]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/auto-inc-dec.c
reduce conditional compilation based on AUTO_INC_DEC
[thirdparty/gcc.git] / gcc / auto-inc-dec.c
1 /* Discovery of auto-inc and auto-dec instructions.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "alias.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "flags.h"
34 #include "except.h"
35 #include "diagnostic-core.h"
36 #include "recog.h"
37 #include "expmed.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "calls.h"
41 #include "emit-rtl.h"
42 #include "varasm.h"
43 #include "stmt.h"
44 #include "expr.h"
45 #include "tree-pass.h"
46 #include "dbgcnt.h"
47 #include "target.h"
48
49 /* This pass was originally removed from flow.c. However there is
50 almost nothing that remains of that code.
51
52 There are (4) basic forms that are matched:
53
54 (1) FORM_PRE_ADD
55 a <- b + c
56 ...
57 *a
58
59 becomes
60
61 a <- b
62 ...
63 *(a += c) pre
64
65
66 (2) FORM_PRE_INC
67 a += c
68 ...
69 *a
70
71 becomes
72
73 *(a += c) pre
74
75
76 (3) FORM_POST_ADD
77 *a
78 ...
79 b <- a + c
80
81 (For this case to be true, b must not be assigned or used between
82 the *a and the assignment to b. B must also be a Pmode reg.)
83
84 becomes
85
86 b <- a
87 ...
88 *(b += c) post
89
90
91 (4) FORM_POST_INC
92 *a
93 ...
94 a <- a + c
95
96 becomes
97
98 *(a += c) post
99
100 There are three types of values of c.
101
102 1) c is a constant equal to the width of the value being accessed by
103 the pointer. This is useful for machines that have
104 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
105 HAVE_POST_DECREMENT defined.
106
107 2) c is a constant not equal to the width of the value being accessed
108 by the pointer. This is useful for machines that have
109 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
110
111 3) c is a register. This is useful for machines that have
112 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
113
114 The is one special case: if a already had an offset equal to it +-
115 its width and that offset is equal to -c when the increment was
116 before the ref or +c if the increment was after the ref, then if we
117 can do the combination but switch the pre/post bit. */
118
119
120 enum form
121 {
122 FORM_PRE_ADD,
123 FORM_PRE_INC,
124 FORM_POST_ADD,
125 FORM_POST_INC,
126 FORM_last
127 };
128
129 /* The states of the second operands of mem refs and inc insns. If no
130 second operand of the mem_ref was found, it is assumed to just be
131 ZERO. SIZE is the size of the mode accessed in the memref. The
132 ANY is used for constants that are not +-size or 0. REG is used if
133 the forms are reg1 + reg2. */
134
135 enum inc_state
136 {
137 INC_ZERO, /* == 0 */
138 INC_NEG_SIZE, /* == +size */
139 INC_POS_SIZE, /* == -size */
140 INC_NEG_ANY, /* == some -constant */
141 INC_POS_ANY, /* == some +constant */
142 INC_REG, /* == some register */
143 INC_last
144 };
145
146 /* The eight forms that pre/post inc/dec can take. */
147 enum gen_form
148 {
149 NOTHING,
150 SIMPLE_PRE_INC, /* ++size */
151 SIMPLE_POST_INC, /* size++ */
152 SIMPLE_PRE_DEC, /* --size */
153 SIMPLE_POST_DEC, /* size-- */
154 DISP_PRE, /* ++con */
155 DISP_POST, /* con++ */
156 REG_PRE, /* ++reg */
157 REG_POST /* reg++ */
158 };
159
160 /* Tmp mem rtx for use in cost modeling. */
161 static rtx mem_tmp;
162
163 static enum inc_state
164 set_inc_state (HOST_WIDE_INT val, int size)
165 {
166 if (val == 0)
167 return INC_ZERO;
168 if (val < 0)
169 return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
170 else
171 return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
172 }
173
174 /* The DECISION_TABLE that describes what form, if any, the increment
175 or decrement will take. It is a three dimensional table. The first
176 index is the type of constant or register found as the second
177 operand of the inc insn. The second index is the type of constant
178 or register found as the second operand of the memory reference (if
179 no second operand exists, 0 is used). The third index is the form
180 and location (relative to the mem reference) of inc insn. */
181
182 static bool initialized = false;
183 static enum gen_form decision_table[INC_last][INC_last][FORM_last];
184
185 static void
186 init_decision_table (void)
187 {
188 enum gen_form value;
189
190 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
191 {
192 /* Prefer the simple form if both are available. */
193 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
194
195 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
196 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
197
198 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
199 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
200 }
201
202 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
203 {
204 /* Prefer the simple form if both are available. */
205 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
206
207 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
208 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
209
210 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
211 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
212 }
213
214 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
215 {
216 /* Prefer the simple form if both are available. */
217 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
218
219 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
220 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
221
222 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
223 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
224 }
225
226 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
227 {
228 /* Prefer the simple form if both are available. */
229 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
230
231 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
232 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
233
234 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
235 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
236 }
237
238 if (HAVE_PRE_MODIFY_DISP)
239 {
240 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
241 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
242
243 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
244 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
245
246 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
247 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
248
249 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
250 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
251 }
252
253 if (HAVE_POST_MODIFY_DISP)
254 {
255 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
256 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
257
258 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
259 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
260
261 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
262 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
263
264 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
265 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
266 }
267
268 /* This is much simpler than the other cases because we do not look
269 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
270 and INC_NEG_REG states. Most of the use of such states would be
271 on a target that had an R1 - R2 update address form.
272
273 There is the remote possibility that you could also catch a = a +
274 b; *(a - b) as a postdecrement of (a + b). However, it is
275 unclear if *(a - b) would ever be generated on a machine that did
276 not have that kind of addressing mode. The IA-64 and RS6000 will
277 not do this, and I cannot speak for any other. If any
278 architecture does have an a-b update for, these cases should be
279 added. */
280 if (HAVE_PRE_MODIFY_REG)
281 {
282 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
283 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
284
285 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
286 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
287 }
288
289 if (HAVE_POST_MODIFY_REG)
290 {
291 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
292 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
293 }
294
295 initialized = true;
296 }
297
298 /* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
299 "reg_res = reg0+c". */
300
301 static struct inc_insn
302 {
303 rtx_insn *insn; /* The insn being parsed. */
304 rtx pat; /* The pattern of the insn. */
305 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
306 enum form form;
307 rtx reg_res;
308 rtx reg0;
309 rtx reg1;
310 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
311 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
312 } inc_insn;
313
314
315 /* Dump the parsed inc insn to FILE. */
316
317 static void
318 dump_inc_insn (FILE *file)
319 {
320 const char *f = ((inc_insn.form == FORM_PRE_ADD)
321 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
322
323 dump_insn_slim (file, inc_insn.insn);
324
325 switch (inc_insn.form)
326 {
327 case FORM_PRE_ADD:
328 case FORM_POST_ADD:
329 if (inc_insn.reg1_is_const)
330 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
331 f, INSN_UID (inc_insn.insn),
332 REGNO (inc_insn.reg_res),
333 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
334 else
335 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
336 f, INSN_UID (inc_insn.insn),
337 REGNO (inc_insn.reg_res),
338 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
339 break;
340
341 case FORM_PRE_INC:
342 case FORM_POST_INC:
343 if (inc_insn.reg1_is_const)
344 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
345 f, INSN_UID (inc_insn.insn),
346 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
347 else
348 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
349 f, INSN_UID (inc_insn.insn),
350 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
351 break;
352
353 default:
354 break;
355 }
356 }
357
358
359 /* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
360
361 static struct mem_insn
362 {
363 rtx_insn *insn; /* The insn being parsed. */
364 rtx pat; /* The pattern of the insn. */
365 rtx *mem_loc; /* The address of the field that holds the mem */
366 /* that is to be replaced. */
367 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
368 rtx reg0;
369 rtx reg1; /* This is either a reg or a const depending on
370 reg1_is_const. */
371 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
372 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
373 } mem_insn;
374
375
376 /* Dump the parsed mem insn to FILE. */
377
378 static void
379 dump_mem_insn (FILE *file)
380 {
381 dump_insn_slim (file, mem_insn.insn);
382
383 if (mem_insn.reg1_is_const)
384 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
385 INSN_UID (mem_insn.insn),
386 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
387 else
388 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
389 INSN_UID (mem_insn.insn),
390 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
391 }
392
393
394 /* The following three arrays contain pointers to instructions. They
395 are indexed by REGNO. At any point in the basic block where we are
396 looking these three arrays contain, respectively, the next insn
397 that uses REGNO, the next inc or add insn that uses REGNO and the
398 next insn that sets REGNO.
399
400 The arrays are not cleared when we move from block to block so
401 whenever an insn is retrieved from these arrays, it's block number
402 must be compared with the current block.
403 */
404
405 static rtx_insn **reg_next_use = NULL;
406 static rtx_insn **reg_next_inc_use = NULL;
407 static rtx_insn **reg_next_def = NULL;
408
409
410 /* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
411 not really care about moving any other notes from the inc or add
412 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
413 does not appear that there are any other kinds of relevant notes. */
414
415 static void
416 move_dead_notes (rtx_insn *to_insn, rtx_insn *from_insn, rtx pattern)
417 {
418 rtx note;
419 rtx next_note;
420 rtx prev_note = NULL;
421
422 for (note = REG_NOTES (from_insn); note; note = next_note)
423 {
424 next_note = XEXP (note, 1);
425
426 if ((REG_NOTE_KIND (note) == REG_DEAD)
427 && pattern == XEXP (note, 0))
428 {
429 XEXP (note, 1) = REG_NOTES (to_insn);
430 REG_NOTES (to_insn) = note;
431 if (prev_note)
432 XEXP (prev_note, 1) = next_note;
433 else
434 REG_NOTES (from_insn) = next_note;
435 }
436 else prev_note = note;
437 }
438 }
439
440
441 /* Create a mov insn DEST_REG <- SRC_REG and insert it before
442 NEXT_INSN. */
443
444 static rtx_insn *
445 insert_move_insn_before (rtx_insn *next_insn, rtx dest_reg, rtx src_reg)
446 {
447 rtx_insn *insns;
448
449 start_sequence ();
450 emit_move_insn (dest_reg, src_reg);
451 insns = get_insns ();
452 end_sequence ();
453 emit_insn_before (insns, next_insn);
454 return insns;
455 }
456
457
458 /* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
459 increment of INC_REG. To have reached this point, the change is a
460 legitimate one from a dataflow point of view. The only questions
461 are is this a valid change to the instruction and is this a
462 profitable change to the instruction. */
463
464 static bool
465 attempt_change (rtx new_addr, rtx inc_reg)
466 {
467 /* There are four cases: For the two cases that involve an add
468 instruction, we are going to have to delete the add and insert a
469 mov. We are going to assume that the mov is free. This is
470 fairly early in the backend and there are a lot of opportunities
471 for removing that move later. In particular, there is the case
472 where the move may be dead, this is what dead code elimination
473 passes are for. The two cases where we have an inc insn will be
474 handled mov free. */
475
476 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
477 rtx_insn *mov_insn = NULL;
478 int regno;
479 rtx mem = *mem_insn.mem_loc;
480 machine_mode mode = GET_MODE (mem);
481 rtx new_mem;
482 int old_cost = 0;
483 int new_cost = 0;
484 bool speed = optimize_bb_for_speed_p (bb);
485
486 PUT_MODE (mem_tmp, mode);
487 XEXP (mem_tmp, 0) = new_addr;
488
489 old_cost = (set_src_cost (mem, mode, speed)
490 + set_rtx_cost (PATTERN (inc_insn.insn), speed));
491 new_cost = set_src_cost (mem_tmp, mode, speed);
492
493 /* The first item of business is to see if this is profitable. */
494 if (old_cost < new_cost)
495 {
496 if (dump_file)
497 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
498 return false;
499 }
500
501 /* Jump through a lot of hoops to keep the attributes up to date. We
502 do not want to call one of the change address variants that take
503 an offset even though we know the offset in many cases. These
504 assume you are changing where the address is pointing by the
505 offset. */
506 new_mem = replace_equiv_address_nv (mem, new_addr);
507 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
508 {
509 if (dump_file)
510 fprintf (dump_file, "validation failure\n");
511 return false;
512 }
513
514 /* From here to the end of the function we are committed to the
515 change, i.e. nothing fails. Generate any necessary movs, move
516 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
517 switch (inc_insn.form)
518 {
519 case FORM_PRE_ADD:
520 /* Replace the addition with a move. Do it at the location of
521 the addition since the operand of the addition may change
522 before the memory reference. */
523 mov_insn = insert_move_insn_before (inc_insn.insn,
524 inc_insn.reg_res, inc_insn.reg0);
525 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
526
527 regno = REGNO (inc_insn.reg_res);
528 reg_next_def[regno] = mov_insn;
529 reg_next_use[regno] = NULL;
530 regno = REGNO (inc_insn.reg0);
531 reg_next_use[regno] = mov_insn;
532 df_recompute_luids (bb);
533 break;
534
535 case FORM_POST_INC:
536 regno = REGNO (inc_insn.reg_res);
537 if (reg_next_use[regno] == reg_next_inc_use[regno])
538 reg_next_inc_use[regno] = NULL;
539
540 /* Fallthru. */
541 case FORM_PRE_INC:
542 regno = REGNO (inc_insn.reg_res);
543 reg_next_def[regno] = mem_insn.insn;
544 reg_next_use[regno] = NULL;
545
546 break;
547
548 case FORM_POST_ADD:
549 mov_insn = insert_move_insn_before (mem_insn.insn,
550 inc_insn.reg_res, inc_insn.reg0);
551 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
552
553 /* Do not move anything to the mov insn because the instruction
554 pointer for the main iteration has not yet hit that. It is
555 still pointing to the mem insn. */
556 regno = REGNO (inc_insn.reg_res);
557 reg_next_def[regno] = mem_insn.insn;
558 reg_next_use[regno] = NULL;
559
560 regno = REGNO (inc_insn.reg0);
561 reg_next_use[regno] = mem_insn.insn;
562 if ((reg_next_use[regno] == reg_next_inc_use[regno])
563 || (reg_next_inc_use[regno] == inc_insn.insn))
564 reg_next_inc_use[regno] = NULL;
565 df_recompute_luids (bb);
566 break;
567
568 case FORM_last:
569 default:
570 gcc_unreachable ();
571 }
572
573 if (!inc_insn.reg1_is_const)
574 {
575 regno = REGNO (inc_insn.reg1);
576 reg_next_use[regno] = mem_insn.insn;
577 if ((reg_next_use[regno] == reg_next_inc_use[regno])
578 || (reg_next_inc_use[regno] == inc_insn.insn))
579 reg_next_inc_use[regno] = NULL;
580 }
581
582 delete_insn (inc_insn.insn);
583
584 if (dump_file && mov_insn)
585 {
586 fprintf (dump_file, "inserting mov ");
587 dump_insn_slim (dump_file, mov_insn);
588 }
589
590 /* Record that this insn has an implicit side effect. */
591 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
592
593 if (dump_file)
594 {
595 fprintf (dump_file, "****success ");
596 dump_insn_slim (dump_file, mem_insn.insn);
597 }
598
599 return true;
600 }
601
602
603 /* Try to combine the instruction in INC_INSN with the instruction in
604 MEM_INSN. First the form is determined using the DECISION_TABLE
605 and the results of parsing the INC_INSN and the MEM_INSN.
606 Assuming the form is ok, a prototype new address is built which is
607 passed to ATTEMPT_CHANGE for final processing. */
608
609 static bool
610 try_merge (void)
611 {
612 enum gen_form gen_form;
613 rtx mem = *mem_insn.mem_loc;
614 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
615 inc_insn.reg_res : mem_insn.reg0;
616
617 /* The width of the mem being accessed. */
618 int size = GET_MODE_SIZE (GET_MODE (mem));
619 rtx_insn *last_insn = NULL;
620 machine_mode reg_mode = GET_MODE (inc_reg);
621
622 switch (inc_insn.form)
623 {
624 case FORM_PRE_ADD:
625 case FORM_PRE_INC:
626 last_insn = mem_insn.insn;
627 break;
628 case FORM_POST_INC:
629 case FORM_POST_ADD:
630 last_insn = inc_insn.insn;
631 break;
632 case FORM_last:
633 default:
634 gcc_unreachable ();
635 }
636
637 /* Cannot handle auto inc of the stack. */
638 if (inc_reg == stack_pointer_rtx)
639 {
640 if (dump_file)
641 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
642 return false;
643 }
644
645 /* Look to see if the inc register is dead after the memory
646 reference. If it is, do not do the combination. */
647 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
648 {
649 if (dump_file)
650 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
651 return false;
652 }
653
654 mem_insn.reg1_state = (mem_insn.reg1_is_const)
655 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
656 inc_insn.reg1_state = (inc_insn.reg1_is_const)
657 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
658
659 /* Now get the form that we are generating. */
660 gen_form = decision_table
661 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
662
663 if (dbg_cnt (auto_inc_dec) == false)
664 return false;
665
666 switch (gen_form)
667 {
668 default:
669 case NOTHING:
670 return false;
671
672 case SIMPLE_PRE_INC: /* ++size */
673 if (dump_file)
674 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
675 return attempt_change (gen_rtx_PRE_INC (reg_mode, inc_reg), inc_reg);
676 break;
677
678 case SIMPLE_POST_INC: /* size++ */
679 if (dump_file)
680 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
681 return attempt_change (gen_rtx_POST_INC (reg_mode, inc_reg), inc_reg);
682 break;
683
684 case SIMPLE_PRE_DEC: /* --size */
685 if (dump_file)
686 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
687 return attempt_change (gen_rtx_PRE_DEC (reg_mode, inc_reg), inc_reg);
688 break;
689
690 case SIMPLE_POST_DEC: /* size-- */
691 if (dump_file)
692 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
693 return attempt_change (gen_rtx_POST_DEC (reg_mode, inc_reg), inc_reg);
694 break;
695
696 case DISP_PRE: /* ++con */
697 if (dump_file)
698 fprintf (dump_file, "trying DISP_PRE\n");
699 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
700 inc_reg,
701 gen_rtx_PLUS (reg_mode,
702 inc_reg,
703 inc_insn.reg1)),
704 inc_reg);
705 break;
706
707 case DISP_POST: /* con++ */
708 if (dump_file)
709 fprintf (dump_file, "trying POST_DISP\n");
710 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
711 inc_reg,
712 gen_rtx_PLUS (reg_mode,
713 inc_reg,
714 inc_insn.reg1)),
715 inc_reg);
716 break;
717
718 case REG_PRE: /* ++reg */
719 if (dump_file)
720 fprintf (dump_file, "trying PRE_REG\n");
721 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
722 inc_reg,
723 gen_rtx_PLUS (reg_mode,
724 inc_reg,
725 inc_insn.reg1)),
726 inc_reg);
727 break;
728
729 case REG_POST: /* reg++ */
730 if (dump_file)
731 fprintf (dump_file, "trying POST_REG\n");
732 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
733 inc_reg,
734 gen_rtx_PLUS (reg_mode,
735 inc_reg,
736 inc_insn.reg1)),
737 inc_reg);
738 break;
739 }
740 }
741
742 /* Return the next insn that uses (if reg_next_use is passed in
743 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
744 REGNO in BB. */
745
746 static rtx_insn *
747 get_next_ref (int regno, basic_block bb, rtx_insn **next_array)
748 {
749 rtx_insn *insn = next_array[regno];
750
751 /* Lazy about cleaning out the next_arrays. */
752 if (insn && BLOCK_FOR_INSN (insn) != bb)
753 {
754 next_array[regno] = NULL;
755 insn = NULL;
756 }
757
758 return insn;
759 }
760
761
762 /* Return true if INSN is of a form "a = b op c" where a and b are
763 regs. op is + if c is a reg and +|- if c is a const. Fill in
764 INC_INSN with what is found.
765
766 This function is called in two contexts, if BEFORE_MEM is true,
767 this is called for each insn in the basic block. If BEFORE_MEM is
768 false, it is called for the instruction in the block that uses the
769 index register for some memory reference that is currently being
770 processed. */
771
772 static bool
773 parse_add_or_inc (rtx_insn *insn, bool before_mem)
774 {
775 rtx pat = single_set (insn);
776 if (!pat)
777 return false;
778
779 /* Result must be single reg. */
780 if (!REG_P (SET_DEST (pat)))
781 return false;
782
783 if ((GET_CODE (SET_SRC (pat)) != PLUS)
784 && (GET_CODE (SET_SRC (pat)) != MINUS))
785 return false;
786
787 if (!REG_P (XEXP (SET_SRC (pat), 0)))
788 return false;
789
790 inc_insn.insn = insn;
791 inc_insn.pat = pat;
792 inc_insn.reg_res = SET_DEST (pat);
793 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
794 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
795 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
796 else
797 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
798
799 if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
800 {
801 /* Process a = b + c where c is a const. */
802 inc_insn.reg1_is_const = true;
803 if (GET_CODE (SET_SRC (pat)) == PLUS)
804 {
805 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
806 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
807 }
808 else
809 {
810 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
811 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
812 }
813 return true;
814 }
815 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
816 && (REG_P (XEXP (SET_SRC (pat), 1)))
817 && GET_CODE (SET_SRC (pat)) == PLUS)
818 {
819 /* Process a = b + c where c is a reg. */
820 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
821 inc_insn.reg1_is_const = false;
822
823 if (inc_insn.form == FORM_PRE_INC
824 || inc_insn.form == FORM_POST_INC)
825 return true;
826 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
827 {
828 /* Reverse the two operands and turn *_ADD into *_INC since
829 a = c + a. */
830 std::swap (inc_insn.reg0, inc_insn.reg1);
831 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
832 return true;
833 }
834 else
835 return true;
836 }
837
838 return false;
839 }
840
841
842 /* A recursive function that checks all of the mem uses in
843 ADDRESS_OF_X to see if any single one of them is compatible with
844 what has been found in inc_insn.
845
846 -1 is returned for success. 0 is returned if nothing was found and
847 1 is returned for failure. */
848
849 static int
850 find_address (rtx *address_of_x)
851 {
852 rtx x = *address_of_x;
853 enum rtx_code code = GET_CODE (x);
854 const char *const fmt = GET_RTX_FORMAT (code);
855 int i;
856 int value = 0;
857 int tem;
858
859 if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
860 {
861 /* Match with *reg0. */
862 mem_insn.mem_loc = address_of_x;
863 mem_insn.reg0 = inc_insn.reg_res;
864 mem_insn.reg1_is_const = true;
865 mem_insn.reg1_val = 0;
866 mem_insn.reg1 = GEN_INT (0);
867 return -1;
868 }
869 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
870 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
871 {
872 rtx b = XEXP (XEXP (x, 0), 1);
873 mem_insn.mem_loc = address_of_x;
874 mem_insn.reg0 = inc_insn.reg_res;
875 mem_insn.reg1 = b;
876 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
877 if (CONST_INT_P (b))
878 {
879 /* Match with *(reg0 + reg1) where reg1 is a const. */
880 HOST_WIDE_INT val = INTVAL (b);
881 if (inc_insn.reg1_is_const
882 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
883 {
884 mem_insn.reg1_val = val;
885 return -1;
886 }
887 }
888 else if (!inc_insn.reg1_is_const
889 && rtx_equal_p (inc_insn.reg1, b))
890 /* Match with *(reg0 + reg1). */
891 return -1;
892 }
893
894 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
895 {
896 /* If REG occurs inside a MEM used in a bit-field reference,
897 that is unacceptable. */
898 if (find_address (&XEXP (x, 0)))
899 return 1;
900 }
901
902 if (x == inc_insn.reg_res)
903 return 1;
904
905 /* Time for some deep diving. */
906 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
907 {
908 if (fmt[i] == 'e')
909 {
910 tem = find_address (&XEXP (x, i));
911 /* If this is the first use, let it go so the rest of the
912 insn can be checked. */
913 if (value == 0)
914 value = tem;
915 else if (tem != 0)
916 /* More than one match was found. */
917 return 1;
918 }
919 else if (fmt[i] == 'E')
920 {
921 int j;
922 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
923 {
924 tem = find_address (&XVECEXP (x, i, j));
925 /* If this is the first use, let it go so the rest of
926 the insn can be checked. */
927 if (value == 0)
928 value = tem;
929 else if (tem != 0)
930 /* More than one match was found. */
931 return 1;
932 }
933 }
934 }
935 return value;
936 }
937
938 /* Once a suitable mem reference has been found and the MEM_INSN
939 structure has been filled in, FIND_INC is called to see if there is
940 a suitable add or inc insn that follows the mem reference and
941 determine if it is suitable to merge.
942
943 In the case where the MEM_INSN has two registers in the reference,
944 this function may be called recursively. The first time looking
945 for an add of the first register, and if that fails, looking for an
946 add of the second register. The FIRST_TRY parameter is used to
947 only allow the parameters to be reversed once. */
948
949 static bool
950 find_inc (bool first_try)
951 {
952 rtx_insn *insn;
953 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
954 rtx_insn *other_insn;
955 df_ref def;
956
957 /* Make sure this reg appears only once in this insn. */
958 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
959 {
960 if (dump_file)
961 fprintf (dump_file, "mem count failure\n");
962 return false;
963 }
964
965 if (dump_file)
966 dump_mem_insn (dump_file);
967
968 /* Find the next use that is an inc. */
969 insn = get_next_ref (REGNO (mem_insn.reg0),
970 BLOCK_FOR_INSN (mem_insn.insn),
971 reg_next_inc_use);
972 if (!insn)
973 return false;
974
975 /* Even though we know the next use is an add or inc because it came
976 from the reg_next_inc_use, we must still reparse. */
977 if (!parse_add_or_inc (insn, false))
978 {
979 /* Next use was not an add. Look for one extra case. It could be
980 that we have:
981
982 *(a + b)
983 ...= a;
984 ...= b + a
985
986 if we reverse the operands in the mem ref we would
987 find this. Only try it once though. */
988 if (first_try && !mem_insn.reg1_is_const)
989 {
990 std::swap (mem_insn.reg0, mem_insn.reg1);
991 return find_inc (false);
992 }
993 else
994 return false;
995 }
996
997 /* Need to assure that none of the operands of the inc instruction are
998 assigned to by the mem insn. */
999 FOR_EACH_INSN_DEF (def, mem_insn.insn)
1000 {
1001 unsigned int regno = DF_REF_REGNO (def);
1002 if ((regno == REGNO (inc_insn.reg0))
1003 || (regno == REGNO (inc_insn.reg_res)))
1004 {
1005 if (dump_file)
1006 fprintf (dump_file, "inc conflicts with store failure.\n");
1007 return false;
1008 }
1009 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1010 {
1011 if (dump_file)
1012 fprintf (dump_file, "inc conflicts with store failure.\n");
1013 return false;
1014 }
1015 }
1016
1017 if (dump_file)
1018 dump_inc_insn (dump_file);
1019
1020 if (inc_insn.form == FORM_POST_ADD)
1021 {
1022 /* Make sure that there is no insn that assigns to inc_insn.res
1023 between the mem_insn and the inc_insn. */
1024 rtx_insn *other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1025 BLOCK_FOR_INSN (mem_insn.insn),
1026 reg_next_def);
1027 if (other_insn != inc_insn.insn)
1028 {
1029 if (dump_file)
1030 fprintf (dump_file,
1031 "result of add is assigned to between mem and inc insns.\n");
1032 return false;
1033 }
1034
1035 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1036 BLOCK_FOR_INSN (mem_insn.insn),
1037 reg_next_use);
1038 if (other_insn
1039 && (other_insn != inc_insn.insn)
1040 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1041 {
1042 if (dump_file)
1043 fprintf (dump_file,
1044 "result of add is used between mem and inc insns.\n");
1045 return false;
1046 }
1047
1048 /* For the post_add to work, the result_reg of the inc must not be
1049 used in the mem insn since this will become the new index
1050 register. */
1051 if (reg_overlap_mentioned_p (inc_insn.reg_res, PATTERN (mem_insn.insn)))
1052 {
1053 if (dump_file)
1054 fprintf (dump_file, "base reg replacement failure.\n");
1055 return false;
1056 }
1057 }
1058
1059 if (mem_insn.reg1_is_const)
1060 {
1061 if (mem_insn.reg1_val == 0)
1062 {
1063 if (!inc_insn.reg1_is_const)
1064 {
1065 /* The mem looks like *r0 and the rhs of the add has two
1066 registers. */
1067 int luid = DF_INSN_LUID (inc_insn.insn);
1068 if (inc_insn.form == FORM_POST_ADD)
1069 {
1070 /* The trick is that we are not going to increment r0,
1071 we are going to increment the result of the add insn.
1072 For this trick to be correct, the result reg of
1073 the inc must be a valid addressing reg. */
1074 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1075 if (GET_MODE (inc_insn.reg_res)
1076 != targetm.addr_space.address_mode (as))
1077 {
1078 if (dump_file)
1079 fprintf (dump_file, "base reg mode failure.\n");
1080 return false;
1081 }
1082
1083 /* We also need to make sure that the next use of
1084 inc result is after the inc. */
1085 other_insn
1086 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1087 if (other_insn && luid > DF_INSN_LUID (other_insn))
1088 return false;
1089
1090 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1091 std::swap (inc_insn.reg0, inc_insn.reg1);
1092 }
1093
1094 other_insn
1095 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1096 if (other_insn && luid > DF_INSN_LUID (other_insn))
1097 return false;
1098 }
1099 }
1100 /* Both the inc/add and the mem have a constant. Need to check
1101 that the constants are ok. */
1102 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1103 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1104 return false;
1105 }
1106 else
1107 {
1108 /* The mem insn is of the form *(a + b) where a and b are both
1109 regs. It may be that in order to match the add or inc we
1110 need to treat it as if it was *(b + a). It may also be that
1111 the add is of the form a + c where c does not match b and
1112 then we just abandon this. */
1113
1114 int luid = DF_INSN_LUID (inc_insn.insn);
1115 rtx_insn *other_insn;
1116
1117 /* Make sure this reg appears only once in this insn. */
1118 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1119 return false;
1120
1121 if (inc_insn.form == FORM_POST_ADD)
1122 {
1123 /* For this trick to be correct, the result reg of the inc
1124 must be a valid addressing reg. */
1125 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1126 if (GET_MODE (inc_insn.reg_res)
1127 != targetm.addr_space.address_mode (as))
1128 {
1129 if (dump_file)
1130 fprintf (dump_file, "base reg mode failure.\n");
1131 return false;
1132 }
1133
1134 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1135 {
1136 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1137 {
1138 /* See comment above on find_inc (false) call. */
1139 if (first_try)
1140 {
1141 std::swap (mem_insn.reg0, mem_insn.reg1);
1142 return find_inc (false);
1143 }
1144 else
1145 return false;
1146 }
1147
1148 /* Need to check that there are no assignments to b
1149 before the add insn. */
1150 other_insn
1151 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1152 if (other_insn && luid > DF_INSN_LUID (other_insn))
1153 return false;
1154 /* All ok for the next step. */
1155 }
1156 else
1157 {
1158 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1159 or else we would not have found the inc insn. */
1160 std::swap (mem_insn.reg0, mem_insn.reg1);
1161 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1162 {
1163 /* See comment above on find_inc (false) call. */
1164 if (first_try)
1165 return find_inc (false);
1166 else
1167 return false;
1168 }
1169 /* To have gotten here know that.
1170 *(b + a)
1171
1172 ... = (b + a)
1173
1174 We also know that the lhs of the inc is not b or a. We
1175 need to make sure that there are no assignments to b
1176 between the mem ref and the inc. */
1177
1178 other_insn
1179 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1180 if (other_insn && luid > DF_INSN_LUID (other_insn))
1181 return false;
1182 }
1183
1184 /* Need to check that the next use of the add result is later than
1185 add insn since this will be the reg incremented. */
1186 other_insn
1187 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1188 if (other_insn && luid > DF_INSN_LUID (other_insn))
1189 return false;
1190 }
1191 else /* FORM_POST_INC. There is less to check here because we
1192 know that operands must line up. */
1193 {
1194 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1195 /* See comment above on find_inc (false) call. */
1196 {
1197 if (first_try)
1198 {
1199 std::swap (mem_insn.reg0, mem_insn.reg1);
1200 return find_inc (false);
1201 }
1202 else
1203 return false;
1204 }
1205
1206 /* To have gotten here know that.
1207 *(a + b)
1208
1209 ... = (a + b)
1210
1211 We also know that the lhs of the inc is not b. We need to make
1212 sure that there are no assignments to b between the mem ref and
1213 the inc. */
1214 other_insn
1215 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1216 if (other_insn && luid > DF_INSN_LUID (other_insn))
1217 return false;
1218 }
1219 }
1220
1221 if (inc_insn.form == FORM_POST_INC)
1222 {
1223 other_insn
1224 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1225 /* When we found inc_insn, we were looking for the
1226 next add or inc, not the next insn that used the
1227 reg. Because we are going to increment the reg
1228 in this form, we need to make sure that there
1229 were no intervening uses of reg. */
1230 if (inc_insn.insn != other_insn)
1231 return false;
1232 }
1233
1234 return try_merge ();
1235 }
1236
1237
1238 /* A recursive function that walks ADDRESS_OF_X to find all of the mem
1239 uses in pat that could be used as an auto inc or dec. It then
1240 calls FIND_INC for each one. */
1241
1242 static bool
1243 find_mem (rtx *address_of_x)
1244 {
1245 rtx x = *address_of_x;
1246 enum rtx_code code = GET_CODE (x);
1247 const char *const fmt = GET_RTX_FORMAT (code);
1248 int i;
1249
1250 if (code == MEM && REG_P (XEXP (x, 0)))
1251 {
1252 /* Match with *reg0. */
1253 mem_insn.mem_loc = address_of_x;
1254 mem_insn.reg0 = XEXP (x, 0);
1255 mem_insn.reg1_is_const = true;
1256 mem_insn.reg1_val = 0;
1257 mem_insn.reg1 = GEN_INT (0);
1258 if (find_inc (true))
1259 return true;
1260 }
1261 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1262 && REG_P (XEXP (XEXP (x, 0), 0)))
1263 {
1264 rtx reg1 = XEXP (XEXP (x, 0), 1);
1265 mem_insn.mem_loc = address_of_x;
1266 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1267 mem_insn.reg1 = reg1;
1268 if (CONST_INT_P (reg1))
1269 {
1270 mem_insn.reg1_is_const = true;
1271 /* Match with *(reg0 + c) where c is a const. */
1272 mem_insn.reg1_val = INTVAL (reg1);
1273 if (find_inc (true))
1274 return true;
1275 }
1276 else if (REG_P (reg1))
1277 {
1278 /* Match with *(reg0 + reg1). */
1279 mem_insn.reg1_is_const = false;
1280 if (find_inc (true))
1281 return true;
1282 }
1283 }
1284
1285 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1286 {
1287 /* If REG occurs inside a MEM used in a bit-field reference,
1288 that is unacceptable. */
1289 return false;
1290 }
1291
1292 /* Time for some deep diving. */
1293 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1294 {
1295 if (fmt[i] == 'e')
1296 {
1297 if (find_mem (&XEXP (x, i)))
1298 return true;
1299 }
1300 else if (fmt[i] == 'E')
1301 {
1302 int j;
1303 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1304 if (find_mem (&XVECEXP (x, i, j)))
1305 return true;
1306 }
1307 }
1308 return false;
1309 }
1310
1311
1312 /* Try to combine all incs and decs by constant values with memory
1313 references in BB. */
1314
1315 static void
1316 merge_in_block (int max_reg, basic_block bb)
1317 {
1318 rtx_insn *insn;
1319 rtx_insn *curr;
1320 int success_in_block = 0;
1321
1322 if (dump_file)
1323 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1324
1325 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1326 {
1327 bool insn_is_add_or_inc = true;
1328
1329 if (!NONDEBUG_INSN_P (insn))
1330 continue;
1331
1332 /* This continue is deliberate. We do not want the uses of the
1333 jump put into reg_next_use because it is not considered safe to
1334 combine a preincrement with a jump. */
1335 if (JUMP_P (insn))
1336 continue;
1337
1338 if (dump_file)
1339 dump_insn_slim (dump_file, insn);
1340
1341 /* Does this instruction increment or decrement a register? */
1342 if (parse_add_or_inc (insn, true))
1343 {
1344 int regno = REGNO (inc_insn.reg_res);
1345 /* Cannot handle case where there are three separate regs
1346 before a mem ref. Too many moves would be needed to be
1347 profitable. */
1348 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1349 {
1350 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1351 if (mem_insn.insn)
1352 {
1353 bool ok = true;
1354 if (!inc_insn.reg1_is_const)
1355 {
1356 /* We are only here if we are going to try a
1357 HAVE_*_MODIFY_REG type transformation. c is a
1358 reg and we must sure that the path from the
1359 inc_insn to the mem_insn.insn is both def and use
1360 clear of c because the inc insn is going to move
1361 into the mem_insn.insn. */
1362 int luid = DF_INSN_LUID (mem_insn.insn);
1363 rtx_insn *other_insn
1364 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1365
1366 if (other_insn && luid > DF_INSN_LUID (other_insn))
1367 ok = false;
1368
1369 other_insn
1370 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1371
1372 if (other_insn && luid > DF_INSN_LUID (other_insn))
1373 ok = false;
1374 }
1375
1376 if (dump_file)
1377 dump_inc_insn (dump_file);
1378
1379 if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
1380 {
1381 if (dump_file)
1382 dump_mem_insn (dump_file);
1383 if (try_merge ())
1384 {
1385 success_in_block++;
1386 insn_is_add_or_inc = false;
1387 }
1388 }
1389 }
1390 }
1391 }
1392 else
1393 {
1394 insn_is_add_or_inc = false;
1395 mem_insn.insn = insn;
1396 if (find_mem (&PATTERN (insn)))
1397 success_in_block++;
1398 }
1399
1400 /* If the inc insn was merged with a mem, the inc insn is gone
1401 and there is noting to update. */
1402 if (df_insn_info *insn_info = DF_INSN_INFO_GET (insn))
1403 {
1404 df_ref def, use;
1405
1406 /* Need to update next use. */
1407 FOR_EACH_INSN_INFO_DEF (def, insn_info)
1408 {
1409 reg_next_use[DF_REF_REGNO (def)] = NULL;
1410 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1411 reg_next_def[DF_REF_REGNO (def)] = insn;
1412 }
1413
1414 FOR_EACH_INSN_INFO_USE (use, insn_info)
1415 {
1416 reg_next_use[DF_REF_REGNO (use)] = insn;
1417 if (insn_is_add_or_inc)
1418 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1419 else
1420 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
1421 }
1422 }
1423 else if (dump_file)
1424 fprintf (dump_file, "skipping update of deleted insn %d\n",
1425 INSN_UID (insn));
1426 }
1427
1428 /* If we were successful, try again. There may have been several
1429 opportunities that were interleaved. This is rare but
1430 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1431 if (success_in_block)
1432 {
1433 /* In this case, we must clear these vectors since the trick of
1434 testing if the stale insn in the block will not work. */
1435 memset (reg_next_use, 0, max_reg * sizeof (rtx));
1436 memset (reg_next_inc_use, 0, max_reg * sizeof (rtx));
1437 memset (reg_next_def, 0, max_reg * sizeof (rtx));
1438 df_recompute_luids (bb);
1439 merge_in_block (max_reg, bb);
1440 }
1441 }
1442
1443 /* Discover auto-inc auto-dec instructions. */
1444
1445 namespace {
1446
1447 const pass_data pass_data_inc_dec =
1448 {
1449 RTL_PASS, /* type */
1450 "auto_inc_dec", /* name */
1451 OPTGROUP_NONE, /* optinfo_flags */
1452 TV_AUTO_INC_DEC, /* tv_id */
1453 0, /* properties_required */
1454 0, /* properties_provided */
1455 0, /* properties_destroyed */
1456 0, /* todo_flags_start */
1457 TODO_df_finish, /* todo_flags_finish */
1458 };
1459
1460 class pass_inc_dec : public rtl_opt_pass
1461 {
1462 public:
1463 pass_inc_dec (gcc::context *ctxt)
1464 : rtl_opt_pass (pass_data_inc_dec, ctxt)
1465 {}
1466
1467 /* opt_pass methods: */
1468 virtual bool gate (function *)
1469 {
1470 if (!AUTO_INC_DEC)
1471 return false;
1472
1473 return (optimize > 0 && flag_auto_inc_dec);
1474 }
1475
1476
1477 unsigned int execute (function *);
1478
1479 }; // class pass_inc_dec
1480
1481 unsigned int
1482 pass_inc_dec::execute (function *fun ATTRIBUTE_UNUSED)
1483 {
1484 if (!AUTO_INC_DEC)
1485 return 0;
1486
1487 basic_block bb;
1488 int max_reg = max_reg_num ();
1489
1490 if (!initialized)
1491 init_decision_table ();
1492
1493 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1494
1495 df_note_add_problem ();
1496 df_analyze ();
1497
1498 reg_next_use = XCNEWVEC (rtx_insn *, max_reg);
1499 reg_next_inc_use = XCNEWVEC (rtx_insn *, max_reg);
1500 reg_next_def = XCNEWVEC (rtx_insn *, max_reg);
1501 FOR_EACH_BB_FN (bb, fun)
1502 merge_in_block (max_reg, bb);
1503
1504 free (reg_next_use);
1505 free (reg_next_inc_use);
1506 free (reg_next_def);
1507
1508 mem_tmp = NULL;
1509
1510 return 0;
1511 }
1512
1513 } // anon namespace
1514
1515 rtl_opt_pass *
1516 make_pass_inc_dec (gcc::context *ctxt)
1517 {
1518 return new pass_inc_dec (ctxt);
1519 }