]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/asan.c
asan.c (build_check_stmt): Alignment arg was added.
[thirdparty/gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "inchash.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "stor-layout.h"
39 #include "tree-iterator.h"
40 #include "cgraph.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "asan.h"
45 #include "gimple-pretty-print.h"
46 #include "target.h"
47 #include "expr.h"
48 #include "optabs.h"
49 #include "output.h"
50 #include "tm_p.h"
51 #include "langhooks.h"
52 #include "alloc-pool.h"
53 #include "cfgloop.h"
54 #include "gimple-builder.h"
55 #include "ubsan.h"
56 #include "predict.h"
57 #include "params.h"
58 #include "builtins.h"
59
60 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
61 with <2x slowdown on average.
62
63 The tool consists of two parts:
64 instrumentation module (this file) and a run-time library.
65 The instrumentation module adds a run-time check before every memory insn.
66 For a 8- or 16- byte load accessing address X:
67 ShadowAddr = (X >> 3) + Offset
68 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
69 if (ShadowValue)
70 __asan_report_load8(X);
71 For a load of N bytes (N=1, 2 or 4) from address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr;
74 if (ShadowValue)
75 if ((X & 7) + N - 1 > ShadowValue)
76 __asan_report_loadN(X);
77 Stores are instrumented similarly, but using __asan_report_storeN functions.
78 A call too __asan_init_vN() is inserted to the list of module CTORs.
79 N is the version number of the AddressSanitizer API. The changes between the
80 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
81
82 The run-time library redefines malloc (so that redzone are inserted around
83 the allocated memory) and free (so that reuse of free-ed memory is delayed),
84 provides __asan_report* and __asan_init_vN functions.
85
86 Read more:
87 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
88
89 The current implementation supports detection of out-of-bounds and
90 use-after-free in the heap, on the stack and for global variables.
91
92 [Protection of stack variables]
93
94 To understand how detection of out-of-bounds and use-after-free works
95 for stack variables, lets look at this example on x86_64 where the
96 stack grows downward:
97
98 int
99 foo ()
100 {
101 char a[23] = {0};
102 int b[2] = {0};
103
104 a[5] = 1;
105 b[1] = 2;
106
107 return a[5] + b[1];
108 }
109
110 For this function, the stack protected by asan will be organized as
111 follows, from the top of the stack to the bottom:
112
113 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
114
115 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
116 the next slot be 32 bytes aligned; this one is called Partial
117 Redzone; this 32 bytes alignment is an asan constraint]
118
119 Slot 3/ [24 bytes for variable 'a']
120
121 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
122
123 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
124
125 Slot 6/ [8 bytes for variable 'b']
126
127 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
128 'LEFT RedZone']
129
130 The 32 bytes of LEFT red zone at the bottom of the stack can be
131 decomposed as such:
132
133 1/ The first 8 bytes contain a magical asan number that is always
134 0x41B58AB3.
135
136 2/ The following 8 bytes contains a pointer to a string (to be
137 parsed at runtime by the runtime asan library), which format is
138 the following:
139
140 "<function-name> <space> <num-of-variables-on-the-stack>
141 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
142 <length-of-var-in-bytes> ){n} "
143
144 where '(...){n}' means the content inside the parenthesis occurs 'n'
145 times, with 'n' being the number of variables on the stack.
146
147 3/ The following 8 bytes contain the PC of the current function which
148 will be used by the run-time library to print an error message.
149
150 4/ The following 8 bytes are reserved for internal use by the run-time.
151
152 The shadow memory for that stack layout is going to look like this:
153
154 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
155 The F1 byte pattern is a magic number called
156 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
157 the memory for that shadow byte is part of a the LEFT red zone
158 intended to seat at the bottom of the variables on the stack.
159
160 - content of shadow memory 8 bytes for slots 6 and 5:
161 0xF4F4F400. The F4 byte pattern is a magic number
162 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
163 memory region for this shadow byte is a PARTIAL red zone
164 intended to pad a variable A, so that the slot following
165 {A,padding} is 32 bytes aligned.
166
167 Note that the fact that the least significant byte of this
168 shadow memory content is 00 means that 8 bytes of its
169 corresponding memory (which corresponds to the memory of
170 variable 'b') is addressable.
171
172 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
173 The F2 byte pattern is a magic number called
174 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
175 region for this shadow byte is a MIDDLE red zone intended to
176 seat between two 32 aligned slots of {variable,padding}.
177
178 - content of shadow memory 8 bytes for slot 3 and 2:
179 0xF4000000. This represents is the concatenation of
180 variable 'a' and the partial red zone following it, like what we
181 had for variable 'b'. The least significant 3 bytes being 00
182 means that the 3 bytes of variable 'a' are addressable.
183
184 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
185 The F3 byte pattern is a magic number called
186 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
187 region for this shadow byte is a RIGHT red zone intended to seat
188 at the top of the variables of the stack.
189
190 Note that the real variable layout is done in expand_used_vars in
191 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
192 stack variables as well as the different red zones, emits some
193 prologue code to populate the shadow memory as to poison (mark as
194 non-accessible) the regions of the red zones and mark the regions of
195 stack variables as accessible, and emit some epilogue code to
196 un-poison (mark as accessible) the regions of red zones right before
197 the function exits.
198
199 [Protection of global variables]
200
201 The basic idea is to insert a red zone between two global variables
202 and install a constructor function that calls the asan runtime to do
203 the populating of the relevant shadow memory regions at load time.
204
205 So the global variables are laid out as to insert a red zone between
206 them. The size of the red zones is so that each variable starts on a
207 32 bytes boundary.
208
209 Then a constructor function is installed so that, for each global
210 variable, it calls the runtime asan library function
211 __asan_register_globals_with an instance of this type:
212
213 struct __asan_global
214 {
215 // Address of the beginning of the global variable.
216 const void *__beg;
217
218 // Initial size of the global variable.
219 uptr __size;
220
221 // Size of the global variable + size of the red zone. This
222 // size is 32 bytes aligned.
223 uptr __size_with_redzone;
224
225 // Name of the global variable.
226 const void *__name;
227
228 // Name of the module where the global variable is declared.
229 const void *__module_name;
230
231 // 1 if it has dynamic initialization, 0 otherwise.
232 uptr __has_dynamic_init;
233 }
234
235 A destructor function that calls the runtime asan library function
236 _asan_unregister_globals is also installed. */
237
238 alias_set_type asan_shadow_set = -1;
239
240 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
241 alias set is used for all shadow memory accesses. */
242 static GTY(()) tree shadow_ptr_types[2];
243
244 /* Decl for __asan_option_detect_stack_use_after_return. */
245 static GTY(()) tree asan_detect_stack_use_after_return;
246
247 /* Various flags for Asan builtins. */
248 enum asan_check_flags
249 {
250 ASAN_CHECK_STORE = 1 << 0,
251 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
252 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
253 ASAN_CHECK_START_INSTRUMENTED = 1 << 3,
254 ASAN_CHECK_END_INSTRUMENTED = 1 << 4,
255 ASAN_CHECK_LAST
256 };
257
258 /* Hashtable support for memory references used by gimple
259 statements. */
260
261 /* This type represents a reference to a memory region. */
262 struct asan_mem_ref
263 {
264 /* The expression of the beginning of the memory region. */
265 tree start;
266
267 /* The size of the access. */
268 HOST_WIDE_INT access_size;
269 };
270
271 static alloc_pool asan_mem_ref_alloc_pool;
272
273 /* This creates the alloc pool used to store the instances of
274 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
275
276 static alloc_pool
277 asan_mem_ref_get_alloc_pool ()
278 {
279 if (asan_mem_ref_alloc_pool == NULL)
280 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
281 sizeof (asan_mem_ref),
282 10);
283 return asan_mem_ref_alloc_pool;
284
285 }
286
287 /* Initializes an instance of asan_mem_ref. */
288
289 static void
290 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
291 {
292 ref->start = start;
293 ref->access_size = access_size;
294 }
295
296 /* Allocates memory for an instance of asan_mem_ref into the memory
297 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
298 START is the address of (or the expression pointing to) the
299 beginning of memory reference. ACCESS_SIZE is the size of the
300 access to the referenced memory. */
301
302 static asan_mem_ref*
303 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
304 {
305 asan_mem_ref *ref =
306 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
307
308 asan_mem_ref_init (ref, start, access_size);
309 return ref;
310 }
311
312 /* This builds and returns a pointer to the end of the memory region
313 that starts at START and of length LEN. */
314
315 tree
316 asan_mem_ref_get_end (tree start, tree len)
317 {
318 if (len == NULL_TREE || integer_zerop (len))
319 return start;
320
321 if (!ptrofftype_p (len))
322 len = convert_to_ptrofftype (len);
323
324 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
325 }
326
327 /* Return a tree expression that represents the end of the referenced
328 memory region. Beware that this function can actually build a new
329 tree expression. */
330
331 tree
332 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
333 {
334 return asan_mem_ref_get_end (ref->start, len);
335 }
336
337 struct asan_mem_ref_hasher
338 : typed_noop_remove <asan_mem_ref>
339 {
340 typedef asan_mem_ref value_type;
341 typedef asan_mem_ref compare_type;
342
343 static inline hashval_t hash (const value_type *);
344 static inline bool equal (const value_type *, const compare_type *);
345 };
346
347 /* Hash a memory reference. */
348
349 inline hashval_t
350 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
351 {
352 inchash::hash hstate;
353 inchash::add_expr (mem_ref->start, hstate);
354 hstate.add_wide_int (mem_ref->access_size);
355 return hstate.end ();
356 }
357
358 /* Compare two memory references. We accept the length of either
359 memory references to be NULL_TREE. */
360
361 inline bool
362 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
363 const asan_mem_ref *m2)
364 {
365 return (m1->access_size == m2->access_size
366 && operand_equal_p (m1->start, m2->start, 0));
367 }
368
369 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
370
371 /* Returns a reference to the hash table containing memory references.
372 This function ensures that the hash table is created. Note that
373 this hash table is updated by the function
374 update_mem_ref_hash_table. */
375
376 static hash_table<asan_mem_ref_hasher> *
377 get_mem_ref_hash_table ()
378 {
379 if (!asan_mem_ref_ht)
380 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
381
382 return asan_mem_ref_ht;
383 }
384
385 /* Clear all entries from the memory references hash table. */
386
387 static void
388 empty_mem_ref_hash_table ()
389 {
390 if (asan_mem_ref_ht)
391 asan_mem_ref_ht->empty ();
392 }
393
394 /* Free the memory references hash table. */
395
396 static void
397 free_mem_ref_resources ()
398 {
399 delete asan_mem_ref_ht;
400 asan_mem_ref_ht = NULL;
401
402 if (asan_mem_ref_alloc_pool)
403 {
404 free_alloc_pool (asan_mem_ref_alloc_pool);
405 asan_mem_ref_alloc_pool = NULL;
406 }
407 }
408
409 /* Return true iff the memory reference REF has been instrumented. */
410
411 static bool
412 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
413 {
414 asan_mem_ref r;
415 asan_mem_ref_init (&r, ref, access_size);
416
417 return (get_mem_ref_hash_table ()->find (&r) != NULL);
418 }
419
420 /* Return true iff the memory reference REF has been instrumented. */
421
422 static bool
423 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
424 {
425 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
426 }
427
428 /* Return true iff access to memory region starting at REF and of
429 length LEN has been instrumented. */
430
431 static bool
432 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
433 {
434 /* First let's see if the address of the beginning of REF has been
435 instrumented. */
436 if (!has_mem_ref_been_instrumented (ref))
437 return false;
438
439 if (len != 0)
440 {
441 /* Let's see if the end of the region has been instrumented. */
442 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
443 ref->access_size))
444 return false;
445 }
446 return true;
447 }
448
449 /* Set REF to the memory reference present in a gimple assignment
450 ASSIGNMENT. Return true upon successful completion, false
451 otherwise. */
452
453 static bool
454 get_mem_ref_of_assignment (const gimple assignment,
455 asan_mem_ref *ref,
456 bool *ref_is_store)
457 {
458 gcc_assert (gimple_assign_single_p (assignment));
459
460 if (gimple_store_p (assignment)
461 && !gimple_clobber_p (assignment))
462 {
463 ref->start = gimple_assign_lhs (assignment);
464 *ref_is_store = true;
465 }
466 else if (gimple_assign_load_p (assignment))
467 {
468 ref->start = gimple_assign_rhs1 (assignment);
469 *ref_is_store = false;
470 }
471 else
472 return false;
473
474 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
475 return true;
476 }
477
478 /* Return the memory references contained in a gimple statement
479 representing a builtin call that has to do with memory access. */
480
481 static bool
482 get_mem_refs_of_builtin_call (const gimple call,
483 asan_mem_ref *src0,
484 tree *src0_len,
485 bool *src0_is_store,
486 asan_mem_ref *src1,
487 tree *src1_len,
488 bool *src1_is_store,
489 asan_mem_ref *dst,
490 tree *dst_len,
491 bool *dst_is_store,
492 bool *dest_is_deref)
493 {
494 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
495
496 tree callee = gimple_call_fndecl (call);
497 tree source0 = NULL_TREE, source1 = NULL_TREE,
498 dest = NULL_TREE, len = NULL_TREE;
499 bool is_store = true, got_reference_p = false;
500 HOST_WIDE_INT access_size = 1;
501
502 switch (DECL_FUNCTION_CODE (callee))
503 {
504 /* (s, s, n) style memops. */
505 case BUILT_IN_BCMP:
506 case BUILT_IN_MEMCMP:
507 source0 = gimple_call_arg (call, 0);
508 source1 = gimple_call_arg (call, 1);
509 len = gimple_call_arg (call, 2);
510 break;
511
512 /* (src, dest, n) style memops. */
513 case BUILT_IN_BCOPY:
514 source0 = gimple_call_arg (call, 0);
515 dest = gimple_call_arg (call, 1);
516 len = gimple_call_arg (call, 2);
517 break;
518
519 /* (dest, src, n) style memops. */
520 case BUILT_IN_MEMCPY:
521 case BUILT_IN_MEMCPY_CHK:
522 case BUILT_IN_MEMMOVE:
523 case BUILT_IN_MEMMOVE_CHK:
524 case BUILT_IN_MEMPCPY:
525 case BUILT_IN_MEMPCPY_CHK:
526 dest = gimple_call_arg (call, 0);
527 source0 = gimple_call_arg (call, 1);
528 len = gimple_call_arg (call, 2);
529 break;
530
531 /* (dest, n) style memops. */
532 case BUILT_IN_BZERO:
533 dest = gimple_call_arg (call, 0);
534 len = gimple_call_arg (call, 1);
535 break;
536
537 /* (dest, x, n) style memops*/
538 case BUILT_IN_MEMSET:
539 case BUILT_IN_MEMSET_CHK:
540 dest = gimple_call_arg (call, 0);
541 len = gimple_call_arg (call, 2);
542 break;
543
544 case BUILT_IN_STRLEN:
545 source0 = gimple_call_arg (call, 0);
546 len = gimple_call_lhs (call);
547 break ;
548
549 /* And now the __atomic* and __sync builtins.
550 These are handled differently from the classical memory memory
551 access builtins above. */
552
553 case BUILT_IN_ATOMIC_LOAD_1:
554 case BUILT_IN_ATOMIC_LOAD_2:
555 case BUILT_IN_ATOMIC_LOAD_4:
556 case BUILT_IN_ATOMIC_LOAD_8:
557 case BUILT_IN_ATOMIC_LOAD_16:
558 is_store = false;
559 /* fall through. */
560
561 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
562 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
563 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
564 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
565 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
566
567 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
568 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
569 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
570 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
571 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
572
573 case BUILT_IN_SYNC_FETCH_AND_OR_1:
574 case BUILT_IN_SYNC_FETCH_AND_OR_2:
575 case BUILT_IN_SYNC_FETCH_AND_OR_4:
576 case BUILT_IN_SYNC_FETCH_AND_OR_8:
577 case BUILT_IN_SYNC_FETCH_AND_OR_16:
578
579 case BUILT_IN_SYNC_FETCH_AND_AND_1:
580 case BUILT_IN_SYNC_FETCH_AND_AND_2:
581 case BUILT_IN_SYNC_FETCH_AND_AND_4:
582 case BUILT_IN_SYNC_FETCH_AND_AND_8:
583 case BUILT_IN_SYNC_FETCH_AND_AND_16:
584
585 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
586 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
587 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
588 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
589 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
590
591 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
592 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
593 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
594 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
595
596 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
597 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
598 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
599 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
600 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
601
602 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
603 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
604 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
605 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
606 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
607
608 case BUILT_IN_SYNC_OR_AND_FETCH_1:
609 case BUILT_IN_SYNC_OR_AND_FETCH_2:
610 case BUILT_IN_SYNC_OR_AND_FETCH_4:
611 case BUILT_IN_SYNC_OR_AND_FETCH_8:
612 case BUILT_IN_SYNC_OR_AND_FETCH_16:
613
614 case BUILT_IN_SYNC_AND_AND_FETCH_1:
615 case BUILT_IN_SYNC_AND_AND_FETCH_2:
616 case BUILT_IN_SYNC_AND_AND_FETCH_4:
617 case BUILT_IN_SYNC_AND_AND_FETCH_8:
618 case BUILT_IN_SYNC_AND_AND_FETCH_16:
619
620 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
621 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
622 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
623 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
624 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
625
626 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
627 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
628 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
629 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
630
631 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
632 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
633 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
634 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
635 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
636
637 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
638 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
639 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
640 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
641 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
642
643 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
644 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
645 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
646 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
647 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
648
649 case BUILT_IN_SYNC_LOCK_RELEASE_1:
650 case BUILT_IN_SYNC_LOCK_RELEASE_2:
651 case BUILT_IN_SYNC_LOCK_RELEASE_4:
652 case BUILT_IN_SYNC_LOCK_RELEASE_8:
653 case BUILT_IN_SYNC_LOCK_RELEASE_16:
654
655 case BUILT_IN_ATOMIC_EXCHANGE_1:
656 case BUILT_IN_ATOMIC_EXCHANGE_2:
657 case BUILT_IN_ATOMIC_EXCHANGE_4:
658 case BUILT_IN_ATOMIC_EXCHANGE_8:
659 case BUILT_IN_ATOMIC_EXCHANGE_16:
660
661 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
662 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
663 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
664 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
665 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
666
667 case BUILT_IN_ATOMIC_STORE_1:
668 case BUILT_IN_ATOMIC_STORE_2:
669 case BUILT_IN_ATOMIC_STORE_4:
670 case BUILT_IN_ATOMIC_STORE_8:
671 case BUILT_IN_ATOMIC_STORE_16:
672
673 case BUILT_IN_ATOMIC_ADD_FETCH_1:
674 case BUILT_IN_ATOMIC_ADD_FETCH_2:
675 case BUILT_IN_ATOMIC_ADD_FETCH_4:
676 case BUILT_IN_ATOMIC_ADD_FETCH_8:
677 case BUILT_IN_ATOMIC_ADD_FETCH_16:
678
679 case BUILT_IN_ATOMIC_SUB_FETCH_1:
680 case BUILT_IN_ATOMIC_SUB_FETCH_2:
681 case BUILT_IN_ATOMIC_SUB_FETCH_4:
682 case BUILT_IN_ATOMIC_SUB_FETCH_8:
683 case BUILT_IN_ATOMIC_SUB_FETCH_16:
684
685 case BUILT_IN_ATOMIC_AND_FETCH_1:
686 case BUILT_IN_ATOMIC_AND_FETCH_2:
687 case BUILT_IN_ATOMIC_AND_FETCH_4:
688 case BUILT_IN_ATOMIC_AND_FETCH_8:
689 case BUILT_IN_ATOMIC_AND_FETCH_16:
690
691 case BUILT_IN_ATOMIC_NAND_FETCH_1:
692 case BUILT_IN_ATOMIC_NAND_FETCH_2:
693 case BUILT_IN_ATOMIC_NAND_FETCH_4:
694 case BUILT_IN_ATOMIC_NAND_FETCH_8:
695 case BUILT_IN_ATOMIC_NAND_FETCH_16:
696
697 case BUILT_IN_ATOMIC_XOR_FETCH_1:
698 case BUILT_IN_ATOMIC_XOR_FETCH_2:
699 case BUILT_IN_ATOMIC_XOR_FETCH_4:
700 case BUILT_IN_ATOMIC_XOR_FETCH_8:
701 case BUILT_IN_ATOMIC_XOR_FETCH_16:
702
703 case BUILT_IN_ATOMIC_OR_FETCH_1:
704 case BUILT_IN_ATOMIC_OR_FETCH_2:
705 case BUILT_IN_ATOMIC_OR_FETCH_4:
706 case BUILT_IN_ATOMIC_OR_FETCH_8:
707 case BUILT_IN_ATOMIC_OR_FETCH_16:
708
709 case BUILT_IN_ATOMIC_FETCH_ADD_1:
710 case BUILT_IN_ATOMIC_FETCH_ADD_2:
711 case BUILT_IN_ATOMIC_FETCH_ADD_4:
712 case BUILT_IN_ATOMIC_FETCH_ADD_8:
713 case BUILT_IN_ATOMIC_FETCH_ADD_16:
714
715 case BUILT_IN_ATOMIC_FETCH_SUB_1:
716 case BUILT_IN_ATOMIC_FETCH_SUB_2:
717 case BUILT_IN_ATOMIC_FETCH_SUB_4:
718 case BUILT_IN_ATOMIC_FETCH_SUB_8:
719 case BUILT_IN_ATOMIC_FETCH_SUB_16:
720
721 case BUILT_IN_ATOMIC_FETCH_AND_1:
722 case BUILT_IN_ATOMIC_FETCH_AND_2:
723 case BUILT_IN_ATOMIC_FETCH_AND_4:
724 case BUILT_IN_ATOMIC_FETCH_AND_8:
725 case BUILT_IN_ATOMIC_FETCH_AND_16:
726
727 case BUILT_IN_ATOMIC_FETCH_NAND_1:
728 case BUILT_IN_ATOMIC_FETCH_NAND_2:
729 case BUILT_IN_ATOMIC_FETCH_NAND_4:
730 case BUILT_IN_ATOMIC_FETCH_NAND_8:
731 case BUILT_IN_ATOMIC_FETCH_NAND_16:
732
733 case BUILT_IN_ATOMIC_FETCH_XOR_1:
734 case BUILT_IN_ATOMIC_FETCH_XOR_2:
735 case BUILT_IN_ATOMIC_FETCH_XOR_4:
736 case BUILT_IN_ATOMIC_FETCH_XOR_8:
737 case BUILT_IN_ATOMIC_FETCH_XOR_16:
738
739 case BUILT_IN_ATOMIC_FETCH_OR_1:
740 case BUILT_IN_ATOMIC_FETCH_OR_2:
741 case BUILT_IN_ATOMIC_FETCH_OR_4:
742 case BUILT_IN_ATOMIC_FETCH_OR_8:
743 case BUILT_IN_ATOMIC_FETCH_OR_16:
744 {
745 dest = gimple_call_arg (call, 0);
746 /* DEST represents the address of a memory location.
747 instrument_derefs wants the memory location, so lets
748 dereference the address DEST before handing it to
749 instrument_derefs. */
750 if (TREE_CODE (dest) == ADDR_EXPR)
751 dest = TREE_OPERAND (dest, 0);
752 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
753 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
754 dest, build_int_cst (TREE_TYPE (dest), 0));
755 else
756 gcc_unreachable ();
757
758 access_size = int_size_in_bytes (TREE_TYPE (dest));
759 }
760
761 default:
762 /* The other builtins memory access are not instrumented in this
763 function because they either don't have any length parameter,
764 or their length parameter is just a limit. */
765 break;
766 }
767
768 if (len != NULL_TREE)
769 {
770 if (source0 != NULL_TREE)
771 {
772 src0->start = source0;
773 src0->access_size = access_size;
774 *src0_len = len;
775 *src0_is_store = false;
776 }
777
778 if (source1 != NULL_TREE)
779 {
780 src1->start = source1;
781 src1->access_size = access_size;
782 *src1_len = len;
783 *src1_is_store = false;
784 }
785
786 if (dest != NULL_TREE)
787 {
788 dst->start = dest;
789 dst->access_size = access_size;
790 *dst_len = len;
791 *dst_is_store = true;
792 }
793
794 got_reference_p = true;
795 }
796 else if (dest)
797 {
798 dst->start = dest;
799 dst->access_size = access_size;
800 *dst_len = NULL_TREE;
801 *dst_is_store = is_store;
802 *dest_is_deref = true;
803 got_reference_p = true;
804 }
805
806 return got_reference_p;
807 }
808
809 /* Return true iff a given gimple statement has been instrumented.
810 Note that the statement is "defined" by the memory references it
811 contains. */
812
813 static bool
814 has_stmt_been_instrumented_p (gimple stmt)
815 {
816 if (gimple_assign_single_p (stmt))
817 {
818 bool r_is_store;
819 asan_mem_ref r;
820 asan_mem_ref_init (&r, NULL, 1);
821
822 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
823 return has_mem_ref_been_instrumented (&r);
824 }
825 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
826 {
827 asan_mem_ref src0, src1, dest;
828 asan_mem_ref_init (&src0, NULL, 1);
829 asan_mem_ref_init (&src1, NULL, 1);
830 asan_mem_ref_init (&dest, NULL, 1);
831
832 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
833 bool src0_is_store = false, src1_is_store = false,
834 dest_is_store = false, dest_is_deref = false;
835 if (get_mem_refs_of_builtin_call (stmt,
836 &src0, &src0_len, &src0_is_store,
837 &src1, &src1_len, &src1_is_store,
838 &dest, &dest_len, &dest_is_store,
839 &dest_is_deref))
840 {
841 if (src0.start != NULL_TREE
842 && !has_mem_ref_been_instrumented (&src0, src0_len))
843 return false;
844
845 if (src1.start != NULL_TREE
846 && !has_mem_ref_been_instrumented (&src1, src1_len))
847 return false;
848
849 if (dest.start != NULL_TREE
850 && !has_mem_ref_been_instrumented (&dest, dest_len))
851 return false;
852
853 return true;
854 }
855 }
856 return false;
857 }
858
859 /* Insert a memory reference into the hash table. */
860
861 static void
862 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
863 {
864 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
865
866 asan_mem_ref r;
867 asan_mem_ref_init (&r, ref, access_size);
868
869 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
870 if (*slot == NULL)
871 *slot = asan_mem_ref_new (ref, access_size);
872 }
873
874 /* Initialize shadow_ptr_types array. */
875
876 static void
877 asan_init_shadow_ptr_types (void)
878 {
879 asan_shadow_set = new_alias_set ();
880 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
881 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
882 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
883 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
884 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
885 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
886 initialize_sanitizer_builtins ();
887 }
888
889 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
890
891 static tree
892 asan_pp_string (pretty_printer *pp)
893 {
894 const char *buf = pp_formatted_text (pp);
895 size_t len = strlen (buf);
896 tree ret = build_string (len + 1, buf);
897 TREE_TYPE (ret)
898 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
899 build_index_type (size_int (len)));
900 TREE_READONLY (ret) = 1;
901 TREE_STATIC (ret) = 1;
902 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
903 }
904
905 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
906
907 static rtx
908 asan_shadow_cst (unsigned char shadow_bytes[4])
909 {
910 int i;
911 unsigned HOST_WIDE_INT val = 0;
912 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
913 for (i = 0; i < 4; i++)
914 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
915 << (BITS_PER_UNIT * i);
916 return gen_int_mode (val, SImode);
917 }
918
919 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
920 though. */
921
922 static void
923 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
924 {
925 rtx_insn *insn, *insns, *jump;
926 rtx_code_label *top_label;
927 rtx end, addr, tmp;
928
929 start_sequence ();
930 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
931 insns = get_insns ();
932 end_sequence ();
933 for (insn = insns; insn; insn = NEXT_INSN (insn))
934 if (CALL_P (insn))
935 break;
936 if (insn == NULL_RTX)
937 {
938 emit_insn (insns);
939 return;
940 }
941
942 gcc_assert ((len & 3) == 0);
943 top_label = gen_label_rtx ();
944 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
945 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
946 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
947 emit_label (top_label);
948
949 emit_move_insn (shadow_mem, const0_rtx);
950 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
951 true, OPTAB_LIB_WIDEN);
952 if (tmp != addr)
953 emit_move_insn (addr, tmp);
954 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
955 jump = get_last_insn ();
956 gcc_assert (JUMP_P (jump));
957 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
958 }
959
960 void
961 asan_function_start (void)
962 {
963 section *fnsec = function_section (current_function_decl);
964 switch_to_section (fnsec);
965 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
966 current_function_funcdef_no);
967 }
968
969 /* Insert code to protect stack vars. The prologue sequence should be emitted
970 directly, epilogue sequence returned. BASE is the register holding the
971 stack base, against which OFFSETS array offsets are relative to, OFFSETS
972 array contains pairs of offsets in reverse order, always the end offset
973 of some gap that needs protection followed by starting offset,
974 and DECLS is an array of representative decls for each var partition.
975 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
976 elements long (OFFSETS include gap before the first variable as well
977 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
978 register which stack vars DECL_RTLs are based on. Either BASE should be
979 assigned to PBASE, when not doing use after return protection, or
980 corresponding address based on __asan_stack_malloc* return value. */
981
982 rtx_insn *
983 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
984 HOST_WIDE_INT *offsets, tree *decls, int length)
985 {
986 rtx shadow_base, shadow_mem, ret, mem, orig_base;
987 rtx_code_label *lab;
988 rtx_insn *insns;
989 char buf[30];
990 unsigned char shadow_bytes[4];
991 HOST_WIDE_INT base_offset = offsets[length - 1];
992 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
993 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
994 HOST_WIDE_INT last_offset, last_size;
995 int l;
996 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
997 tree str_cst, decl, id;
998 int use_after_return_class = -1;
999
1000 if (shadow_ptr_types[0] == NULL_TREE)
1001 asan_init_shadow_ptr_types ();
1002
1003 /* First of all, prepare the description string. */
1004 pretty_printer asan_pp;
1005
1006 pp_decimal_int (&asan_pp, length / 2 - 1);
1007 pp_space (&asan_pp);
1008 for (l = length - 2; l; l -= 2)
1009 {
1010 tree decl = decls[l / 2 - 1];
1011 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1012 pp_space (&asan_pp);
1013 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1014 pp_space (&asan_pp);
1015 if (DECL_P (decl) && DECL_NAME (decl))
1016 {
1017 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1018 pp_space (&asan_pp);
1019 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1020 }
1021 else
1022 pp_string (&asan_pp, "9 <unknown>");
1023 pp_space (&asan_pp);
1024 }
1025 str_cst = asan_pp_string (&asan_pp);
1026
1027 /* Emit the prologue sequence. */
1028 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1029 && ASAN_USE_AFTER_RETURN)
1030 {
1031 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1032 /* __asan_stack_malloc_N guarantees alignment
1033 N < 6 ? (64 << N) : 4096 bytes. */
1034 if (alignb > (use_after_return_class < 6
1035 ? (64U << use_after_return_class) : 4096U))
1036 use_after_return_class = -1;
1037 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1038 base_align_bias = ((asan_frame_size + alignb - 1)
1039 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1040 }
1041 /* Align base if target is STRICT_ALIGNMENT. */
1042 if (STRICT_ALIGNMENT)
1043 base = expand_binop (Pmode, and_optab, base,
1044 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1045 << ASAN_SHADOW_SHIFT)
1046 / BITS_PER_UNIT), Pmode), NULL_RTX,
1047 1, OPTAB_DIRECT);
1048
1049 if (use_after_return_class == -1 && pbase)
1050 emit_move_insn (pbase, base);
1051
1052 base = expand_binop (Pmode, add_optab, base,
1053 gen_int_mode (base_offset - base_align_bias, Pmode),
1054 NULL_RTX, 1, OPTAB_DIRECT);
1055 orig_base = NULL_RTX;
1056 if (use_after_return_class != -1)
1057 {
1058 if (asan_detect_stack_use_after_return == NULL_TREE)
1059 {
1060 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1061 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1062 integer_type_node);
1063 SET_DECL_ASSEMBLER_NAME (decl, id);
1064 TREE_ADDRESSABLE (decl) = 1;
1065 DECL_ARTIFICIAL (decl) = 1;
1066 DECL_IGNORED_P (decl) = 1;
1067 DECL_EXTERNAL (decl) = 1;
1068 TREE_STATIC (decl) = 1;
1069 TREE_PUBLIC (decl) = 1;
1070 TREE_USED (decl) = 1;
1071 asan_detect_stack_use_after_return = decl;
1072 }
1073 orig_base = gen_reg_rtx (Pmode);
1074 emit_move_insn (orig_base, base);
1075 ret = expand_normal (asan_detect_stack_use_after_return);
1076 lab = gen_label_rtx ();
1077 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1078 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1079 VOIDmode, 0, lab, very_likely);
1080 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1081 use_after_return_class);
1082 ret = init_one_libfunc (buf);
1083 rtx addr = convert_memory_address (ptr_mode, base);
1084 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1085 GEN_INT (asan_frame_size
1086 + base_align_bias),
1087 TYPE_MODE (pointer_sized_int_node),
1088 addr, ptr_mode);
1089 ret = convert_memory_address (Pmode, ret);
1090 emit_move_insn (base, ret);
1091 emit_label (lab);
1092 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1093 gen_int_mode (base_align_bias
1094 - base_offset, Pmode),
1095 NULL_RTX, 1, OPTAB_DIRECT));
1096 }
1097 mem = gen_rtx_MEM (ptr_mode, base);
1098 mem = adjust_address (mem, VOIDmode, base_align_bias);
1099 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1100 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1101 emit_move_insn (mem, expand_normal (str_cst));
1102 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1103 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1104 id = get_identifier (buf);
1105 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1106 VAR_DECL, id, char_type_node);
1107 SET_DECL_ASSEMBLER_NAME (decl, id);
1108 TREE_ADDRESSABLE (decl) = 1;
1109 TREE_READONLY (decl) = 1;
1110 DECL_ARTIFICIAL (decl) = 1;
1111 DECL_IGNORED_P (decl) = 1;
1112 TREE_STATIC (decl) = 1;
1113 TREE_PUBLIC (decl) = 0;
1114 TREE_USED (decl) = 1;
1115 DECL_INITIAL (decl) = decl;
1116 TREE_ASM_WRITTEN (decl) = 1;
1117 TREE_ASM_WRITTEN (id) = 1;
1118 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1119 shadow_base = expand_binop (Pmode, lshr_optab, base,
1120 GEN_INT (ASAN_SHADOW_SHIFT),
1121 NULL_RTX, 1, OPTAB_DIRECT);
1122 shadow_base
1123 = plus_constant (Pmode, shadow_base,
1124 targetm.asan_shadow_offset ()
1125 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1126 gcc_assert (asan_shadow_set != -1
1127 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1128 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1129 set_mem_alias_set (shadow_mem, asan_shadow_set);
1130 if (STRICT_ALIGNMENT)
1131 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1132 prev_offset = base_offset;
1133 for (l = length; l; l -= 2)
1134 {
1135 if (l == 2)
1136 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1137 offset = offsets[l - 1];
1138 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1139 {
1140 int i;
1141 HOST_WIDE_INT aoff
1142 = base_offset + ((offset - base_offset)
1143 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1144 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1145 (aoff - prev_offset)
1146 >> ASAN_SHADOW_SHIFT);
1147 prev_offset = aoff;
1148 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1149 if (aoff < offset)
1150 {
1151 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1152 shadow_bytes[i] = 0;
1153 else
1154 shadow_bytes[i] = offset - aoff;
1155 }
1156 else
1157 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1158 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1159 offset = aoff;
1160 }
1161 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1162 {
1163 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1164 (offset - prev_offset)
1165 >> ASAN_SHADOW_SHIFT);
1166 prev_offset = offset;
1167 memset (shadow_bytes, cur_shadow_byte, 4);
1168 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1169 offset += ASAN_RED_ZONE_SIZE;
1170 }
1171 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1172 }
1173 do_pending_stack_adjust ();
1174
1175 /* Construct epilogue sequence. */
1176 start_sequence ();
1177
1178 lab = NULL;
1179 if (use_after_return_class != -1)
1180 {
1181 rtx_code_label *lab2 = gen_label_rtx ();
1182 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1183 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1184 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1185 VOIDmode, 0, lab2, very_likely);
1186 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1187 set_mem_alias_set (shadow_mem, asan_shadow_set);
1188 mem = gen_rtx_MEM (ptr_mode, base);
1189 mem = adjust_address (mem, VOIDmode, base_align_bias);
1190 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1191 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1192 if (use_after_return_class < 5
1193 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1194 BITS_PER_UNIT, true))
1195 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1196 BITS_PER_UNIT, true, 0);
1197 else if (use_after_return_class >= 5
1198 || !set_storage_via_setmem (shadow_mem,
1199 GEN_INT (sz),
1200 gen_int_mode (c, QImode),
1201 BITS_PER_UNIT, BITS_PER_UNIT,
1202 -1, sz, sz, sz))
1203 {
1204 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1205 use_after_return_class);
1206 ret = init_one_libfunc (buf);
1207 rtx addr = convert_memory_address (ptr_mode, base);
1208 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1209 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1210 GEN_INT (asan_frame_size + base_align_bias),
1211 TYPE_MODE (pointer_sized_int_node),
1212 orig_addr, ptr_mode);
1213 }
1214 lab = gen_label_rtx ();
1215 emit_jump (lab);
1216 emit_label (lab2);
1217 }
1218
1219 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1220 set_mem_alias_set (shadow_mem, asan_shadow_set);
1221
1222 if (STRICT_ALIGNMENT)
1223 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1224
1225 prev_offset = base_offset;
1226 last_offset = base_offset;
1227 last_size = 0;
1228 for (l = length; l; l -= 2)
1229 {
1230 offset = base_offset + ((offsets[l - 1] - base_offset)
1231 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1232 if (last_offset + last_size != offset)
1233 {
1234 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1235 (last_offset - prev_offset)
1236 >> ASAN_SHADOW_SHIFT);
1237 prev_offset = last_offset;
1238 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1239 last_offset = offset;
1240 last_size = 0;
1241 }
1242 last_size += base_offset + ((offsets[l - 2] - base_offset)
1243 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1244 - offset;
1245 }
1246 if (last_size)
1247 {
1248 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1249 (last_offset - prev_offset)
1250 >> ASAN_SHADOW_SHIFT);
1251 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1252 }
1253
1254 do_pending_stack_adjust ();
1255 if (lab)
1256 emit_label (lab);
1257
1258 insns = get_insns ();
1259 end_sequence ();
1260 return insns;
1261 }
1262
1263 /* Return true if DECL, a global var, might be overridden and needs
1264 therefore a local alias. */
1265
1266 static bool
1267 asan_needs_local_alias (tree decl)
1268 {
1269 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1270 }
1271
1272 /* Return true if DECL is a VAR_DECL that should be protected
1273 by Address Sanitizer, by appending a red zone with protected
1274 shadow memory after it and aligning it to at least
1275 ASAN_RED_ZONE_SIZE bytes. */
1276
1277 bool
1278 asan_protect_global (tree decl)
1279 {
1280 if (!ASAN_GLOBALS)
1281 return false;
1282
1283 rtx rtl, symbol;
1284
1285 if (TREE_CODE (decl) == STRING_CST)
1286 {
1287 /* Instrument all STRING_CSTs except those created
1288 by asan_pp_string here. */
1289 if (shadow_ptr_types[0] != NULL_TREE
1290 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1291 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1292 return false;
1293 return true;
1294 }
1295 if (TREE_CODE (decl) != VAR_DECL
1296 /* TLS vars aren't statically protectable. */
1297 || DECL_THREAD_LOCAL_P (decl)
1298 /* Externs will be protected elsewhere. */
1299 || DECL_EXTERNAL (decl)
1300 || !DECL_RTL_SET_P (decl)
1301 /* Comdat vars pose an ABI problem, we can't know if
1302 the var that is selected by the linker will have
1303 padding or not. */
1304 || DECL_ONE_ONLY (decl)
1305 /* Similarly for common vars. People can use -fno-common. */
1306 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1307 /* Don't protect if using user section, often vars placed
1308 into user section from multiple TUs are then assumed
1309 to be an array of such vars, putting padding in there
1310 breaks this assumption. */
1311 || (DECL_SECTION_NAME (decl) != NULL
1312 && !symtab_node::get (decl)->implicit_section)
1313 || DECL_SIZE (decl) == 0
1314 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1315 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1316 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
1317 return false;
1318
1319 rtl = DECL_RTL (decl);
1320 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1321 return false;
1322 symbol = XEXP (rtl, 0);
1323
1324 if (CONSTANT_POOL_ADDRESS_P (symbol)
1325 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1326 return false;
1327
1328 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1329 return false;
1330
1331 #ifndef ASM_OUTPUT_DEF
1332 if (asan_needs_local_alias (decl))
1333 return false;
1334 #endif
1335
1336 return true;
1337 }
1338
1339 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1340 IS_STORE is either 1 (for a store) or 0 (for a load). */
1341
1342 static tree
1343 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1344 {
1345 static enum built_in_function report[2][6]
1346 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1347 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1348 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1349 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1350 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1351 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1352 if (size_in_bytes == -1)
1353 {
1354 *nargs = 2;
1355 return builtin_decl_implicit (report[is_store][5]);
1356 }
1357 *nargs = 1;
1358 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1359 }
1360
1361 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1362 IS_STORE is either 1 (for a store) or 0 (for a load). */
1363
1364 static tree
1365 check_func (bool is_store, int size_in_bytes, int *nargs)
1366 {
1367 static enum built_in_function check[2][6]
1368 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1369 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1370 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1371 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1372 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1373 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1374 if (size_in_bytes == -1)
1375 {
1376 *nargs = 2;
1377 return builtin_decl_implicit (check[is_store][5]);
1378 }
1379 *nargs = 1;
1380 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1381 }
1382
1383 /* Split the current basic block and create a condition statement
1384 insertion point right before or after the statement pointed to by
1385 ITER. Return an iterator to the point at which the caller might
1386 safely insert the condition statement.
1387
1388 THEN_BLOCK must be set to the address of an uninitialized instance
1389 of basic_block. The function will then set *THEN_BLOCK to the
1390 'then block' of the condition statement to be inserted by the
1391 caller.
1392
1393 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1394 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1395
1396 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1397 block' of the condition statement to be inserted by the caller.
1398
1399 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1400 statements starting from *ITER, and *THEN_BLOCK is a new empty
1401 block.
1402
1403 *ITER is adjusted to point to always point to the first statement
1404 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1405 same as what ITER was pointing to prior to calling this function,
1406 if BEFORE_P is true; otherwise, it is its following statement. */
1407
1408 gimple_stmt_iterator
1409 create_cond_insert_point (gimple_stmt_iterator *iter,
1410 bool before_p,
1411 bool then_more_likely_p,
1412 bool create_then_fallthru_edge,
1413 basic_block *then_block,
1414 basic_block *fallthrough_block)
1415 {
1416 gimple_stmt_iterator gsi = *iter;
1417
1418 if (!gsi_end_p (gsi) && before_p)
1419 gsi_prev (&gsi);
1420
1421 basic_block cur_bb = gsi_bb (*iter);
1422
1423 edge e = split_block (cur_bb, gsi_stmt (gsi));
1424
1425 /* Get a hold on the 'condition block', the 'then block' and the
1426 'else block'. */
1427 basic_block cond_bb = e->src;
1428 basic_block fallthru_bb = e->dest;
1429 basic_block then_bb = create_empty_bb (cond_bb);
1430 if (current_loops)
1431 {
1432 add_bb_to_loop (then_bb, cond_bb->loop_father);
1433 loops_state_set (LOOPS_NEED_FIXUP);
1434 }
1435
1436 /* Set up the newly created 'then block'. */
1437 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1438 int fallthrough_probability
1439 = then_more_likely_p
1440 ? PROB_VERY_UNLIKELY
1441 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1442 e->probability = PROB_ALWAYS - fallthrough_probability;
1443 if (create_then_fallthru_edge)
1444 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1445
1446 /* Set up the fallthrough basic block. */
1447 e = find_edge (cond_bb, fallthru_bb);
1448 e->flags = EDGE_FALSE_VALUE;
1449 e->count = cond_bb->count;
1450 e->probability = fallthrough_probability;
1451
1452 /* Update dominance info for the newly created then_bb; note that
1453 fallthru_bb's dominance info has already been updated by
1454 split_bock. */
1455 if (dom_info_available_p (CDI_DOMINATORS))
1456 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1457
1458 *then_block = then_bb;
1459 *fallthrough_block = fallthru_bb;
1460 *iter = gsi_start_bb (fallthru_bb);
1461
1462 return gsi_last_bb (cond_bb);
1463 }
1464
1465 /* Insert an if condition followed by a 'then block' right before the
1466 statement pointed to by ITER. The fallthrough block -- which is the
1467 else block of the condition as well as the destination of the
1468 outcoming edge of the 'then block' -- starts with the statement
1469 pointed to by ITER.
1470
1471 COND is the condition of the if.
1472
1473 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1474 'then block' is higher than the probability of the edge to the
1475 fallthrough block.
1476
1477 Upon completion of the function, *THEN_BB is set to the newly
1478 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1479 fallthrough block.
1480
1481 *ITER is adjusted to still point to the same statement it was
1482 pointing to initially. */
1483
1484 static void
1485 insert_if_then_before_iter (gimple cond,
1486 gimple_stmt_iterator *iter,
1487 bool then_more_likely_p,
1488 basic_block *then_bb,
1489 basic_block *fallthrough_bb)
1490 {
1491 gimple_stmt_iterator cond_insert_point =
1492 create_cond_insert_point (iter,
1493 /*before_p=*/true,
1494 then_more_likely_p,
1495 /*create_then_fallthru_edge=*/true,
1496 then_bb,
1497 fallthrough_bb);
1498 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1499 }
1500
1501 /* Build
1502 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1503
1504 static tree
1505 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1506 tree base_addr, tree shadow_ptr_type)
1507 {
1508 tree t, uintptr_type = TREE_TYPE (base_addr);
1509 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1510 gimple g;
1511
1512 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1513 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1514 make_ssa_name (uintptr_type, NULL),
1515 base_addr, t);
1516 gimple_set_location (g, location);
1517 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1518
1519 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1520 g = gimple_build_assign_with_ops (PLUS_EXPR,
1521 make_ssa_name (uintptr_type, NULL),
1522 gimple_assign_lhs (g), t);
1523 gimple_set_location (g, location);
1524 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1525
1526 g = gimple_build_assign_with_ops (NOP_EXPR,
1527 make_ssa_name (shadow_ptr_type, NULL),
1528 gimple_assign_lhs (g), NULL_TREE);
1529 gimple_set_location (g, location);
1530 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1531
1532 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1533 build_int_cst (shadow_ptr_type, 0));
1534 g = gimple_build_assign_with_ops (MEM_REF,
1535 make_ssa_name (shadow_type, NULL),
1536 t, NULL_TREE);
1537 gimple_set_location (g, location);
1538 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1539 return gimple_assign_lhs (g);
1540 }
1541
1542 /* BASE can already be an SSA_NAME; in that case, do not create a
1543 new SSA_NAME for it. */
1544
1545 static tree
1546 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1547 bool before_p)
1548 {
1549 if (TREE_CODE (base) == SSA_NAME)
1550 return base;
1551 gimple g
1552 = gimple_build_assign_with_ops (TREE_CODE (base),
1553 make_ssa_name (TREE_TYPE (base), NULL),
1554 base, NULL_TREE);
1555 gimple_set_location (g, loc);
1556 if (before_p)
1557 gsi_insert_before (iter, g, GSI_SAME_STMT);
1558 else
1559 gsi_insert_after (iter, g, GSI_NEW_STMT);
1560 return gimple_assign_lhs (g);
1561 }
1562
1563 /* LEN can already have necessary size and precision;
1564 in that case, do not create a new variable. */
1565
1566 tree
1567 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1568 bool before_p)
1569 {
1570 if (ptrofftype_p (len))
1571 return len;
1572 gimple g
1573 = gimple_build_assign_with_ops (NOP_EXPR,
1574 make_ssa_name (pointer_sized_int_node, NULL),
1575 len, NULL);
1576 gimple_set_location (g, loc);
1577 if (before_p)
1578 gsi_insert_before (iter, g, GSI_SAME_STMT);
1579 else
1580 gsi_insert_after (iter, g, GSI_NEW_STMT);
1581 return gimple_assign_lhs (g);
1582 }
1583
1584 /* Instrument the memory access instruction BASE. Insert new
1585 statements before or after ITER.
1586
1587 Note that the memory access represented by BASE can be either an
1588 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1589 location. IS_STORE is TRUE for a store, FALSE for a load.
1590 BEFORE_P is TRUE for inserting the instrumentation code before
1591 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1592 for a scalar memory access and FALSE for memory region access.
1593 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1594 length. ALIGN tells alignment of accessed memory object.
1595
1596 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1597 memory region have already been instrumented.
1598
1599 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1600 statement it was pointing to prior to calling this function,
1601 otherwise, it points to the statement logically following it. */
1602
1603 static void
1604 build_check_stmt (location_t loc, tree base, tree len,
1605 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1606 bool is_non_zero_len, bool before_p, bool is_store,
1607 bool is_scalar_access, unsigned int align = 0,
1608 bool start_instrumented = false,
1609 bool end_instrumented = false)
1610 {
1611 gimple_stmt_iterator gsi = *iter;
1612 gimple g;
1613
1614 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1615
1616 if (start_instrumented && end_instrumented)
1617 {
1618 if (!before_p)
1619 gsi_next (iter);
1620 return;
1621 }
1622
1623 gsi = *iter;
1624
1625 base = unshare_expr (base);
1626 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1627
1628 if (len)
1629 {
1630 len = unshare_expr (len);
1631 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1632 }
1633 else
1634 {
1635 gcc_assert (size_in_bytes != -1);
1636 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1637 }
1638
1639 if (size_in_bytes > 1)
1640 {
1641 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1642 || size_in_bytes > 16)
1643 is_scalar_access = false;
1644 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1645 {
1646 /* On non-strict alignment targets, if
1647 16-byte access is just 8-byte aligned,
1648 this will result in misaligned shadow
1649 memory 2 byte load, but otherwise can
1650 be handled using one read. */
1651 if (size_in_bytes != 16
1652 || STRICT_ALIGNMENT
1653 || align < 8 * BITS_PER_UNIT)
1654 is_scalar_access = false;
1655 }
1656 }
1657
1658 HOST_WIDE_INT flags = 0;
1659 if (is_store)
1660 flags |= ASAN_CHECK_STORE;
1661 if (is_non_zero_len)
1662 flags |= ASAN_CHECK_NON_ZERO_LEN;
1663 if (is_scalar_access)
1664 flags |= ASAN_CHECK_SCALAR_ACCESS;
1665 if (start_instrumented)
1666 flags |= ASAN_CHECK_START_INSTRUMENTED;
1667 if (end_instrumented)
1668 flags |= ASAN_CHECK_END_INSTRUMENTED;
1669
1670 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1671 build_int_cst (integer_type_node, flags),
1672 base, len,
1673 build_int_cst (integer_type_node,
1674 align / BITS_PER_UNIT));
1675 gimple_set_location (g, loc);
1676 if (before_p)
1677 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1678 else
1679 {
1680 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1681 gsi_next (&gsi);
1682 *iter = gsi;
1683 }
1684 }
1685
1686 /* If T represents a memory access, add instrumentation code before ITER.
1687 LOCATION is source code location.
1688 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1689
1690 static void
1691 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1692 location_t location, bool is_store)
1693 {
1694 if (is_store && !ASAN_INSTRUMENT_WRITES)
1695 return;
1696 if (!is_store && !ASAN_INSTRUMENT_READS)
1697 return;
1698
1699 tree type, base;
1700 HOST_WIDE_INT size_in_bytes;
1701
1702 type = TREE_TYPE (t);
1703 switch (TREE_CODE (t))
1704 {
1705 case ARRAY_REF:
1706 case COMPONENT_REF:
1707 case INDIRECT_REF:
1708 case MEM_REF:
1709 case VAR_DECL:
1710 break;
1711 /* FALLTHRU */
1712 default:
1713 return;
1714 }
1715
1716 size_in_bytes = int_size_in_bytes (type);
1717 if (size_in_bytes <= 0)
1718 return;
1719
1720 HOST_WIDE_INT bitsize, bitpos;
1721 tree offset;
1722 enum machine_mode mode;
1723 int volatilep = 0, unsignedp = 0;
1724 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1725 &mode, &unsignedp, &volatilep, false);
1726
1727 if (TREE_CODE (t) == COMPONENT_REF
1728 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1729 {
1730 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1731 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1732 TREE_OPERAND (t, 0), repr,
1733 NULL_TREE), location, is_store);
1734 return;
1735 }
1736
1737 if (bitpos % BITS_PER_UNIT
1738 || bitsize != size_in_bytes * BITS_PER_UNIT)
1739 return;
1740
1741 if (TREE_CODE (inner) == VAR_DECL
1742 && offset == NULL_TREE
1743 && bitpos >= 0
1744 && DECL_SIZE (inner)
1745 && tree_fits_shwi_p (DECL_SIZE (inner))
1746 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1747 {
1748 if (DECL_THREAD_LOCAL_P (inner))
1749 return;
1750 if (!TREE_STATIC (inner))
1751 {
1752 /* Automatic vars in the current function will be always
1753 accessible. */
1754 if (decl_function_context (inner) == current_function_decl)
1755 return;
1756 }
1757 /* Always instrument external vars, they might be dynamically
1758 initialized. */
1759 else if (!DECL_EXTERNAL (inner))
1760 {
1761 /* For static vars if they are known not to be dynamically
1762 initialized, they will be always accessible. */
1763 varpool_node *vnode = varpool_node::get (inner);
1764 if (vnode && !vnode->dynamically_initialized)
1765 return;
1766 }
1767 }
1768
1769 base = build_fold_addr_expr (t);
1770 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1771 {
1772 unsigned int align = get_object_alignment (t);
1773 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1774 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1775 is_store, /*is_scalar_access*/true, align);
1776 update_mem_ref_hash_table (base, size_in_bytes);
1777 update_mem_ref_hash_table (t, size_in_bytes);
1778 }
1779
1780 }
1781
1782 /* Instrument an access to a contiguous memory region that starts at
1783 the address pointed to by BASE, over a length of LEN (expressed in
1784 the sizeof (*BASE) bytes). ITER points to the instruction before
1785 which the instrumentation instructions must be inserted. LOCATION
1786 is the source location that the instrumentation instructions must
1787 have. If IS_STORE is true, then the memory access is a store;
1788 otherwise, it's a load. */
1789
1790 static void
1791 instrument_mem_region_access (tree base, tree len,
1792 gimple_stmt_iterator *iter,
1793 location_t location, bool is_store)
1794 {
1795 if (!POINTER_TYPE_P (TREE_TYPE (base))
1796 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1797 || integer_zerop (len))
1798 return;
1799
1800 /* If the beginning of the memory region has already been
1801 instrumented, do not instrument it. */
1802 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1803
1804 /* If the end of the memory region has already been instrumented, do
1805 not instrument it. */
1806 tree end = asan_mem_ref_get_end (base, len);
1807 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1808
1809 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1810
1811 build_check_stmt (location, base, len, size_in_bytes, iter,
1812 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1813 is_store, /*is_scalar_access*/false, /*align*/0,
1814 start_instrumented, end_instrumented);
1815
1816 update_mem_ref_hash_table (base, 1);
1817 if (size_in_bytes != -1)
1818 update_mem_ref_hash_table (end, 1);
1819
1820 *iter = gsi_for_stmt (gsi_stmt (*iter));
1821 }
1822
1823 /* Instrument the call (to the builtin strlen function) pointed to by
1824 ITER.
1825
1826 This function instruments the access to the first byte of the
1827 argument, right before the call. After the call it instruments the
1828 access to the last byte of the argument; it uses the result of the
1829 call to deduce the offset of that last byte.
1830
1831 Upon completion, iff the call has actually been instrumented, this
1832 function returns TRUE and *ITER points to the statement logically
1833 following the built-in strlen function call *ITER was initially
1834 pointing to. Otherwise, the function returns FALSE and *ITER
1835 remains unchanged. */
1836
1837 static bool
1838 instrument_strlen_call (gimple_stmt_iterator *iter)
1839 {
1840 gimple g;
1841 gimple call = gsi_stmt (*iter);
1842 gcc_assert (is_gimple_call (call));
1843
1844 tree callee = gimple_call_fndecl (call);
1845 gcc_assert (is_builtin_fn (callee)
1846 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1847 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1848
1849 location_t loc = gimple_location (call);
1850
1851 tree len = gimple_call_lhs (call);
1852 if (len == NULL)
1853 /* Some passes might clear the return value of the strlen call;
1854 bail out in that case. Return FALSE as we are not advancing
1855 *ITER. */
1856 return false;
1857 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1858
1859 len = maybe_cast_to_ptrmode (loc, len, iter, /*before_p*/false);
1860
1861 tree str_arg = gimple_call_arg (call, 0);
1862 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
1863
1864 tree cptr_type = build_pointer_type (char_type_node);
1865 g = gimple_build_assign_with_ops (NOP_EXPR,
1866 make_ssa_name (cptr_type, NULL),
1867 str_arg, NULL);
1868 gimple_set_location (g, loc);
1869 gsi_insert_before (iter, g, GSI_SAME_STMT);
1870 str_arg = gimple_assign_lhs (g);
1871
1872 build_check_stmt (loc, str_arg, NULL_TREE, 1, iter,
1873 /*is_non_zero_len*/true, /*before_p=*/true,
1874 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
1875 start_instrumented, start_instrumented);
1876
1877 g = gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
1878 make_ssa_name (cptr_type, NULL),
1879 str_arg,
1880 len);
1881 gimple_set_location (g, loc);
1882 gsi_insert_after (iter, g, GSI_NEW_STMT);
1883
1884 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
1885 /*is_non_zero_len*/true, /*before_p=*/false,
1886 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
1887
1888 return true;
1889 }
1890
1891 /* Instrument the call to a built-in memory access function that is
1892 pointed to by the iterator ITER.
1893
1894 Upon completion, return TRUE iff *ITER has been advanced to the
1895 statement following the one it was originally pointing to. */
1896
1897 static bool
1898 instrument_builtin_call (gimple_stmt_iterator *iter)
1899 {
1900 if (!ASAN_MEMINTRIN)
1901 return false;
1902
1903 bool iter_advanced_p = false;
1904 gimple call = gsi_stmt (*iter);
1905
1906 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1907
1908 tree callee = gimple_call_fndecl (call);
1909 location_t loc = gimple_location (call);
1910
1911 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
1912 iter_advanced_p = instrument_strlen_call (iter);
1913 else
1914 {
1915 asan_mem_ref src0, src1, dest;
1916 asan_mem_ref_init (&src0, NULL, 1);
1917 asan_mem_ref_init (&src1, NULL, 1);
1918 asan_mem_ref_init (&dest, NULL, 1);
1919
1920 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1921 bool src0_is_store = false, src1_is_store = false,
1922 dest_is_store = false, dest_is_deref = false;
1923
1924 if (get_mem_refs_of_builtin_call (call,
1925 &src0, &src0_len, &src0_is_store,
1926 &src1, &src1_len, &src1_is_store,
1927 &dest, &dest_len, &dest_is_store,
1928 &dest_is_deref))
1929 {
1930 if (dest_is_deref)
1931 {
1932 instrument_derefs (iter, dest.start, loc, dest_is_store);
1933 gsi_next (iter);
1934 iter_advanced_p = true;
1935 }
1936 else if (src0_len || src1_len || dest_len)
1937 {
1938 if (src0.start != NULL_TREE)
1939 instrument_mem_region_access (src0.start, src0_len,
1940 iter, loc, /*is_store=*/false);
1941 if (src1.start != NULL_TREE)
1942 instrument_mem_region_access (src1.start, src1_len,
1943 iter, loc, /*is_store=*/false);
1944 if (dest.start != NULL_TREE)
1945 instrument_mem_region_access (dest.start, dest_len,
1946 iter, loc, /*is_store=*/true);
1947 *iter = gsi_for_stmt (call);
1948 gsi_next (iter);
1949 iter_advanced_p = true;
1950 }
1951 }
1952 }
1953 return iter_advanced_p;
1954 }
1955
1956 /* Instrument the assignment statement ITER if it is subject to
1957 instrumentation. Return TRUE iff instrumentation actually
1958 happened. In that case, the iterator ITER is advanced to the next
1959 logical expression following the one initially pointed to by ITER,
1960 and the relevant memory reference that which access has been
1961 instrumented is added to the memory references hash table. */
1962
1963 static bool
1964 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1965 {
1966 gimple s = gsi_stmt (*iter);
1967
1968 gcc_assert (gimple_assign_single_p (s));
1969
1970 tree ref_expr = NULL_TREE;
1971 bool is_store, is_instrumented = false;
1972
1973 if (gimple_store_p (s))
1974 {
1975 ref_expr = gimple_assign_lhs (s);
1976 is_store = true;
1977 instrument_derefs (iter, ref_expr,
1978 gimple_location (s),
1979 is_store);
1980 is_instrumented = true;
1981 }
1982
1983 if (gimple_assign_load_p (s))
1984 {
1985 ref_expr = gimple_assign_rhs1 (s);
1986 is_store = false;
1987 instrument_derefs (iter, ref_expr,
1988 gimple_location (s),
1989 is_store);
1990 is_instrumented = true;
1991 }
1992
1993 if (is_instrumented)
1994 gsi_next (iter);
1995
1996 return is_instrumented;
1997 }
1998
1999 /* Instrument the function call pointed to by the iterator ITER, if it
2000 is subject to instrumentation. At the moment, the only function
2001 calls that are instrumented are some built-in functions that access
2002 memory. Look at instrument_builtin_call to learn more.
2003
2004 Upon completion return TRUE iff *ITER was advanced to the statement
2005 following the one it was originally pointing to. */
2006
2007 static bool
2008 maybe_instrument_call (gimple_stmt_iterator *iter)
2009 {
2010 gimple stmt = gsi_stmt (*iter);
2011 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2012
2013 if (is_builtin && instrument_builtin_call (iter))
2014 return true;
2015
2016 if (gimple_call_noreturn_p (stmt))
2017 {
2018 if (is_builtin)
2019 {
2020 tree callee = gimple_call_fndecl (stmt);
2021 switch (DECL_FUNCTION_CODE (callee))
2022 {
2023 case BUILT_IN_UNREACHABLE:
2024 case BUILT_IN_TRAP:
2025 /* Don't instrument these. */
2026 return false;
2027 }
2028 }
2029 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2030 gimple g = gimple_build_call (decl, 0);
2031 gimple_set_location (g, gimple_location (stmt));
2032 gsi_insert_before (iter, g, GSI_SAME_STMT);
2033 }
2034 return false;
2035 }
2036
2037 /* Walk each instruction of all basic block and instrument those that
2038 represent memory references: loads, stores, or function calls.
2039 In a given basic block, this function avoids instrumenting memory
2040 references that have already been instrumented. */
2041
2042 static void
2043 transform_statements (void)
2044 {
2045 basic_block bb, last_bb = NULL;
2046 gimple_stmt_iterator i;
2047 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2048
2049 FOR_EACH_BB_FN (bb, cfun)
2050 {
2051 basic_block prev_bb = bb;
2052
2053 if (bb->index >= saved_last_basic_block) continue;
2054
2055 /* Flush the mem ref hash table, if current bb doesn't have
2056 exactly one predecessor, or if that predecessor (skipping
2057 over asan created basic blocks) isn't the last processed
2058 basic block. Thus we effectively flush on extended basic
2059 block boundaries. */
2060 while (single_pred_p (prev_bb))
2061 {
2062 prev_bb = single_pred (prev_bb);
2063 if (prev_bb->index < saved_last_basic_block)
2064 break;
2065 }
2066 if (prev_bb != last_bb)
2067 empty_mem_ref_hash_table ();
2068 last_bb = bb;
2069
2070 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2071 {
2072 gimple s = gsi_stmt (i);
2073
2074 if (has_stmt_been_instrumented_p (s))
2075 gsi_next (&i);
2076 else if (gimple_assign_single_p (s)
2077 && !gimple_clobber_p (s)
2078 && maybe_instrument_assignment (&i))
2079 /* Nothing to do as maybe_instrument_assignment advanced
2080 the iterator I. */;
2081 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2082 /* Nothing to do as maybe_instrument_call
2083 advanced the iterator I. */;
2084 else
2085 {
2086 /* No instrumentation happened.
2087
2088 If the current instruction is a function call that
2089 might free something, let's forget about the memory
2090 references that got instrumented. Otherwise we might
2091 miss some instrumentation opportunities. */
2092 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2093 empty_mem_ref_hash_table ();
2094
2095 gsi_next (&i);
2096 }
2097 }
2098 }
2099 free_mem_ref_resources ();
2100 }
2101
2102 /* Build
2103 __asan_before_dynamic_init (module_name)
2104 or
2105 __asan_after_dynamic_init ()
2106 call. */
2107
2108 tree
2109 asan_dynamic_init_call (bool after_p)
2110 {
2111 tree fn = builtin_decl_implicit (after_p
2112 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2113 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2114 tree module_name_cst = NULL_TREE;
2115 if (!after_p)
2116 {
2117 pretty_printer module_name_pp;
2118 pp_string (&module_name_pp, main_input_filename);
2119
2120 if (shadow_ptr_types[0] == NULL_TREE)
2121 asan_init_shadow_ptr_types ();
2122 module_name_cst = asan_pp_string (&module_name_pp);
2123 module_name_cst = fold_convert (const_ptr_type_node,
2124 module_name_cst);
2125 }
2126
2127 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2128 }
2129
2130 /* Build
2131 struct __asan_global
2132 {
2133 const void *__beg;
2134 uptr __size;
2135 uptr __size_with_redzone;
2136 const void *__name;
2137 const void *__module_name;
2138 uptr __has_dynamic_init;
2139 } type. */
2140
2141 static tree
2142 asan_global_struct (void)
2143 {
2144 static const char *field_names[6]
2145 = { "__beg", "__size", "__size_with_redzone",
2146 "__name", "__module_name", "__has_dynamic_init" };
2147 tree fields[6], ret;
2148 int i;
2149
2150 ret = make_node (RECORD_TYPE);
2151 for (i = 0; i < 6; i++)
2152 {
2153 fields[i]
2154 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2155 get_identifier (field_names[i]),
2156 (i == 0 || i == 3) ? const_ptr_type_node
2157 : pointer_sized_int_node);
2158 DECL_CONTEXT (fields[i]) = ret;
2159 if (i)
2160 DECL_CHAIN (fields[i - 1]) = fields[i];
2161 }
2162 TYPE_FIELDS (ret) = fields[0];
2163 TYPE_NAME (ret) = get_identifier ("__asan_global");
2164 layout_type (ret);
2165 return ret;
2166 }
2167
2168 /* Append description of a single global DECL into vector V.
2169 TYPE is __asan_global struct type as returned by asan_global_struct. */
2170
2171 static void
2172 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2173 {
2174 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2175 unsigned HOST_WIDE_INT size;
2176 tree str_cst, module_name_cst, refdecl = decl;
2177 vec<constructor_elt, va_gc> *vinner = NULL;
2178
2179 pretty_printer asan_pp, module_name_pp;
2180
2181 if (DECL_NAME (decl))
2182 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2183 else
2184 pp_string (&asan_pp, "<unknown>");
2185 str_cst = asan_pp_string (&asan_pp);
2186
2187 pp_string (&module_name_pp, main_input_filename);
2188 module_name_cst = asan_pp_string (&module_name_pp);
2189
2190 if (asan_needs_local_alias (decl))
2191 {
2192 char buf[20];
2193 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2194 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2195 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2196 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2197 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2198 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2199 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2200 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2201 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2202 TREE_STATIC (refdecl) = 1;
2203 TREE_PUBLIC (refdecl) = 0;
2204 TREE_USED (refdecl) = 1;
2205 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2206 }
2207
2208 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2209 fold_convert (const_ptr_type_node,
2210 build_fold_addr_expr (refdecl)));
2211 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2212 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2213 size += asan_red_zone_size (size);
2214 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2215 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2216 fold_convert (const_ptr_type_node, str_cst));
2217 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2218 fold_convert (const_ptr_type_node, module_name_cst));
2219 varpool_node *vnode = varpool_node::get (decl);
2220 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2221 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2222 build_int_cst (uptr, has_dynamic_init));
2223 init = build_constructor (type, vinner);
2224 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2225 }
2226
2227 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2228 void
2229 initialize_sanitizer_builtins (void)
2230 {
2231 tree decl;
2232
2233 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2234 return;
2235
2236 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2237 tree BT_FN_VOID_PTR
2238 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2239 tree BT_FN_VOID_CONST_PTR
2240 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2241 tree BT_FN_VOID_PTR_PTR
2242 = build_function_type_list (void_type_node, ptr_type_node,
2243 ptr_type_node, NULL_TREE);
2244 tree BT_FN_VOID_PTR_PTR_PTR
2245 = build_function_type_list (void_type_node, ptr_type_node,
2246 ptr_type_node, ptr_type_node, NULL_TREE);
2247 tree BT_FN_VOID_PTR_PTRMODE
2248 = build_function_type_list (void_type_node, ptr_type_node,
2249 pointer_sized_int_node, NULL_TREE);
2250 tree BT_FN_VOID_INT
2251 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2252 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2253 tree BT_FN_IX_CONST_VPTR_INT[5];
2254 tree BT_FN_IX_VPTR_IX_INT[5];
2255 tree BT_FN_VOID_VPTR_IX_INT[5];
2256 tree vptr
2257 = build_pointer_type (build_qualified_type (void_type_node,
2258 TYPE_QUAL_VOLATILE));
2259 tree cvptr
2260 = build_pointer_type (build_qualified_type (void_type_node,
2261 TYPE_QUAL_VOLATILE
2262 |TYPE_QUAL_CONST));
2263 tree boolt
2264 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2265 int i;
2266 for (i = 0; i < 5; i++)
2267 {
2268 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2269 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2270 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2271 integer_type_node, integer_type_node,
2272 NULL_TREE);
2273 BT_FN_IX_CONST_VPTR_INT[i]
2274 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2275 BT_FN_IX_VPTR_IX_INT[i]
2276 = build_function_type_list (ix, vptr, ix, integer_type_node,
2277 NULL_TREE);
2278 BT_FN_VOID_VPTR_IX_INT[i]
2279 = build_function_type_list (void_type_node, vptr, ix,
2280 integer_type_node, NULL_TREE);
2281 }
2282 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2283 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2284 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2285 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2286 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2287 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2288 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2289 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2290 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2291 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2292 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2293 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2294 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2295 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2296 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2297 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2298 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2299 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2300 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2301 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2302 #undef ATTR_NOTHROW_LEAF_LIST
2303 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2304 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2305 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2306 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2307 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2308 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2309 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2310 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2311 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2312 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2313 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2314 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2315 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2316 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2317 #undef DEF_SANITIZER_BUILTIN
2318 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2319 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2320 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2321 set_call_expr_flags (decl, ATTRS); \
2322 set_builtin_decl (ENUM, decl, true);
2323
2324 #include "sanitizer.def"
2325
2326 #undef DEF_SANITIZER_BUILTIN
2327 }
2328
2329 /* Called via htab_traverse. Count number of emitted
2330 STRING_CSTs in the constant hash table. */
2331
2332 static int
2333 count_string_csts (void **slot, void *data)
2334 {
2335 struct constant_descriptor_tree *desc
2336 = (struct constant_descriptor_tree *) *slot;
2337 if (TREE_CODE (desc->value) == STRING_CST
2338 && TREE_ASM_WRITTEN (desc->value)
2339 && asan_protect_global (desc->value))
2340 ++*((unsigned HOST_WIDE_INT *) data);
2341 return 1;
2342 }
2343
2344 /* Helper structure to pass two parameters to
2345 add_string_csts. */
2346
2347 struct asan_add_string_csts_data
2348 {
2349 tree type;
2350 vec<constructor_elt, va_gc> *v;
2351 };
2352
2353 /* Called via htab_traverse. Call asan_add_global
2354 on emitted STRING_CSTs from the constant hash table. */
2355
2356 static int
2357 add_string_csts (void **slot, void *data)
2358 {
2359 struct constant_descriptor_tree *desc
2360 = (struct constant_descriptor_tree *) *slot;
2361 if (TREE_CODE (desc->value) == STRING_CST
2362 && TREE_ASM_WRITTEN (desc->value)
2363 && asan_protect_global (desc->value))
2364 {
2365 struct asan_add_string_csts_data *aascd
2366 = (struct asan_add_string_csts_data *) data;
2367 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2368 aascd->type, aascd->v);
2369 }
2370 return 1;
2371 }
2372
2373 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2374 invoke ggc_collect. */
2375 static GTY(()) tree asan_ctor_statements;
2376
2377 /* Module-level instrumentation.
2378 - Insert __asan_init_vN() into the list of CTORs.
2379 - TODO: insert redzones around globals.
2380 */
2381
2382 void
2383 asan_finish_file (void)
2384 {
2385 varpool_node *vnode;
2386 unsigned HOST_WIDE_INT gcount = 0;
2387
2388 if (shadow_ptr_types[0] == NULL_TREE)
2389 asan_init_shadow_ptr_types ();
2390 /* Avoid instrumenting code in the asan ctors/dtors.
2391 We don't need to insert padding after the description strings,
2392 nor after .LASAN* array. */
2393 flag_sanitize &= ~SANITIZE_ADDRESS;
2394
2395 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2396 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2397 FOR_EACH_DEFINED_VARIABLE (vnode)
2398 if (TREE_ASM_WRITTEN (vnode->decl)
2399 && asan_protect_global (vnode->decl))
2400 ++gcount;
2401 htab_t const_desc_htab = constant_pool_htab ();
2402 htab_traverse (const_desc_htab, count_string_csts, &gcount);
2403 if (gcount)
2404 {
2405 tree type = asan_global_struct (), var, ctor;
2406 tree dtor_statements = NULL_TREE;
2407 vec<constructor_elt, va_gc> *v;
2408 char buf[20];
2409
2410 type = build_array_type_nelts (type, gcount);
2411 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2412 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2413 type);
2414 TREE_STATIC (var) = 1;
2415 TREE_PUBLIC (var) = 0;
2416 DECL_ARTIFICIAL (var) = 1;
2417 DECL_IGNORED_P (var) = 1;
2418 vec_alloc (v, gcount);
2419 FOR_EACH_DEFINED_VARIABLE (vnode)
2420 if (TREE_ASM_WRITTEN (vnode->decl)
2421 && asan_protect_global (vnode->decl))
2422 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2423 struct asan_add_string_csts_data aascd;
2424 aascd.type = TREE_TYPE (type);
2425 aascd.v = v;
2426 htab_traverse (const_desc_htab, add_string_csts, &aascd);
2427 ctor = build_constructor (type, v);
2428 TREE_CONSTANT (ctor) = 1;
2429 TREE_STATIC (ctor) = 1;
2430 DECL_INITIAL (var) = ctor;
2431 varpool_node::finalize_decl (var);
2432
2433 fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2434 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2435 append_to_statement_list (build_call_expr (fn, 2,
2436 build_fold_addr_expr (var),
2437 gcount_tree),
2438 &asan_ctor_statements);
2439
2440 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2441 append_to_statement_list (build_call_expr (fn, 2,
2442 build_fold_addr_expr (var),
2443 gcount_tree),
2444 &dtor_statements);
2445 cgraph_build_static_cdtor ('D', dtor_statements,
2446 MAX_RESERVED_INIT_PRIORITY - 1);
2447 }
2448 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2449 MAX_RESERVED_INIT_PRIORITY - 1);
2450 flag_sanitize |= SANITIZE_ADDRESS;
2451 }
2452
2453 /* Expand the ASAN_{LOAD,STORE} builtins. */
2454
2455 static bool
2456 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2457 {
2458 gimple g = gsi_stmt (*iter);
2459 location_t loc = gimple_location (g);
2460
2461 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2462 gcc_assert (flags < ASAN_CHECK_LAST);
2463 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2464 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2465 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2466 bool start_instrumented = (flags & ASAN_CHECK_START_INSTRUMENTED) != 0;
2467 bool end_instrumented = (flags & ASAN_CHECK_END_INSTRUMENTED) != 0;
2468
2469 tree base = gimple_call_arg (g, 1);
2470 tree len = gimple_call_arg (g, 2);
2471 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2472
2473 HOST_WIDE_INT size_in_bytes
2474 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2475
2476 if (use_calls)
2477 {
2478 /* Instrument using callbacks. */
2479 gimple g
2480 = gimple_build_assign_with_ops (NOP_EXPR,
2481 make_ssa_name (pointer_sized_int_node,
2482 NULL),
2483 base, NULL_TREE);
2484 gimple_set_location (g, loc);
2485 gsi_insert_before (iter, g, GSI_SAME_STMT);
2486 tree base_addr = gimple_assign_lhs (g);
2487
2488 int nargs;
2489 tree fun = check_func (is_store, size_in_bytes, &nargs);
2490 if (nargs == 1)
2491 g = gimple_build_call (fun, 1, base_addr);
2492 else
2493 {
2494 gcc_assert (nargs == 2);
2495 g = gimple_build_assign_with_ops (NOP_EXPR,
2496 make_ssa_name (pointer_sized_int_node,
2497 NULL),
2498 len, NULL_TREE);
2499 gimple_set_location (g, loc);
2500 gsi_insert_before (iter, g, GSI_SAME_STMT);
2501 tree sz_arg = gimple_assign_lhs (g);
2502 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2503 }
2504 gimple_set_location (g, loc);
2505 gsi_replace (iter, g, false);
2506 return false;
2507 }
2508
2509 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2510
2511 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2512 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2513
2514 gimple_stmt_iterator gsi = *iter;
2515
2516 if (!is_non_zero_len)
2517 {
2518 /* So, the length of the memory area to asan-protect is
2519 non-constant. Let's guard the generated instrumentation code
2520 like:
2521
2522 if (len != 0)
2523 {
2524 //asan instrumentation code goes here.
2525 }
2526 // falltrough instructions, starting with *ITER. */
2527
2528 g = gimple_build_cond (NE_EXPR,
2529 len,
2530 build_int_cst (TREE_TYPE (len), 0),
2531 NULL_TREE, NULL_TREE);
2532 gimple_set_location (g, loc);
2533
2534 basic_block then_bb, fallthrough_bb;
2535 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2536 &then_bb, &fallthrough_bb);
2537 /* Note that fallthrough_bb starts with the statement that was
2538 pointed to by ITER. */
2539
2540 /* The 'then block' of the 'if (len != 0) condition is where
2541 we'll generate the asan instrumentation code now. */
2542 gsi = gsi_last_bb (then_bb);
2543 }
2544
2545 /* Get an iterator on the point where we can add the condition
2546 statement for the instrumentation. */
2547 basic_block then_bb, else_bb;
2548 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2549 /*then_more_likely_p=*/false,
2550 /*create_then_fallthru_edge=*/false,
2551 &then_bb,
2552 &else_bb);
2553
2554 g = gimple_build_assign_with_ops (NOP_EXPR,
2555 make_ssa_name (pointer_sized_int_node,
2556 NULL),
2557 base, NULL_TREE);
2558 gimple_set_location (g, loc);
2559 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2560 tree base_addr = gimple_assign_lhs (g);
2561
2562 tree t = NULL_TREE;
2563 if (real_size_in_bytes >= 8)
2564 {
2565 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2566 shadow_ptr_type);
2567 t = shadow;
2568 }
2569 else
2570 {
2571 /* Slow path for 1, 2 and 4 byte accesses. */
2572
2573 if (!start_instrumented)
2574 {
2575 /* Test (shadow != 0)
2576 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2577 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2578 shadow_ptr_type);
2579 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2580 gimple_seq seq = NULL;
2581 gimple_seq_add_stmt (&seq, shadow_test);
2582 /* Aligned (>= 8 bytes) access do not need & 7. */
2583 if (align < 8)
2584 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2585 base_addr, 7));
2586 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2587 gimple_seq_last (seq)));
2588 if (real_size_in_bytes > 1)
2589 gimple_seq_add_stmt (&seq,
2590 build_assign (PLUS_EXPR, gimple_seq_last (seq),
2591 real_size_in_bytes - 1));
2592 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2593 gimple_seq_last (seq),
2594 shadow));
2595 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2596 gimple_seq_last (seq)));
2597 t = gimple_assign_lhs (gimple_seq_last (seq));
2598 gimple_seq_set_location (seq, loc);
2599 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2600 }
2601
2602 /* For non-constant, misaligned or otherwise weird access sizes,
2603 check first and last byte. */
2604 if (size_in_bytes == -1 && !end_instrumented)
2605 {
2606 g = gimple_build_assign_with_ops (MINUS_EXPR,
2607 make_ssa_name (pointer_sized_int_node, NULL),
2608 len,
2609 build_int_cst (pointer_sized_int_node, 1));
2610 gimple_set_location (g, loc);
2611 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2612 tree last = gimple_assign_lhs (g);
2613 g = gimple_build_assign_with_ops (PLUS_EXPR,
2614 make_ssa_name (pointer_sized_int_node, NULL),
2615 base_addr,
2616 last);
2617 gimple_set_location (g, loc);
2618 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2619 tree base_end_addr = gimple_assign_lhs (g);
2620
2621 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2622 shadow_ptr_type);
2623 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2624 gimple_seq seq = NULL;
2625 gimple_seq_add_stmt (&seq, shadow_test);
2626 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2627 base_end_addr, 7));
2628 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2629 gimple_seq_last (seq)));
2630 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2631 gimple_seq_last (seq),
2632 shadow));
2633 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2634 gimple_seq_last (seq)));
2635 if (!start_instrumented)
2636 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2637 gimple_seq_last (seq)));
2638 t = gimple_assign_lhs (gimple_seq_last (seq));
2639 gimple_seq_set_location (seq, loc);
2640 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2641 }
2642 }
2643
2644 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2645 NULL_TREE, NULL_TREE);
2646 gimple_set_location (g, loc);
2647 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2648
2649 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2650 gsi = gsi_start_bb (then_bb);
2651 int nargs;
2652 tree fun = report_error_func (is_store, size_in_bytes, &nargs);
2653 g = gimple_build_call (fun, nargs, base_addr, len);
2654 gimple_set_location (g, loc);
2655 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2656
2657 gsi_remove (iter, true);
2658 *iter = gsi_start_bb (else_bb);
2659
2660 return true;
2661 }
2662
2663 /* Instrument the current function. */
2664
2665 static unsigned int
2666 asan_instrument (void)
2667 {
2668 if (shadow_ptr_types[0] == NULL_TREE)
2669 asan_init_shadow_ptr_types ();
2670 transform_statements ();
2671 return 0;
2672 }
2673
2674 static bool
2675 gate_asan (void)
2676 {
2677 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2678 && !lookup_attribute ("no_sanitize_address",
2679 DECL_ATTRIBUTES (current_function_decl));
2680 }
2681
2682 namespace {
2683
2684 const pass_data pass_data_asan =
2685 {
2686 GIMPLE_PASS, /* type */
2687 "asan", /* name */
2688 OPTGROUP_NONE, /* optinfo_flags */
2689 TV_NONE, /* tv_id */
2690 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2691 0, /* properties_provided */
2692 0, /* properties_destroyed */
2693 0, /* todo_flags_start */
2694 TODO_update_ssa, /* todo_flags_finish */
2695 };
2696
2697 class pass_asan : public gimple_opt_pass
2698 {
2699 public:
2700 pass_asan (gcc::context *ctxt)
2701 : gimple_opt_pass (pass_data_asan, ctxt)
2702 {}
2703
2704 /* opt_pass methods: */
2705 opt_pass * clone () { return new pass_asan (m_ctxt); }
2706 virtual bool gate (function *) { return gate_asan (); }
2707 virtual unsigned int execute (function *) { return asan_instrument (); }
2708
2709 }; // class pass_asan
2710
2711 } // anon namespace
2712
2713 gimple_opt_pass *
2714 make_pass_asan (gcc::context *ctxt)
2715 {
2716 return new pass_asan (ctxt);
2717 }
2718
2719 namespace {
2720
2721 const pass_data pass_data_asan_O0 =
2722 {
2723 GIMPLE_PASS, /* type */
2724 "asan0", /* name */
2725 OPTGROUP_NONE, /* optinfo_flags */
2726 TV_NONE, /* tv_id */
2727 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2728 0, /* properties_provided */
2729 0, /* properties_destroyed */
2730 0, /* todo_flags_start */
2731 TODO_update_ssa, /* todo_flags_finish */
2732 };
2733
2734 class pass_asan_O0 : public gimple_opt_pass
2735 {
2736 public:
2737 pass_asan_O0 (gcc::context *ctxt)
2738 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2739 {}
2740
2741 /* opt_pass methods: */
2742 virtual bool gate (function *) { return !optimize && gate_asan (); }
2743 virtual unsigned int execute (function *) { return asan_instrument (); }
2744
2745 }; // class pass_asan_O0
2746
2747 } // anon namespace
2748
2749 gimple_opt_pass *
2750 make_pass_asan_O0 (gcc::context *ctxt)
2751 {
2752 return new pass_asan_O0 (ctxt);
2753 }
2754
2755 /* Perform optimization of sanitize functions. */
2756
2757 namespace {
2758
2759 const pass_data pass_data_sanopt =
2760 {
2761 GIMPLE_PASS, /* type */
2762 "sanopt", /* name */
2763 OPTGROUP_NONE, /* optinfo_flags */
2764 TV_NONE, /* tv_id */
2765 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2766 0, /* properties_provided */
2767 0, /* properties_destroyed */
2768 0, /* todo_flags_start */
2769 TODO_update_ssa, /* todo_flags_finish */
2770 };
2771
2772 class pass_sanopt : public gimple_opt_pass
2773 {
2774 public:
2775 pass_sanopt (gcc::context *ctxt)
2776 : gimple_opt_pass (pass_data_sanopt, ctxt)
2777 {}
2778
2779 /* opt_pass methods: */
2780 virtual bool gate (function *) { return flag_sanitize; }
2781 virtual unsigned int execute (function *);
2782
2783 }; // class pass_sanopt
2784
2785 unsigned int
2786 pass_sanopt::execute (function *fun)
2787 {
2788 basic_block bb;
2789
2790 int asan_num_accesses = 0;
2791 if (flag_sanitize & SANITIZE_ADDRESS)
2792 {
2793 gimple_stmt_iterator gsi;
2794 FOR_EACH_BB_FN (bb, fun)
2795 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2796 {
2797 gimple stmt = gsi_stmt (gsi);
2798 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2799 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2800 ++asan_num_accesses;
2801 }
2802 }
2803
2804 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2805 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2806
2807 FOR_EACH_BB_FN (bb, fun)
2808 {
2809 gimple_stmt_iterator gsi;
2810 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2811 {
2812 gimple stmt = gsi_stmt (gsi);
2813 bool no_next = false;
2814
2815 if (!is_gimple_call (stmt))
2816 {
2817 gsi_next (&gsi);
2818 continue;
2819 }
2820
2821 if (gimple_call_internal_p (stmt))
2822 {
2823 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2824 switch (ifn)
2825 {
2826 case IFN_UBSAN_NULL:
2827 no_next = ubsan_expand_null_ifn (&gsi);
2828 break;
2829 case IFN_UBSAN_BOUNDS:
2830 no_next = ubsan_expand_bounds_ifn (&gsi);
2831 break;
2832 case IFN_ASAN_CHECK:
2833 {
2834 no_next = asan_expand_check_ifn (&gsi, use_calls);
2835 break;
2836 }
2837 default:
2838 break;
2839 }
2840 }
2841
2842 if (dump_file && (dump_flags & TDF_DETAILS))
2843 {
2844 fprintf (dump_file, "Optimized\n ");
2845 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2846 fprintf (dump_file, "\n");
2847 }
2848
2849 if (!no_next)
2850 gsi_next (&gsi);
2851 }
2852 }
2853 return 0;
2854 }
2855
2856 } // anon namespace
2857
2858 gimple_opt_pass *
2859 make_pass_sanopt (gcc::context *ctxt)
2860 {
2861 return new pass_sanopt (ctxt);
2862 }
2863
2864 #include "gt-asan.h"