]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/basic-block.h
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / basic-block.h
1 /* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22
23 #include "predict.h"
24 #include "vec.h"
25 #include "function.h"
26
27 /* Use gcov_type to hold basic block counters. Should be at least
28 64bit. Although a counter cannot be negative, we use a signed
29 type, because erroneous negative counts can be generated when the
30 flow graph is manipulated by various optimizations. A signed type
31 makes those easy to detect. */
32
33 /* Control flow edge information. */
34 struct GTY((user)) edge_def {
35 /* The two blocks at the ends of the edge. */
36 basic_block src;
37 basic_block dest;
38
39 /* Instructions queued on the edge. */
40 union edge_def_insns {
41 gimple_seq g;
42 rtx r;
43 } insns;
44
45 /* Auxiliary info specific to a pass. */
46 PTR aux;
47
48 /* Location of any goto implicit in the edge. */
49 location_t goto_locus;
50
51 /* The index number corresponding to this edge in the edge vector
52 dest->preds. */
53 unsigned int dest_idx;
54
55 int flags; /* see cfg-flags.def */
56 int probability; /* biased by REG_BR_PROB_BASE */
57 gcov_type count; /* Expected number of executions calculated
58 in profile.c */
59 };
60
61
62 /* Garbage collection and PCH support for edge_def. */
63 extern void gt_ggc_mx (edge_def *e);
64 extern void gt_pch_nx (edge_def *e);
65 extern void gt_pch_nx (edge_def *e, gt_pointer_operator, void *);
66
67 /* Masks for edge.flags. */
68 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
69 enum cfg_edge_flags {
70 #include "cfg-flags.def"
71 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
72 };
73 #undef DEF_EDGE_FLAG
74
75 /* Bit mask for all edge flags. */
76 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
77
78 /* The following four flags all indicate something special about an edge.
79 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
80 control flow transfers. */
81 #define EDGE_COMPLEX \
82 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
83
84 /* Counter summary from the last set of coverage counts read by
85 profile.c. */
86 extern const struct gcov_ctr_summary *profile_info;
87
88 /* Structure to gather statistic about profile consistency, per pass.
89 An array of this structure, indexed by pass static number, is allocated
90 in passes.c. The structure is defined here so that different CFG modes
91 can do their book-keeping via CFG hooks.
92
93 For every field[2], field[0] is the count before the pass runs, and
94 field[1] is the post-pass count. This allows us to monitor the effect
95 of each individual pass on the profile consistency.
96
97 This structure is not supposed to be used by anything other than passes.c
98 and one CFG hook per CFG mode. */
99 struct profile_record
100 {
101 /* The number of basic blocks where sum(freq) of the block's predecessors
102 doesn't match reasonably well with the incoming frequency. */
103 int num_mismatched_freq_in[2];
104 /* Likewise for a basic block's successors. */
105 int num_mismatched_freq_out[2];
106 /* The number of basic blocks where sum(count) of the block's predecessors
107 doesn't match reasonably well with the incoming frequency. */
108 int num_mismatched_count_in[2];
109 /* Likewise for a basic block's successors. */
110 int num_mismatched_count_out[2];
111 /* A weighted cost of the run-time of the function body. */
112 gcov_type time[2];
113 /* A weighted cost of the size of the function body. */
114 int size[2];
115 /* True iff this pass actually was run. */
116 bool run;
117 };
118
119 /* Declared in cfgloop.h. */
120 struct loop;
121
122 struct GTY(()) rtl_bb_info {
123 /* The first insn of the block is embedded into bb->il.x. */
124 /* The last insn of the block. */
125 rtx end_;
126
127 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
128 and after the block. */
129 rtx header_;
130 rtx footer_;
131 };
132
133 struct GTY(()) gimple_bb_info {
134 /* Sequence of statements in this block. */
135 gimple_seq seq;
136
137 /* PHI nodes for this block. */
138 gimple_seq phi_nodes;
139 };
140
141 /* A basic block is a sequence of instructions with only one entry and
142 only one exit. If any one of the instructions are executed, they
143 will all be executed, and in sequence from first to last.
144
145 There may be COND_EXEC instructions in the basic block. The
146 COND_EXEC *instructions* will be executed -- but if the condition
147 is false the conditionally executed *expressions* will of course
148 not be executed. We don't consider the conditionally executed
149 expression (which might have side-effects) to be in a separate
150 basic block because the program counter will always be at the same
151 location after the COND_EXEC instruction, regardless of whether the
152 condition is true or not.
153
154 Basic blocks need not start with a label nor end with a jump insn.
155 For example, a previous basic block may just "conditionally fall"
156 into the succeeding basic block, and the last basic block need not
157 end with a jump insn. Block 0 is a descendant of the entry block.
158
159 A basic block beginning with two labels cannot have notes between
160 the labels.
161
162 Data for jump tables are stored in jump_insns that occur in no
163 basic block even though these insns can follow or precede insns in
164 basic blocks. */
165
166 /* Basic block information indexed by block number. */
167 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
168 /* The edges into and out of the block. */
169 vec<edge, va_gc> *preds;
170 vec<edge, va_gc> *succs;
171
172 /* Auxiliary info specific to a pass. */
173 PTR GTY ((skip (""))) aux;
174
175 /* Innermost loop containing the block. */
176 struct loop *loop_father;
177
178 /* The dominance and postdominance information node. */
179 struct et_node * GTY ((skip (""))) dom[2];
180
181 /* Previous and next blocks in the chain. */
182 basic_block prev_bb;
183 basic_block next_bb;
184
185 union basic_block_il_dependent {
186 struct gimple_bb_info GTY ((tag ("0"))) gimple;
187 struct {
188 rtx head_;
189 struct rtl_bb_info * rtl;
190 } GTY ((tag ("1"))) x;
191 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
192
193 /* Various flags. See cfg-flags.def. */
194 int flags;
195
196 /* The index of this block. */
197 int index;
198
199 /* Expected number of executions: calculated in profile.c. */
200 gcov_type count;
201
202 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
203 int frequency;
204
205 /* The discriminator for this block. The discriminator distinguishes
206 among several basic blocks that share a common locus, allowing for
207 more accurate sample-based profiling. */
208 int discriminator;
209 };
210
211 /* This ensures that struct gimple_bb_info is smaller than
212 struct rtl_bb_info, so that inlining the former into basic_block_def
213 is the better choice. */
214 typedef int __assert_gimple_bb_smaller_rtl_bb
215 [(int) sizeof (struct rtl_bb_info)
216 - (int) sizeof (struct gimple_bb_info)];
217
218
219 #define BB_FREQ_MAX 10000
220
221 /* Masks for basic_block.flags. */
222 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
223 enum cfg_bb_flags
224 {
225 #include "cfg-flags.def"
226 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
227 };
228 #undef DEF_BASIC_BLOCK_FLAG
229
230 /* Bit mask for all basic block flags. */
231 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
232
233 /* Bit mask for all basic block flags that must be preserved. These are
234 the bit masks that are *not* cleared by clear_bb_flags. */
235 #define BB_FLAGS_TO_PRESERVE \
236 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
237 | BB_HOT_PARTITION | BB_COLD_PARTITION)
238
239 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
240 #define BB_UNPARTITIONED 0
241
242 /* Partitions, to be used when partitioning hot and cold basic blocks into
243 separate sections. */
244 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
245 #define BB_SET_PARTITION(bb, part) do { \
246 basic_block bb_ = (bb); \
247 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
248 | (part)); \
249 } while (0)
250
251 #define BB_COPY_PARTITION(dstbb, srcbb) \
252 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
253
254 /* State of dominance information. */
255
256 enum dom_state
257 {
258 DOM_NONE, /* Not computed at all. */
259 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
260 DOM_OK /* Everything is ok. */
261 };
262
263 /* What sort of profiling information we have. */
264 enum profile_status_d
265 {
266 PROFILE_ABSENT,
267 PROFILE_GUESSED,
268 PROFILE_READ,
269 PROFILE_LAST /* Last value, used by profile streaming. */
270 };
271
272 /* A structure to group all the per-function control flow graph data.
273 The x_* prefixing is necessary because otherwise references to the
274 fields of this struct are interpreted as the defines for backward
275 source compatibility following the definition of this struct. */
276 struct GTY(()) control_flow_graph {
277 /* Block pointers for the exit and entry of a function.
278 These are always the head and tail of the basic block list. */
279 basic_block x_entry_block_ptr;
280 basic_block x_exit_block_ptr;
281
282 /* Index by basic block number, get basic block struct info. */
283 vec<basic_block, va_gc> *x_basic_block_info;
284
285 /* Number of basic blocks in this flow graph. */
286 int x_n_basic_blocks;
287
288 /* Number of edges in this flow graph. */
289 int x_n_edges;
290
291 /* The first free basic block number. */
292 int x_last_basic_block;
293
294 /* UIDs for LABEL_DECLs. */
295 int last_label_uid;
296
297 /* Mapping of labels to their associated blocks. At present
298 only used for the gimple CFG. */
299 vec<basic_block, va_gc> *x_label_to_block_map;
300
301 enum profile_status_d x_profile_status;
302
303 /* Whether the dominators and the postdominators are available. */
304 enum dom_state x_dom_computed[2];
305
306 /* Number of basic blocks in the dominance tree. */
307 unsigned x_n_bbs_in_dom_tree[2];
308
309 /* Maximal number of entities in the single jumptable. Used to estimate
310 final flowgraph size. */
311 int max_jumptable_ents;
312 };
313
314 /* Defines for accessing the fields of the CFG structure for function FN. */
315 #define ENTRY_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_entry_block_ptr)
316 #define EXIT_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_exit_block_ptr)
317 #define basic_block_info_for_fn(FN) ((FN)->cfg->x_basic_block_info)
318 #define n_basic_blocks_for_fn(FN) ((FN)->cfg->x_n_basic_blocks)
319 #define n_edges_for_fn(FN) ((FN)->cfg->x_n_edges)
320 #define last_basic_block_for_fn(FN) ((FN)->cfg->x_last_basic_block)
321 #define label_to_block_map_for_fn(FN) ((FN)->cfg->x_label_to_block_map)
322 #define profile_status_for_fn(FN) ((FN)->cfg->x_profile_status)
323
324 #define BASIC_BLOCK_FOR_FN(FN,N) \
325 ((*basic_block_info_for_fn (FN))[(N)])
326 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
327 ((*basic_block_info_for_fn (FN))[(N)] = (BB))
328
329 /* For iterating over basic blocks. */
330 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
331 for (BB = FROM; BB != TO; BB = BB->DIR)
332
333 #define FOR_EACH_BB_FN(BB, FN) \
334 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
335
336 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
337 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
338
339 /* For iterating over insns in basic block. */
340 #define FOR_BB_INSNS(BB, INSN) \
341 for ((INSN) = BB_HEAD (BB); \
342 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
343 (INSN) = NEXT_INSN (INSN))
344
345 /* For iterating over insns in basic block when we might remove the
346 current insn. */
347 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
348 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
349 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
350 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
351
352 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
353 for ((INSN) = BB_END (BB); \
354 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
355 (INSN) = PREV_INSN (INSN))
356
357 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
358 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
359 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
360 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
361
362 /* Cycles through _all_ basic blocks, even the fake ones (entry and
363 exit block). */
364
365 #define FOR_ALL_BB_FN(BB, FN) \
366 for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
367
368 \f
369 /* Stuff for recording basic block info. */
370
371 #define BB_HEAD(B) (B)->il.x.head_
372 #define BB_END(B) (B)->il.x.rtl->end_
373 #define BB_HEADER(B) (B)->il.x.rtl->header_
374 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
375
376 /* Special block numbers [markers] for entry and exit.
377 Neither of them is supposed to hold actual statements. */
378 #define ENTRY_BLOCK (0)
379 #define EXIT_BLOCK (1)
380
381 /* The two blocks that are always in the cfg. */
382 #define NUM_FIXED_BLOCKS (2)
383
384 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
385
386 extern void compute_bb_for_insn (void);
387 extern unsigned int free_bb_for_insn (void);
388 extern void update_bb_for_insn (basic_block);
389
390 extern void insert_insn_on_edge (rtx, edge);
391 basic_block split_edge_and_insert (edge, rtx);
392
393 extern void commit_one_edge_insertion (edge e);
394 extern void commit_edge_insertions (void);
395
396 extern edge unchecked_make_edge (basic_block, basic_block, int);
397 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
398 extern edge make_edge (basic_block, basic_block, int);
399 extern edge make_single_succ_edge (basic_block, basic_block, int);
400 extern void remove_edge_raw (edge);
401 extern void redirect_edge_succ (edge, basic_block);
402 extern edge redirect_edge_succ_nodup (edge, basic_block);
403 extern void redirect_edge_pred (edge, basic_block);
404 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
405 extern void clear_bb_flags (void);
406 extern void dump_bb_info (FILE *, basic_block, int, int, bool, bool);
407 extern void dump_edge_info (FILE *, edge, int, int);
408 extern void debug (edge_def &ref);
409 extern void debug (edge_def *ptr);
410 extern void brief_dump_cfg (FILE *, int);
411 extern void clear_edges (void);
412 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
413 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
414 gcov_type);
415
416 /* Structure to group all of the information to process IF-THEN and
417 IF-THEN-ELSE blocks for the conditional execution support. This
418 needs to be in a public file in case the IFCVT macros call
419 functions passing the ce_if_block data structure. */
420
421 struct ce_if_block
422 {
423 basic_block test_bb; /* First test block. */
424 basic_block then_bb; /* THEN block. */
425 basic_block else_bb; /* ELSE block or NULL. */
426 basic_block join_bb; /* Join THEN/ELSE blocks. */
427 basic_block last_test_bb; /* Last bb to hold && or || tests. */
428 int num_multiple_test_blocks; /* # of && and || basic blocks. */
429 int num_and_and_blocks; /* # of && blocks. */
430 int num_or_or_blocks; /* # of || blocks. */
431 int num_multiple_test_insns; /* # of insns in && and || blocks. */
432 int and_and_p; /* Complex test is &&. */
433 int num_then_insns; /* # of insns in THEN block. */
434 int num_else_insns; /* # of insns in ELSE block. */
435 int pass; /* Pass number. */
436 };
437
438 /* This structure maintains an edge list vector. */
439 /* FIXME: Make this a vec<edge>. */
440 struct edge_list
441 {
442 int num_edges;
443 edge *index_to_edge;
444 };
445
446 /* Class to compute and manage control dependences on an edge-list. */
447 class control_dependences
448 {
449 public:
450 control_dependences (edge_list *);
451 ~control_dependences ();
452 bitmap get_edges_dependent_on (int);
453 edge get_edge (int);
454
455 private:
456 void set_control_dependence_map_bit (basic_block, int);
457 void clear_control_dependence_bitmap (basic_block);
458 void find_control_dependence (int);
459 vec<bitmap> control_dependence_map;
460 edge_list *m_el;
461 };
462
463 /* The base value for branch probability notes and edge probabilities. */
464 #define REG_BR_PROB_BASE 10000
465
466 /* This is the value which indicates no edge is present. */
467 #define EDGE_INDEX_NO_EDGE -1
468
469 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
470 if there is no edge between the 2 basic blocks. */
471 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
472
473 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
474 block which is either the pred or succ end of the indexed edge. */
475 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
476 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
477
478 /* INDEX_EDGE returns a pointer to the edge. */
479 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
480
481 /* Number of edges in the compressed edge list. */
482 #define NUM_EDGES(el) ((el)->num_edges)
483
484 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
485 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
486 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
487
488 /* BB is assumed to contain conditional jump. Return the branch edge. */
489 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
490 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
491
492 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
493 /* Return expected execution frequency of the edge E. */
494 #define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
495 REG_BR_PROB_BASE)
496
497 /* Compute a scale factor (or probability) suitable for scaling of
498 gcov_type values via apply_probability() and apply_scale(). */
499 #define GCOV_COMPUTE_SCALE(num,den) \
500 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
501
502 /* Return nonzero if edge is critical. */
503 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
504 && EDGE_COUNT ((e)->dest->preds) >= 2)
505
506 #define EDGE_COUNT(ev) vec_safe_length (ev)
507 #define EDGE_I(ev,i) (*ev)[(i)]
508 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
509 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
510
511 /* Returns true if BB has precisely one successor. */
512
513 static inline bool
514 single_succ_p (const_basic_block bb)
515 {
516 return EDGE_COUNT (bb->succs) == 1;
517 }
518
519 /* Returns true if BB has precisely one predecessor. */
520
521 static inline bool
522 single_pred_p (const_basic_block bb)
523 {
524 return EDGE_COUNT (bb->preds) == 1;
525 }
526
527 /* Returns the single successor edge of basic block BB. Aborts if
528 BB does not have exactly one successor. */
529
530 static inline edge
531 single_succ_edge (const_basic_block bb)
532 {
533 gcc_checking_assert (single_succ_p (bb));
534 return EDGE_SUCC (bb, 0);
535 }
536
537 /* Returns the single predecessor edge of basic block BB. Aborts
538 if BB does not have exactly one predecessor. */
539
540 static inline edge
541 single_pred_edge (const_basic_block bb)
542 {
543 gcc_checking_assert (single_pred_p (bb));
544 return EDGE_PRED (bb, 0);
545 }
546
547 /* Returns the single successor block of basic block BB. Aborts
548 if BB does not have exactly one successor. */
549
550 static inline basic_block
551 single_succ (const_basic_block bb)
552 {
553 return single_succ_edge (bb)->dest;
554 }
555
556 /* Returns the single predecessor block of basic block BB. Aborts
557 if BB does not have exactly one predecessor.*/
558
559 static inline basic_block
560 single_pred (const_basic_block bb)
561 {
562 return single_pred_edge (bb)->src;
563 }
564
565 /* Iterator object for edges. */
566
567 struct edge_iterator {
568 unsigned index;
569 vec<edge, va_gc> **container;
570 };
571
572 static inline vec<edge, va_gc> *
573 ei_container (edge_iterator i)
574 {
575 gcc_checking_assert (i.container);
576 return *i.container;
577 }
578
579 #define ei_start(iter) ei_start_1 (&(iter))
580 #define ei_last(iter) ei_last_1 (&(iter))
581
582 /* Return an iterator pointing to the start of an edge vector. */
583 static inline edge_iterator
584 ei_start_1 (vec<edge, va_gc> **ev)
585 {
586 edge_iterator i;
587
588 i.index = 0;
589 i.container = ev;
590
591 return i;
592 }
593
594 /* Return an iterator pointing to the last element of an edge
595 vector. */
596 static inline edge_iterator
597 ei_last_1 (vec<edge, va_gc> **ev)
598 {
599 edge_iterator i;
600
601 i.index = EDGE_COUNT (*ev) - 1;
602 i.container = ev;
603
604 return i;
605 }
606
607 /* Is the iterator `i' at the end of the sequence? */
608 static inline bool
609 ei_end_p (edge_iterator i)
610 {
611 return (i.index == EDGE_COUNT (ei_container (i)));
612 }
613
614 /* Is the iterator `i' at one position before the end of the
615 sequence? */
616 static inline bool
617 ei_one_before_end_p (edge_iterator i)
618 {
619 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
620 }
621
622 /* Advance the iterator to the next element. */
623 static inline void
624 ei_next (edge_iterator *i)
625 {
626 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
627 i->index++;
628 }
629
630 /* Move the iterator to the previous element. */
631 static inline void
632 ei_prev (edge_iterator *i)
633 {
634 gcc_checking_assert (i->index > 0);
635 i->index--;
636 }
637
638 /* Return the edge pointed to by the iterator `i'. */
639 static inline edge
640 ei_edge (edge_iterator i)
641 {
642 return EDGE_I (ei_container (i), i.index);
643 }
644
645 /* Return an edge pointed to by the iterator. Do it safely so that
646 NULL is returned when the iterator is pointing at the end of the
647 sequence. */
648 static inline edge
649 ei_safe_edge (edge_iterator i)
650 {
651 return !ei_end_p (i) ? ei_edge (i) : NULL;
652 }
653
654 /* Return 1 if we should continue to iterate. Return 0 otherwise.
655 *Edge P is set to the next edge if we are to continue to iterate
656 and NULL otherwise. */
657
658 static inline bool
659 ei_cond (edge_iterator ei, edge *p)
660 {
661 if (!ei_end_p (ei))
662 {
663 *p = ei_edge (ei);
664 return 1;
665 }
666 else
667 {
668 *p = NULL;
669 return 0;
670 }
671 }
672
673 /* This macro serves as a convenient way to iterate each edge in a
674 vector of predecessor or successor edges. It must not be used when
675 an element might be removed during the traversal, otherwise
676 elements will be missed. Instead, use a for-loop like that shown
677 in the following pseudo-code:
678
679 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
680 {
681 IF (e != taken_edge)
682 remove_edge (e);
683 ELSE
684 ei_next (&ei);
685 }
686 */
687
688 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
689 for ((ITER) = ei_start ((EDGE_VEC)); \
690 ei_cond ((ITER), &(EDGE)); \
691 ei_next (&(ITER)))
692
693 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
694 except for edge forwarding */
695 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
696 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
697 to care REG_DEAD notes. */
698 #define CLEANUP_THREADING 8 /* Do jump threading. */
699 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
700 insns. */
701 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
702 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
703
704 /* In cfganal.c */
705 extern void bitmap_intersection_of_succs (sbitmap, sbitmap *, basic_block);
706 extern void bitmap_intersection_of_preds (sbitmap, sbitmap *, basic_block);
707 extern void bitmap_union_of_succs (sbitmap, sbitmap *, basic_block);
708 extern void bitmap_union_of_preds (sbitmap, sbitmap *, basic_block);
709
710 /* In lcm.c */
711 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
712 sbitmap *, sbitmap *, sbitmap **,
713 sbitmap **);
714 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
715 sbitmap *, sbitmap *,
716 sbitmap *, sbitmap **,
717 sbitmap **);
718 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
719
720 /* In predict.c */
721 extern bool maybe_hot_bb_p (struct function *, const_basic_block);
722 extern bool maybe_hot_edge_p (edge);
723 extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
724 extern bool probably_never_executed_edge_p (struct function *, edge);
725 extern bool optimize_bb_for_size_p (const_basic_block);
726 extern bool optimize_bb_for_speed_p (const_basic_block);
727 extern bool optimize_edge_for_size_p (edge);
728 extern bool optimize_edge_for_speed_p (edge);
729 extern bool optimize_loop_for_size_p (struct loop *);
730 extern bool optimize_loop_for_speed_p (struct loop *);
731 extern bool optimize_loop_nest_for_size_p (struct loop *);
732 extern bool optimize_loop_nest_for_speed_p (struct loop *);
733 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
734 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
735 extern void gimple_predict_edge (edge, enum br_predictor, int);
736 extern void rtl_predict_edge (edge, enum br_predictor, int);
737 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
738 extern void guess_outgoing_edge_probabilities (basic_block);
739 extern void remove_predictions_associated_with_edge (edge);
740 extern bool edge_probability_reliable_p (const_edge);
741 extern bool br_prob_note_reliable_p (const_rtx);
742 extern bool predictable_edge_p (edge);
743
744 /* In cfg.c */
745 extern void init_flow (struct function *);
746 extern void debug_bb (basic_block);
747 extern basic_block debug_bb_n (int);
748 extern void dump_flow_info (FILE *, int);
749 extern void expunge_block (basic_block);
750 extern void link_block (basic_block, basic_block);
751 extern void unlink_block (basic_block);
752 extern void compact_blocks (void);
753 extern basic_block alloc_block (void);
754 extern void alloc_aux_for_blocks (int);
755 extern void clear_aux_for_blocks (void);
756 extern void free_aux_for_blocks (void);
757 extern void alloc_aux_for_edge (edge, int);
758 extern void alloc_aux_for_edges (int);
759 extern void clear_aux_for_edges (void);
760 extern void free_aux_for_edges (void);
761
762 /* In cfganal.c */
763 extern void find_unreachable_blocks (void);
764 extern bool mark_dfs_back_edges (void);
765 struct edge_list * create_edge_list (void);
766 void free_edge_list (struct edge_list *);
767 void print_edge_list (FILE *, struct edge_list *);
768 void verify_edge_list (FILE *, struct edge_list *);
769 int find_edge_index (struct edge_list *, basic_block, basic_block);
770 edge find_edge (basic_block, basic_block);
771 extern void remove_fake_edges (void);
772 extern void remove_fake_exit_edges (void);
773 extern void add_noreturn_fake_exit_edges (void);
774 extern void connect_infinite_loops_to_exit (void);
775 extern int post_order_compute (int *, bool, bool);
776 extern basic_block dfs_find_deadend (basic_block);
777 extern int inverted_post_order_compute (int *);
778 extern int pre_and_rev_post_order_compute_fn (struct function *,
779 int *, int *, bool);
780 extern int pre_and_rev_post_order_compute (int *, int *, bool);
781 extern int dfs_enumerate_from (basic_block, int,
782 bool (*)(const_basic_block, const void *),
783 basic_block *, int, const void *);
784 extern void compute_dominance_frontiers (struct bitmap_head *);
785 extern bitmap compute_idf (bitmap, struct bitmap_head *);
786 extern basic_block * single_pred_before_succ_order (void);
787
788 /* In cfgrtl.c */
789 extern rtx block_label (basic_block);
790 extern rtx bb_note (basic_block);
791 extern bool purge_all_dead_edges (void);
792 extern bool purge_dead_edges (basic_block);
793 extern bool fixup_abnormal_edges (void);
794 extern basic_block force_nonfallthru_and_redirect (edge, basic_block, rtx);
795 extern bool contains_no_active_insn_p (const_basic_block);
796 extern bool forwarder_block_p (const_basic_block);
797 extern bool can_fallthru (basic_block, basic_block);
798 extern void emit_barrier_after_bb (basic_block bb);
799 extern void fixup_partitions (void);
800
801 /* In cfgbuild.c. */
802 extern void find_many_sub_basic_blocks (sbitmap);
803 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
804
805 enum replace_direction { dir_none, dir_forward, dir_backward, dir_both };
806
807 /* In cfgcleanup.c. */
808 extern bool cleanup_cfg (int);
809 extern int flow_find_cross_jump (basic_block, basic_block, rtx *, rtx *,
810 enum replace_direction*);
811 extern int flow_find_head_matching_sequence (basic_block, basic_block,
812 rtx *, rtx *, int);
813
814 extern bool delete_unreachable_blocks (void);
815
816 extern void update_br_prob_note (basic_block);
817 extern bool inside_basic_block_p (const_rtx);
818 extern bool control_flow_insn_p (const_rtx);
819 extern rtx get_last_bb_insn (basic_block);
820
821 /* In dominance.c */
822
823 enum cdi_direction
824 {
825 CDI_DOMINATORS = 1,
826 CDI_POST_DOMINATORS = 2
827 };
828
829 extern enum dom_state dom_info_state (enum cdi_direction);
830 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
831 extern bool dom_info_available_p (enum cdi_direction);
832 extern void calculate_dominance_info (enum cdi_direction);
833 extern void free_dominance_info (enum cdi_direction);
834 extern basic_block nearest_common_dominator (enum cdi_direction,
835 basic_block, basic_block);
836 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
837 bitmap);
838 extern void set_immediate_dominator (enum cdi_direction, basic_block,
839 basic_block);
840 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
841 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
842 extern vec<basic_block> get_dominated_by (enum cdi_direction, basic_block);
843 extern vec<basic_block> get_dominated_by_region (enum cdi_direction,
844 basic_block *,
845 unsigned);
846 extern vec<basic_block> get_dominated_to_depth (enum cdi_direction,
847 basic_block, int);
848 extern vec<basic_block> get_all_dominated_blocks (enum cdi_direction,
849 basic_block);
850 extern void add_to_dominance_info (enum cdi_direction, basic_block);
851 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
852 basic_block recompute_dominator (enum cdi_direction, basic_block);
853 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
854 basic_block);
855 extern void iterate_fix_dominators (enum cdi_direction,
856 vec<basic_block> , bool);
857 extern void verify_dominators (enum cdi_direction);
858 extern basic_block first_dom_son (enum cdi_direction, basic_block);
859 extern basic_block next_dom_son (enum cdi_direction, basic_block);
860 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
861 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
862
863 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
864 extern void break_superblocks (void);
865 extern void relink_block_chain (bool);
866 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
867 extern void init_rtl_bb_info (basic_block);
868
869 extern void initialize_original_copy_tables (void);
870 extern void free_original_copy_tables (void);
871 extern void set_bb_original (basic_block, basic_block);
872 extern basic_block get_bb_original (basic_block);
873 extern void set_bb_copy (basic_block, basic_block);
874 extern basic_block get_bb_copy (basic_block);
875 void set_loop_copy (struct loop *, struct loop *);
876 struct loop *get_loop_copy (struct loop *);
877
878 #include "cfghooks.h"
879
880 /* Return true if BB is in a transaction. */
881
882 static inline bool
883 bb_in_transaction (basic_block bb)
884 {
885 return bb->flags & BB_IN_TRANSACTION;
886 }
887
888 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
889 static inline bool
890 bb_has_eh_pred (basic_block bb)
891 {
892 edge e;
893 edge_iterator ei;
894
895 FOR_EACH_EDGE (e, ei, bb->preds)
896 {
897 if (e->flags & EDGE_EH)
898 return true;
899 }
900 return false;
901 }
902
903 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
904 static inline bool
905 bb_has_abnormal_pred (basic_block bb)
906 {
907 edge e;
908 edge_iterator ei;
909
910 FOR_EACH_EDGE (e, ei, bb->preds)
911 {
912 if (e->flags & EDGE_ABNORMAL)
913 return true;
914 }
915 return false;
916 }
917
918 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
919 static inline edge
920 find_fallthru_edge (vec<edge, va_gc> *edges)
921 {
922 edge e;
923 edge_iterator ei;
924
925 FOR_EACH_EDGE (e, ei, edges)
926 if (e->flags & EDGE_FALLTHRU)
927 break;
928
929 return e;
930 }
931
932 /* In cfgloopmanip.c. */
933 extern edge mfb_kj_edge;
934 extern bool mfb_keep_just (edge);
935
936 /* In cfgexpand.c. */
937 extern void rtl_profile_for_bb (basic_block);
938 extern void rtl_profile_for_edge (edge);
939 extern void default_rtl_profile (void);
940
941 /* In profile.c. */
942 typedef struct gcov_working_set_info gcov_working_set_t;
943 extern gcov_working_set_t *find_working_set (unsigned pct_times_10);
944
945 /* Check tha probability is sane. */
946
947 static inline void
948 check_probability (int prob)
949 {
950 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
951 }
952
953 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
954 Used to combine BB probabilities. */
955
956 static inline int
957 combine_probabilities (int prob1, int prob2)
958 {
959 check_probability (prob1);
960 check_probability (prob2);
961 return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
962 }
963
964 /* Apply scale factor SCALE on frequency or count FREQ. Use this
965 interface when potentially scaling up, so that SCALE is not
966 constrained to be < REG_BR_PROB_BASE. */
967
968 static inline gcov_type
969 apply_scale (gcov_type freq, gcov_type scale)
970 {
971 return RDIV (freq * scale, REG_BR_PROB_BASE);
972 }
973
974 /* Apply probability PROB on frequency or count FREQ. */
975
976 static inline gcov_type
977 apply_probability (gcov_type freq, int prob)
978 {
979 check_probability (prob);
980 return apply_scale (freq, prob);
981 }
982
983 /* Return inverse probability for PROB. */
984
985 static inline int
986 inverse_probability (int prob1)
987 {
988 check_probability (prob1);
989 return REG_BR_PROB_BASE - prob1;
990 }
991
992 /* Return true if BB has at least one abnormal outgoing edge. */
993
994 static inline bool
995 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
996 {
997 edge e;
998 edge_iterator ei;
999
1000 FOR_EACH_EDGE (e, ei, bb->succs)
1001 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
1002 return true;
1003
1004 return false;
1005 }
1006 #endif /* GCC_BASIC_BLOCK_H */