]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/basic-block.h
basic-block.h: Update the prototypes of cached_make_edge and rtl_make_eh_edge.
[thirdparty/gcc.git] / gcc / basic-block.h
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
24
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "errors.h"
33
34 /* Head of register set linked list. */
35 typedef bitmap_head regset_head;
36
37 /* A pointer to a regset_head. */
38 typedef bitmap regset;
39
40 /* Allocate a register set with oballoc. */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42
43 /* Do any cleanup needed on a regset when it is no longer used. */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45
46 /* Initialize a new regset. */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48
49 /* Clear a register set by freeing up the linked list. */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51
52 /* Copy a register set to another register set. */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54
55 /* Compare two register sets. */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57
58 /* `and' a register set with a second register set. */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60
61 /* `and' the complement of a register set with a register set. */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63
64 /* Inclusive or a register set with a second register set. */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66
67 /* Exclusive or a register set with a second register set. */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73
74 /* Clear a single register in a register set. */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76
77 /* Set a single register in a register set. */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79
80 /* Return true if a register is set in a register set. */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82
83 /* Copy the hard registers in a register set to the hard register set. */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
86 do { \
87 CLEAR_HARD_REG_SET (TO); \
88 reg_set_to_hard_reg_set (&TO, FROM); \
89 } while (0)
90
91 typedef bitmap_iterator reg_set_iterator;
92
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94 register number and executing CODE for all registers that are set. */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
96 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99 REGNUM to the register number and executing CODE for all registers that are
100 set in the first regset and not set in the second. */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105 REGNUM to the register number and executing CODE for all registers that are
106 set in both regsets. */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109
110 /* Type we use to hold basic block counters. Should be at least
111 64bit. Although a counter cannot be negative, we use a signed
112 type, because erroneous negative counts can be generated when the
113 flow graph is manipulated by various optimizations. A signed type
114 makes those easy to detect. */
115 typedef HOST_WIDEST_INT gcov_type;
116
117 /* Control flow edge information. */
118 struct edge_def GTY(())
119 {
120 /* The two blocks at the ends of the edge. */
121 struct basic_block_def *src;
122 struct basic_block_def *dest;
123
124 /* Instructions queued on the edge. */
125 union edge_def_insns {
126 rtx GTY ((tag ("0"))) r;
127 tree GTY ((tag ("1"))) t;
128 } GTY ((desc ("ir_type ()"))) insns;
129
130 /* Auxiliary info specific to a pass. */
131 PTR GTY ((skip (""))) aux;
132
133 /* Location of any goto implicit in the edge, during tree-ssa. */
134 source_locus goto_locus;
135
136 int flags; /* see EDGE_* below */
137 int probability; /* biased by REG_BR_PROB_BASE */
138 gcov_type count; /* Expected number of executions calculated
139 in profile.c */
140
141 /* The index number corresponding to this edge in the edge vector
142 dest->preds. */
143 unsigned int dest_idx;
144 };
145
146 typedef struct edge_def *edge;
147 DEF_VEC_GC_P(edge);
148
149 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
150 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
151 label, or eh */
152 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
153 like an exception, or sibcall */
154 #define EDGE_EH 8 /* Exception throw */
155 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
156 #define EDGE_DFS_BACK 32 /* A backwards edge */
157 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
158 flow. */
159 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
160 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
161 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
162 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
163 predicate is nonzero. */
164 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
165 predicate is zero. */
166 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
167 valid during SSA-CCP. */
168 #define EDGE_CROSSING 8192 /* Edge crosses between hot
169 and cold sections, when we
170 do partitioning. */
171 #define EDGE_ALL_FLAGS 16383
172
173 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
174
175 /* Counter summary from the last set of coverage counts read by
176 profile.c. */
177 extern const struct gcov_ctr_summary *profile_info;
178
179 /* Declared in cfgloop.h. */
180 struct loop;
181 struct loops;
182
183 /* Declared in tree-flow.h. */
184 struct bb_ann_d;
185
186 /* A basic block is a sequence of instructions with only entry and
187 only one exit. If any one of the instructions are executed, they
188 will all be executed, and in sequence from first to last.
189
190 There may be COND_EXEC instructions in the basic block. The
191 COND_EXEC *instructions* will be executed -- but if the condition
192 is false the conditionally executed *expressions* will of course
193 not be executed. We don't consider the conditionally executed
194 expression (which might have side-effects) to be in a separate
195 basic block because the program counter will always be at the same
196 location after the COND_EXEC instruction, regardless of whether the
197 condition is true or not.
198
199 Basic blocks need not start with a label nor end with a jump insn.
200 For example, a previous basic block may just "conditionally fall"
201 into the succeeding basic block, and the last basic block need not
202 end with a jump insn. Block 0 is a descendant of the entry block.
203
204 A basic block beginning with two labels cannot have notes between
205 the labels.
206
207 Data for jump tables are stored in jump_insns that occur in no
208 basic block even though these insns can follow or precede insns in
209 basic blocks. */
210
211 /* Basic block information indexed by block number. */
212 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
213 {
214 /* The first and last insns of the block. */
215 rtx head_;
216 rtx end_;
217
218 /* Pointers to the first and last trees of the block. */
219 tree stmt_list;
220
221 /* The edges into and out of the block. */
222 VEC(edge) *preds;
223 VEC(edge) *succs;
224
225 /* The registers that are live on entry to this block. */
226 bitmap GTY ((skip (""))) global_live_at_start;
227
228 /* The registers that are live on exit from this block. */
229 bitmap GTY ((skip (""))) global_live_at_end;
230
231 /* Auxiliary info specific to a pass. */
232 PTR GTY ((skip (""))) aux;
233
234 /* Innermost loop containing the block. */
235 struct loop * GTY ((skip (""))) loop_father;
236
237 /* The dominance and postdominance information node. */
238 struct et_node * GTY ((skip (""))) dom[2];
239
240 /* Previous and next blocks in the chain. */
241 struct basic_block_def *prev_bb;
242 struct basic_block_def *next_bb;
243
244 /* The data used by basic block copying and reordering functions. */
245 struct reorder_block_def * GTY ((skip (""))) rbi;
246
247 /* Annotations used at the tree level. */
248 struct bb_ann_d *tree_annotations;
249
250 /* Expected number of executions: calculated in profile.c. */
251 gcov_type count;
252
253 /* The index of this block. */
254 int index;
255
256 /* The loop depth of this block. */
257 int loop_depth;
258
259 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
260 int frequency;
261
262 /* Various flags. See BB_* below. */
263 int flags;
264 };
265
266 typedef struct basic_block_def *basic_block;
267
268 /* Structure to hold information about the blocks during reordering and
269 copying. */
270
271 typedef struct reorder_block_def
272 {
273 rtx header;
274 rtx footer;
275 basic_block next;
276 basic_block original;
277 /* Used by loop copying. */
278 basic_block copy;
279 int duplicated;
280 int copy_number;
281
282 /* These fields are used by bb-reorder pass. */
283 int visited;
284 } *reorder_block_def_p;
285
286 #define BB_FREQ_MAX 10000
287
288 /* Masks for basic_block.flags.
289
290 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
291 the compilation, so they are never cleared.
292
293 All other flags may be cleared by clear_bb_flags(). It is generally
294 a bad idea to rely on any flags being up-to-date. */
295
296 enum
297 {
298
299 /* Set if insns in BB have are modified. Used for updating liveness info. */
300 BB_DIRTY = 1,
301
302 /* Only set on blocks that have just been created by create_bb. */
303 BB_NEW = 2,
304
305 /* Set by find_unreachable_blocks. Do not rely on this being set in any
306 pass. */
307 BB_REACHABLE = 4,
308
309 /* Set for blocks in an irreducible loop by loop analysis. */
310 BB_IRREDUCIBLE_LOOP = 8,
311
312 /* Set on blocks that may actually not be single-entry single-exit block. */
313 BB_SUPERBLOCK = 16,
314
315 /* Set on basic blocks that the scheduler should not touch. This is used
316 by SMS to prevent other schedulers from messing with the loop schedule. */
317 BB_DISABLE_SCHEDULE = 32,
318
319 /* Set on blocks that should be put in a hot section. */
320 BB_HOT_PARTITION = 64,
321
322 /* Set on blocks that should be put in a cold section. */
323 BB_COLD_PARTITION = 128
324 };
325
326 /* Dummy flag for convenience in the hot/cold partitioning code. */
327 #define BB_UNPARTITIONED 0
328
329 /* Partitions, to be used when partitioning hot and cold basic blocks into
330 separate sections. */
331 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
332 #define BB_SET_PARTITION(bb, part) do { \
333 basic_block bb_ = (bb); \
334 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
335 | (part)); \
336 } while (0)
337
338 #define BB_COPY_PARTITION(dstbb, srcbb) \
339 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
340
341 /* Number of basic blocks in the current function. */
342
343 extern int n_basic_blocks;
344
345 /* First free basic block number. */
346
347 extern int last_basic_block;
348
349 /* Number of edges in the current function. */
350
351 extern int n_edges;
352
353 /* TRUE if we should re-run loop discovery after threading jumps, FALSE
354 otherwise. */
355 extern bool rediscover_loops_after_threading;
356
357 /* Signalize the status of profile information in the CFG. */
358 extern enum profile_status
359 {
360 PROFILE_ABSENT,
361 PROFILE_GUESSED,
362 PROFILE_READ
363 } profile_status;
364
365 /* Index by basic block number, get basic block struct info. */
366
367 extern GTY(()) varray_type basic_block_info;
368
369 #define BASIC_BLOCK(N) (VARRAY_BB (basic_block_info, (N)))
370
371 /* For iterating over basic blocks. */
372 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
373 for (BB = FROM; BB != TO; BB = BB->DIR)
374
375 #define FOR_EACH_BB(BB) \
376 FOR_BB_BETWEEN (BB, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
377
378 #define FOR_EACH_BB_REVERSE(BB) \
379 FOR_BB_BETWEEN (BB, EXIT_BLOCK_PTR->prev_bb, ENTRY_BLOCK_PTR, prev_bb)
380
381 /* For iterating over insns in basic block. */
382 #define FOR_BB_INSNS(BB, INSN) \
383 for ((INSN) = BB_HEAD (BB); \
384 (INSN) != NEXT_INSN (BB_END (BB)); \
385 (INSN) = NEXT_INSN (INSN))
386
387 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
388 for ((INSN) = BB_END (BB); \
389 (INSN) != PREV_INSN (BB_HEAD (BB)); \
390 (INSN) = PREV_INSN (INSN))
391
392 /* Cycles through _all_ basic blocks, even the fake ones (entry and
393 exit block). */
394
395 #define FOR_ALL_BB(BB) \
396 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
397
398 /* Special labels found during CFG build. */
399
400 extern GTY(()) rtx label_value_list;
401
402 extern bitmap_obstack reg_obstack;
403
404 /* Indexed by n, gives number of basic block that (REG n) is used in.
405 If the value is REG_BLOCK_GLOBAL (-2),
406 it means (REG n) is used in more than one basic block.
407 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
408 This information remains valid for the rest of the compilation
409 of the current function; it is used to control register allocation. */
410
411 #define REG_BLOCK_UNKNOWN -1
412 #define REG_BLOCK_GLOBAL -2
413
414 #define REG_BASIC_BLOCK(N) (VARRAY_REG (reg_n_info, N)->basic_block)
415 \f
416 /* Stuff for recording basic block info. */
417
418 #define BB_HEAD(B) (B)->head_
419 #define BB_END(B) (B)->end_
420
421 /* Special block numbers [markers] for entry and exit. */
422 #define ENTRY_BLOCK (-1)
423 #define EXIT_BLOCK (-2)
424
425 /* Special block number not valid for any block. */
426 #define INVALID_BLOCK (-3)
427
428 /* Similarly, block pointers for the edge list. */
429 extern GTY(()) basic_block ENTRY_BLOCK_PTR;
430 extern GTY(()) basic_block EXIT_BLOCK_PTR;
431
432 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
433 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
434
435 extern void compute_bb_for_insn (void);
436 extern void free_bb_for_insn (void);
437 extern void update_bb_for_insn (basic_block);
438
439 extern void free_basic_block_vars (void);
440
441 extern void insert_insn_on_edge (rtx, edge);
442 bool safe_insert_insn_on_edge (rtx, edge);
443
444 extern void commit_edge_insertions (void);
445 extern void commit_edge_insertions_watch_calls (void);
446
447 extern void remove_fake_edges (void);
448 extern void remove_fake_exit_edges (void);
449 extern void add_noreturn_fake_exit_edges (void);
450 extern void connect_infinite_loops_to_exit (void);
451 extern edge unchecked_make_edge (basic_block, basic_block, int);
452 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
453 extern edge make_edge (basic_block, basic_block, int);
454 extern edge make_single_succ_edge (basic_block, basic_block, int);
455 extern void remove_edge (edge);
456 extern void redirect_edge_succ (edge, basic_block);
457 extern edge redirect_edge_succ_nodup (edge, basic_block);
458 extern void redirect_edge_pred (edge, basic_block);
459 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
460 extern void clear_bb_flags (void);
461 extern void flow_reverse_top_sort_order_compute (int *);
462 extern int flow_depth_first_order_compute (int *, int *);
463 extern int dfs_enumerate_from (basic_block, int,
464 bool (*)(basic_block, void *),
465 basic_block *, int, void *);
466 extern void compute_dominance_frontiers (bitmap *);
467 extern void dump_edge_info (FILE *, edge, int);
468 extern void brief_dump_cfg (FILE *);
469 extern void clear_edges (void);
470 extern rtx first_insn_after_basic_block_note (basic_block);
471
472 /* Structure to group all of the information to process IF-THEN and
473 IF-THEN-ELSE blocks for the conditional execution support. This
474 needs to be in a public file in case the IFCVT macros call
475 functions passing the ce_if_block data structure. */
476
477 typedef struct ce_if_block
478 {
479 basic_block test_bb; /* First test block. */
480 basic_block then_bb; /* THEN block. */
481 basic_block else_bb; /* ELSE block or NULL. */
482 basic_block join_bb; /* Join THEN/ELSE blocks. */
483 basic_block last_test_bb; /* Last bb to hold && or || tests. */
484 int num_multiple_test_blocks; /* # of && and || basic blocks. */
485 int num_and_and_blocks; /* # of && blocks. */
486 int num_or_or_blocks; /* # of || blocks. */
487 int num_multiple_test_insns; /* # of insns in && and || blocks. */
488 int and_and_p; /* Complex test is &&. */
489 int num_then_insns; /* # of insns in THEN block. */
490 int num_else_insns; /* # of insns in ELSE block. */
491 int pass; /* Pass number. */
492
493 #ifdef IFCVT_EXTRA_FIELDS
494 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
495 #endif
496
497 } ce_if_block_t;
498
499 /* This structure maintains an edge list vector. */
500 struct edge_list
501 {
502 int num_blocks;
503 int num_edges;
504 edge *index_to_edge;
505 };
506
507 /* This is the value which indicates no edge is present. */
508 #define EDGE_INDEX_NO_EDGE -1
509
510 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
511 if there is no edge between the 2 basic blocks. */
512 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
513
514 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
515 block which is either the pred or succ end of the indexed edge. */
516 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
517 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
518
519 /* INDEX_EDGE returns a pointer to the edge. */
520 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
521
522 /* Number of edges in the compressed edge list. */
523 #define NUM_EDGES(el) ((el)->num_edges)
524
525 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
526 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
527 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
528
529 /* BB is assumed to contain conditional jump. Return the branch edge. */
530 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
531 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
532
533 /* Return expected execution frequency of the edge E. */
534 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
535 * (e)->probability \
536 + REG_BR_PROB_BASE / 2) \
537 / REG_BR_PROB_BASE)
538
539 /* Return nonzero if edge is critical. */
540 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
541 && EDGE_COUNT ((e)->dest->preds) >= 2)
542
543 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
544 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
545 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
546 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
547
548 /* Returns true if BB has precisely one successor. */
549
550 static inline bool
551 single_succ_p (basic_block bb)
552 {
553 return EDGE_COUNT (bb->succs) == 1;
554 }
555
556 /* Returns true if BB has precisely one predecessor. */
557
558 static inline bool
559 single_pred_p (basic_block bb)
560 {
561 return EDGE_COUNT (bb->preds) == 1;
562 }
563
564 /* Returns the single successor edge of basic block BB. Aborts if
565 BB does not have exactly one successor. */
566
567 static inline edge
568 single_succ_edge (basic_block bb)
569 {
570 gcc_assert (single_succ_p (bb));
571 return EDGE_SUCC (bb, 0);
572 }
573
574 /* Returns the single predecessor edge of basic block BB. Aborts
575 if BB does not have exactly one predecessor. */
576
577 static inline edge
578 single_pred_edge (basic_block bb)
579 {
580 gcc_assert (single_pred_p (bb));
581 return EDGE_PRED (bb, 0);
582 }
583
584 /* Returns the single successor block of basic block BB. Aborts
585 if BB does not have exactly one successor. */
586
587 static inline basic_block
588 single_succ (basic_block bb)
589 {
590 return single_succ_edge (bb)->dest;
591 }
592
593 /* Returns the single predecessor block of basic block BB. Aborts
594 if BB does not have exactly one predecessor.*/
595
596 static inline basic_block
597 single_pred (basic_block bb)
598 {
599 return single_pred_edge (bb)->src;
600 }
601
602 /* Iterator object for edges. */
603
604 typedef struct {
605 unsigned index;
606 VEC(edge) **container;
607 } edge_iterator;
608
609 static inline VEC(edge) *
610 ei_container (edge_iterator i)
611 {
612 gcc_assert (i.container);
613 return *i.container;
614 }
615
616 #define ei_start(iter) ei_start_1 (&(iter))
617 #define ei_last(iter) ei_last_1 (&(iter))
618
619 /* Return an iterator pointing to the start of an edge vector. */
620 static inline edge_iterator
621 ei_start_1 (VEC(edge) **ev)
622 {
623 edge_iterator i;
624
625 i.index = 0;
626 i.container = ev;
627
628 return i;
629 }
630
631 /* Return an iterator pointing to the last element of an edge
632 vector. */
633 static inline edge_iterator
634 ei_last_1 (VEC(edge) **ev)
635 {
636 edge_iterator i;
637
638 i.index = EDGE_COUNT (*ev) - 1;
639 i.container = ev;
640
641 return i;
642 }
643
644 /* Is the iterator `i' at the end of the sequence? */
645 static inline bool
646 ei_end_p (edge_iterator i)
647 {
648 return (i.index == EDGE_COUNT (ei_container (i)));
649 }
650
651 /* Is the iterator `i' at one position before the end of the
652 sequence? */
653 static inline bool
654 ei_one_before_end_p (edge_iterator i)
655 {
656 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
657 }
658
659 /* Advance the iterator to the next element. */
660 static inline void
661 ei_next (edge_iterator *i)
662 {
663 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
664 i->index++;
665 }
666
667 /* Move the iterator to the previous element. */
668 static inline void
669 ei_prev (edge_iterator *i)
670 {
671 gcc_assert (i->index > 0);
672 i->index--;
673 }
674
675 /* Return the edge pointed to by the iterator `i'. */
676 static inline edge
677 ei_edge (edge_iterator i)
678 {
679 return EDGE_I (ei_container (i), i.index);
680 }
681
682 /* Return an edge pointed to by the iterator. Do it safely so that
683 NULL is returned when the iterator is pointing at the end of the
684 sequence. */
685 static inline edge
686 ei_safe_edge (edge_iterator i)
687 {
688 return !ei_end_p (i) ? ei_edge (i) : NULL;
689 }
690
691 /* This macro serves as a convenient way to iterate each edge in a
692 vector of predecessor or successor edges. It must not be used when
693 an element might be removed during the traversal, otherwise
694 elements will be missed. Instead, use a for-loop like that shown
695 in the following pseudo-code:
696
697 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
698 {
699 IF (e != taken_edge)
700 remove_edge (e);
701 ELSE
702 ei_next (&ei);
703 }
704 */
705
706 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
707 for ((EDGE) = NULL, (ITER) = ei_start ((EDGE_VEC)); \
708 ((EDGE) = ei_safe_edge ((ITER))); \
709 ei_next (&(ITER)))
710
711 struct edge_list * create_edge_list (void);
712 void free_edge_list (struct edge_list *);
713 void print_edge_list (FILE *, struct edge_list *);
714 void verify_edge_list (FILE *, struct edge_list *);
715 int find_edge_index (struct edge_list *, basic_block, basic_block);
716 edge find_edge (basic_block, basic_block);
717
718
719 enum update_life_extent
720 {
721 UPDATE_LIFE_LOCAL = 0,
722 UPDATE_LIFE_GLOBAL = 1,
723 UPDATE_LIFE_GLOBAL_RM_NOTES = 2
724 };
725
726 /* Flags for life_analysis and update_life_info. */
727
728 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
729 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
730 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
731 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
732 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
733 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
734 by dead code removal. */
735 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
736 #define PROP_EQUAL_NOTES 128 /* Take into account REG_EQUAL notes. */
737 #define PROP_SCAN_DEAD_STORES 256 /* Scan for dead code. */
738 #define PROP_ASM_SCAN 512 /* Internal flag used within flow.c
739 to flag analysis of asms. */
740 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
741 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
742 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
743 | PROP_ALLOW_CFG_CHANGES \
744 | PROP_SCAN_DEAD_STORES)
745 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
746 | PROP_KILL_DEAD_CODE \
747 | PROP_SCAN_DEAD_CODE \
748 | PROP_SCAN_DEAD_STORES)
749
750 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
751 except for edge forwarding */
752 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
753 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
754 to care REG_DEAD notes. */
755 #define CLEANUP_PRE_LOOP 8 /* Take care to preserve syntactic loop
756 notes. */
757 #define CLEANUP_UPDATE_LIFE 16 /* Keep life information up to date. */
758 #define CLEANUP_THREADING 32 /* Do jump threading. */
759 #define CLEANUP_NO_INSN_DEL 64 /* Do not try to delete trivially dead
760 insns. */
761 #define CLEANUP_CFGLAYOUT 128 /* Do cleanup in cfglayout mode. */
762 #define CLEANUP_LOG_LINKS 256 /* Update log links. */
763
764 extern void life_analysis (FILE *, int);
765 extern int update_life_info (sbitmap, enum update_life_extent, int);
766 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
767 extern int count_or_remove_death_notes (sbitmap, int);
768 extern int propagate_block (basic_block, regset, regset, regset, int);
769
770 struct propagate_block_info;
771 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
772 extern struct propagate_block_info *init_propagate_block_info
773 (basic_block, regset, regset, regset, int);
774 extern void free_propagate_block_info (struct propagate_block_info *);
775
776 /* In lcm.c */
777 extern struct edge_list *pre_edge_lcm (FILE *, int, sbitmap *, sbitmap *,
778 sbitmap *, sbitmap *, sbitmap **,
779 sbitmap **);
780 extern struct edge_list *pre_edge_rev_lcm (FILE *, int, sbitmap *,
781 sbitmap *, sbitmap *,
782 sbitmap *, sbitmap **,
783 sbitmap **);
784 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
785 extern int optimize_mode_switching (FILE *);
786
787 /* In predict.c */
788 extern void estimate_probability (struct loops *);
789 extern void expected_value_to_br_prob (void);
790 extern bool maybe_hot_bb_p (basic_block);
791 extern bool probably_cold_bb_p (basic_block);
792 extern bool probably_never_executed_bb_p (basic_block);
793 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
794 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
795 extern void tree_predict_edge (edge, enum br_predictor, int);
796 extern void rtl_predict_edge (edge, enum br_predictor, int);
797 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
798 extern void guess_outgoing_edge_probabilities (basic_block);
799
800 /* In flow.c */
801 extern void init_flow (void);
802 extern void debug_bb (basic_block);
803 extern basic_block debug_bb_n (int);
804 extern void dump_regset (regset, FILE *);
805 extern void debug_regset (regset);
806 extern void allocate_reg_life_data (void);
807 extern void expunge_block (basic_block);
808 extern void link_block (basic_block, basic_block);
809 extern void unlink_block (basic_block);
810 extern void compact_blocks (void);
811 extern basic_block alloc_block (void);
812 extern void find_unreachable_blocks (void);
813 extern int delete_noop_moves (void);
814 extern basic_block force_nonfallthru (edge);
815 extern rtx block_label (basic_block);
816 extern bool forwarder_block_p (basic_block);
817 extern bool purge_all_dead_edges (int);
818 extern bool purge_dead_edges (basic_block);
819 extern void find_many_sub_basic_blocks (sbitmap);
820 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
821 extern bool can_fallthru (basic_block, basic_block);
822 extern bool could_fall_through (basic_block, basic_block);
823 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
824 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
825 extern void alloc_aux_for_block (basic_block, int);
826 extern void alloc_aux_for_blocks (int);
827 extern void clear_aux_for_blocks (void);
828 extern void free_aux_for_blocks (void);
829 extern void alloc_aux_for_edge (edge, int);
830 extern void alloc_aux_for_edges (int);
831 extern void clear_aux_for_edges (void);
832 extern void free_aux_for_edges (void);
833 extern void find_basic_blocks (rtx);
834 extern bool cleanup_cfg (int);
835 extern bool delete_unreachable_blocks (void);
836 extern bool merge_seq_blocks (void);
837
838 typedef struct conflict_graph_def *conflict_graph;
839
840 /* Callback function when enumerating conflicts. The arguments are
841 the smaller and larger regno in the conflict. Returns zero if
842 enumeration is to continue, nonzero to halt enumeration. */
843 typedef int (*conflict_graph_enum_fn) (int, int, void *);
844
845
846 /* Prototypes of operations on conflict graphs. */
847
848 extern conflict_graph conflict_graph_new
849 (int);
850 extern void conflict_graph_delete (conflict_graph);
851 extern int conflict_graph_add (conflict_graph, int, int);
852 extern int conflict_graph_conflict_p (conflict_graph, int, int);
853 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
854 void *);
855 extern void conflict_graph_merge_regs (conflict_graph, int, int);
856 extern void conflict_graph_print (conflict_graph, FILE*);
857 extern bool mark_dfs_back_edges (void);
858 extern void set_edge_can_fallthru_flag (void);
859 extern void update_br_prob_note (basic_block);
860 extern void fixup_abnormal_edges (void);
861 extern bool inside_basic_block_p (rtx);
862 extern bool control_flow_insn_p (rtx);
863
864 /* In bb-reorder.c */
865 extern void reorder_basic_blocks (unsigned int);
866 extern void duplicate_computed_gotos (void);
867 extern void partition_hot_cold_basic_blocks (void);
868
869 /* In cfg.c */
870 extern void alloc_rbi_pool (void);
871 extern void initialize_bb_rbi (basic_block bb);
872 extern void free_rbi_pool (void);
873
874 /* In dominance.c */
875
876 enum cdi_direction
877 {
878 CDI_DOMINATORS,
879 CDI_POST_DOMINATORS
880 };
881
882 enum dom_state
883 {
884 DOM_NONE, /* Not computed at all. */
885 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
886 DOM_OK /* Everything is ok. */
887 };
888
889 extern enum dom_state dom_computed[2];
890
891 extern bool dom_info_available_p (enum cdi_direction);
892 extern void calculate_dominance_info (enum cdi_direction);
893 extern void free_dominance_info (enum cdi_direction);
894 extern basic_block nearest_common_dominator (enum cdi_direction,
895 basic_block, basic_block);
896 extern void set_immediate_dominator (enum cdi_direction, basic_block,
897 basic_block);
898 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
899 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
900 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
901 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
902 unsigned, basic_block *);
903 extern void add_to_dominance_info (enum cdi_direction, basic_block);
904 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
905 basic_block recount_dominator (enum cdi_direction, basic_block);
906 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
907 basic_block);
908 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
909 extern void verify_dominators (enum cdi_direction);
910 extern basic_block first_dom_son (enum cdi_direction, basic_block);
911 extern basic_block next_dom_son (enum cdi_direction, basic_block);
912 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
913 extern void break_superblocks (void);
914 extern void check_bb_profile (basic_block, FILE *);
915 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
916
917 #include "cfghooks.h"
918
919 #endif /* GCC_BASIC_BLOCK_H */