A call too __asan_init_vN() is inserted to the list of module CTORs.
84 N is the version number of the AddressSanitizer API. The changes between the
85 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
86
87 The run-time library redefines malloc (so that redzone are inserted around
88 the allocated memory) and free (so that reuse of free-ed memory is delayed),
89 provides __asan_report* and __asan_init_vN functions.
90
91 Read more:
92 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
93
94 The current implementation supports detection of out-of-bounds and
95 use-after-free in the heap, on the stack and for global variables.
96
97 [Protection of stack variables]
98
99 To understand how detection of out-of-bounds and use-after-free works
100 for stack variables, lets look at this example on x86_64 where the
101 stack grows downward:
102
103 int
104 foo ()
105 {
106 char a[23] = {0};
107 int b[2] = {0};
108
109 a[5] = 1;
110 b[1] = 2;
111
112 return a[5] + b[1];
113 }
114
115 For this function, the stack protected by asan will be organized as
116 follows, from the top of the stack to the bottom:
117
118 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
119
120 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
121 the next slot be 32 bytes aligned; this one is called Partial
122 Redzone; this 32 bytes alignment is an asan constraint]
123
124 Slot 3/ [24 bytes for variable 'a']
125
126 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
127
128 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
129
130 Slot 6/ [8 bytes for variable 'b']
131
132 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
133 'LEFT RedZone']
134
135 The 32 bytes of LEFT red zone at the bottom of the stack can be
136 decomposed as such:
137
138 1/ The first 8 bytes contain a magical asan number that is always
139 0x41B58AB3.
140
141 2/ The following 8 bytes contains a pointer to a string (to be
142 parsed at runtime by the runtime asan library), which format is
143 the following:
144
145 "<function-name> <space> <num-of-variables-on-the-stack>
146 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
147 <length-of-var-in-bytes> ){n} "
148
149 where '(...){n}' means the content inside the parenthesis occurs 'n'
150 times, with 'n' being the number of variables on the stack.
151
152 3/ The following 8 bytes contain the PC of the current function which
153 will be used by the run-time library to print an error message.
154
155 4/ The following 8 bytes are reserved for internal use by the run-time.
156
157 The shadow memory for that stack layout is going to look like this:
158
159 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
160 The F1 byte pattern is a magic number called
161 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
162 the memory for that shadow byte is part of a the LEFT red zone
163 intended to seat at the bottom of the variables on the stack.
164
165 - content of shadow memory 8 bytes for slots 6 and 5:
166 0xF4F4F400. The F4 byte pattern is a magic number
167 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
168 memory region for this shadow byte is a PARTIAL red zone
169 intended to pad a variable A, so that the slot following
170 {A,padding} is 32 bytes aligned.
171
172 Note that the fact that the least significant byte of this
173 shadow memory content is 00 means that 8 bytes of its
174 corresponding memory (which corresponds to the memory of
175 variable 'b') is addressable.
176
177 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
178 The F2 byte pattern is a magic number called
179 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
180 region for this shadow byte is a MIDDLE red zone intended to
181 seat between two 32 aligned slots of {variable,padding}.
182
183 - content of shadow memory 8 bytes for slot 3 and 2:
184 0xF4000000. This represents is the concatenation of
185 variable 'a' and the partial red zone following it, like what we
186 had for variable 'b'. The least significant 3 bytes being 00
187 means that the 3 bytes of variable 'a' are addressable.
188
189 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
190 The F3 byte pattern is a magic number called
191 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
192 region for this shadow byte is a RIGHT red zone intended to seat
193 at the top of the variables of the stack.
194
195 Note that the real variable layout is done in expand_used_vars in
196 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
197 stack variables as well as the different red zones, emits some
198 prologue code to populate the shadow memory as to poison (mark as
199 non-accessible) the regions of the red zones and mark the regions of
200 stack variables as accessible, and emit some epilogue code to
201 un-poison (mark as accessible) the regions of red zones right before
202 the function exits.
203
204 [Protection of global variables]
205
206 The basic idea is to insert a red zone between two global variables
207 and install a constructor function that calls the asan runtime to do
208 the populating of the relevant shadow memory regions at load time.
209
210 So the global variables are laid out as to insert a red zone between
211 them. The size of the red zones is so that each variable starts on a
212 32 bytes boundary.
213
214 Then a constructor function is installed so that, for each global
215 variable, it calls the runtime asan library function
216 __asan_register_globals_with an instance of this type:
217
218 struct __asan_global
219 {
220 // Address of the beginning of the global variable.
221 const void *__beg;
222
223 // Initial size of the global variable.
224 uptr __size;
225
226 // Size of the global variable + size of the red zone. This
227 // size is 32 bytes aligned.
228 uptr __size_with_redzone;
229
230 // Name of the global variable.
231 const void *__name;
232
233 // Name of the module where the global variable is declared.
234 const void *__module_name;
235
236 // 1 if it has dynamic initialization, 0 otherwise.
237 uptr __has_dynamic_init;
238
239 // A pointer to struct that contains source location, could be NULL.
240 __asan_global_source_location *__location;
241 }
242
243 A destructor function that calls the runtime asan library function
244 _asan_unregister_globals is also installed. */
245
246 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
247 static bool asan_shadow_offset_computed;
248 static vec<char *> sanitized_sections;
249 static tree last_alloca_addr;
250
251 /* Set of variable declarations that are going to be guarded by
252 use-after-scope sanitizer. */
253
254 static hash_set<tree> *asan_handled_variables = NULL;
255
256 hash_set <tree> *asan_used_labels = NULL;
257
258 /* Sets shadow offset to value in string VAL. */
259
260 bool
261 set_asan_shadow_offset (const char *val)
262 {
263 char *endp;
264
265 errno = 0;
266 #ifdef HAVE_LONG_LONG
267 asan_shadow_offset_value = strtoull (val, &endp, 0);
268 #else
269 asan_shadow_offset_value = strtoul (val, &endp, 0);
270 #endif
271 if (!(*val != '\0' && *endp == '\0' && errno == 0))
272 return false;
273
274 asan_shadow_offset_computed = true;
275
276 return true;
277 }
278
279 /* Set list of user-defined sections that need to be sanitized. */
280
281 void
282 set_sanitized_sections (const char *sections)
283 {
284 char *pat;
285 unsigned i;
286 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
287 free (pat);
288 sanitized_sections.truncate (0);
289
290 for (const char *s = sections; *s; )
291 {
292 const char *end;
293 for (end = s; *end && *end != ','; ++end);
294 size_t len = end - s;
295 sanitized_sections.safe_push (xstrndup (s, len));
296 s = *end ? end + 1 : end;
297 }
298 }
299
300 bool
301 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
302 {
303 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
304 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
305 }
306
307 bool
308 asan_sanitize_stack_p (void)
309 {
310 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
311 }
312
313 bool
314 asan_sanitize_allocas_p (void)
315 {
316 return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS);
317 }
318
319 /* Checks whether section SEC should be sanitized. */
320
321 static bool
322 section_sanitized_p (const char *sec)
323 {
324 char *pat;
325 unsigned i;
326 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
327 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
328 return true;
329 return false;
330 }
331
332 /* Returns Asan shadow offset. */
333
334 static unsigned HOST_WIDE_INT
335 asan_shadow_offset ()
336 {
337 if (!asan_shadow_offset_computed)
338 {
339 asan_shadow_offset_computed = true;
340 asan_shadow_offset_value = targetm.asan_shadow_offset ();
341 }
342 return asan_shadow_offset_value;
343 }
344
345 alias_set_type asan_shadow_set = -1;
346
347 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
348 alias set is used for all shadow memory accesses. */
349 static GTY(()) tree shadow_ptr_types[3];
350
351 /* Decl for __asan_option_detect_stack_use_after_return. */
352 static GTY(()) tree asan_detect_stack_use_after_return;
353
354 /* Hashtable support for memory references used by gimple
355 statements. */
356
357 /* This type represents a reference to a memory region. */
358 struct asan_mem_ref
359 {
360 /* The expression of the beginning of the memory region. */
361 tree start;
362
363 /* The size of the access. */
364 HOST_WIDE_INT access_size;
365 };
366
367 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
368
369 /* Initializes an instance of asan_mem_ref. */
370
371 static void
372 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
373 {
374 ref->start = start;
375 ref->access_size = access_size;
376 }
377
378 /* Allocates memory for an instance of asan_mem_ref into the memory
379 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
380 START is the address of (or the expression pointing to) the
381 beginning of memory reference. ACCESS_SIZE is the size of the
382 access to the referenced memory. */
383
384 static asan_mem_ref*
385 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
386 {
387 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
388
389 asan_mem_ref_init (ref, start, access_size);
390 return ref;
391 }
392
393 /* This builds and returns a pointer to the end of the memory region
394 that starts at START and of length LEN. */
395
396 tree
397 asan_mem_ref_get_end (tree start, tree len)
398 {
399 if (len == NULL_TREE || integer_zerop (len))
400 return start;
401
402 if (!ptrofftype_p (len))
403 len = convert_to_ptrofftype (len);
404
405 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
406 }
407
408 /* Return a tree expression that represents the end of the referenced
409 memory region. Beware that this function can actually build a new
410 tree expression. */
411
412 tree
413 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
414 {
415 return asan_mem_ref_get_end (ref->start, len);
416 }
417
418 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
419 {
420 static inline hashval_t hash (const asan_mem_ref *);
421 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
422 };
423
424 /* Hash a memory reference. */
425
426 inline hashval_t
427 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
428 {
429 return iterative_hash_expr (mem_ref->start, 0);
430 }
431
432 /* Compare two memory references. We accept the length of either
433 memory references to be NULL_TREE. */
434
435 inline bool
436 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
437 const asan_mem_ref *m2)
438 {
439 return operand_equal_p (m1->start, m2->start, 0);
440 }
441
442 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
443
444 /* Returns a reference to the hash table containing memory references.
445 This function ensures that the hash table is created. Note that
446 this hash table is updated by the function
447 update_mem_ref_hash_table. */
448
449 static hash_table<asan_mem_ref_hasher> *
450 get_mem_ref_hash_table ()
451 {
452 if (!asan_mem_ref_ht)
453 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
454
455 return asan_mem_ref_ht;
456 }
457
458 /* Clear all entries from the memory references hash table. */
459
460 static void
461 empty_mem_ref_hash_table ()
462 {
463 if (asan_mem_ref_ht)
464 asan_mem_ref_ht->empty ();
465 }
466
467 /* Free the memory references hash table. */
468
469 static void
470 free_mem_ref_resources ()
471 {
472 delete asan_mem_ref_ht;
473 asan_mem_ref_ht = NULL;
474
475 asan_mem_ref_pool.release ();
476 }
477
478 /* Return true iff the memory reference REF has been instrumented. */
479
480 static bool
481 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
482 {
483 asan_mem_ref r;
484 asan_mem_ref_init (&r, ref, access_size);
485
486 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
487 return saved_ref && saved_ref->access_size >= access_size;
488 }
489
490 /* Return true iff the memory reference REF has been instrumented. */
491
492 static bool
493 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
494 {
495 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
496 }
497
498 /* Return true iff access to memory region starting at REF and of
499 length LEN has been instrumented. */
500
501 static bool
502 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
503 {
504 HOST_WIDE_INT size_in_bytes
505 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
506
507 return size_in_bytes != -1
508 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
509 }
510
511 /* Set REF to the memory reference present in a gimple assignment
512 ASSIGNMENT. Return true upon successful completion, false
513 otherwise. */
514
515 static bool
516 get_mem_ref_of_assignment (const gassign *assignment,
517 asan_mem_ref *ref,
518 bool *ref_is_store)
519 {
520 gcc_assert (gimple_assign_single_p (assignment));
521
522 if (gimple_store_p (assignment)
523 && !gimple_clobber_p (assignment))
524 {
525 ref->start = gimple_assign_lhs (assignment);
526 *ref_is_store = true;
527 }
528 else if (gimple_assign_load_p (assignment))
529 {
530 ref->start = gimple_assign_rhs1 (assignment);
531 *ref_is_store = false;
532 }
533 else
534 return false;
535
536 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
537 return true;
538 }
539
540 /* Return address of last allocated dynamic alloca. */
541
542 static tree
543 get_last_alloca_addr ()
544 {
545 if (last_alloca_addr)
546 return last_alloca_addr;
547
548 last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
549 gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
550 edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
551 gsi_insert_on_edge_immediate (e, g);
552 return last_alloca_addr;
553 }
554
555 /* Insert __asan_allocas_unpoison (top, bottom) call after
556 __builtin_stack_restore (new_sp) call.
557 The pseudocode of this routine should look like this:
558 __builtin_stack_restore (new_sp);
559 top = last_alloca_addr;
560 bot = new_sp;
561 __asan_allocas_unpoison (top, bot);
562 last_alloca_addr = new_sp;
563 In general, we can't use new_sp as bot parameter because on some
564 architectures SP has non zero offset from dynamic stack area. Moreover, on
565 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
566 particular function only after all callees were expanded to rtl.
567 The most noticeable example is PowerPC{,64}, see
568 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
569 To overcome the issue we use following trick: pass new_sp as a second
570 parameter to __asan_allocas_unpoison and rewrite it during expansion with
571 virtual_dynamic_stack_rtx later in expand_asan_emit_allocas_unpoison
572 function.
573 */
574
575 static void
576 handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
577 {
578 if (!iter || !asan_sanitize_allocas_p ())
579 return;
580
581 tree last_alloca = get_last_alloca_addr ();
582 tree restored_stack = gimple_call_arg (call, 0);
583 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
584 gimple *g = gimple_build_call (fn, 2, last_alloca, restored_stack);
585 gsi_insert_after (iter, g, GSI_NEW_STMT);
586 g = gimple_build_assign (last_alloca, restored_stack);
587 gsi_insert_after (iter, g, GSI_NEW_STMT);
588 }
589
590 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
591 should replace this call with another one with changed parameters and
592 replace all its uses with new address, so
593 addr = __builtin_alloca (old_size, align);
594 is replaced by
595 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
596 Following two statements are optimized out if we know that
597 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
598 redzone.
599 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
600 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
601 right_redzone_size = ASAN_RED_ZONE_SIZE;
602 additional_size = left_redzone_size + partial_redzone_size +
603 right_redzone_size;
604 new_size = old_size + additional_size;
605 new_alloca = __builtin_alloca (new_size, max (align, 32))
606 __asan_alloca_poison (new_alloca, old_size)
607 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
608 last_alloca_addr = new_alloca;
609 ADDITIONAL_SIZE is added to make new memory allocation contain not only
610 requested memory, but also left, partial and right redzones as well as some
611 additional space, required by alignment. */
612
613 static void
614 handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
615 {
616 if (!iter || !asan_sanitize_allocas_p ())
617 return;
618
619 gassign *g;
620 gcall *gg;
621 const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
622
623 tree last_alloca = get_last_alloca_addr ();
624 tree callee = gimple_call_fndecl (call);
625 tree old_size = gimple_call_arg (call, 0);
626 tree ptr_type = gimple_call_lhs (call) ? TREE_TYPE (gimple_call_lhs (call))
627 : ptr_type_node;
628 tree partial_size = NULL_TREE;
629 bool alloca_with_align
630 = DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN;
631 unsigned int align
632 = alloca_with_align ? tree_to_uhwi (gimple_call_arg (call, 1)) : 0;
633
634 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
635 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
636 manually. */
637 align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
638
639 tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
640 tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
641
642 /* Extract lower bits from old_size. */
643 wide_int size_nonzero_bits = get_nonzero_bits (old_size);
644 wide_int rz_mask
645 = wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
646 wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
647
648 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
649 redzone. Otherwise, compute its size here. */
650 if (wi::ne_p (old_size_lower_bits, 0))
651 {
652 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
653 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
654 g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
655 BIT_AND_EXPR, old_size, alloca_rz_mask);
656 gsi_insert_before (iter, g, GSI_SAME_STMT);
657 tree misalign = gimple_assign_lhs (g);
658 g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
659 redzone_size, misalign);
660 gsi_insert_before (iter, g, GSI_SAME_STMT);
661 partial_size = gimple_assign_lhs (g);
662 }
663
664 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
665 tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
666 + ASAN_RED_ZONE_SIZE);
667 /* If alloca has partial redzone, include it to additional_size too. */
668 if (partial_size)
669 {
670 /* additional_size += partial_size. */
671 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
672 partial_size, additional_size);
673 gsi_insert_before (iter, g, GSI_SAME_STMT);
674 additional_size = gimple_assign_lhs (g);
675 }
676
677 /* new_size = old_size + additional_size. */
678 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
679 additional_size);
680 gsi_insert_before (iter, g, GSI_SAME_STMT);
681 tree new_size = gimple_assign_lhs (g);
682
683 /* Build new __builtin_alloca call:
684 new_alloca_with_rz = __builtin_alloca (new_size, align). */
685 tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
686 gg = gimple_build_call (fn, 2, new_size,
687 build_int_cst (size_type_node, align));
688 tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
689 gimple_call_set_lhs (gg, new_alloca_with_rz);
690 gsi_insert_before (iter, gg, GSI_SAME_STMT);
691
692 /* new_alloca = new_alloca_with_rz + align. */
693 g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
694 new_alloca_with_rz,
695 build_int_cst (size_type_node,
696 align / BITS_PER_UNIT));
697 gsi_insert_before (iter, g, GSI_SAME_STMT);
698 tree new_alloca = gimple_assign_lhs (g);
699
700 /* Poison newly created alloca redzones:
701 __asan_alloca_poison (new_alloca, old_size). */
702 fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
703 gg = gimple_build_call (fn, 2, new_alloca, old_size);
704 gsi_insert_before (iter, gg, GSI_SAME_STMT);
705
706 /* Save new_alloca_with_rz value into last_alloca to use it during
707 allocas unpoisoning. */
708 g = gimple_build_assign (last_alloca, new_alloca_with_rz);
709 gsi_insert_before (iter, g, GSI_SAME_STMT);
710
711 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
712 replace_call_with_value (iter, new_alloca);
713 }
714
715 /* Return the memory references contained in a gimple statement
716 representing a builtin call that has to do with memory access. */
717
718 static bool
719 get_mem_refs_of_builtin_call (gcall *call,
720 asan_mem_ref *src0,
721 tree *src0_len,
722 bool *src0_is_store,
723 asan_mem_ref *src1,
724 tree *src1_len,
725 bool *src1_is_store,
726 asan_mem_ref *dst,
727 tree *dst_len,
728 bool *dst_is_store,
729 bool *dest_is_deref,
730 bool *intercepted_p,
731 gimple_stmt_iterator *iter = NULL)
732 {
733 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
734
735 tree callee = gimple_call_fndecl (call);
736 tree source0 = NULL_TREE, source1 = NULL_TREE,
737 dest = NULL_TREE, len = NULL_TREE;
738 bool is_store = true, got_reference_p = false;
739 HOST_WIDE_INT access_size = 1;
740
741 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
742
743 switch (DECL_FUNCTION_CODE (callee))
744 {
745 /* (s, s, n) style memops. */
746 case BUILT_IN_BCMP:
747 case BUILT_IN_MEMCMP:
748 source0 = gimple_call_arg (call, 0);
749 source1 = gimple_call_arg (call, 1);
750 len = gimple_call_arg (call, 2);
751 break;
752
753 /* (src, dest, n) style memops. */
754 case BUILT_IN_BCOPY:
755 source0 = gimple_call_arg (call, 0);
756 dest = gimple_call_arg (call, 1);
757 len = gimple_call_arg (call, 2);
758 break;
759
760 /* (dest, src, n) style memops. */
761 case BUILT_IN_MEMCPY:
762 case BUILT_IN_MEMCPY_CHK:
763 case BUILT_IN_MEMMOVE:
764 case BUILT_IN_MEMMOVE_CHK:
765 case BUILT_IN_MEMPCPY:
766 case BUILT_IN_MEMPCPY_CHK:
767 dest = gimple_call_arg (call, 0);
768 source0 = gimple_call_arg (call, 1);
769 len = gimple_call_arg (call, 2);
770 break;
771
772 /* (dest, n) style memops. */
773 case BUILT_IN_BZERO:
774 dest = gimple_call_arg (call, 0);
775 len = gimple_call_arg (call, 1);
776 break;
777
778 /* (dest, x, n) style memops*/
779 case BUILT_IN_MEMSET:
780 case BUILT_IN_MEMSET_CHK:
781 dest = gimple_call_arg (call, 0);
782 len = gimple_call_arg (call, 2);
783 break;
784
785 case BUILT_IN_STRLEN:
786 source0 = gimple_call_arg (call, 0);
787 len = gimple_call_lhs (call);
788 break;
789
790 case BUILT_IN_STACK_RESTORE:
791 handle_builtin_stack_restore (call, iter);
792 break;
793
794 case BUILT_IN_ALLOCA_WITH_ALIGN:
795 case BUILT_IN_ALLOCA:
796 handle_builtin_alloca (call, iter);
797 break;
798 /* And now the __atomic* and __sync builtins.
799 These are handled differently from the classical memory memory
800 access builtins above. */
801
802 case BUILT_IN_ATOMIC_LOAD_1:
803 is_store = false;
804 /* FALLTHRU */
805 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
806 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
807 case BUILT_IN_SYNC_FETCH_AND_OR_1:
808 case BUILT_IN_SYNC_FETCH_AND_AND_1:
809 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
810 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
811 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
812 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
813 case BUILT_IN_SYNC_OR_AND_FETCH_1:
814 case BUILT_IN_SYNC_AND_AND_FETCH_1:
815 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
816 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
817 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
818 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
819 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
820 case BUILT_IN_SYNC_LOCK_RELEASE_1:
821 case BUILT_IN_ATOMIC_EXCHANGE_1:
822 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
823 case BUILT_IN_ATOMIC_STORE_1:
824 case BUILT_IN_ATOMIC_ADD_FETCH_1:
825 case BUILT_IN_ATOMIC_SUB_FETCH_1:
826 case BUILT_IN_ATOMIC_AND_FETCH_1:
827 case BUILT_IN_ATOMIC_NAND_FETCH_1:
828 case BUILT_IN_ATOMIC_XOR_FETCH_1:
829 case BUILT_IN_ATOMIC_OR_FETCH_1:
830 case BUILT_IN_ATOMIC_FETCH_ADD_1:
831 case BUILT_IN_ATOMIC_FETCH_SUB_1:
832 case BUILT_IN_ATOMIC_FETCH_AND_1:
833 case BUILT_IN_ATOMIC_FETCH_NAND_1:
834 case BUILT_IN_ATOMIC_FETCH_XOR_1:
835 case BUILT_IN_ATOMIC_FETCH_OR_1:
836 access_size = 1;
837 goto do_atomic;
838
839 case BUILT_IN_ATOMIC_LOAD_2:
840 is_store = false;
841 /* FALLTHRU */
842 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
843 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
844 case BUILT_IN_SYNC_FETCH_AND_OR_2:
845 case BUILT_IN_SYNC_FETCH_AND_AND_2:
846 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
847 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
848 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
849 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
850 case BUILT_IN_SYNC_OR_AND_FETCH_2:
851 case BUILT_IN_SYNC_AND_AND_FETCH_2:
852 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
853 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
854 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
855 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
856 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
857 case BUILT_IN_SYNC_LOCK_RELEASE_2:
858 case BUILT_IN_ATOMIC_EXCHANGE_2:
859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
860 case BUILT_IN_ATOMIC_STORE_2:
861 case BUILT_IN_ATOMIC_ADD_FETCH_2:
862 case BUILT_IN_ATOMIC_SUB_FETCH_2:
863 case BUILT_IN_ATOMIC_AND_FETCH_2:
864 case BUILT_IN_ATOMIC_NAND_FETCH_2:
865 case BUILT_IN_ATOMIC_XOR_FETCH_2:
866 case BUILT_IN_ATOMIC_OR_FETCH_2:
867 case BUILT_IN_ATOMIC_FETCH_ADD_2:
868 case BUILT_IN_ATOMIC_FETCH_SUB_2:
869 case BUILT_IN_ATOMIC_FETCH_AND_2:
870 case BUILT_IN_ATOMIC_FETCH_NAND_2:
871 case BUILT_IN_ATOMIC_FETCH_XOR_2:
872 case BUILT_IN_ATOMIC_FETCH_OR_2:
873 access_size = 2;
874 goto do_atomic;
875
876 case BUILT_IN_ATOMIC_LOAD_4:
877 is_store = false;
878 /* FALLTHRU */
879 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
880 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
881 case BUILT_IN_SYNC_FETCH_AND_OR_4:
882 case BUILT_IN_SYNC_FETCH_AND_AND_4:
883 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
884 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
885 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
886 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
887 case BUILT_IN_SYNC_OR_AND_FETCH_4:
888 case BUILT_IN_SYNC_AND_AND_FETCH_4:
889 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
890 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
892 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
893 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
894 case BUILT_IN_SYNC_LOCK_RELEASE_4:
895 case BUILT_IN_ATOMIC_EXCHANGE_4:
896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
897 case BUILT_IN_ATOMIC_STORE_4:
898 case BUILT_IN_ATOMIC_ADD_FETCH_4:
899 case BUILT_IN_ATOMIC_SUB_FETCH_4:
900 case BUILT_IN_ATOMIC_AND_FETCH_4:
901 case BUILT_IN_ATOMIC_NAND_FETCH_4:
902 case BUILT_IN_ATOMIC_XOR_FETCH_4:
903 case BUILT_IN_ATOMIC_OR_FETCH_4:
904 case BUILT_IN_ATOMIC_FETCH_ADD_4:
905 case BUILT_IN_ATOMIC_FETCH_SUB_4:
906 case BUILT_IN_ATOMIC_FETCH_AND_4:
907 case BUILT_IN_ATOMIC_FETCH_NAND_4:
908 case BUILT_IN_ATOMIC_FETCH_XOR_4:
909 case BUILT_IN_ATOMIC_FETCH_OR_4:
910 access_size = 4;
911 goto do_atomic;
912
913 case BUILT_IN_ATOMIC_LOAD_8:
914 is_store = false;
915 /* FALLTHRU */
916 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
917 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
918 case BUILT_IN_SYNC_FETCH_AND_OR_8:
919 case BUILT_IN_SYNC_FETCH_AND_AND_8:
920 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
921 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
922 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
923 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
924 case BUILT_IN_SYNC_OR_AND_FETCH_8:
925 case BUILT_IN_SYNC_AND_AND_FETCH_8:
926 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
927 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
928 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
929 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
930 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
931 case BUILT_IN_SYNC_LOCK_RELEASE_8:
932 case BUILT_IN_ATOMIC_EXCHANGE_8:
933 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
934 case BUILT_IN_ATOMIC_STORE_8:
935 case BUILT_IN_ATOMIC_ADD_FETCH_8:
936 case BUILT_IN_ATOMIC_SUB_FETCH_8:
937 case BUILT_IN_ATOMIC_AND_FETCH_8:
938 case BUILT_IN_ATOMIC_NAND_FETCH_8:
939 case BUILT_IN_ATOMIC_XOR_FETCH_8:
940 case BUILT_IN_ATOMIC_OR_FETCH_8:
941 case BUILT_IN_ATOMIC_FETCH_ADD_8:
942 case BUILT_IN_ATOMIC_FETCH_SUB_8:
943 case BUILT_IN_ATOMIC_FETCH_AND_8:
944 case BUILT_IN_ATOMIC_FETCH_NAND_8:
945 case BUILT_IN_ATOMIC_FETCH_XOR_8:
946 case BUILT_IN_ATOMIC_FETCH_OR_8:
947 access_size = 8;
948 goto do_atomic;
949
950 case BUILT_IN_ATOMIC_LOAD_16:
951 is_store = false;
952 /* FALLTHRU */
953 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
954 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
955 case BUILT_IN_SYNC_FETCH_AND_OR_16:
956 case BUILT_IN_SYNC_FETCH_AND_AND_16:
957 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
958 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
959 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
960 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
961 case BUILT_IN_SYNC_OR_AND_FETCH_16:
962 case BUILT_IN_SYNC_AND_AND_FETCH_16:
963 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
964 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
965 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
966 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
967 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
968 case BUILT_IN_SYNC_LOCK_RELEASE_16:
969 case BUILT_IN_ATOMIC_EXCHANGE_16:
970 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
971 case BUILT_IN_ATOMIC_STORE_16:
972 case BUILT_IN_ATOMIC_ADD_FETCH_16:
973 case BUILT_IN_ATOMIC_SUB_FETCH_16:
974 case BUILT_IN_ATOMIC_AND_FETCH_16:
975 case BUILT_IN_ATOMIC_NAND_FETCH_16:
976 case BUILT_IN_ATOMIC_XOR_FETCH_16:
977 case BUILT_IN_ATOMIC_OR_FETCH_16:
978 case BUILT_IN_ATOMIC_FETCH_ADD_16:
979 case BUILT_IN_ATOMIC_FETCH_SUB_16:
980 case BUILT_IN_ATOMIC_FETCH_AND_16:
981 case BUILT_IN_ATOMIC_FETCH_NAND_16:
982 case BUILT_IN_ATOMIC_FETCH_XOR_16:
983 case BUILT_IN_ATOMIC_FETCH_OR_16:
984 access_size = 16;
985 /* FALLTHRU */
986 do_atomic:
987 {
988 dest = gimple_call_arg (call, 0);
989 /* DEST represents the address of a memory location.
990 instrument_derefs wants the memory location, so lets
991 dereference the address DEST before handing it to
992 instrument_derefs. */
993 tree type = build_nonstandard_integer_type (access_size
994 * BITS_PER_UNIT, 1);
995 dest = build2 (MEM_REF, type, dest,
996 build_int_cst (build_pointer_type (char_type_node), 0));
997 break;
998 }
999
1000 default:
1001 /* The other builtins memory access are not instrumented in this
1002 function because they either don't have any length parameter,
1003 or their length parameter is just a limit. */
1004 break;
1005 }
1006
1007 if (len != NULL_TREE)
1008 {
1009 if (source0 != NULL_TREE)
1010 {
1011 src0->start = source0;
1012 src0->access_size = access_size;
1013 *src0_len = len;
1014 *src0_is_store = false;
1015 }
1016
1017 if (source1 != NULL_TREE)
1018 {
1019 src1->start = source1;
1020 src1->access_size = access_size;
1021 *src1_len = len;
1022 *src1_is_store = false;
1023 }
1024
1025 if (dest != NULL_TREE)
1026 {
1027 dst->start = dest;
1028 dst->access_size = access_size;
1029 *dst_len = len;
1030 *dst_is_store = true;
1031 }
1032
1033 got_reference_p = true;
1034 }
1035 else if (dest)
1036 {
1037 dst->start = dest;
1038 dst->access_size = access_size;
1039 *dst_len = NULL_TREE;
1040 *dst_is_store = is_store;
1041 *dest_is_deref = true;
1042 got_reference_p = true;
1043 }
1044
1045 return got_reference_p;
1046 }
1047
1048 /* Return true iff a given gimple statement has been instrumented.
1049 Note that the statement is "defined" by the memory references it
1050 contains. */
1051
1052 static bool
1053 has_stmt_been_instrumented_p (gimple *stmt)
1054 {
1055 if (gimple_assign_single_p (stmt))
1056 {
1057 bool r_is_store;
1058 asan_mem_ref r;
1059 asan_mem_ref_init (&r, NULL, 1);
1060
1061 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
1062 &r_is_store))
1063 return has_mem_ref_been_instrumented (&r);
1064 }
1065 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1066 {
1067 asan_mem_ref src0, src1, dest;
1068 asan_mem_ref_init (&src0, NULL, 1);
1069 asan_mem_ref_init (&src1, NULL, 1);
1070 asan_mem_ref_init (&dest, NULL, 1);
1071
1072 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1073 bool src0_is_store = false, src1_is_store = false,
1074 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
1075 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
1076 &src0, &src0_len, &src0_is_store,
1077 &src1, &src1_len, &src1_is_store,
1078 &dest, &dest_len, &dest_is_store,
1079 &dest_is_deref, &intercepted_p))
1080 {
1081 if (src0.start != NULL_TREE
1082 && !has_mem_ref_been_instrumented (&src0, src0_len))
1083 return false;
1084
1085 if (src1.start != NULL_TREE
1086 && !has_mem_ref_been_instrumented (&src1, src1_len))
1087 return false;
1088
1089 if (dest.start != NULL_TREE
1090 && !has_mem_ref_been_instrumented (&dest, dest_len))
1091 return false;
1092
1093 return true;
1094 }
1095 }
1096 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
1097 {
1098 asan_mem_ref r;
1099 asan_mem_ref_init (&r, NULL, 1);
1100
1101 r.start = gimple_call_lhs (stmt);
1102 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
1103 return has_mem_ref_been_instrumented (&r);
1104 }
1105
1106 return false;
1107 }
1108
1109 /* Insert a memory reference into the hash table. */
1110
1111 static void
1112 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
1113 {
1114 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
1115
1116 asan_mem_ref r;
1117 asan_mem_ref_init (&r, ref, access_size);
1118
1119 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
1120 if (*slot == NULL || (*slot)->access_size < access_size)
1121 *slot = asan_mem_ref_new (ref, access_size);
1122 }
1123
1124 /* Initialize shadow_ptr_types array. */
1125
1126 static void
1127 asan_init_shadow_ptr_types (void)
1128 {
1129 asan_shadow_set = new_alias_set ();
1130 tree types[3] = { signed_char_type_node, short_integer_type_node,
1131 integer_type_node };
1132
1133 for (unsigned i = 0; i < 3; i++)
1134 {
1135 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
1136 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
1137 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
1138 }
1139
1140 initialize_sanitizer_builtins ();
1141 }
1142
1143 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1144
1145 static tree
1146 asan_pp_string (pretty_printer *pp)
1147 {
1148 const char *buf = pp_formatted_text (pp);
1149 size_t len = strlen (buf);
1150 tree ret = build_string (len + 1, buf);
1151 TREE_TYPE (ret)
1152 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
1153 build_index_type (size_int (len)));
1154 TREE_READONLY (ret) = 1;
1155 TREE_STATIC (ret) = 1;
1156 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
1157 }
1158
1159 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
1160
1161 static rtx
1162 asan_shadow_cst (unsigned char shadow_bytes[4])
1163 {
1164 int i;
1165 unsigned HOST_WIDE_INT val = 0;
1166 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
1167 for (i = 0; i < 4; i++)
1168 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
1169 << (BITS_PER_UNIT * i);
1170 return gen_int_mode (val, SImode);
1171 }
1172
1173 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1174 though. */
1175
1176 static void
1177 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
1178 {
1179 rtx_insn *insn, *insns, *jump;
1180 rtx_code_label *top_label;
1181 rtx end, addr, tmp;
1182
1183 start_sequence ();
1184 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
1185 insns = get_insns ();
1186 end_sequence ();
1187 for (insn = insns; insn; insn = NEXT_INSN (insn))
1188 if (CALL_P (insn))
1189 break;
1190 if (insn == NULL_RTX)
1191 {
1192 emit_insn (insns);
1193 return;
1194 }
1195
1196 gcc_assert ((len & 3) == 0);
1197 top_label = gen_label_rtx ();
1198 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1199 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1200 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1201 emit_label (top_label);
1202
1203 emit_move_insn (shadow_mem, const0_rtx);
1204 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1205 true, OPTAB_LIB_WIDEN);
1206 if (tmp != addr)
1207 emit_move_insn (addr, tmp);
1208 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1209 jump = get_last_insn ();
1210 gcc_assert (JUMP_P (jump));
1211 add_reg_br_prob_note (jump,
1212 profile_probability::guessed_always ()
1213 .apply_scale (80, 100));
1214 }
1215
1216 void
1217 asan_function_start (void)
1218 {
1219 section *fnsec = function_section (current_function_decl);
1220 switch_to_section (fnsec);
1221 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1222 current_function_funcdef_no);
1223 }
1224
1225 /* Return number of shadow bytes that are occupied by a local variable
1226 of SIZE bytes. */
1227
1228 static unsigned HOST_WIDE_INT
1229 shadow_mem_size (unsigned HOST_WIDE_INT size)
1230 {
1231 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1232 }
1233
1234 /* Insert code to protect stack vars. The prologue sequence should be emitted
1235 directly, epilogue sequence returned. BASE is the register holding the
1236 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1237 array contains pairs of offsets in reverse order, always the end offset
1238 of some gap that needs protection followed by starting offset,
1239 and DECLS is an array of representative decls for each var partition.
1240 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1241 elements long (OFFSETS include gap before the first variable as well
1242 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1243 register which stack vars DECL_RTLs are based on. Either BASE should be
1244 assigned to PBASE, when not doing use after return protection, or
1245 corresponding address based on __asan_stack_malloc* return value. */
1246
1247 rtx_insn *
1248 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1249 HOST_WIDE_INT *offsets, tree *decls, int length)
1250 {
1251 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1252 rtx_code_label *lab;
1253 rtx_insn *insns;
1254 char buf[32];
1255 unsigned char shadow_bytes[4];
1256 HOST_WIDE_INT base_offset = offsets[length - 1];
1257 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1258 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1259 HOST_WIDE_INT last_offset, last_size;
1260 int l;
1261 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1262 tree str_cst, decl, id;
1263 int use_after_return_class = -1;
1264
1265 if (shadow_ptr_types[0] == NULL_TREE)
1266 asan_init_shadow_ptr_types ();
1267
1268 /* First of all, prepare the description string. */
1269 pretty_printer asan_pp;
1270
1271 pp_decimal_int (&asan_pp, length / 2 - 1);
1272 pp_space (&asan_pp);
1273 for (l = length - 2; l; l -= 2)
1274 {
1275 tree decl = decls[l / 2 - 1];
1276 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1277 pp_space (&asan_pp);
1278 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1279 pp_space (&asan_pp);
1280 if (DECL_P (decl) && DECL_NAME (decl))
1281 {
1282 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1283 pp_space (&asan_pp);
1284 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1285 }
1286 else
1287 pp_string (&asan_pp, "9 <unknown>");
1288 pp_space (&asan_pp);
1289 }
1290 str_cst = asan_pp_string (&asan_pp);
1291
1292 /* Emit the prologue sequence. */
1293 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1294 && ASAN_USE_AFTER_RETURN)
1295 {
1296 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1297 /* __asan_stack_malloc_N guarantees alignment
1298 N < 6 ? (64 << N) : 4096 bytes. */
1299 if (alignb > (use_after_return_class < 6
1300 ? (64U << use_after_return_class) : 4096U))
1301 use_after_return_class = -1;
1302 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1303 base_align_bias = ((asan_frame_size + alignb - 1)
1304 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1305 }
1306 /* Align base if target is STRICT_ALIGNMENT. */
1307 if (STRICT_ALIGNMENT)
1308 base = expand_binop (Pmode, and_optab, base,
1309 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1310 << ASAN_SHADOW_SHIFT)
1311 / BITS_PER_UNIT), Pmode), NULL_RTX,
1312 1, OPTAB_DIRECT);
1313
1314 if (use_after_return_class == -1 && pbase)
1315 emit_move_insn (pbase, base);
1316
1317 base = expand_binop (Pmode, add_optab, base,
1318 gen_int_mode (base_offset - base_align_bias, Pmode),
1319 NULL_RTX, 1, OPTAB_DIRECT);
1320 orig_base = NULL_RTX;
1321 if (use_after_return_class != -1)
1322 {
1323 if (asan_detect_stack_use_after_return == NULL_TREE)
1324 {
1325 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1326 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1327 integer_type_node);
1328 SET_DECL_ASSEMBLER_NAME (decl, id);
1329 TREE_ADDRESSABLE (decl) = 1;
1330 DECL_ARTIFICIAL (decl) = 1;
1331 DECL_IGNORED_P (decl) = 1;
1332 DECL_EXTERNAL (decl) = 1;
1333 TREE_STATIC (decl) = 1;
1334 TREE_PUBLIC (decl) = 1;
1335 TREE_USED (decl) = 1;
1336 asan_detect_stack_use_after_return = decl;
1337 }
1338 orig_base = gen_reg_rtx (Pmode);
1339 emit_move_insn (orig_base, base);
1340 ret = expand_normal (asan_detect_stack_use_after_return);
1341 lab = gen_label_rtx ();
1342 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1343 VOIDmode, 0, lab,
1344 profile_probability::very_likely ());
1345 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1346 use_after_return_class);
1347 ret = init_one_libfunc (buf);
1348 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 1,
1349 GEN_INT (asan_frame_size
1350 + base_align_bias),
1351 TYPE_MODE (pointer_sized_int_node));
1352 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1353 and NULL otherwise. Check RET value is NULL here and jump over the
1354 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1355 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1356 VOIDmode, 0, lab,
1357 profile_probability:: very_unlikely ());
1358 ret = convert_memory_address (Pmode, ret);
1359 emit_move_insn (base, ret);
1360 emit_label (lab);
1361 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1362 gen_int_mode (base_align_bias
1363 - base_offset, Pmode),
1364 NULL_RTX, 1, OPTAB_DIRECT));
1365 }
1366 mem = gen_rtx_MEM (ptr_mode, base);
1367 mem = adjust_address (mem, VOIDmode, base_align_bias);
1368 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1369 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1370 emit_move_insn (mem, expand_normal (str_cst));
1371 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1372 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1373 id = get_identifier (buf);
1374 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1375 VAR_DECL, id, char_type_node);
1376 SET_DECL_ASSEMBLER_NAME (decl, id);
1377 TREE_ADDRESSABLE (decl) = 1;
1378 TREE_READONLY (decl) = 1;
1379 DECL_ARTIFICIAL (decl) = 1;
1380 DECL_IGNORED_P (decl) = 1;
1381 TREE_STATIC (decl) = 1;
1382 TREE_PUBLIC (decl) = 0;
1383 TREE_USED (decl) = 1;
1384 DECL_INITIAL (decl) = decl;
1385 TREE_ASM_WRITTEN (decl) = 1;
1386 TREE_ASM_WRITTEN (id) = 1;
1387 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1388 shadow_base = expand_binop (Pmode, lshr_optab, base,
1389 GEN_INT (ASAN_SHADOW_SHIFT),
1390 NULL_RTX, 1, OPTAB_DIRECT);
1391 shadow_base
1392 = plus_constant (Pmode, shadow_base,
1393 asan_shadow_offset ()
1394 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1395 gcc_assert (asan_shadow_set != -1
1396 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1397 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1398 set_mem_alias_set (shadow_mem, asan_shadow_set);
1399 if (STRICT_ALIGNMENT)
1400 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1401 prev_offset = base_offset;
1402 for (l = length; l; l -= 2)
1403 {
1404 if (l == 2)
1405 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1406 offset = offsets[l - 1];
1407 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1408 {
1409 int i;
1410 HOST_WIDE_INT aoff
1411 = base_offset + ((offset - base_offset)
1412 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1413 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1414 (aoff - prev_offset)
1415 >> ASAN_SHADOW_SHIFT);
1416 prev_offset = aoff;
1417 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1418 if (aoff < offset)
1419 {
1420 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1421 shadow_bytes[i] = 0;
1422 else
1423 shadow_bytes[i] = offset - aoff;
1424 }
1425 else
1426 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1427 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1428 offset = aoff;
1429 }
1430 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1431 {
1432 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1433 (offset - prev_offset)
1434 >> ASAN_SHADOW_SHIFT);
1435 prev_offset = offset;
1436 memset (shadow_bytes, cur_shadow_byte, 4);
1437 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1438 offset += ASAN_RED_ZONE_SIZE;
1439 }
1440 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1441 }
1442 do_pending_stack_adjust ();
1443
1444 /* Construct epilogue sequence. */
1445 start_sequence ();
1446
1447 lab = NULL;
1448 if (use_after_return_class != -1)
1449 {
1450 rtx_code_label *lab2 = gen_label_rtx ();
1451 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1452 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1453 VOIDmode, 0, lab2,
1454 profile_probability::very_likely ());
1455 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1456 set_mem_alias_set (shadow_mem, asan_shadow_set);
1457 mem = gen_rtx_MEM (ptr_mode, base);
1458 mem = adjust_address (mem, VOIDmode, base_align_bias);
1459 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1460 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1461 if (use_after_return_class < 5
1462 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1463 BITS_PER_UNIT, true))
1464 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1465 BITS_PER_UNIT, true, 0);
1466 else if (use_after_return_class >= 5
1467 || !set_storage_via_setmem (shadow_mem,
1468 GEN_INT (sz),
1469 gen_int_mode (c, QImode),
1470 BITS_PER_UNIT, BITS_PER_UNIT,
1471 -1, sz, sz, sz))
1472 {
1473 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1474 use_after_return_class);
1475 ret = init_one_libfunc (buf);
1476 rtx addr = convert_memory_address (ptr_mode, base);
1477 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1478 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1479 GEN_INT (asan_frame_size + base_align_bias),
1480 TYPE_MODE (pointer_sized_int_node),
1481 orig_addr, ptr_mode);
1482 }
1483 lab = gen_label_rtx ();
1484 emit_jump (lab);
1485 emit_label (lab2);
1486 }
1487
1488 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1489 set_mem_alias_set (shadow_mem, asan_shadow_set);
1490
1491 if (STRICT_ALIGNMENT)
1492 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1493
1494 prev_offset = base_offset;
1495 last_offset = base_offset;
1496 last_size = 0;
1497 for (l = length; l; l -= 2)
1498 {
1499 offset = base_offset + ((offsets[l - 1] - base_offset)
1500 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1501 if (last_offset + last_size != offset)
1502 {
1503 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1504 (last_offset - prev_offset)
1505 >> ASAN_SHADOW_SHIFT);
1506 prev_offset = last_offset;
1507 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1508 last_offset = offset;
1509 last_size = 0;
1510 }
1511 last_size += base_offset + ((offsets[l - 2] - base_offset)
1512 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1513 - offset;
1514
1515 /* Unpoison shadow memory that corresponds to a variable that is
1516 is subject of use-after-return sanitization. */
1517 if (l > 2)
1518 {
1519 decl = decls[l / 2 - 2];
1520 if (asan_handled_variables != NULL
1521 && asan_handled_variables->contains (decl))
1522 {
1523 HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
1524 if (dump_file && (dump_flags & TDF_DETAILS))
1525 {
1526 const char *n = (DECL_NAME (decl)
1527 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1528 : "<unknown>");
1529 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1530 "%s (%" PRId64 " B)\n", n, size);
1531 }
1532
1533 last_size += size & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
1534 }
1535 }
1536 }
1537 if (last_size)
1538 {
1539 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1540 (last_offset - prev_offset)
1541 >> ASAN_SHADOW_SHIFT);
1542 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1543 }
1544
1545 /* Clean-up set with instrumented stack variables. */
1546 delete asan_handled_variables;
1547 asan_handled_variables = NULL;
1548 delete asan_used_labels;
1549 asan_used_labels = NULL;
1550
1551 do_pending_stack_adjust ();
1552 if (lab)
1553 emit_label (lab);
1554
1555 insns = get_insns ();
1556 end_sequence ();
1557 return insns;
1558 }
1559
1560 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1561 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1562 indicates whether we're emitting new instructions sequence or not. */
1563
1564 rtx_insn *
1565 asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
1566 {
1567 if (before)
1568 push_to_sequence (before);
1569 else
1570 start_sequence ();
1571 rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
1572 top = convert_memory_address (ptr_mode, top);
1573 bot = convert_memory_address (ptr_mode, bot);
1574 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2, top,
1575 ptr_mode, bot, ptr_mode);
1576
1577 do_pending_stack_adjust ();
1578 rtx_insn *insns = get_insns ();
1579 end_sequence ();
1580 return insns;
1581 }
1582
1583 /* Return true if DECL, a global var, might be overridden and needs
1584 therefore a local alias. */
1585
1586 static bool
1587 asan_needs_local_alias (tree decl)
1588 {
1589 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1590 }
1591
1592 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1593 therefore doesn't need protection. */
1594
1595 static bool
1596 is_odr_indicator (tree decl)
1597 {
1598 return (DECL_ARTIFICIAL (decl)
1599 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1600 }
1601
1602 /* Return true if DECL is a VAR_DECL that should be protected
1603 by Address Sanitizer, by appending a red zone with protected
1604 shadow memory after it and aligning it to at least
1605 ASAN_RED_ZONE_SIZE bytes. */
1606
1607 bool
1608 asan_protect_global (tree decl)
1609 {
1610 if (!ASAN_GLOBALS)
1611 return false;
1612
1613 rtx rtl, symbol;
1614
1615 if (TREE_CODE (decl) == STRING_CST)
1616 {
1617 /* Instrument all STRING_CSTs except those created
1618 by asan_pp_string here. */
1619 if (shadow_ptr_types[0] != NULL_TREE
1620 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1621 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1622 return false;
1623 return true;
1624 }
1625 if (!VAR_P (decl)
1626 /* TLS vars aren't statically protectable. */
1627 || DECL_THREAD_LOCAL_P (decl)
1628 /* Externs will be protected elsewhere. */
1629 || DECL_EXTERNAL (decl)
1630 || !DECL_RTL_SET_P (decl)
1631 /* Comdat vars pose an ABI problem, we can't know if
1632 the var that is selected by the linker will have
1633 padding or not. */
1634 || DECL_ONE_ONLY (decl)
1635 /* Similarly for common vars. People can use -fno-common.
1636 Note: Linux kernel is built with -fno-common, so we do instrument
1637 globals there even if it is C. */
1638 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1639 /* Don't protect if using user section, often vars placed
1640 into user section from multiple TUs are then assumed
1641 to be an array of such vars, putting padding in there
1642 breaks this assumption. */
1643 || (DECL_SECTION_NAME (decl) != NULL
1644 && !symtab_node::get (decl)->implicit_section
1645 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1646 || DECL_SIZE (decl) == 0
1647 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1648 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1649 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1650 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1651 || is_odr_indicator (decl))
1652 return false;
1653
1654 rtl = DECL_RTL (decl);
1655 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1656 return false;
1657 symbol = XEXP (rtl, 0);
1658
1659 if (CONSTANT_POOL_ADDRESS_P (symbol)
1660 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1661 return false;
1662
1663 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1664 return false;
1665
1666 #ifndef ASM_OUTPUT_DEF
1667 if (asan_needs_local_alias (decl))
1668 return false;
1669 #endif
1670
1671 return true;
1672 }
1673
1674 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1675 IS_STORE is either 1 (for a store) or 0 (for a load). */
1676
1677 static tree
1678 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1679 int *nargs)
1680 {
1681 static enum built_in_function report[2][2][6]
1682 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1683 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1684 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1685 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1686 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1687 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1688 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1689 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1690 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1691 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1692 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1693 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1694 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1695 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1696 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1697 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1698 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1699 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1700 if (size_in_bytes == -1)
1701 {
1702 *nargs = 2;
1703 return builtin_decl_implicit (report[recover_p][is_store][5]);
1704 }
1705 *nargs = 1;
1706 int size_log2 = exact_log2 (size_in_bytes);
1707 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1708 }
1709
1710 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1711 IS_STORE is either 1 (for a store) or 0 (for a load). */
1712
1713 static tree
1714 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1715 int *nargs)
1716 {
1717 static enum built_in_function check[2][2][6]
1718 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1719 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1720 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1721 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1722 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1723 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1724 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1725 BUILT_IN_ASAN_LOAD2_NOABORT,
1726 BUILT_IN_ASAN_LOAD4_NOABORT,
1727 BUILT_IN_ASAN_LOAD8_NOABORT,
1728 BUILT_IN_ASAN_LOAD16_NOABORT,
1729 BUILT_IN_ASAN_LOADN_NOABORT },
1730 { BUILT_IN_ASAN_STORE1_NOABORT,
1731 BUILT_IN_ASAN_STORE2_NOABORT,
1732 BUILT_IN_ASAN_STORE4_NOABORT,
1733 BUILT_IN_ASAN_STORE8_NOABORT,
1734 BUILT_IN_ASAN_STORE16_NOABORT,
1735 BUILT_IN_ASAN_STOREN_NOABORT } } };
1736 if (size_in_bytes == -1)
1737 {
1738 *nargs = 2;
1739 return builtin_decl_implicit (check[recover_p][is_store][5]);
1740 }
1741 *nargs = 1;
1742 int size_log2 = exact_log2 (size_in_bytes);
1743 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1744 }
1745
1746 /* Split the current basic block and create a condition statement
1747 insertion point right before or after the statement pointed to by
1748 ITER. Return an iterator to the point at which the caller might
1749 safely insert the condition statement.
1750
1751 THEN_BLOCK must be set to the address of an uninitialized instance
1752 of basic_block. The function will then set *THEN_BLOCK to the
1753 'then block' of the condition statement to be inserted by the
1754 caller.
1755
1756 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1757 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1758
1759 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1760 block' of the condition statement to be inserted by the caller.
1761
1762 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1763 statements starting from *ITER, and *THEN_BLOCK is a new empty
1764 block.
1765
1766 *ITER is adjusted to point to always point to the first statement
1767 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1768 same as what ITER was pointing to prior to calling this function,
1769 if BEFORE_P is true; otherwise, it is its following statement. */
1770
1771 gimple_stmt_iterator
1772 create_cond_insert_point (gimple_stmt_iterator *iter,
1773 bool before_p,
1774 bool then_more_likely_p,
1775 bool create_then_fallthru_edge,
1776 basic_block *then_block,
1777 basic_block *fallthrough_block)
1778 {
1779 gimple_stmt_iterator gsi = *iter;
1780
1781 if (!gsi_end_p (gsi) && before_p)
1782 gsi_prev (&gsi);
1783
1784 basic_block cur_bb = gsi_bb (*iter);
1785
1786 edge e = split_block (cur_bb, gsi_stmt (gsi));
1787
1788 /* Get a hold on the 'condition block', the 'then block' and the
1789 'else block'. */
1790 basic_block cond_bb = e->src;
1791 basic_block fallthru_bb = e->dest;
1792 basic_block then_bb = create_empty_bb (cond_bb);
1793 if (current_loops)
1794 {
1795 add_bb_to_loop (then_bb, cond_bb->loop_father);
1796 loops_state_set (LOOPS_NEED_FIXUP);
1797 }
1798
1799 /* Set up the newly created 'then block'. */
1800 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1801 int fallthrough_probability
1802 = then_more_likely_p
1803 ? PROB_VERY_UNLIKELY
1804 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1805 e->probability = profile_probability::from_reg_br_prob_base
1806 (PROB_ALWAYS - fallthrough_probability);
1807 if (create_then_fallthru_edge)
1808 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1809
1810 /* Set up the fallthrough basic block. */
1811 e = find_edge (cond_bb, fallthru_bb);
1812 e->flags = EDGE_FALSE_VALUE;
1813 e->count = cond_bb->count;
1814 e->probability
1815 = profile_probability::from_reg_br_prob_base (fallthrough_probability);
1816
1817 /* Update dominance info for the newly created then_bb; note that
1818 fallthru_bb's dominance info has already been updated by
1819 split_bock. */
1820 if (dom_info_available_p (CDI_DOMINATORS))
1821 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1822
1823 *then_block = then_bb;
1824 *fallthrough_block = fallthru_bb;
1825 *iter = gsi_start_bb (fallthru_bb);
1826
1827 return gsi_last_bb (cond_bb);
1828 }
1829
1830 /* Insert an if condition followed by a 'then block' right before the
1831 statement pointed to by ITER. The fallthrough block -- which is the
1832 else block of the condition as well as the destination of the
1833 outcoming edge of the 'then block' -- starts with the statement
1834 pointed to by ITER.
1835
1836 COND is the condition of the if.
1837
1838 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1839 'then block' is higher than the probability of the edge to the
1840 fallthrough block.
1841
1842 Upon completion of the function, *THEN_BB is set to the newly
1843 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1844 fallthrough block.
1845
1846 *ITER is adjusted to still point to the same statement it was
1847 pointing to initially. */
1848
1849 static void
1850 insert_if_then_before_iter (gcond *cond,
1851 gimple_stmt_iterator *iter,
1852 bool then_more_likely_p,
1853 basic_block *then_bb,
1854 basic_block *fallthrough_bb)
1855 {
1856 gimple_stmt_iterator cond_insert_point =
1857 create_cond_insert_point (iter,
1858 /*before_p=*/true,
1859 then_more_likely_p,
1860 /*create_then_fallthru_edge=*/true,
1861 then_bb,
1862 fallthrough_bb);
1863 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1864 }
1865
1866 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1867 If RETURN_ADDRESS is set to true, return memory location instread
1868 of a value in the shadow memory. */
1869
1870 static tree
1871 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1872 tree base_addr, tree shadow_ptr_type,
1873 bool return_address = false)
1874 {
1875 tree t, uintptr_type = TREE_TYPE (base_addr);
1876 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1877 gimple *g;
1878
1879 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1880 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1881 base_addr, t);
1882 gimple_set_location (g, location);
1883 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1884
1885 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1886 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1887 gimple_assign_lhs (g), t);
1888 gimple_set_location (g, location);
1889 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1890
1891 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1892 gimple_assign_lhs (g));
1893 gimple_set_location (g, location);
1894 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1895
1896 if (!return_address)
1897 {
1898 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1899 build_int_cst (shadow_ptr_type, 0));
1900 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1901 gimple_set_location (g, location);
1902 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1903 }
1904
1905 return gimple_assign_lhs (g);
1906 }
1907
1908 /* BASE can already be an SSA_NAME; in that case, do not create a
1909 new SSA_NAME for it. */
1910
1911 static tree
1912 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1913 bool before_p)
1914 {
1915 if (TREE_CODE (base) == SSA_NAME)
1916 return base;
1917 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1918 TREE_CODE (base), base);
1919 gimple_set_location (g, loc);
1920 if (before_p)
1921 gsi_insert_before (iter, g, GSI_SAME_STMT);
1922 else
1923 gsi_insert_after (iter, g, GSI_NEW_STMT);
1924 return gimple_assign_lhs (g);
1925 }
1926
1927 /* LEN can already have necessary size and precision;
1928 in that case, do not create a new variable. */
1929
1930 tree
1931 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1932 bool before_p)
1933 {
1934 if (ptrofftype_p (len))
1935 return len;
1936 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1937 NOP_EXPR, len);
1938 gimple_set_location (g, loc);
1939 if (before_p)
1940 gsi_insert_before (iter, g, GSI_SAME_STMT);
1941 else
1942 gsi_insert_after (iter, g, GSI_NEW_STMT);
1943 return gimple_assign_lhs (g);
1944 }
1945
1946 /* Instrument the memory access instruction BASE. Insert new
1947 statements before or after ITER.
1948
1949 Note that the memory access represented by BASE can be either an
1950 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1951 location. IS_STORE is TRUE for a store, FALSE for a load.
1952 BEFORE_P is TRUE for inserting the instrumentation code before
1953 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1954 for a scalar memory access and FALSE for memory region access.
1955 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1956 length. ALIGN tells alignment of accessed memory object.
1957
1958 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1959 memory region have already been instrumented.
1960
1961 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1962 statement it was pointing to prior to calling this function,
1963 otherwise, it points to the statement logically following it. */
1964
1965 static void
1966 build_check_stmt (location_t loc, tree base, tree len,
1967 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1968 bool is_non_zero_len, bool before_p, bool is_store,
1969 bool is_scalar_access, unsigned int align = 0)
1970 {
1971 gimple_stmt_iterator gsi = *iter;
1972 gimple *g;
1973
1974 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1975
1976 gsi = *iter;
1977
1978 base = unshare_expr (base);
1979 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1980
1981 if (len)
1982 {
1983 len = unshare_expr (len);
1984 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1985 }
1986 else
1987 {
1988 gcc_assert (size_in_bytes != -1);
1989 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1990 }
1991
1992 if (size_in_bytes > 1)
1993 {
1994 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1995 || size_in_bytes > 16)
1996 is_scalar_access = false;
1997 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1998 {
1999 /* On non-strict alignment targets, if
2000 16-byte access is just 8-byte aligned,
2001 this will result in misaligned shadow
2002 memory 2 byte load, but otherwise can
2003 be handled using one read. */
2004 if (size_in_bytes != 16
2005 || STRICT_ALIGNMENT
2006 || align < 8 * BITS_PER_UNIT)
2007 is_scalar_access = false;
2008 }
2009 }
2010
2011 HOST_WIDE_INT flags = 0;
2012 if (is_store)
2013 flags |= ASAN_CHECK_STORE;
2014 if (is_non_zero_len)
2015 flags |= ASAN_CHECK_NON_ZERO_LEN;
2016 if (is_scalar_access)
2017 flags |= ASAN_CHECK_SCALAR_ACCESS;
2018
2019 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
2020 build_int_cst (integer_type_node, flags),
2021 base, len,
2022 build_int_cst (integer_type_node,
2023 align / BITS_PER_UNIT));
2024 gimple_set_location (g, loc);
2025 if (before_p)
2026 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2027 else
2028 {
2029 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2030 gsi_next (&gsi);
2031 *iter = gsi;
2032 }
2033 }
2034
2035 /* If T represents a memory access, add instrumentation code before ITER.
2036 LOCATION is source code location.
2037 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2038
2039 static void
2040 instrument_derefs (gimple_stmt_iterator *iter, tree t,
2041 location_t location, bool is_store)
2042 {
2043 if (is_store && !ASAN_INSTRUMENT_WRITES)
2044 return;
2045 if (!is_store && !ASAN_INSTRUMENT_READS)
2046 return;
2047
2048 tree type, base;
2049 HOST_WIDE_INT size_in_bytes;
2050 if (location == UNKNOWN_LOCATION)
2051 location = EXPR_LOCATION (t);
2052
2053 type = TREE_TYPE (t);
2054 switch (TREE_CODE (t))
2055 {
2056 case ARRAY_REF:
2057 case COMPONENT_REF:
2058 case INDIRECT_REF:
2059 case MEM_REF:
2060 case VAR_DECL:
2061 case BIT_FIELD_REF:
2062 break;
2063 /* FALLTHRU */
2064 default:
2065 return;
2066 }
2067
2068 size_in_bytes = int_size_in_bytes (type);
2069 if (size_in_bytes <= 0)
2070 return;
2071
2072 HOST_WIDE_INT bitsize, bitpos;
2073 tree offset;
2074 machine_mode mode;
2075 int unsignedp, reversep, volatilep = 0;
2076 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
2077 &unsignedp, &reversep, &volatilep);
2078
2079 if (TREE_CODE (t) == COMPONENT_REF
2080 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
2081 {
2082 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
2083 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
2084 TREE_OPERAND (t, 0), repr,
2085 TREE_OPERAND (t, 2)),
2086 location, is_store);
2087 return;
2088 }
2089
2090 if (bitpos % BITS_PER_UNIT
2091 || bitsize != size_in_bytes * BITS_PER_UNIT)
2092 return;
2093
2094 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
2095 return;
2096
2097 if (VAR_P (inner)
2098 && offset == NULL_TREE
2099 && bitpos >= 0
2100 && DECL_SIZE (inner)
2101 && tree_fits_shwi_p (DECL_SIZE (inner))
2102 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
2103 {
2104 if (DECL_THREAD_LOCAL_P (inner))
2105 return;
2106 if (!ASAN_GLOBALS && is_global_var (inner))
2107 return;
2108 if (!TREE_STATIC (inner))
2109 {
2110 /* Automatic vars in the current function will be always
2111 accessible. */
2112 if (decl_function_context (inner) == current_function_decl
2113 && (!asan_sanitize_use_after_scope ()
2114 || !TREE_ADDRESSABLE (inner)))
2115 return;
2116 }
2117 /* Always instrument external vars, they might be dynamically
2118 initialized. */
2119 else if (!DECL_EXTERNAL (inner))
2120 {
2121 /* For static vars if they are known not to be dynamically
2122 initialized, they will be always accessible. */
2123 varpool_node *vnode = varpool_node::get (inner);
2124 if (vnode && !vnode->dynamically_initialized)
2125 return;
2126 }
2127 }
2128
2129 base = build_fold_addr_expr (t);
2130 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
2131 {
2132 unsigned int align = get_object_alignment (t);
2133 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
2134 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
2135 is_store, /*is_scalar_access*/true, align);
2136 update_mem_ref_hash_table (base, size_in_bytes);
2137 update_mem_ref_hash_table (t, size_in_bytes);
2138 }
2139
2140 }
2141
2142 /* Insert a memory reference into the hash table if access length
2143 can be determined in compile time. */
2144
2145 static void
2146 maybe_update_mem_ref_hash_table (tree base, tree len)
2147 {
2148 if (!POINTER_TYPE_P (TREE_TYPE (base))
2149 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
2150 return;
2151
2152 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2153
2154 if (size_in_bytes != -1)
2155 update_mem_ref_hash_table (base, size_in_bytes);
2156 }
2157
2158 /* Instrument an access to a contiguous memory region that starts at
2159 the address pointed to by BASE, over a length of LEN (expressed in
2160 the sizeof (*BASE) bytes). ITER points to the instruction before
2161 which the instrumentation instructions must be inserted. LOCATION
2162 is the source location that the instrumentation instructions must
2163 have. If IS_STORE is true, then the memory access is a store;
2164 otherwise, it's a load. */
2165
2166 static void
2167 instrument_mem_region_access (tree base, tree len,
2168 gimple_stmt_iterator *iter,
2169 location_t location, bool is_store)
2170 {
2171 if (!POINTER_TYPE_P (TREE_TYPE (base))
2172 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
2173 || integer_zerop (len))
2174 return;
2175
2176 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2177
2178 if ((size_in_bytes == -1)
2179 || !has_mem_ref_been_instrumented (base, size_in_bytes))
2180 {
2181 build_check_stmt (location, base, len, size_in_bytes, iter,
2182 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
2183 is_store, /*is_scalar_access*/false, /*align*/0);
2184 }
2185
2186 maybe_update_mem_ref_hash_table (base, len);
2187 *iter = gsi_for_stmt (gsi_stmt (*iter));
2188 }
2189
2190 /* Instrument the call to a built-in memory access function that is
2191 pointed to by the iterator ITER.
2192
2193 Upon completion, return TRUE iff *ITER has been advanced to the
2194 statement following the one it was originally pointing to. */
2195
2196 static bool
2197 instrument_builtin_call (gimple_stmt_iterator *iter)
2198 {
2199 if (!ASAN_MEMINTRIN)
2200 return false;
2201
2202 bool iter_advanced_p = false;
2203 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
2204
2205 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2206
2207 location_t loc = gimple_location (call);
2208
2209 asan_mem_ref src0, src1, dest;
2210 asan_mem_ref_init (&src0, NULL, 1);
2211 asan_mem_ref_init (&src1, NULL, 1);
2212 asan_mem_ref_init (&dest, NULL, 1);
2213
2214 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2215 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
2216 dest_is_deref = false, intercepted_p = true;
2217
2218 if (get_mem_refs_of_builtin_call (call,
2219 &src0, &src0_len, &src0_is_store,
2220 &src1, &src1_len, &src1_is_store,
2221 &dest, &dest_len, &dest_is_store,
2222 &dest_is_deref, &intercepted_p, iter))
2223 {
2224 if (dest_is_deref)
2225 {
2226 instrument_derefs (iter, dest.start, loc, dest_is_store);
2227 gsi_next (iter);
2228 iter_advanced_p = true;
2229 }
2230 else if (!intercepted_p
2231 && (src0_len || src1_len || dest_len))
2232 {
2233 if (src0.start != NULL_TREE)
2234 instrument_mem_region_access (src0.start, src0_len,
2235 iter, loc, /*is_store=*/false);
2236 if (src1.start != NULL_TREE)
2237 instrument_mem_region_access (src1.start, src1_len,
2238 iter, loc, /*is_store=*/false);
2239 if (dest.start != NULL_TREE)
2240 instrument_mem_region_access (dest.start, dest_len,
2241 iter, loc, /*is_store=*/true);
2242
2243 *iter = gsi_for_stmt (call);
2244 gsi_next (iter);
2245 iter_advanced_p = true;
2246 }
2247 else
2248 {
2249 if (src0.start != NULL_TREE)
2250 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2251 if (src1.start != NULL_TREE)
2252 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2253 if (dest.start != NULL_TREE)
2254 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2255 }
2256 }
2257 return iter_advanced_p;
2258 }
2259
2260 /* Instrument the assignment statement ITER if it is subject to
2261 instrumentation. Return TRUE iff instrumentation actually
2262 happened. In that case, the iterator ITER is advanced to the next
2263 logical expression following the one initially pointed to by ITER,
2264 and the relevant memory reference that which access has been
2265 instrumented is added to the memory references hash table. */
2266
2267 static bool
2268 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2269 {
2270 gimple *s = gsi_stmt (*iter);
2271
2272 gcc_assert (gimple_assign_single_p (s));
2273
2274 tree ref_expr = NULL_TREE;
2275 bool is_store, is_instrumented = false;
2276
2277 if (gimple_store_p (s))
2278 {
2279 ref_expr = gimple_assign_lhs (s);
2280 is_store = true;
2281 instrument_derefs (iter, ref_expr,
2282 gimple_location (s),
2283 is_store);
2284 is_instrumented = true;
2285 }
2286
2287 if (gimple_assign_load_p (s))
2288 {
2289 ref_expr = gimple_assign_rhs1 (s);
2290 is_store = false;
2291 instrument_derefs (iter, ref_expr,
2292 gimple_location (s),
2293 is_store);
2294 is_instrumented = true;
2295 }
2296
2297 if (is_instrumented)
2298 gsi_next (iter);
2299
2300 return is_instrumented;
2301 }
2302
2303 /* Instrument the function call pointed to by the iterator ITER, if it
2304 is subject to instrumentation. At the moment, the only function
2305 calls that are instrumented are some built-in functions that access
2306 memory. Look at instrument_builtin_call to learn more.
2307
2308 Upon completion return TRUE iff *ITER was advanced to the statement
2309 following the one it was originally pointing to. */
2310
2311 static bool
2312 maybe_instrument_call (gimple_stmt_iterator *iter)
2313 {
2314 gimple *stmt = gsi_stmt (*iter);
2315 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2316
2317 if (is_builtin && instrument_builtin_call (iter))
2318 return true;
2319
2320 if (gimple_call_noreturn_p (stmt))
2321 {
2322 if (is_builtin)
2323 {
2324 tree callee = gimple_call_fndecl (stmt);
2325 switch (DECL_FUNCTION_CODE (callee))
2326 {
2327 case BUILT_IN_UNREACHABLE:
2328 case BUILT_IN_TRAP:
2329 /* Don't instrument these. */
2330 return false;
2331 default:
2332 break;
2333 }
2334 }
2335 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2336 gimple *g = gimple_build_call (decl, 0);
2337 gimple_set_location (g, gimple_location (stmt));
2338 gsi_insert_before (iter, g, GSI_SAME_STMT);
2339 }
2340
2341 bool instrumented = false;
2342 if (gimple_store_p (stmt))
2343 {
2344 tree ref_expr = gimple_call_lhs (stmt);
2345 instrument_derefs (iter, ref_expr,
2346 gimple_location (stmt),
2347 /*is_store=*/true);
2348
2349 instrumented = true;
2350 }
2351
2352 /* Walk through gimple_call arguments and check them id needed. */
2353 unsigned args_num = gimple_call_num_args (stmt);
2354 for (unsigned i = 0; i < args_num; ++i)
2355 {
2356 tree arg = gimple_call_arg (stmt, i);
2357 /* If ARG is not a non-aggregate register variable, compiler in general
2358 creates temporary for it and pass it as argument to gimple call.
2359 But in some cases, e.g. when we pass by value a small structure that
2360 fits to register, compiler can avoid extra overhead by pulling out
2361 these temporaries. In this case, we should check the argument. */
2362 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2363 {
2364 instrument_derefs (iter, arg,
2365 gimple_location (stmt),
2366 /*is_store=*/false);
2367 instrumented = true;
2368 }
2369 }
2370 if (instrumented)
2371 gsi_next (iter);
2372 return instrumented;
2373 }
2374
2375 /* Walk each instruction of all basic block and instrument those that
2376 represent memory references: loads, stores, or function calls.
2377 In a given basic block, this function avoids instrumenting memory
2378 references that have already been instrumented. */
2379
2380 static void
2381 transform_statements (void)
2382 {
2383 basic_block bb, last_bb = NULL;
2384 gimple_stmt_iterator i;
2385 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2386
2387 FOR_EACH_BB_FN (bb, cfun)
2388 {
2389 basic_block prev_bb = bb;
2390
2391 if (bb->index >= saved_last_basic_block) continue;
2392
2393 /* Flush the mem ref hash table, if current bb doesn't have
2394 exactly one predecessor, or if that predecessor (skipping
2395 over asan created basic blocks) isn't the last processed
2396 basic block. Thus we effectively flush on extended basic
2397 block boundaries. */
2398 while (single_pred_p (prev_bb))
2399 {
2400 prev_bb = single_pred (prev_bb);
2401 if (prev_bb->index < saved_last_basic_block)
2402 break;
2403 }
2404 if (prev_bb != last_bb)
2405 empty_mem_ref_hash_table ();
2406 last_bb = bb;
2407
2408 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2409 {
2410 gimple *s = gsi_stmt (i);
2411
2412 if (has_stmt_been_instrumented_p (s))
2413 gsi_next (&i);
2414 else if (gimple_assign_single_p (s)
2415 && !gimple_clobber_p (s)
2416 && maybe_instrument_assignment (&i))
2417 /* Nothing to do as maybe_instrument_assignment advanced
2418 the iterator I. */;
2419 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2420 /* Nothing to do as maybe_instrument_call
2421 advanced the iterator I. */;
2422 else
2423 {
2424 /* No instrumentation happened.
2425
2426 If the current instruction is a function call that
2427 might free something, let's forget about the memory
2428 references that got instrumented. Otherwise we might
2429 miss some instrumentation opportunities. Do the same
2430 for a ASAN_MARK poisoning internal function. */
2431 if (is_gimple_call (s)
2432 && (!nonfreeing_call_p (s)
2433 || asan_mark_p (s, ASAN_MARK_POISON)))
2434 empty_mem_ref_hash_table ();
2435
2436 gsi_next (&i);
2437 }
2438 }
2439 }
2440 free_mem_ref_resources ();
2441 }
2442
2443 /* Build
2444 __asan_before_dynamic_init (module_name)
2445 or
2446 __asan_after_dynamic_init ()
2447 call. */
2448
2449 tree
2450 asan_dynamic_init_call (bool after_p)
2451 {
2452 if (shadow_ptr_types[0] == NULL_TREE)
2453 asan_init_shadow_ptr_types ();
2454
2455 tree fn = builtin_decl_implicit (after_p
2456 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2457 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2458 tree module_name_cst = NULL_TREE;
2459 if (!after_p)
2460 {
2461 pretty_printer module_name_pp;
2462 pp_string (&module_name_pp, main_input_filename);
2463
2464 module_name_cst = asan_pp_string (&module_name_pp);
2465 module_name_cst = fold_convert (const_ptr_type_node,
2466 module_name_cst);
2467 }
2468
2469 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2470 }
2471
2472 /* Build
2473 struct __asan_global
2474 {
2475 const void *__beg;
2476 uptr __size;
2477 uptr __size_with_redzone;
2478 const void *__name;
2479 const void *__module_name;
2480 uptr __has_dynamic_init;
2481 __asan_global_source_location *__location;
2482 char *__odr_indicator;
2483 } type. */
2484
2485 static tree
2486 asan_global_struct (void)
2487 {
2488 static const char *field_names[]
2489 = { "__beg", "__size", "__size_with_redzone",
2490 "__name", "__module_name", "__has_dynamic_init", "__location",
2491 "__odr_indicator" };
2492 tree fields[ARRAY_SIZE (field_names)], ret;
2493 unsigned i;
2494
2495 ret = make_node (RECORD_TYPE);
2496 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2497 {
2498 fields[i]
2499 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2500 get_identifier (field_names[i]),
2501 (i == 0 || i == 3) ? const_ptr_type_node
2502 : pointer_sized_int_node);
2503 DECL_CONTEXT (fields[i]) = ret;
2504 if (i)
2505 DECL_CHAIN (fields[i - 1]) = fields[i];
2506 }
2507 tree type_decl = build_decl (input_location, TYPE_DECL,
2508 get_identifier ("__asan_global"), ret);
2509 DECL_IGNORED_P (type_decl) = 1;
2510 DECL_ARTIFICIAL (type_decl) = 1;
2511 TYPE_FIELDS (ret) = fields[0];
2512 TYPE_NAME (ret) = type_decl;
2513 TYPE_STUB_DECL (ret) = type_decl;
2514 layout_type (ret);
2515 return ret;
2516 }
2517
2518 /* Create and return odr indicator symbol for DECL.
2519 TYPE is __asan_global struct type as returned by asan_global_struct. */
2520
2521 static tree
2522 create_odr_indicator (tree decl, tree type)
2523 {
2524 char *name;
2525 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2526 tree decl_name
2527 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2528 : DECL_NAME (decl));
2529 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2530 if (decl_name == NULL_TREE)
2531 return build_int_cst (uptr, 0);
2532 size_t len = strlen (IDENTIFIER_POINTER (decl_name)) + sizeof ("__odr_asan_");
2533 name = XALLOCAVEC (char, len);
2534 snprintf (name, len, "__odr_asan_%s", IDENTIFIER_POINTER (decl_name));
2535 #ifndef NO_DOT_IN_LABEL
2536 name[sizeof ("__odr_asan") - 1] = '.';
2537 #elif !defined(NO_DOLLAR_IN_LABEL)
2538 name[sizeof ("__odr_asan") - 1] = '$';
2539 #endif
2540 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2541 char_type_node);
2542 TREE_ADDRESSABLE (var) = 1;
2543 TREE_READONLY (var) = 0;
2544 TREE_THIS_VOLATILE (var) = 1;
2545 DECL_GIMPLE_REG_P (var) = 0;
2546 DECL_ARTIFICIAL (var) = 1;
2547 DECL_IGNORED_P (var) = 1;
2548 TREE_STATIC (var) = 1;
2549 TREE_PUBLIC (var) = 1;
2550 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2551 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2552
2553 TREE_USED (var) = 1;
2554 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2555 build_int_cst (unsigned_type_node, 0));
2556 TREE_CONSTANT (ctor) = 1;
2557 TREE_STATIC (ctor) = 1;
2558 DECL_INITIAL (var) = ctor;
2559 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2560 NULL, DECL_ATTRIBUTES (var));
2561 make_decl_rtl (var);
2562 varpool_node::finalize_decl (var);
2563 return fold_convert (uptr, build_fold_addr_expr (var));
2564 }
2565
2566 /* Return true if DECL, a global var, might be overridden and needs
2567 an additional odr indicator symbol. */
2568
2569 static bool
2570 asan_needs_odr_indicator_p (tree decl)
2571 {
2572 /* Don't emit ODR indicators for kernel because:
2573 a) Kernel is written in C thus doesn't need ODR indicators.
2574 b) Some kernel code may have assumptions about symbols containing specific
2575 patterns in their names. Since ODR indicators contain original names
2576 of symbols they are emitted for, these assumptions would be broken for
2577 ODR indicator symbols. */
2578 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2579 && !DECL_ARTIFICIAL (decl)
2580 && !DECL_WEAK (decl)
2581 && TREE_PUBLIC (decl));
2582 }
2583
2584 /* Append description of a single global DECL into vector V.
2585 TYPE is __asan_global struct type as returned by asan_global_struct. */
2586
2587 static void
2588 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2589 {
2590 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2591 unsigned HOST_WIDE_INT size;
2592 tree str_cst, module_name_cst, refdecl = decl;
2593 vec<constructor_elt, va_gc> *vinner = NULL;
2594
2595 pretty_printer asan_pp, module_name_pp;
2596
2597 if (DECL_NAME (decl))
2598 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2599 else
2600 pp_string (&asan_pp, "<unknown>");
2601 str_cst = asan_pp_string (&asan_pp);
2602
2603 pp_string (&module_name_pp, main_input_filename);
2604 module_name_cst = asan_pp_string (&module_name_pp);
2605
2606 if (asan_needs_local_alias (decl))
2607 {
2608 char buf[20];
2609 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2610 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2611 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2612 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2613 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2614 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2615 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2616 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2617 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2618 TREE_STATIC (refdecl) = 1;
2619 TREE_PUBLIC (refdecl) = 0;
2620 TREE_USED (refdecl) = 1;
2621 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2622 }
2623
2624 tree odr_indicator_ptr
2625 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2626 : build_int_cst (uptr, 0));
2627 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2628 fold_convert (const_ptr_type_node,
2629 build_fold_addr_expr (refdecl)));
2630 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2631 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2632 size += asan_red_zone_size (size);
2633 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2634 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2635 fold_convert (const_ptr_type_node, str_cst));
2636 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2637 fold_convert (const_ptr_type_node, module_name_cst));
2638 varpool_node *vnode = varpool_node::get (decl);
2639 int has_dynamic_init = 0;
2640 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2641 proper fix for PR 79061 will be applied. */
2642 if (!in_lto_p)
2643 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2644 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2645 build_int_cst (uptr, has_dynamic_init));
2646 tree locptr = NULL_TREE;
2647 location_t loc = DECL_SOURCE_LOCATION (decl);
2648 expanded_location xloc = expand_location (loc);
2649 if (xloc.file != NULL)
2650 {
2651 static int lasanloccnt = 0;
2652 char buf[25];
2653 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2654 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2655 ubsan_get_source_location_type ());
2656 TREE_STATIC (var) = 1;
2657 TREE_PUBLIC (var) = 0;
2658 DECL_ARTIFICIAL (var) = 1;
2659 DECL_IGNORED_P (var) = 1;
2660 pretty_printer filename_pp;
2661 pp_string (&filename_pp, xloc.file);
2662 tree str = asan_pp_string (&filename_pp);
2663 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2664 NULL_TREE, str, NULL_TREE,
2665 build_int_cst (unsigned_type_node,
2666 xloc.line), NULL_TREE,
2667 build_int_cst (unsigned_type_node,
2668 xloc.column));
2669 TREE_CONSTANT (ctor) = 1;
2670 TREE_STATIC (ctor) = 1;
2671 DECL_INITIAL (var) = ctor;
2672 varpool_node::finalize_decl (var);
2673 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2674 }
2675 else
2676 locptr = build_int_cst (uptr, 0);
2677 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2678 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2679 init = build_constructor (type, vinner);
2680 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2681 }
2682
2683 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2684 void
2685 initialize_sanitizer_builtins (void)
2686 {
2687 tree decl;
2688
2689 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2690 return;
2691
2692 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2693 tree BT_FN_VOID_PTR
2694 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2695 tree BT_FN_VOID_CONST_PTR
2696 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2697 tree BT_FN_VOID_PTR_PTR
2698 = build_function_type_list (void_type_node, ptr_type_node,
2699 ptr_type_node, NULL_TREE);
2700 tree BT_FN_VOID_PTR_PTR_PTR
2701 = build_function_type_list (void_type_node, ptr_type_node,
2702 ptr_type_node, ptr_type_node, NULL_TREE);
2703 tree BT_FN_VOID_PTR_PTRMODE
2704 = build_function_type_list (void_type_node, ptr_type_node,
2705 pointer_sized_int_node, NULL_TREE);
2706 tree BT_FN_VOID_INT
2707 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2708 tree BT_FN_SIZE_CONST_PTR_INT
2709 = build_function_type_list (size_type_node, const_ptr_type_node,
2710 integer_type_node, NULL_TREE);
2711 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2712 tree BT_FN_IX_CONST_VPTR_INT[5];
2713 tree BT_FN_IX_VPTR_IX_INT[5];
2714 tree BT_FN_VOID_VPTR_IX_INT[5];
2715 tree vptr
2716 = build_pointer_type (build_qualified_type (void_type_node,
2717 TYPE_QUAL_VOLATILE));
2718 tree cvptr
2719 = build_pointer_type (build_qualified_type (void_type_node,
2720 TYPE_QUAL_VOLATILE
2721 |TYPE_QUAL_CONST));
2722 tree boolt
2723 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2724 int i;
2725 for (i = 0; i < 5; i++)
2726 {
2727 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2728 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2729 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2730 integer_type_node, integer_type_node,
2731 NULL_TREE);
2732 BT_FN_IX_CONST_VPTR_INT[i]
2733 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2734 BT_FN_IX_VPTR_IX_INT[i]
2735 = build_function_type_list (ix, vptr, ix, integer_type_node,
2736 NULL_TREE);
2737 BT_FN_VOID_VPTR_IX_INT[i]
2738 = build_function_type_list (void_type_node, vptr, ix,
2739 integer_type_node, NULL_TREE);
2740 }
2741 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2742 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2743 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2744 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2745 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2746 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2747 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2748 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2749 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2750 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2751 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2752 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2753 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2754 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2755 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2756 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2757 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2758 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2759 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2760 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2761 #undef ATTR_NOTHROW_LEAF_LIST
2762 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2763 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2764 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2765 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2766 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2767 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2768 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2769 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2770 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2771 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2772 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2773 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2774 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2775 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2776 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2777 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2778 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2779 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2780 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2781 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2782 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2783 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2784 #undef DEF_BUILTIN_STUB
2785 #define DEF_BUILTIN_STUB(ENUM, NAME)
2786 #undef DEF_SANITIZER_BUILTIN
2787 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2788 do { \
2789 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2790 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2791 set_call_expr_flags (decl, ATTRS); \
2792 set_builtin_decl (ENUM, decl, true); \
2793 } while (0);
2794
2795 #include "sanitizer.def"
2796
2797 /* -fsanitize=object-size uses __builtin_object_size, but that might
2798 not be available for e.g. Fortran at this point. We use
2799 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2800 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2801 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2802 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2803 BT_FN_SIZE_CONST_PTR_INT,
2804 ATTR_PURE_NOTHROW_LEAF_LIST)
2805
2806 #undef DEF_SANITIZER_BUILTIN
2807 #undef DEF_BUILTIN_STUB
2808 }
2809
2810 /* Called via htab_traverse. Count number of emitted
2811 STRING_CSTs in the constant hash table. */
2812
2813 int
2814 count_string_csts (constant_descriptor_tree **slot,
2815 unsigned HOST_WIDE_INT *data)
2816 {
2817 struct constant_descriptor_tree *desc = *slot;
2818 if (TREE_CODE (desc->value) == STRING_CST
2819 && TREE_ASM_WRITTEN (desc->value)
2820 && asan_protect_global (desc->value))
2821 ++*data;
2822 return 1;
2823 }
2824
2825 /* Helper structure to pass two parameters to
2826 add_string_csts. */
2827
2828 struct asan_add_string_csts_data
2829 {
2830 tree type;
2831 vec<constructor_elt, va_gc> *v;
2832 };
2833
2834 /* Called via hash_table::traverse. Call asan_add_global
2835 on emitted STRING_CSTs from the constant hash table. */
2836
2837 int
2838 add_string_csts (constant_descriptor_tree **slot,
2839 asan_add_string_csts_data *aascd)
2840 {
2841 struct constant_descriptor_tree *desc = *slot;
2842 if (TREE_CODE (desc->value) == STRING_CST
2843 && TREE_ASM_WRITTEN (desc->value)
2844 && asan_protect_global (desc->value))
2845 {
2846 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2847 aascd->type, aascd->v);
2848 }
2849 return 1;
2850 }
2851
2852 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2853 invoke ggc_collect. */
2854 static GTY(()) tree asan_ctor_statements;
2855
2856 /* Module-level instrumentation.
2857 - Insert __asan_init_vN() into the list of CTORs.
2858 - TODO: insert redzones around globals.
2859 */
2860
2861 void
2862 asan_finish_file (void)
2863 {
2864 varpool_node *vnode;
2865 unsigned HOST_WIDE_INT gcount = 0;
2866
2867 if (shadow_ptr_types[0] == NULL_TREE)
2868 asan_init_shadow_ptr_types ();
2869 /* Avoid instrumenting code in the asan ctors/dtors.
2870 We don't need to insert padding after the description strings,
2871 nor after .LASAN* array. */
2872 flag_sanitize &= ~SANITIZE_ADDRESS;
2873
2874 /* For user-space we want asan constructors to run first.
2875 Linux kernel does not support priorities other than default, and the only
2876 other user of constructors is coverage. So we run with the default
2877 priority. */
2878 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2879 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2880
2881 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2882 {
2883 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2884 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2885 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2886 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2887 }
2888 FOR_EACH_DEFINED_VARIABLE (vnode)
2889 if (TREE_ASM_WRITTEN (vnode->decl)
2890 && asan_protect_global (vnode->decl))
2891 ++gcount;
2892 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2893 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2894 (&gcount);
2895 if (gcount)
2896 {
2897 tree type = asan_global_struct (), var, ctor;
2898 tree dtor_statements = NULL_TREE;
2899 vec<constructor_elt, va_gc> *v;
2900 char buf[20];
2901
2902 type = build_array_type_nelts (type, gcount);
2903 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2904 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2905 type);
2906 TREE_STATIC (var) = 1;
2907 TREE_PUBLIC (var) = 0;
2908 DECL_ARTIFICIAL (var) = 1;
2909 DECL_IGNORED_P (var) = 1;
2910 vec_alloc (v, gcount);
2911 FOR_EACH_DEFINED_VARIABLE (vnode)
2912 if (TREE_ASM_WRITTEN (vnode->decl)
2913 && asan_protect_global (vnode->decl))
2914 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2915 struct asan_add_string_csts_data aascd;
2916 aascd.type = TREE_TYPE (type);
2917 aascd.v = v;
2918 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2919 (&aascd);
2920 ctor = build_constructor (type, v);
2921 TREE_CONSTANT (ctor) = 1;
2922 TREE_STATIC (ctor) = 1;
2923 DECL_INITIAL (var) = ctor;
2924 varpool_node::finalize_decl (var);
2925
2926 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2927 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2928 append_to_statement_list (build_call_expr (fn, 2,
2929 build_fold_addr_expr (var),
2930 gcount_tree),
2931 &asan_ctor_statements);
2932
2933 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2934 append_to_statement_list (build_call_expr (fn, 2,
2935 build_fold_addr_expr (var),
2936 gcount_tree),
2937 &dtor_statements);
2938 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2939 }
2940 if (asan_ctor_statements)
2941 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2942 flag_sanitize |= SANITIZE_ADDRESS;
2943 }
2944
2945 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2946 on SHADOW address. Newly added statements will be added to ITER with
2947 given location LOC. We mark SIZE bytes in shadow memory, where
2948 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2949 end of a variable. */
2950
2951 static void
2952 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2953 tree shadow,
2954 unsigned HOST_WIDE_INT base_addr_offset,
2955 bool is_clobber, unsigned size,
2956 unsigned last_chunk_size)
2957 {
2958 tree shadow_ptr_type;
2959
2960 switch (size)
2961 {
2962 case 1:
2963 shadow_ptr_type = shadow_ptr_types[0];
2964 break;
2965 case 2:
2966 shadow_ptr_type = shadow_ptr_types[1];
2967 break;
2968 case 4:
2969 shadow_ptr_type = shadow_ptr_types[2];
2970 break;
2971 default:
2972 gcc_unreachable ();
2973 }
2974
2975 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
2976 unsigned HOST_WIDE_INT val = 0;
2977 unsigned last_pos = size;
2978 if (last_chunk_size && !is_clobber)
2979 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
2980 for (unsigned i = 0; i < size; ++i)
2981 {
2982 unsigned char shadow_c = c;
2983 if (i == last_pos)
2984 shadow_c = last_chunk_size;
2985 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
2986 }
2987
2988 /* Handle last chunk in unpoisoning. */
2989 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
2990
2991 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
2992 build_int_cst (shadow_ptr_type, base_addr_offset));
2993
2994 gimple *g = gimple_build_assign (dest, magic);
2995 gimple_set_location (g, loc);
2996 gsi_insert_after (iter, g, GSI_NEW_STMT);
2997 }
2998
2999 /* Expand the ASAN_MARK builtins. */
3000
3001 bool
3002 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
3003 {
3004 gimple *g = gsi_stmt (*iter);
3005 location_t loc = gimple_location (g);
3006 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
3007 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
3008
3009 tree base = gimple_call_arg (g, 1);
3010 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
3011 tree decl = TREE_OPERAND (base, 0);
3012
3013 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3014 if (TREE_CODE (decl) == COMPONENT_REF
3015 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
3016 decl = TREE_OPERAND (decl, 0);
3017
3018 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
3019
3020 if (is_poison)
3021 {
3022 if (asan_handled_variables == NULL)
3023 asan_handled_variables = new hash_set<tree> (16);
3024 asan_handled_variables->add (decl);
3025 }
3026 tree len = gimple_call_arg (g, 2);
3027
3028 gcc_assert (tree_fits_shwi_p (len));
3029 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
3030 gcc_assert (size_in_bytes);
3031
3032 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3033 NOP_EXPR, base);
3034 gimple_set_location (g, loc);
3035 gsi_replace (iter, g, false);
3036 tree base_addr = gimple_assign_lhs (g);
3037
3038 /* Generate direct emission if size_in_bytes is small. */
3039 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
3040 {
3041 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
3042
3043 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
3044 shadow_ptr_types[0], true);
3045
3046 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
3047 {
3048 unsigned size = 1;
3049 if (shadow_size - offset >= 4)
3050 size = 4;
3051 else if (shadow_size - offset >= 2)
3052 size = 2;
3053
3054 unsigned HOST_WIDE_INT last_chunk_size = 0;
3055 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
3056 if (s > size_in_bytes)
3057 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
3058
3059 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
3060 size, last_chunk_size);
3061 offset += size;
3062 }
3063 }
3064 else
3065 {
3066 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3067 NOP_EXPR, len);
3068 gimple_set_location (g, loc);
3069 gsi_insert_before (iter, g, GSI_SAME_STMT);
3070 tree sz_arg = gimple_assign_lhs (g);
3071
3072 tree fun
3073 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
3074 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
3075 g = gimple_build_call (fun, 2, base_addr, sz_arg);
3076 gimple_set_location (g, loc);
3077 gsi_insert_after (iter, g, GSI_NEW_STMT);
3078 }
3079
3080 return false;
3081 }
3082
3083 /* Expand the ASAN_{LOAD,STORE} builtins. */
3084
3085 bool
3086 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
3087 {
3088 gimple *g = gsi_stmt (*iter);
3089 location_t loc = gimple_location (g);
3090 bool recover_p;
3091 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3092 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3093 else
3094 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3095
3096 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
3097 gcc_assert (flags < ASAN_CHECK_LAST);
3098 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
3099 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
3100 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
3101
3102 tree base = gimple_call_arg (g, 1);
3103 tree len = gimple_call_arg (g, 2);
3104 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
3105
3106 HOST_WIDE_INT size_in_bytes
3107 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
3108
3109 if (use_calls)
3110 {
3111 /* Instrument using callbacks. */
3112 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3113 NOP_EXPR, base);
3114 gimple_set_location (g, loc);
3115 gsi_insert_before (iter, g, GSI_SAME_STMT);
3116 tree base_addr = gimple_assign_lhs (g);
3117
3118 int nargs;
3119 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
3120 if (nargs == 1)
3121 g = gimple_build_call (fun, 1, base_addr);
3122 else
3123 {
3124 gcc_assert (nargs == 2);
3125 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3126 NOP_EXPR, len);
3127 gimple_set_location (g, loc);
3128 gsi_insert_before (iter, g, GSI_SAME_STMT);
3129 tree sz_arg = gimple_assign_lhs (g);
3130 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
3131 }
3132 gimple_set_location (g, loc);
3133 gsi_replace (iter, g, false);
3134 return false;
3135 }
3136
3137 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
3138
3139 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
3140 tree shadow_type = TREE_TYPE (shadow_ptr_type);
3141
3142 gimple_stmt_iterator gsi = *iter;
3143
3144 if (!is_non_zero_len)
3145 {
3146 /* So, the length of the memory area to asan-protect is
3147 non-constant. Let's guard the generated instrumentation code
3148 like:
3149
3150 if (len != 0)
3151 {
3152 //asan instrumentation code goes here.
3153 }
3154 // falltrough instructions, starting with *ITER. */
3155
3156 g = gimple_build_cond (NE_EXPR,
3157 len,
3158 build_int_cst (TREE_TYPE (len), 0),
3159 NULL_TREE, NULL_TREE);
3160 gimple_set_location (g, loc);
3161
3162 basic_block then_bb, fallthrough_bb;
3163 insert_if_then_before_iter (as_a <gcond *> (g), iter,
3164 /*then_more_likely_p=*/true,
3165 &then_bb, &fallthrough_bb);
3166 /* Note that fallthrough_bb starts with the statement that was
3167 pointed to by ITER. */
3168
3169 /* The 'then block' of the 'if (len != 0) condition is where
3170 we'll generate the asan instrumentation code now. */
3171 gsi = gsi_last_bb (then_bb);
3172 }
3173
3174 /* Get an iterator on the point where we can add the condition
3175 statement for the instrumentation. */
3176 basic_block then_bb, else_bb;
3177 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
3178 /*then_more_likely_p=*/false,
3179 /*create_then_fallthru_edge*/recover_p,
3180 &then_bb,
3181 &else_bb);
3182
3183 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3184 NOP_EXPR, base);
3185 gimple_set_location (g, loc);
3186 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3187 tree base_addr = gimple_assign_lhs (g);
3188
3189 tree t = NULL_TREE;
3190 if (real_size_in_bytes >= 8)
3191 {
3192 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3193 shadow_ptr_type);
3194 t = shadow;
3195 }
3196 else
3197 {
3198 /* Slow path for 1, 2 and 4 byte accesses. */
3199 /* Test (shadow != 0)
3200 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3201 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3202 shadow_ptr_type);
3203 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3204 gimple_seq seq = NULL;
3205 gimple_seq_add_stmt (&seq, shadow_test);
3206 /* Aligned (>= 8 bytes) can test just
3207 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3208 to be 0. */
3209 if (align < 8)
3210 {
3211 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3212 base_addr, 7));
3213 gimple_seq_add_stmt (&seq,
3214 build_type_cast (shadow_type,
3215 gimple_seq_last (seq)));
3216 if (real_size_in_bytes > 1)
3217 gimple_seq_add_stmt (&seq,
3218 build_assign (PLUS_EXPR,
3219 gimple_seq_last (seq),
3220 real_size_in_bytes - 1));
3221 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3222 }
3223 else
3224 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3225 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3226 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3227 gimple_seq_last (seq)));
3228 t = gimple_assign_lhs (gimple_seq_last (seq));
3229 gimple_seq_set_location (seq, loc);
3230 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3231
3232 /* For non-constant, misaligned or otherwise weird access sizes,
3233 check first and last byte. */
3234 if (size_in_bytes == -1)
3235 {
3236 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3237 MINUS_EXPR, len,
3238 build_int_cst (pointer_sized_int_node, 1));
3239 gimple_set_location (g, loc);
3240 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3241 tree last = gimple_assign_lhs (g);
3242 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3243 PLUS_EXPR, base_addr, last);
3244 gimple_set_location (g, loc);
3245 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3246 tree base_end_addr = gimple_assign_lhs (g);
3247
3248 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3249 shadow_ptr_type);
3250 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3251 gimple_seq seq = NULL;
3252 gimple_seq_add_stmt (&seq, shadow_test);
3253 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3254 base_end_addr, 7));
3255 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3256 gimple_seq_last (seq)));
3257 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3258 gimple_seq_last (seq),
3259 shadow));
3260 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3261 gimple_seq_last (seq)));
3262 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3263 gimple_seq_last (seq)));
3264 t = gimple_assign_lhs (gimple_seq_last (seq));
3265 gimple_seq_set_location (seq, loc);
3266 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3267 }
3268 }
3269
3270 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3271 NULL_TREE, NULL_TREE);
3272 gimple_set_location (g, loc);
3273 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3274
3275 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3276 gsi = gsi_start_bb (then_bb);
3277 int nargs;
3278 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3279 g = gimple_build_call (fun, nargs, base_addr, len);
3280 gimple_set_location (g, loc);
3281 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3282
3283 gsi_remove (iter, true);
3284 *iter = gsi_start_bb (else_bb);
3285
3286 return true;
3287 }
3288
3289 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3290 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3291
3292 static tree
3293 create_asan_shadow_var (tree var_decl,
3294 hash_map<tree, tree> &shadow_vars_mapping)
3295 {
3296 tree *slot = shadow_vars_mapping.get (var_decl);
3297 if (slot == NULL)
3298 {
3299 tree shadow_var = copy_node (var_decl);
3300
3301 copy_body_data id;
3302 memset (&id, 0, sizeof (copy_body_data));
3303 id.src_fn = id.dst_fn = current_function_decl;
3304 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3305
3306 DECL_ARTIFICIAL (shadow_var) = 1;
3307 DECL_IGNORED_P (shadow_var) = 1;
3308 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3309 gimple_add_tmp_var (shadow_var);
3310
3311 shadow_vars_mapping.put (var_decl, shadow_var);
3312 return shadow_var;
3313 }
3314 else
3315 return *slot;
3316 }
3317
3318 /* Expand ASAN_POISON ifn. */
3319
3320 bool
3321 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3322 bool *need_commit_edge_insert,
3323 hash_map<tree, tree> &shadow_vars_mapping)
3324 {
3325 gimple *g = gsi_stmt (*iter);
3326 tree poisoned_var = gimple_call_lhs (g);
3327 if (!poisoned_var || has_zero_uses (poisoned_var))
3328 {
3329 gsi_remove (iter, true);
3330 return true;
3331 }
3332
3333 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3334 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3335 create_tmp_var (TREE_TYPE (poisoned_var)));
3336
3337 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3338 shadow_vars_mapping);
3339
3340 bool recover_p;
3341 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3342 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3343 else
3344 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3345 tree size = DECL_SIZE_UNIT (shadow_var);
3346 gimple *poison_call
3347 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3348 build_int_cst (integer_type_node,
3349 ASAN_MARK_POISON),
3350 build_fold_addr_expr (shadow_var), size);
3351
3352 gimple *use;
3353 imm_use_iterator imm_iter;
3354 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3355 {
3356 if (is_gimple_debug (use))
3357 continue;
3358
3359 int nargs;
3360 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3361 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3362 &nargs);
3363
3364 gcall *call = gimple_build_call (fun, 1,
3365 build_fold_addr_expr (shadow_var));
3366 gimple_set_location (call, gimple_location (use));
3367 gimple *call_to_insert = call;
3368
3369 /* The USE can be a gimple PHI node. If so, insert the call on
3370 all edges leading to the PHI node. */
3371 if (is_a <gphi *> (use))
3372 {
3373 gphi *phi = dyn_cast<gphi *> (use);
3374 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3375 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3376 {
3377 edge e = gimple_phi_arg_edge (phi, i);
3378
3379 if (call_to_insert == NULL)
3380 call_to_insert = gimple_copy (call);
3381
3382 gsi_insert_seq_on_edge (e, call_to_insert);
3383 *need_commit_edge_insert = true;
3384 call_to_insert = NULL;
3385 }
3386 }
3387 else
3388 {
3389 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3390 if (store_p)
3391 gsi_replace (&gsi, call, true);
3392 else
3393 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3394 }
3395 }
3396
3397 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3398 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3399 gsi_replace (iter, poison_call, false);
3400
3401 return true;
3402 }
3403
3404 /* Instrument the current function. */
3405
3406 static unsigned int
3407 asan_instrument (void)
3408 {
3409 if (shadow_ptr_types[0] == NULL_TREE)
3410 asan_init_shadow_ptr_types ();
3411 transform_statements ();
3412 last_alloca_addr = NULL_TREE;
3413 return 0;
3414 }
3415
3416 static bool
3417 gate_asan (void)
3418 {
3419 return sanitize_flags_p (SANITIZE_ADDRESS);
3420 }
3421
3422 namespace {
3423
3424 const pass_data pass_data_asan =
3425 {
3426 GIMPLE_PASS, /* type */
3427 "asan", /* name */
3428 OPTGROUP_NONE, /* optinfo_flags */
3429 TV_NONE, /* tv_id */
3430 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3431 0, /* properties_provided */
3432 0, /* properties_destroyed */
3433 0, /* todo_flags_start */
3434 TODO_update_ssa, /* todo_flags_finish */
3435 };
3436
3437 class pass_asan : public gimple_opt_pass
3438 {
3439 public:
3440 pass_asan (gcc::context *ctxt)
3441 : gimple_opt_pass (pass_data_asan, ctxt)
3442 {}
3443
3444 /* opt_pass methods: */
3445 opt_pass * clone () { return new pass_asan (m_ctxt); }
3446 virtual bool gate (function *) { return gate_asan (); }
3447 virtual unsigned int execute (function *) { return asan_instrument (); }
3448
3449 }; // class pass_asan
3450
3451 } // anon namespace
3452
3453 gimple_opt_pass *
3454 make_pass_asan (gcc::context *ctxt)
3455 {
3456 return new pass_asan (ctxt);
3457 }
3458
3459 namespace {
3460
3461 const pass_data pass_data_asan_O0 =
3462 {
3463 GIMPLE_PASS, /* type */
3464 "asan0", /* name */
3465 OPTGROUP_NONE, /* optinfo_flags */
3466 TV_NONE, /* tv_id */
3467 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3468 0, /* properties_provided */
3469 0, /* properties_destroyed */
3470 0, /* todo_flags_start */
3471 TODO_update_ssa, /* todo_flags_finish */
3472 };
3473
3474 class pass_asan_O0 : public gimple_opt_pass
3475 {
3476 public:
3477 pass_asan_O0 (gcc::context *ctxt)
3478 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3479 {}
3480
3481 /* opt_pass methods: */
3482 virtual bool gate (function *) { return !optimize && gate_asan (); }
3483 virtual unsigned int execute (function *) { return asan_instrument (); }
3484
3485 }; // class pass_asan_O0
3486
3487 } // anon namespace
3488
3489 gimple_opt_pass *
3490 make_pass_asan_O0 (gcc::context *ctxt)
3491 {
3492 return new pass_asan_O0 (ctxt);
3493 }
3494
3495 #include "gt-asan.h"