]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/basic-block.h
Remove BB_HEAD, BB_END, BB_HEADER scaffolding
[thirdparty/gcc.git] / gcc / basic-block.h
1 /* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22
23 #include "predict.h"
24 #include "vec.h"
25 #include "function.h"
26
27 /* Use gcov_type to hold basic block counters. Should be at least
28 64bit. Although a counter cannot be negative, we use a signed
29 type, because erroneous negative counts can be generated when the
30 flow graph is manipulated by various optimizations. A signed type
31 makes those easy to detect. */
32
33 /* Control flow edge information. */
34 struct GTY((user)) edge_def {
35 /* The two blocks at the ends of the edge. */
36 basic_block src;
37 basic_block dest;
38
39 /* Instructions queued on the edge. */
40 union edge_def_insns {
41 gimple_seq g;
42 rtx_insn *r;
43 } insns;
44
45 /* Auxiliary info specific to a pass. */
46 PTR aux;
47
48 /* Location of any goto implicit in the edge. */
49 location_t goto_locus;
50
51 /* The index number corresponding to this edge in the edge vector
52 dest->preds. */
53 unsigned int dest_idx;
54
55 int flags; /* see cfg-flags.def */
56 int probability; /* biased by REG_BR_PROB_BASE */
57 gcov_type count; /* Expected number of executions calculated
58 in profile.c */
59 };
60
61
62 /* Garbage collection and PCH support for edge_def. */
63 extern void gt_ggc_mx (edge_def *e);
64 extern void gt_pch_nx (edge_def *e);
65 extern void gt_pch_nx (edge_def *e, gt_pointer_operator, void *);
66
67 /* Masks for edge.flags. */
68 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
69 enum cfg_edge_flags {
70 #include "cfg-flags.def"
71 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
72 };
73 #undef DEF_EDGE_FLAG
74
75 /* Bit mask for all edge flags. */
76 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
77
78 /* The following four flags all indicate something special about an edge.
79 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
80 control flow transfers. */
81 #define EDGE_COMPLEX \
82 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
83
84 /* Counter summary from the last set of coverage counts read by
85 profile.c. */
86 extern const struct gcov_ctr_summary *profile_info;
87
88 /* Structure to gather statistic about profile consistency, per pass.
89 An array of this structure, indexed by pass static number, is allocated
90 in passes.c. The structure is defined here so that different CFG modes
91 can do their book-keeping via CFG hooks.
92
93 For every field[2], field[0] is the count before the pass runs, and
94 field[1] is the post-pass count. This allows us to monitor the effect
95 of each individual pass on the profile consistency.
96
97 This structure is not supposed to be used by anything other than passes.c
98 and one CFG hook per CFG mode. */
99 struct profile_record
100 {
101 /* The number of basic blocks where sum(freq) of the block's predecessors
102 doesn't match reasonably well with the incoming frequency. */
103 int num_mismatched_freq_in[2];
104 /* Likewise for a basic block's successors. */
105 int num_mismatched_freq_out[2];
106 /* The number of basic blocks where sum(count) of the block's predecessors
107 doesn't match reasonably well with the incoming frequency. */
108 int num_mismatched_count_in[2];
109 /* Likewise for a basic block's successors. */
110 int num_mismatched_count_out[2];
111 /* A weighted cost of the run-time of the function body. */
112 gcov_type time[2];
113 /* A weighted cost of the size of the function body. */
114 int size[2];
115 /* True iff this pass actually was run. */
116 bool run;
117 };
118
119 /* Declared in cfgloop.h. */
120 struct loop;
121
122 struct GTY(()) rtl_bb_info {
123 /* The first insn of the block is embedded into bb->il.x. */
124 /* The last insn of the block. */
125 rtx_insn *end_;
126
127 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
128 and after the block. */
129 rtx_insn *header_;
130 rtx_insn *footer_;
131 };
132
133 struct GTY(()) gimple_bb_info {
134 /* Sequence of statements in this block. */
135 gimple_seq seq;
136
137 /* PHI nodes for this block. */
138 gimple_seq phi_nodes;
139 };
140
141 /* A basic block is a sequence of instructions with only one entry and
142 only one exit. If any one of the instructions are executed, they
143 will all be executed, and in sequence from first to last.
144
145 There may be COND_EXEC instructions in the basic block. The
146 COND_EXEC *instructions* will be executed -- but if the condition
147 is false the conditionally executed *expressions* will of course
148 not be executed. We don't consider the conditionally executed
149 expression (which might have side-effects) to be in a separate
150 basic block because the program counter will always be at the same
151 location after the COND_EXEC instruction, regardless of whether the
152 condition is true or not.
153
154 Basic blocks need not start with a label nor end with a jump insn.
155 For example, a previous basic block may just "conditionally fall"
156 into the succeeding basic block, and the last basic block need not
157 end with a jump insn. Block 0 is a descendant of the entry block.
158
159 A basic block beginning with two labels cannot have notes between
160 the labels.
161
162 Data for jump tables are stored in jump_insns that occur in no
163 basic block even though these insns can follow or precede insns in
164 basic blocks. */
165
166 /* Basic block information indexed by block number. */
167 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
168 /* The edges into and out of the block. */
169 vec<edge, va_gc> *preds;
170 vec<edge, va_gc> *succs;
171
172 /* Auxiliary info specific to a pass. */
173 PTR GTY ((skip (""))) aux;
174
175 /* Innermost loop containing the block. */
176 struct loop *loop_father;
177
178 /* The dominance and postdominance information node. */
179 struct et_node * GTY ((skip (""))) dom[2];
180
181 /* Previous and next blocks in the chain. */
182 basic_block prev_bb;
183 basic_block next_bb;
184
185 union basic_block_il_dependent {
186 struct gimple_bb_info GTY ((tag ("0"))) gimple;
187 struct {
188 rtx_insn *head_;
189 struct rtl_bb_info * rtl;
190 } GTY ((tag ("1"))) x;
191 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
192
193 /* Various flags. See cfg-flags.def. */
194 int flags;
195
196 /* The index of this block. */
197 int index;
198
199 /* Expected number of executions: calculated in profile.c. */
200 gcov_type count;
201
202 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
203 int frequency;
204
205 /* The discriminator for this block. The discriminator distinguishes
206 among several basic blocks that share a common locus, allowing for
207 more accurate sample-based profiling. */
208 int discriminator;
209 };
210
211 /* This ensures that struct gimple_bb_info is smaller than
212 struct rtl_bb_info, so that inlining the former into basic_block_def
213 is the better choice. */
214 typedef int __assert_gimple_bb_smaller_rtl_bb
215 [(int) sizeof (struct rtl_bb_info)
216 - (int) sizeof (struct gimple_bb_info)];
217
218
219 #define BB_FREQ_MAX 10000
220
221 /* Masks for basic_block.flags. */
222 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
223 enum cfg_bb_flags
224 {
225 #include "cfg-flags.def"
226 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
227 };
228 #undef DEF_BASIC_BLOCK_FLAG
229
230 /* Bit mask for all basic block flags. */
231 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
232
233 /* Bit mask for all basic block flags that must be preserved. These are
234 the bit masks that are *not* cleared by clear_bb_flags. */
235 #define BB_FLAGS_TO_PRESERVE \
236 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
237 | BB_HOT_PARTITION | BB_COLD_PARTITION)
238
239 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
240 #define BB_UNPARTITIONED 0
241
242 /* Partitions, to be used when partitioning hot and cold basic blocks into
243 separate sections. */
244 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
245 #define BB_SET_PARTITION(bb, part) do { \
246 basic_block bb_ = (bb); \
247 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
248 | (part)); \
249 } while (0)
250
251 #define BB_COPY_PARTITION(dstbb, srcbb) \
252 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
253
254 /* State of dominance information. */
255
256 enum dom_state
257 {
258 DOM_NONE, /* Not computed at all. */
259 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
260 DOM_OK /* Everything is ok. */
261 };
262
263 /* What sort of profiling information we have. */
264 enum profile_status_d
265 {
266 PROFILE_ABSENT,
267 PROFILE_GUESSED,
268 PROFILE_READ,
269 PROFILE_LAST /* Last value, used by profile streaming. */
270 };
271
272 /* A structure to group all the per-function control flow graph data.
273 The x_* prefixing is necessary because otherwise references to the
274 fields of this struct are interpreted as the defines for backward
275 source compatibility following the definition of this struct. */
276 struct GTY(()) control_flow_graph {
277 /* Block pointers for the exit and entry of a function.
278 These are always the head and tail of the basic block list. */
279 basic_block x_entry_block_ptr;
280 basic_block x_exit_block_ptr;
281
282 /* Index by basic block number, get basic block struct info. */
283 vec<basic_block, va_gc> *x_basic_block_info;
284
285 /* Number of basic blocks in this flow graph. */
286 int x_n_basic_blocks;
287
288 /* Number of edges in this flow graph. */
289 int x_n_edges;
290
291 /* The first free basic block number. */
292 int x_last_basic_block;
293
294 /* UIDs for LABEL_DECLs. */
295 int last_label_uid;
296
297 /* Mapping of labels to their associated blocks. At present
298 only used for the gimple CFG. */
299 vec<basic_block, va_gc> *x_label_to_block_map;
300
301 enum profile_status_d x_profile_status;
302
303 /* Whether the dominators and the postdominators are available. */
304 enum dom_state x_dom_computed[2];
305
306 /* Number of basic blocks in the dominance tree. */
307 unsigned x_n_bbs_in_dom_tree[2];
308
309 /* Maximal number of entities in the single jumptable. Used to estimate
310 final flowgraph size. */
311 int max_jumptable_ents;
312 };
313
314 /* Defines for accessing the fields of the CFG structure for function FN. */
315 #define ENTRY_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_entry_block_ptr)
316 #define EXIT_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_exit_block_ptr)
317 #define basic_block_info_for_fn(FN) ((FN)->cfg->x_basic_block_info)
318 #define n_basic_blocks_for_fn(FN) ((FN)->cfg->x_n_basic_blocks)
319 #define n_edges_for_fn(FN) ((FN)->cfg->x_n_edges)
320 #define last_basic_block_for_fn(FN) ((FN)->cfg->x_last_basic_block)
321 #define label_to_block_map_for_fn(FN) ((FN)->cfg->x_label_to_block_map)
322 #define profile_status_for_fn(FN) ((FN)->cfg->x_profile_status)
323
324 #define BASIC_BLOCK_FOR_FN(FN,N) \
325 ((*basic_block_info_for_fn (FN))[(N)])
326 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
327 ((*basic_block_info_for_fn (FN))[(N)] = (BB))
328
329 /* For iterating over basic blocks. */
330 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
331 for (BB = FROM; BB != TO; BB = BB->DIR)
332
333 #define FOR_EACH_BB_FN(BB, FN) \
334 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
335
336 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
337 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
338
339 /* For iterating over insns in basic block. */
340 #define FOR_BB_INSNS(BB, INSN) \
341 for ((INSN) = BB_HEAD (BB); \
342 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
343 (INSN) = NEXT_INSN (INSN))
344
345 /* For iterating over insns in basic block when we might remove the
346 current insn. */
347 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
348 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
349 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
350 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
351
352 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
353 for ((INSN) = BB_END (BB); \
354 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
355 (INSN) = PREV_INSN (INSN))
356
357 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
358 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
359 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
360 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
361
362 /* Cycles through _all_ basic blocks, even the fake ones (entry and
363 exit block). */
364
365 #define FOR_ALL_BB_FN(BB, FN) \
366 for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
367
368 \f
369 /* Stuff for recording basic block info. */
370
371 /* For now, these will be functions (so that they can include checked casts
372 to rtx_insn. Once the underlying fields are converted from rtx
373 to rtx_insn, these can be converted back to macros. */
374
375 #define BB_HEAD(B) (B)->il.x.head_
376 #define BB_END(B) (B)->il.x.rtl->end_
377 #define BB_HEADER(B) (B)->il.x.rtl->header_
378 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
379
380 /* Special block numbers [markers] for entry and exit.
381 Neither of them is supposed to hold actual statements. */
382 #define ENTRY_BLOCK (0)
383 #define EXIT_BLOCK (1)
384
385 /* The two blocks that are always in the cfg. */
386 #define NUM_FIXED_BLOCKS (2)
387
388 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
389
390 extern void compute_bb_for_insn (void);
391 extern unsigned int free_bb_for_insn (void);
392 extern void update_bb_for_insn (basic_block);
393
394 extern void insert_insn_on_edge (rtx, edge);
395 basic_block split_edge_and_insert (edge, rtx_insn *);
396
397 extern void commit_one_edge_insertion (edge e);
398 extern void commit_edge_insertions (void);
399
400 extern edge unchecked_make_edge (basic_block, basic_block, int);
401 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
402 extern edge make_edge (basic_block, basic_block, int);
403 extern edge make_single_succ_edge (basic_block, basic_block, int);
404 extern void remove_edge_raw (edge);
405 extern void redirect_edge_succ (edge, basic_block);
406 extern edge redirect_edge_succ_nodup (edge, basic_block);
407 extern void redirect_edge_pred (edge, basic_block);
408 extern basic_block create_basic_block_structure (rtx_insn *, rtx_insn *,
409 rtx_note *, basic_block);
410 extern void clear_bb_flags (void);
411 extern void dump_bb_info (FILE *, basic_block, int, int, bool, bool);
412 extern void dump_edge_info (FILE *, edge, int, int);
413 extern void debug (edge_def &ref);
414 extern void debug (edge_def *ptr);
415 extern void brief_dump_cfg (FILE *, int);
416 extern void clear_edges (void);
417 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
418 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
419 gcov_type);
420
421 /* Structure to group all of the information to process IF-THEN and
422 IF-THEN-ELSE blocks for the conditional execution support. This
423 needs to be in a public file in case the IFCVT macros call
424 functions passing the ce_if_block data structure. */
425
426 struct ce_if_block
427 {
428 basic_block test_bb; /* First test block. */
429 basic_block then_bb; /* THEN block. */
430 basic_block else_bb; /* ELSE block or NULL. */
431 basic_block join_bb; /* Join THEN/ELSE blocks. */
432 basic_block last_test_bb; /* Last bb to hold && or || tests. */
433 int num_multiple_test_blocks; /* # of && and || basic blocks. */
434 int num_and_and_blocks; /* # of && blocks. */
435 int num_or_or_blocks; /* # of || blocks. */
436 int num_multiple_test_insns; /* # of insns in && and || blocks. */
437 int and_and_p; /* Complex test is &&. */
438 int num_then_insns; /* # of insns in THEN block. */
439 int num_else_insns; /* # of insns in ELSE block. */
440 int pass; /* Pass number. */
441 };
442
443 /* This structure maintains an edge list vector. */
444 /* FIXME: Make this a vec<edge>. */
445 struct edge_list
446 {
447 int num_edges;
448 edge *index_to_edge;
449 };
450
451 /* Class to compute and manage control dependences on an edge-list. */
452 class control_dependences
453 {
454 public:
455 control_dependences (edge_list *);
456 ~control_dependences ();
457 bitmap get_edges_dependent_on (int);
458 edge get_edge (int);
459
460 private:
461 void set_control_dependence_map_bit (basic_block, int);
462 void clear_control_dependence_bitmap (basic_block);
463 void find_control_dependence (int);
464 vec<bitmap> control_dependence_map;
465 edge_list *m_el;
466 };
467
468 /* The base value for branch probability notes and edge probabilities. */
469 #define REG_BR_PROB_BASE 10000
470
471 /* This is the value which indicates no edge is present. */
472 #define EDGE_INDEX_NO_EDGE -1
473
474 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
475 if there is no edge between the 2 basic blocks. */
476 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
477
478 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
479 block which is either the pred or succ end of the indexed edge. */
480 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
481 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
482
483 /* INDEX_EDGE returns a pointer to the edge. */
484 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
485
486 /* Number of edges in the compressed edge list. */
487 #define NUM_EDGES(el) ((el)->num_edges)
488
489 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
490 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
491 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
492
493 /* BB is assumed to contain conditional jump. Return the branch edge. */
494 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
495 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
496
497 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
498 /* Return expected execution frequency of the edge E. */
499 #define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
500 REG_BR_PROB_BASE)
501
502 /* Compute a scale factor (or probability) suitable for scaling of
503 gcov_type values via apply_probability() and apply_scale(). */
504 #define GCOV_COMPUTE_SCALE(num,den) \
505 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
506
507 /* Return nonzero if edge is critical. */
508 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
509 && EDGE_COUNT ((e)->dest->preds) >= 2)
510
511 #define EDGE_COUNT(ev) vec_safe_length (ev)
512 #define EDGE_I(ev,i) (*ev)[(i)]
513 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
514 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
515
516 /* Returns true if BB has precisely one successor. */
517
518 static inline bool
519 single_succ_p (const_basic_block bb)
520 {
521 return EDGE_COUNT (bb->succs) == 1;
522 }
523
524 /* Returns true if BB has precisely one predecessor. */
525
526 static inline bool
527 single_pred_p (const_basic_block bb)
528 {
529 return EDGE_COUNT (bb->preds) == 1;
530 }
531
532 /* Returns the single successor edge of basic block BB. Aborts if
533 BB does not have exactly one successor. */
534
535 static inline edge
536 single_succ_edge (const_basic_block bb)
537 {
538 gcc_checking_assert (single_succ_p (bb));
539 return EDGE_SUCC (bb, 0);
540 }
541
542 /* Returns the single predecessor edge of basic block BB. Aborts
543 if BB does not have exactly one predecessor. */
544
545 static inline edge
546 single_pred_edge (const_basic_block bb)
547 {
548 gcc_checking_assert (single_pred_p (bb));
549 return EDGE_PRED (bb, 0);
550 }
551
552 /* Returns the single successor block of basic block BB. Aborts
553 if BB does not have exactly one successor. */
554
555 static inline basic_block
556 single_succ (const_basic_block bb)
557 {
558 return single_succ_edge (bb)->dest;
559 }
560
561 /* Returns the single predecessor block of basic block BB. Aborts
562 if BB does not have exactly one predecessor.*/
563
564 static inline basic_block
565 single_pred (const_basic_block bb)
566 {
567 return single_pred_edge (bb)->src;
568 }
569
570 /* Iterator object for edges. */
571
572 struct edge_iterator {
573 unsigned index;
574 vec<edge, va_gc> **container;
575 };
576
577 static inline vec<edge, va_gc> *
578 ei_container (edge_iterator i)
579 {
580 gcc_checking_assert (i.container);
581 return *i.container;
582 }
583
584 #define ei_start(iter) ei_start_1 (&(iter))
585 #define ei_last(iter) ei_last_1 (&(iter))
586
587 /* Return an iterator pointing to the start of an edge vector. */
588 static inline edge_iterator
589 ei_start_1 (vec<edge, va_gc> **ev)
590 {
591 edge_iterator i;
592
593 i.index = 0;
594 i.container = ev;
595
596 return i;
597 }
598
599 /* Return an iterator pointing to the last element of an edge
600 vector. */
601 static inline edge_iterator
602 ei_last_1 (vec<edge, va_gc> **ev)
603 {
604 edge_iterator i;
605
606 i.index = EDGE_COUNT (*ev) - 1;
607 i.container = ev;
608
609 return i;
610 }
611
612 /* Is the iterator `i' at the end of the sequence? */
613 static inline bool
614 ei_end_p (edge_iterator i)
615 {
616 return (i.index == EDGE_COUNT (ei_container (i)));
617 }
618
619 /* Is the iterator `i' at one position before the end of the
620 sequence? */
621 static inline bool
622 ei_one_before_end_p (edge_iterator i)
623 {
624 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
625 }
626
627 /* Advance the iterator to the next element. */
628 static inline void
629 ei_next (edge_iterator *i)
630 {
631 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
632 i->index++;
633 }
634
635 /* Move the iterator to the previous element. */
636 static inline void
637 ei_prev (edge_iterator *i)
638 {
639 gcc_checking_assert (i->index > 0);
640 i->index--;
641 }
642
643 /* Return the edge pointed to by the iterator `i'. */
644 static inline edge
645 ei_edge (edge_iterator i)
646 {
647 return EDGE_I (ei_container (i), i.index);
648 }
649
650 /* Return an edge pointed to by the iterator. Do it safely so that
651 NULL is returned when the iterator is pointing at the end of the
652 sequence. */
653 static inline edge
654 ei_safe_edge (edge_iterator i)
655 {
656 return !ei_end_p (i) ? ei_edge (i) : NULL;
657 }
658
659 /* Return 1 if we should continue to iterate. Return 0 otherwise.
660 *Edge P is set to the next edge if we are to continue to iterate
661 and NULL otherwise. */
662
663 static inline bool
664 ei_cond (edge_iterator ei, edge *p)
665 {
666 if (!ei_end_p (ei))
667 {
668 *p = ei_edge (ei);
669 return 1;
670 }
671 else
672 {
673 *p = NULL;
674 return 0;
675 }
676 }
677
678 /* This macro serves as a convenient way to iterate each edge in a
679 vector of predecessor or successor edges. It must not be used when
680 an element might be removed during the traversal, otherwise
681 elements will be missed. Instead, use a for-loop like that shown
682 in the following pseudo-code:
683
684 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
685 {
686 IF (e != taken_edge)
687 remove_edge (e);
688 ELSE
689 ei_next (&ei);
690 }
691 */
692
693 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
694 for ((ITER) = ei_start ((EDGE_VEC)); \
695 ei_cond ((ITER), &(EDGE)); \
696 ei_next (&(ITER)))
697
698 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
699 except for edge forwarding */
700 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
701 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
702 to care REG_DEAD notes. */
703 #define CLEANUP_THREADING 8 /* Do jump threading. */
704 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
705 insns. */
706 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
707 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
708
709 /* In cfganal.c */
710 extern void bitmap_intersection_of_succs (sbitmap, sbitmap *, basic_block);
711 extern void bitmap_intersection_of_preds (sbitmap, sbitmap *, basic_block);
712 extern void bitmap_union_of_succs (sbitmap, sbitmap *, basic_block);
713 extern void bitmap_union_of_preds (sbitmap, sbitmap *, basic_block);
714
715 /* In lcm.c */
716 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
717 sbitmap *, sbitmap *, sbitmap **,
718 sbitmap **);
719 extern struct edge_list *pre_edge_lcm_avs (int, sbitmap *, sbitmap *,
720 sbitmap *, sbitmap *, sbitmap *,
721 sbitmap *, sbitmap **, sbitmap **);
722 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
723 sbitmap *, sbitmap *,
724 sbitmap *, sbitmap **,
725 sbitmap **);
726 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
727
728 /* In predict.c */
729 extern bool maybe_hot_bb_p (struct function *, const_basic_block);
730 extern bool maybe_hot_edge_p (edge);
731 extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
732 extern bool probably_never_executed_edge_p (struct function *, edge);
733 extern bool optimize_bb_for_size_p (const_basic_block);
734 extern bool optimize_bb_for_speed_p (const_basic_block);
735 extern bool optimize_edge_for_size_p (edge);
736 extern bool optimize_edge_for_speed_p (edge);
737 extern bool optimize_loop_for_size_p (struct loop *);
738 extern bool optimize_loop_for_speed_p (struct loop *);
739 extern bool optimize_loop_nest_for_size_p (struct loop *);
740 extern bool optimize_loop_nest_for_speed_p (struct loop *);
741 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
742 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
743 extern void gimple_predict_edge (edge, enum br_predictor, int);
744 extern void rtl_predict_edge (edge, enum br_predictor, int);
745 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
746 extern void guess_outgoing_edge_probabilities (basic_block);
747 extern void remove_predictions_associated_with_edge (edge);
748 extern bool edge_probability_reliable_p (const_edge);
749 extern bool br_prob_note_reliable_p (const_rtx);
750 extern bool predictable_edge_p (edge);
751
752 /* In cfg.c */
753 extern void init_flow (struct function *);
754 extern void debug_bb (basic_block);
755 extern basic_block debug_bb_n (int);
756 extern void dump_flow_info (FILE *, int);
757 extern void expunge_block (basic_block);
758 extern void link_block (basic_block, basic_block);
759 extern void unlink_block (basic_block);
760 extern void compact_blocks (void);
761 extern basic_block alloc_block (void);
762 extern void alloc_aux_for_blocks (int);
763 extern void clear_aux_for_blocks (void);
764 extern void free_aux_for_blocks (void);
765 extern void alloc_aux_for_edge (edge, int);
766 extern void alloc_aux_for_edges (int);
767 extern void clear_aux_for_edges (void);
768 extern void free_aux_for_edges (void);
769
770 /* In cfganal.c */
771 extern void find_unreachable_blocks (void);
772 extern bool mark_dfs_back_edges (void);
773 struct edge_list * create_edge_list (void);
774 void free_edge_list (struct edge_list *);
775 void print_edge_list (FILE *, struct edge_list *);
776 void verify_edge_list (FILE *, struct edge_list *);
777 int find_edge_index (struct edge_list *, basic_block, basic_block);
778 edge find_edge (basic_block, basic_block);
779 extern void remove_fake_edges (void);
780 extern void remove_fake_exit_edges (void);
781 extern void add_noreturn_fake_exit_edges (void);
782 extern void connect_infinite_loops_to_exit (void);
783 extern int post_order_compute (int *, bool, bool);
784 extern basic_block dfs_find_deadend (basic_block);
785 extern int inverted_post_order_compute (int *);
786 extern int pre_and_rev_post_order_compute_fn (struct function *,
787 int *, int *, bool);
788 extern int pre_and_rev_post_order_compute (int *, int *, bool);
789 extern int dfs_enumerate_from (basic_block, int,
790 bool (*)(const_basic_block, const void *),
791 basic_block *, int, const void *);
792 extern void compute_dominance_frontiers (struct bitmap_head *);
793 extern bitmap compute_idf (bitmap, struct bitmap_head *);
794 extern basic_block * single_pred_before_succ_order (void);
795
796 /* In cfgrtl.c */
797 extern rtx block_label (basic_block);
798 extern rtx_note *bb_note (basic_block);
799 extern bool purge_all_dead_edges (void);
800 extern bool purge_dead_edges (basic_block);
801 extern bool fixup_abnormal_edges (void);
802 extern basic_block force_nonfallthru_and_redirect (edge, basic_block, rtx);
803 extern bool contains_no_active_insn_p (const_basic_block);
804 extern bool forwarder_block_p (const_basic_block);
805 extern bool can_fallthru (basic_block, basic_block);
806 extern void emit_barrier_after_bb (basic_block bb);
807 extern void fixup_partitions (void);
808
809 /* In cfgbuild.c. */
810 extern void find_many_sub_basic_blocks (sbitmap);
811 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
812
813 enum replace_direction { dir_none, dir_forward, dir_backward, dir_both };
814
815 /* In cfgcleanup.c. */
816 extern bool cleanup_cfg (int);
817 extern int flow_find_cross_jump (basic_block, basic_block, rtx_insn **,
818 rtx_insn **, enum replace_direction*);
819 extern int flow_find_head_matching_sequence (basic_block, basic_block,
820 rtx_insn **, rtx_insn **, int);
821
822 extern bool delete_unreachable_blocks (void);
823
824 extern void update_br_prob_note (basic_block);
825 extern bool inside_basic_block_p (const_rtx);
826 extern bool control_flow_insn_p (const_rtx);
827 extern rtx_insn *get_last_bb_insn (basic_block);
828
829 /* In dominance.c */
830
831 enum cdi_direction
832 {
833 CDI_DOMINATORS = 1,
834 CDI_POST_DOMINATORS = 2
835 };
836
837 extern enum dom_state dom_info_state (function *, enum cdi_direction);
838 extern enum dom_state dom_info_state (enum cdi_direction);
839 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
840 extern bool dom_info_available_p (function *, enum cdi_direction);
841 extern bool dom_info_available_p (enum cdi_direction);
842 extern void calculate_dominance_info (enum cdi_direction);
843 extern void free_dominance_info (function *, enum cdi_direction);
844 extern void free_dominance_info (enum cdi_direction);
845 extern basic_block nearest_common_dominator (enum cdi_direction,
846 basic_block, basic_block);
847 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
848 bitmap);
849 extern void set_immediate_dominator (enum cdi_direction, basic_block,
850 basic_block);
851 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
852 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
853 extern vec<basic_block> get_dominated_by (enum cdi_direction, basic_block);
854 extern vec<basic_block> get_dominated_by_region (enum cdi_direction,
855 basic_block *,
856 unsigned);
857 extern vec<basic_block> get_dominated_to_depth (enum cdi_direction,
858 basic_block, int);
859 extern vec<basic_block> get_all_dominated_blocks (enum cdi_direction,
860 basic_block);
861 extern void add_to_dominance_info (enum cdi_direction, basic_block);
862 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
863 basic_block recompute_dominator (enum cdi_direction, basic_block);
864 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
865 basic_block);
866 extern void iterate_fix_dominators (enum cdi_direction,
867 vec<basic_block> , bool);
868 extern void verify_dominators (enum cdi_direction);
869 extern basic_block first_dom_son (enum cdi_direction, basic_block);
870 extern basic_block next_dom_son (enum cdi_direction, basic_block);
871 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
872 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
873
874 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
875 extern void break_superblocks (void);
876 extern void relink_block_chain (bool);
877 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
878 extern void init_rtl_bb_info (basic_block);
879
880 extern void initialize_original_copy_tables (void);
881 extern void free_original_copy_tables (void);
882 extern void set_bb_original (basic_block, basic_block);
883 extern basic_block get_bb_original (basic_block);
884 extern void set_bb_copy (basic_block, basic_block);
885 extern basic_block get_bb_copy (basic_block);
886 void set_loop_copy (struct loop *, struct loop *);
887 struct loop *get_loop_copy (struct loop *);
888
889 #include "cfghooks.h"
890
891 /* Return true if BB is in a transaction. */
892
893 static inline bool
894 bb_in_transaction (basic_block bb)
895 {
896 return bb->flags & BB_IN_TRANSACTION;
897 }
898
899 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
900 static inline bool
901 bb_has_eh_pred (basic_block bb)
902 {
903 edge e;
904 edge_iterator ei;
905
906 FOR_EACH_EDGE (e, ei, bb->preds)
907 {
908 if (e->flags & EDGE_EH)
909 return true;
910 }
911 return false;
912 }
913
914 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
915 static inline bool
916 bb_has_abnormal_pred (basic_block bb)
917 {
918 edge e;
919 edge_iterator ei;
920
921 FOR_EACH_EDGE (e, ei, bb->preds)
922 {
923 if (e->flags & EDGE_ABNORMAL)
924 return true;
925 }
926 return false;
927 }
928
929 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
930 static inline edge
931 find_fallthru_edge (vec<edge, va_gc> *edges)
932 {
933 edge e;
934 edge_iterator ei;
935
936 FOR_EACH_EDGE (e, ei, edges)
937 if (e->flags & EDGE_FALLTHRU)
938 break;
939
940 return e;
941 }
942
943 /* In cfgloopmanip.c. */
944 extern edge mfb_kj_edge;
945 extern bool mfb_keep_just (edge);
946
947 /* In cfgexpand.c. */
948 extern void rtl_profile_for_bb (basic_block);
949 extern void rtl_profile_for_edge (edge);
950 extern void default_rtl_profile (void);
951
952 /* In profile.c. */
953 typedef struct gcov_working_set_info gcov_working_set_t;
954 extern gcov_working_set_t *find_working_set (unsigned pct_times_10);
955
956 /* Check tha probability is sane. */
957
958 static inline void
959 check_probability (int prob)
960 {
961 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
962 }
963
964 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
965 Used to combine BB probabilities. */
966
967 static inline int
968 combine_probabilities (int prob1, int prob2)
969 {
970 check_probability (prob1);
971 check_probability (prob2);
972 return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
973 }
974
975 /* Apply scale factor SCALE on frequency or count FREQ. Use this
976 interface when potentially scaling up, so that SCALE is not
977 constrained to be < REG_BR_PROB_BASE. */
978
979 static inline gcov_type
980 apply_scale (gcov_type freq, gcov_type scale)
981 {
982 return RDIV (freq * scale, REG_BR_PROB_BASE);
983 }
984
985 /* Apply probability PROB on frequency or count FREQ. */
986
987 static inline gcov_type
988 apply_probability (gcov_type freq, int prob)
989 {
990 check_probability (prob);
991 return apply_scale (freq, prob);
992 }
993
994 /* Return inverse probability for PROB. */
995
996 static inline int
997 inverse_probability (int prob1)
998 {
999 check_probability (prob1);
1000 return REG_BR_PROB_BASE - prob1;
1001 }
1002
1003 /* Return true if BB has at least one abnormal outgoing edge. */
1004
1005 static inline bool
1006 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
1007 {
1008 edge e;
1009 edge_iterator ei;
1010
1011 FOR_EACH_EDGE (e, ei, bb->succs)
1012 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
1013 return true;
1014
1015 return false;
1016 }
1017 #endif /* GCC_BASIC_BLOCK_H */