]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/bb-reorder.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This (greedy) algorithm constructs traces in several rounds.
21 The construction starts from "seeds". The seed for the first round
22 is the entry point of the function. When there are more than one seed,
23 the one with the lowest key in the heap is selected first (see bb_to_key).
24 Then the algorithm repeatedly adds the most probable successor to the end
25 of a trace. Finally it connects the traces.
26
27 There are two parameters: Branch Threshold and Exec Threshold.
28 If the probability of an edge to a successor of the current basic block is
29 lower than Branch Threshold or its frequency is lower than Exec Threshold,
30 then the successor will be the seed in one of the next rounds.
31 Each round has these parameters lower than the previous one.
32 The last round has to have these parameters set to zero so that the
33 remaining blocks are picked up.
34
35 The algorithm selects the most probable successor from all unvisited
36 successors and successors that have been added to this trace.
37 The other successors (that has not been "sent" to the next round) will be
38 other seeds for this round and the secondary traces will start from them.
39 If the successor has not been visited in this trace, it is added to the
40 trace (however, there is some heuristic for simple branches).
41 If the successor has been visited in this trace, a loop has been found.
42 If the loop has many iterations, the loop is rotated so that the source
43 block of the most probable edge going out of the loop is the last block
44 of the trace.
45 If the loop has few iterations and there is no edge from the last block of
46 the loop going out of the loop, the loop header is duplicated.
47
48 When connecting traces, the algorithm first checks whether there is an edge
49 from the last block of a trace to the first block of another trace.
50 When there are still some unconnected traces it checks whether there exists
51 a basic block BB such that BB is a successor of the last block of a trace
52 and BB is a predecessor of the first block of another trace. In this case,
53 BB is duplicated, added at the end of the first trace and the traces are
54 connected through it.
55 The rest of traces are simply connected so there will be a jump to the
56 beginning of the rest of traces.
57
58 The above description is for the full algorithm, which is used when the
59 function is optimized for speed. When the function is optimized for size,
60 in order to reduce long jumps and connect more fallthru edges, the
61 algorithm is modified as follows:
62 (1) Break long traces to short ones. A trace is broken at a block that has
63 multiple predecessors/ successors during trace discovery. When connecting
64 traces, only connect Trace n with Trace n + 1. This change reduces most
65 long jumps compared with the above algorithm.
66 (2) Ignore the edge probability and frequency for fallthru edges.
67 (3) Keep the original order of blocks when there is no chance to fall
68 through. We rely on the results of cfg_cleanup.
69
70 To implement the change for code size optimization, block's index is
71 selected as the key and all traces are found in one round.
72
73 References:
74
75 "Software Trace Cache"
76 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
77 http://citeseer.nj.nec.com/15361.html
78
79 */
80
81 #include "config.h"
82 #include "system.h"
83 #include "coretypes.h"
84 #include "tm.h"
85 #include "tree.h"
86 #include "rtl.h"
87 #include "regs.h"
88 #include "flags.h"
89 #include "output.h"
90 #include "fibheap.h"
91 #include "target.h"
92 #include "function.h"
93 #include "tm_p.h"
94 #include "obstack.h"
95 #include "expr.h"
96 #include "params.h"
97 #include "diagnostic-core.h"
98 #include "toplev.h" /* user_defined_section_attribute */
99 #include "tree-pass.h"
100 #include "df.h"
101 #include "bb-reorder.h"
102 #include "except.h"
103
104 /* The number of rounds. In most cases there will only be 4 rounds, but
105 when partitioning hot and cold basic blocks into separate sections of
106 the object file there will be an extra round. */
107 #define N_ROUNDS 5
108
109 /* Stubs in case we don't have a return insn.
110 We have to check at run time too, not only compile time. */
111
112 #ifndef HAVE_return
113 #define HAVE_return 0
114 #define gen_return() NULL_RTX
115 #endif
116
117
118 struct target_bb_reorder default_target_bb_reorder;
119 #if SWITCHABLE_TARGET
120 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
121 #endif
122
123 #define uncond_jump_length \
124 (this_target_bb_reorder->x_uncond_jump_length)
125
126 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
127 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
128
129 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
130 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
131
132 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
133 block the edge destination is not duplicated while connecting traces. */
134 #define DUPLICATION_THRESHOLD 100
135
136 /* Structure to hold needed information for each basic block. */
137 typedef struct bbro_basic_block_data_def
138 {
139 /* Which trace is the bb start of (-1 means it is not a start of any). */
140 int start_of_trace;
141
142 /* Which trace is the bb end of (-1 means it is not an end of any). */
143 int end_of_trace;
144
145 /* Which trace is the bb in? */
146 int in_trace;
147
148 /* Which trace was this bb visited in? */
149 int visited;
150
151 /* Which heap is BB in (if any)? */
152 fibheap_t heap;
153
154 /* Which heap node is BB in (if any)? */
155 fibnode_t node;
156 } bbro_basic_block_data;
157
158 /* The current size of the following dynamic array. */
159 static int array_size;
160
161 /* The array which holds needed information for basic blocks. */
162 static bbro_basic_block_data *bbd;
163
164 /* To avoid frequent reallocation the size of arrays is greater than needed,
165 the number of elements is (not less than) 1.25 * size_wanted. */
166 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
167
168 /* Free the memory and set the pointer to NULL. */
169 #define FREE(P) (gcc_assert (P), free (P), P = 0)
170
171 /* Structure for holding information about a trace. */
172 struct trace
173 {
174 /* First and last basic block of the trace. */
175 basic_block first, last;
176
177 /* The round of the STC creation which this trace was found in. */
178 int round;
179
180 /* The length (i.e. the number of basic blocks) of the trace. */
181 int length;
182 };
183
184 /* Maximum frequency and count of one of the entry blocks. */
185 static int max_entry_frequency;
186 static gcov_type max_entry_count;
187
188 /* Local function prototypes. */
189 static void find_traces (int *, struct trace *);
190 static basic_block rotate_loop (edge, struct trace *, int);
191 static void mark_bb_visited (basic_block, int);
192 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
193 int, fibheap_t *, int);
194 static basic_block copy_bb (basic_block, edge, basic_block, int);
195 static fibheapkey_t bb_to_key (basic_block);
196 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int,
197 const_edge);
198 static bool connect_better_edge_p (const_edge, bool, int, const_edge,
199 struct trace *);
200 static void connect_traces (int, struct trace *);
201 static bool copy_bb_p (const_basic_block, int);
202 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
203 \f
204 /* Return the trace number in which BB was visited. */
205
206 static int
207 bb_visited_trace (const_basic_block bb)
208 {
209 gcc_assert (bb->index < array_size);
210 return bbd[bb->index].visited;
211 }
212
213 /* This function marks BB that it was visited in trace number TRACE. */
214
215 static void
216 mark_bb_visited (basic_block bb, int trace)
217 {
218 bbd[bb->index].visited = trace;
219 if (bbd[bb->index].heap)
220 {
221 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
222 bbd[bb->index].heap = NULL;
223 bbd[bb->index].node = NULL;
224 }
225 }
226
227 /* Check to see if bb should be pushed into the next round of trace
228 collections or not. Reasons for pushing the block forward are 1).
229 If the block is cold, we are doing partitioning, and there will be
230 another round (cold partition blocks are not supposed to be
231 collected into traces until the very last round); or 2). There will
232 be another round, and the basic block is not "hot enough" for the
233 current round of trace collection. */
234
235 static bool
236 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
237 int exec_th, gcov_type count_th)
238 {
239 bool there_exists_another_round;
240 bool block_not_hot_enough;
241
242 there_exists_another_round = round < number_of_rounds - 1;
243
244 block_not_hot_enough = (bb->frequency < exec_th
245 || bb->count < count_th
246 || probably_never_executed_bb_p (cfun, bb));
247
248 if (there_exists_another_round
249 && block_not_hot_enough)
250 return true;
251 else
252 return false;
253 }
254
255 /* Find the traces for Software Trace Cache. Chain each trace through
256 RBI()->next. Store the number of traces to N_TRACES and description of
257 traces to TRACES. */
258
259 static void
260 find_traces (int *n_traces, struct trace *traces)
261 {
262 int i;
263 int number_of_rounds;
264 edge e;
265 edge_iterator ei;
266 fibheap_t heap;
267
268 /* Add one extra round of trace collection when partitioning hot/cold
269 basic blocks into separate sections. The last round is for all the
270 cold blocks (and ONLY the cold blocks). */
271
272 number_of_rounds = N_ROUNDS - 1;
273
274 /* Insert entry points of function into heap. */
275 heap = fibheap_new ();
276 max_entry_frequency = 0;
277 max_entry_count = 0;
278 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
279 {
280 bbd[e->dest->index].heap = heap;
281 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
282 e->dest);
283 if (e->dest->frequency > max_entry_frequency)
284 max_entry_frequency = e->dest->frequency;
285 if (e->dest->count > max_entry_count)
286 max_entry_count = e->dest->count;
287 }
288
289 /* Find the traces. */
290 for (i = 0; i < number_of_rounds; i++)
291 {
292 gcov_type count_threshold;
293
294 if (dump_file)
295 fprintf (dump_file, "STC - round %d\n", i + 1);
296
297 if (max_entry_count < INT_MAX / 1000)
298 count_threshold = max_entry_count * exec_threshold[i] / 1000;
299 else
300 count_threshold = max_entry_count / 1000 * exec_threshold[i];
301
302 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
303 max_entry_frequency * exec_threshold[i] / 1000,
304 count_threshold, traces, n_traces, i, &heap,
305 number_of_rounds);
306 }
307 fibheap_delete (heap);
308
309 if (dump_file)
310 {
311 for (i = 0; i < *n_traces; i++)
312 {
313 basic_block bb;
314 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
315 traces[i].round + 1);
316 for (bb = traces[i].first;
317 bb != traces[i].last;
318 bb = (basic_block) bb->aux)
319 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
320 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
321 }
322 fflush (dump_file);
323 }
324 }
325
326 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
327 (with sequential number TRACE_N). */
328
329 static basic_block
330 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
331 {
332 basic_block bb;
333
334 /* Information about the best end (end after rotation) of the loop. */
335 basic_block best_bb = NULL;
336 edge best_edge = NULL;
337 int best_freq = -1;
338 gcov_type best_count = -1;
339 /* The best edge is preferred when its destination is not visited yet
340 or is a start block of some trace. */
341 bool is_preferred = false;
342
343 /* Find the most frequent edge that goes out from current trace. */
344 bb = back_edge->dest;
345 do
346 {
347 edge e;
348 edge_iterator ei;
349
350 FOR_EACH_EDGE (e, ei, bb->succs)
351 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
352 && bb_visited_trace (e->dest) != trace_n
353 && (e->flags & EDGE_CAN_FALLTHRU)
354 && !(e->flags & EDGE_COMPLEX))
355 {
356 if (is_preferred)
357 {
358 /* The best edge is preferred. */
359 if (!bb_visited_trace (e->dest)
360 || bbd[e->dest->index].start_of_trace >= 0)
361 {
362 /* The current edge E is also preferred. */
363 int freq = EDGE_FREQUENCY (e);
364 if (freq > best_freq || e->count > best_count)
365 {
366 best_freq = freq;
367 best_count = e->count;
368 best_edge = e;
369 best_bb = bb;
370 }
371 }
372 }
373 else
374 {
375 if (!bb_visited_trace (e->dest)
376 || bbd[e->dest->index].start_of_trace >= 0)
377 {
378 /* The current edge E is preferred. */
379 is_preferred = true;
380 best_freq = EDGE_FREQUENCY (e);
381 best_count = e->count;
382 best_edge = e;
383 best_bb = bb;
384 }
385 else
386 {
387 int freq = EDGE_FREQUENCY (e);
388 if (!best_edge || freq > best_freq || e->count > best_count)
389 {
390 best_freq = freq;
391 best_count = e->count;
392 best_edge = e;
393 best_bb = bb;
394 }
395 }
396 }
397 }
398 bb = (basic_block) bb->aux;
399 }
400 while (bb != back_edge->dest);
401
402 if (best_bb)
403 {
404 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
405 the trace. */
406 if (back_edge->dest == trace->first)
407 {
408 trace->first = (basic_block) best_bb->aux;
409 }
410 else
411 {
412 basic_block prev_bb;
413
414 for (prev_bb = trace->first;
415 prev_bb->aux != back_edge->dest;
416 prev_bb = (basic_block) prev_bb->aux)
417 ;
418 prev_bb->aux = best_bb->aux;
419
420 /* Try to get rid of uncond jump to cond jump. */
421 if (single_succ_p (prev_bb))
422 {
423 basic_block header = single_succ (prev_bb);
424
425 /* Duplicate HEADER if it is a small block containing cond jump
426 in the end. */
427 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
428 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
429 NULL_RTX))
430 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
431 }
432 }
433 }
434 else
435 {
436 /* We have not found suitable loop tail so do no rotation. */
437 best_bb = back_edge->src;
438 }
439 best_bb->aux = NULL;
440 return best_bb;
441 }
442
443 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
444 not include basic blocks whose probability is lower than BRANCH_TH or whose
445 frequency is lower than EXEC_TH into traces (or whose count is lower than
446 COUNT_TH). Store the new traces into TRACES and modify the number of
447 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
448 The function expects starting basic blocks to be in *HEAP and will delete
449 *HEAP and store starting points for the next round into new *HEAP. */
450
451 static void
452 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
453 struct trace *traces, int *n_traces, int round,
454 fibheap_t *heap, int number_of_rounds)
455 {
456 /* Heap for discarded basic blocks which are possible starting points for
457 the next round. */
458 fibheap_t new_heap = fibheap_new ();
459 bool for_size = optimize_function_for_size_p (cfun);
460
461 while (!fibheap_empty (*heap))
462 {
463 basic_block bb;
464 struct trace *trace;
465 edge best_edge, e;
466 fibheapkey_t key;
467 edge_iterator ei;
468
469 bb = (basic_block) fibheap_extract_min (*heap);
470 bbd[bb->index].heap = NULL;
471 bbd[bb->index].node = NULL;
472
473 if (dump_file)
474 fprintf (dump_file, "Getting bb %d\n", bb->index);
475
476 /* If the BB's frequency is too low, send BB to the next round. When
477 partitioning hot/cold blocks into separate sections, make sure all
478 the cold blocks (and ONLY the cold blocks) go into the (extra) final
479 round. When optimizing for size, do not push to next round. */
480
481 if (!for_size
482 && push_to_next_round_p (bb, round, number_of_rounds, exec_th,
483 count_th))
484 {
485 int key = bb_to_key (bb);
486 bbd[bb->index].heap = new_heap;
487 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
488
489 if (dump_file)
490 fprintf (dump_file,
491 " Possible start point of next round: %d (key: %d)\n",
492 bb->index, key);
493 continue;
494 }
495
496 trace = traces + *n_traces;
497 trace->first = bb;
498 trace->round = round;
499 trace->length = 0;
500 bbd[bb->index].in_trace = *n_traces;
501 (*n_traces)++;
502
503 do
504 {
505 int prob, freq;
506 bool ends_in_call;
507
508 /* The probability and frequency of the best edge. */
509 int best_prob = INT_MIN / 2;
510 int best_freq = INT_MIN / 2;
511
512 best_edge = NULL;
513 mark_bb_visited (bb, *n_traces);
514 trace->length++;
515
516 if (dump_file)
517 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
518 bb->index, *n_traces - 1);
519
520 ends_in_call = block_ends_with_call_p (bb);
521
522 /* Select the successor that will be placed after BB. */
523 FOR_EACH_EDGE (e, ei, bb->succs)
524 {
525 gcc_assert (!(e->flags & EDGE_FAKE));
526
527 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
528 continue;
529
530 if (bb_visited_trace (e->dest)
531 && bb_visited_trace (e->dest) != *n_traces)
532 continue;
533
534 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
535 continue;
536
537 prob = e->probability;
538 freq = e->dest->frequency;
539
540 /* The only sensible preference for a call instruction is the
541 fallthru edge. Don't bother selecting anything else. */
542 if (ends_in_call)
543 {
544 if (e->flags & EDGE_CAN_FALLTHRU)
545 {
546 best_edge = e;
547 best_prob = prob;
548 best_freq = freq;
549 }
550 continue;
551 }
552
553 /* Edge that cannot be fallthru or improbable or infrequent
554 successor (i.e. it is unsuitable successor). When optimizing
555 for size, ignore the probability and frequency. */
556 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
557 || ((prob < branch_th || EDGE_FREQUENCY (e) < exec_th
558 || e->count < count_th) && (!for_size)))
559 continue;
560
561 /* If partitioning hot/cold basic blocks, don't consider edges
562 that cross section boundaries. */
563
564 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
565 best_edge))
566 {
567 best_edge = e;
568 best_prob = prob;
569 best_freq = freq;
570 }
571 }
572
573 /* If the best destination has multiple predecessors, and can be
574 duplicated cheaper than a jump, don't allow it to be added
575 to a trace. We'll duplicate it when connecting traces. */
576 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
577 && copy_bb_p (best_edge->dest, 0))
578 best_edge = NULL;
579
580 /* If the best destination has multiple successors or predecessors,
581 don't allow it to be added when optimizing for size. This makes
582 sure predecessors with smaller index are handled before the best
583 destinarion. It breaks long trace and reduces long jumps.
584
585 Take if-then-else as an example.
586 A
587 / \
588 B C
589 \ /
590 D
591 If we do not remove the best edge B->D/C->D, the final order might
592 be A B D ... C. C is at the end of the program. If D's successors
593 and D are complicated, might need long jumps for A->C and C->D.
594 Similar issue for order: A C D ... B.
595
596 After removing the best edge, the final result will be ABCD/ ACBD.
597 It does not add jump compared with the previous order. But it
598 reduces the possibility of long jumps. */
599 if (best_edge && for_size
600 && (EDGE_COUNT (best_edge->dest->succs) > 1
601 || EDGE_COUNT (best_edge->dest->preds) > 1))
602 best_edge = NULL;
603
604 /* Add all non-selected successors to the heaps. */
605 FOR_EACH_EDGE (e, ei, bb->succs)
606 {
607 if (e == best_edge
608 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
609 || bb_visited_trace (e->dest))
610 continue;
611
612 key = bb_to_key (e->dest);
613
614 if (bbd[e->dest->index].heap)
615 {
616 /* E->DEST is already in some heap. */
617 if (key != bbd[e->dest->index].node->key)
618 {
619 if (dump_file)
620 {
621 fprintf (dump_file,
622 "Changing key for bb %d from %ld to %ld.\n",
623 e->dest->index,
624 (long) bbd[e->dest->index].node->key,
625 key);
626 }
627 fibheap_replace_key (bbd[e->dest->index].heap,
628 bbd[e->dest->index].node, key);
629 }
630 }
631 else
632 {
633 fibheap_t which_heap = *heap;
634
635 prob = e->probability;
636 freq = EDGE_FREQUENCY (e);
637
638 if (!(e->flags & EDGE_CAN_FALLTHRU)
639 || (e->flags & EDGE_COMPLEX)
640 || prob < branch_th || freq < exec_th
641 || e->count < count_th)
642 {
643 /* When partitioning hot/cold basic blocks, make sure
644 the cold blocks (and only the cold blocks) all get
645 pushed to the last round of trace collection. When
646 optimizing for size, do not push to next round. */
647
648 if (!for_size && push_to_next_round_p (e->dest, round,
649 number_of_rounds,
650 exec_th, count_th))
651 which_heap = new_heap;
652 }
653
654 bbd[e->dest->index].heap = which_heap;
655 bbd[e->dest->index].node = fibheap_insert (which_heap,
656 key, e->dest);
657
658 if (dump_file)
659 {
660 fprintf (dump_file,
661 " Possible start of %s round: %d (key: %ld)\n",
662 (which_heap == new_heap) ? "next" : "this",
663 e->dest->index, (long) key);
664 }
665
666 }
667 }
668
669 if (best_edge) /* Suitable successor was found. */
670 {
671 if (bb_visited_trace (best_edge->dest) == *n_traces)
672 {
673 /* We do nothing with one basic block loops. */
674 if (best_edge->dest != bb)
675 {
676 if (EDGE_FREQUENCY (best_edge)
677 > 4 * best_edge->dest->frequency / 5)
678 {
679 /* The loop has at least 4 iterations. If the loop
680 header is not the first block of the function
681 we can rotate the loop. */
682
683 if (best_edge->dest
684 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
685 {
686 if (dump_file)
687 {
688 fprintf (dump_file,
689 "Rotating loop %d - %d\n",
690 best_edge->dest->index, bb->index);
691 }
692 bb->aux = best_edge->dest;
693 bbd[best_edge->dest->index].in_trace =
694 (*n_traces) - 1;
695 bb = rotate_loop (best_edge, trace, *n_traces);
696 }
697 }
698 else
699 {
700 /* The loop has less than 4 iterations. */
701
702 if (single_succ_p (bb)
703 && copy_bb_p (best_edge->dest,
704 optimize_edge_for_speed_p
705 (best_edge)))
706 {
707 bb = copy_bb (best_edge->dest, best_edge, bb,
708 *n_traces);
709 trace->length++;
710 }
711 }
712 }
713
714 /* Terminate the trace. */
715 break;
716 }
717 else
718 {
719 /* Check for a situation
720
721 A
722 /|
723 B |
724 \|
725 C
726
727 where
728 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
729 >= EDGE_FREQUENCY (AC).
730 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
731 Best ordering is then A B C.
732
733 When optimizing for size, A B C is always the best order.
734
735 This situation is created for example by:
736
737 if (A) B;
738 C;
739
740 */
741
742 FOR_EACH_EDGE (e, ei, bb->succs)
743 if (e != best_edge
744 && (e->flags & EDGE_CAN_FALLTHRU)
745 && !(e->flags & EDGE_COMPLEX)
746 && !bb_visited_trace (e->dest)
747 && single_pred_p (e->dest)
748 && !(e->flags & EDGE_CROSSING)
749 && single_succ_p (e->dest)
750 && (single_succ_edge (e->dest)->flags
751 & EDGE_CAN_FALLTHRU)
752 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
753 && single_succ (e->dest) == best_edge->dest
754 && (2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge)
755 || for_size))
756 {
757 best_edge = e;
758 if (dump_file)
759 fprintf (dump_file, "Selecting BB %d\n",
760 best_edge->dest->index);
761 break;
762 }
763
764 bb->aux = best_edge->dest;
765 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
766 bb = best_edge->dest;
767 }
768 }
769 }
770 while (best_edge);
771 trace->last = bb;
772 bbd[trace->first->index].start_of_trace = *n_traces - 1;
773 bbd[trace->last->index].end_of_trace = *n_traces - 1;
774
775 /* The trace is terminated so we have to recount the keys in heap
776 (some block can have a lower key because now one of its predecessors
777 is an end of the trace). */
778 FOR_EACH_EDGE (e, ei, bb->succs)
779 {
780 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
781 || bb_visited_trace (e->dest))
782 continue;
783
784 if (bbd[e->dest->index].heap)
785 {
786 key = bb_to_key (e->dest);
787 if (key != bbd[e->dest->index].node->key)
788 {
789 if (dump_file)
790 {
791 fprintf (dump_file,
792 "Changing key for bb %d from %ld to %ld.\n",
793 e->dest->index,
794 (long) bbd[e->dest->index].node->key, key);
795 }
796 fibheap_replace_key (bbd[e->dest->index].heap,
797 bbd[e->dest->index].node,
798 key);
799 }
800 }
801 }
802 }
803
804 fibheap_delete (*heap);
805
806 /* "Return" the new heap. */
807 *heap = new_heap;
808 }
809
810 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
811 it to trace after BB, mark OLD_BB visited and update pass' data structures
812 (TRACE is a number of trace which OLD_BB is duplicated to). */
813
814 static basic_block
815 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
816 {
817 basic_block new_bb;
818
819 new_bb = duplicate_block (old_bb, e, bb);
820 BB_COPY_PARTITION (new_bb, old_bb);
821
822 gcc_assert (e->dest == new_bb);
823
824 if (dump_file)
825 fprintf (dump_file,
826 "Duplicated bb %d (created bb %d)\n",
827 old_bb->index, new_bb->index);
828
829 if (new_bb->index >= array_size
830 || last_basic_block_for_fn (cfun) > array_size)
831 {
832 int i;
833 int new_size;
834
835 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
836 new_size = GET_ARRAY_SIZE (new_size);
837 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
838 for (i = array_size; i < new_size; i++)
839 {
840 bbd[i].start_of_trace = -1;
841 bbd[i].end_of_trace = -1;
842 bbd[i].in_trace = -1;
843 bbd[i].visited = 0;
844 bbd[i].heap = NULL;
845 bbd[i].node = NULL;
846 }
847 array_size = new_size;
848
849 if (dump_file)
850 {
851 fprintf (dump_file,
852 "Growing the dynamic array to %d elements.\n",
853 array_size);
854 }
855 }
856
857 gcc_assert (!bb_visited_trace (e->dest));
858 mark_bb_visited (new_bb, trace);
859 new_bb->aux = bb->aux;
860 bb->aux = new_bb;
861
862 bbd[new_bb->index].in_trace = trace;
863
864 return new_bb;
865 }
866
867 /* Compute and return the key (for the heap) of the basic block BB. */
868
869 static fibheapkey_t
870 bb_to_key (basic_block bb)
871 {
872 edge e;
873 edge_iterator ei;
874 int priority = 0;
875
876 /* Use index as key to align with its original order. */
877 if (optimize_function_for_size_p (cfun))
878 return bb->index;
879
880 /* Do not start in probably never executed blocks. */
881
882 if (BB_PARTITION (bb) == BB_COLD_PARTITION
883 || probably_never_executed_bb_p (cfun, bb))
884 return BB_FREQ_MAX;
885
886 /* Prefer blocks whose predecessor is an end of some trace
887 or whose predecessor edge is EDGE_DFS_BACK. */
888 FOR_EACH_EDGE (e, ei, bb->preds)
889 {
890 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
891 && bbd[e->src->index].end_of_trace >= 0)
892 || (e->flags & EDGE_DFS_BACK))
893 {
894 int edge_freq = EDGE_FREQUENCY (e);
895
896 if (edge_freq > priority)
897 priority = edge_freq;
898 }
899 }
900
901 if (priority)
902 /* The block with priority should have significantly lower key. */
903 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
904
905 return -bb->frequency;
906 }
907
908 /* Return true when the edge E from basic block BB is better than the temporary
909 best edge (details are in function). The probability of edge E is PROB. The
910 frequency of the successor is FREQ. The current best probability is
911 BEST_PROB, the best frequency is BEST_FREQ.
912 The edge is considered to be equivalent when PROB does not differ much from
913 BEST_PROB; similarly for frequency. */
914
915 static bool
916 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq,
917 int best_prob, int best_freq, const_edge cur_best_edge)
918 {
919 bool is_better_edge;
920
921 /* The BEST_* values do not have to be best, but can be a bit smaller than
922 maximum values. */
923 int diff_prob = best_prob / 10;
924 int diff_freq = best_freq / 10;
925
926 /* The smaller one is better to keep the original order. */
927 if (optimize_function_for_size_p (cfun))
928 return !cur_best_edge
929 || cur_best_edge->dest->index > e->dest->index;
930
931 if (prob > best_prob + diff_prob)
932 /* The edge has higher probability than the temporary best edge. */
933 is_better_edge = true;
934 else if (prob < best_prob - diff_prob)
935 /* The edge has lower probability than the temporary best edge. */
936 is_better_edge = false;
937 else if (freq < best_freq - diff_freq)
938 /* The edge and the temporary best edge have almost equivalent
939 probabilities. The higher frequency of a successor now means
940 that there is another edge going into that successor.
941 This successor has lower frequency so it is better. */
942 is_better_edge = true;
943 else if (freq > best_freq + diff_freq)
944 /* This successor has higher frequency so it is worse. */
945 is_better_edge = false;
946 else if (e->dest->prev_bb == bb)
947 /* The edges have equivalent probabilities and the successors
948 have equivalent frequencies. Select the previous successor. */
949 is_better_edge = true;
950 else
951 is_better_edge = false;
952
953 /* If we are doing hot/cold partitioning, make sure that we always favor
954 non-crossing edges over crossing edges. */
955
956 if (!is_better_edge
957 && flag_reorder_blocks_and_partition
958 && cur_best_edge
959 && (cur_best_edge->flags & EDGE_CROSSING)
960 && !(e->flags & EDGE_CROSSING))
961 is_better_edge = true;
962
963 return is_better_edge;
964 }
965
966 /* Return true when the edge E is better than the temporary best edge
967 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
968 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
969 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
970 TRACES record the information about traces.
971 When optimizing for size, the edge with smaller index is better.
972 When optimizing for speed, the edge with bigger probability or longer trace
973 is better. */
974
975 static bool
976 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
977 const_edge cur_best_edge, struct trace *traces)
978 {
979 int e_index;
980 int b_index;
981 bool is_better_edge;
982
983 if (!cur_best_edge)
984 return true;
985
986 if (optimize_function_for_size_p (cfun))
987 {
988 e_index = src_index_p ? e->src->index : e->dest->index;
989 b_index = src_index_p ? cur_best_edge->src->index
990 : cur_best_edge->dest->index;
991 /* The smaller one is better to keep the original order. */
992 return b_index > e_index;
993 }
994
995 if (src_index_p)
996 {
997 e_index = e->src->index;
998
999 if (e->probability > cur_best_edge->probability)
1000 /* The edge has higher probability than the temporary best edge. */
1001 is_better_edge = true;
1002 else if (e->probability < cur_best_edge->probability)
1003 /* The edge has lower probability than the temporary best edge. */
1004 is_better_edge = false;
1005 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1006 /* The edge and the temporary best edge have equivalent probabilities.
1007 The edge with longer trace is better. */
1008 is_better_edge = true;
1009 else
1010 is_better_edge = false;
1011 }
1012 else
1013 {
1014 e_index = e->dest->index;
1015
1016 if (e->probability > cur_best_edge->probability)
1017 /* The edge has higher probability than the temporary best edge. */
1018 is_better_edge = true;
1019 else if (e->probability < cur_best_edge->probability)
1020 /* The edge has lower probability than the temporary best edge. */
1021 is_better_edge = false;
1022 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1023 /* The edge and the temporary best edge have equivalent probabilities.
1024 The edge with longer trace is better. */
1025 is_better_edge = true;
1026 else
1027 is_better_edge = false;
1028 }
1029
1030 return is_better_edge;
1031 }
1032
1033 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
1034
1035 static void
1036 connect_traces (int n_traces, struct trace *traces)
1037 {
1038 int i;
1039 bool *connected;
1040 bool two_passes;
1041 int last_trace;
1042 int current_pass;
1043 int current_partition;
1044 int freq_threshold;
1045 gcov_type count_threshold;
1046 bool for_size = optimize_function_for_size_p (cfun);
1047
1048 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
1049 if (max_entry_count < INT_MAX / 1000)
1050 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
1051 else
1052 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
1053
1054 connected = XCNEWVEC (bool, n_traces);
1055 last_trace = -1;
1056 current_pass = 1;
1057 current_partition = BB_PARTITION (traces[0].first);
1058 two_passes = false;
1059
1060 if (crtl->has_bb_partition)
1061 for (i = 0; i < n_traces && !two_passes; i++)
1062 if (BB_PARTITION (traces[0].first)
1063 != BB_PARTITION (traces[i].first))
1064 two_passes = true;
1065
1066 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1067 {
1068 int t = i;
1069 int t2;
1070 edge e, best;
1071 int best_len;
1072
1073 if (i >= n_traces)
1074 {
1075 gcc_assert (two_passes && current_pass == 1);
1076 i = 0;
1077 t = i;
1078 current_pass = 2;
1079 if (current_partition == BB_HOT_PARTITION)
1080 current_partition = BB_COLD_PARTITION;
1081 else
1082 current_partition = BB_HOT_PARTITION;
1083 }
1084
1085 if (connected[t])
1086 continue;
1087
1088 if (two_passes
1089 && BB_PARTITION (traces[t].first) != current_partition)
1090 continue;
1091
1092 connected[t] = true;
1093
1094 /* Find the predecessor traces. */
1095 for (t2 = t; t2 > 0;)
1096 {
1097 edge_iterator ei;
1098 best = NULL;
1099 best_len = 0;
1100 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1101 {
1102 int si = e->src->index;
1103
1104 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1105 && (e->flags & EDGE_CAN_FALLTHRU)
1106 && !(e->flags & EDGE_COMPLEX)
1107 && bbd[si].end_of_trace >= 0
1108 && !connected[bbd[si].end_of_trace]
1109 && (BB_PARTITION (e->src) == current_partition)
1110 && connect_better_edge_p (e, true, best_len, best, traces))
1111 {
1112 best = e;
1113 best_len = traces[bbd[si].end_of_trace].length;
1114 }
1115 }
1116 if (best)
1117 {
1118 best->src->aux = best->dest;
1119 t2 = bbd[best->src->index].end_of_trace;
1120 connected[t2] = true;
1121
1122 if (dump_file)
1123 {
1124 fprintf (dump_file, "Connection: %d %d\n",
1125 best->src->index, best->dest->index);
1126 }
1127 }
1128 else
1129 break;
1130 }
1131
1132 if (last_trace >= 0)
1133 traces[last_trace].last->aux = traces[t2].first;
1134 last_trace = t;
1135
1136 /* Find the successor traces. */
1137 while (1)
1138 {
1139 /* Find the continuation of the chain. */
1140 edge_iterator ei;
1141 best = NULL;
1142 best_len = 0;
1143 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1144 {
1145 int di = e->dest->index;
1146
1147 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1148 && (e->flags & EDGE_CAN_FALLTHRU)
1149 && !(e->flags & EDGE_COMPLEX)
1150 && bbd[di].start_of_trace >= 0
1151 && !connected[bbd[di].start_of_trace]
1152 && (BB_PARTITION (e->dest) == current_partition)
1153 && connect_better_edge_p (e, false, best_len, best, traces))
1154 {
1155 best = e;
1156 best_len = traces[bbd[di].start_of_trace].length;
1157 }
1158 }
1159
1160 if (for_size)
1161 {
1162 if (!best)
1163 /* Stop finding the successor traces. */
1164 break;
1165
1166 /* It is OK to connect block n with block n + 1 or a block
1167 before n. For others, only connect to the loop header. */
1168 if (best->dest->index > (traces[t].last->index + 1))
1169 {
1170 int count = EDGE_COUNT (best->dest->preds);
1171
1172 FOR_EACH_EDGE (e, ei, best->dest->preds)
1173 if (e->flags & EDGE_DFS_BACK)
1174 count--;
1175
1176 /* If dest has multiple predecessors, skip it. We expect
1177 that one predecessor with smaller index connects with it
1178 later. */
1179 if (count != 1)
1180 break;
1181 }
1182
1183 /* Only connect Trace n with Trace n + 1. It is conservative
1184 to keep the order as close as possible to the original order.
1185 It also helps to reduce long jumps. */
1186 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1187 break;
1188
1189 if (dump_file)
1190 fprintf (dump_file, "Connection: %d %d\n",
1191 best->src->index, best->dest->index);
1192
1193 t = bbd[best->dest->index].start_of_trace;
1194 traces[last_trace].last->aux = traces[t].first;
1195 connected[t] = true;
1196 last_trace = t;
1197 }
1198 else if (best)
1199 {
1200 if (dump_file)
1201 {
1202 fprintf (dump_file, "Connection: %d %d\n",
1203 best->src->index, best->dest->index);
1204 }
1205 t = bbd[best->dest->index].start_of_trace;
1206 traces[last_trace].last->aux = traces[t].first;
1207 connected[t] = true;
1208 last_trace = t;
1209 }
1210 else
1211 {
1212 /* Try to connect the traces by duplication of 1 block. */
1213 edge e2;
1214 basic_block next_bb = NULL;
1215 bool try_copy = false;
1216
1217 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1218 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1219 && (e->flags & EDGE_CAN_FALLTHRU)
1220 && !(e->flags & EDGE_COMPLEX)
1221 && (!best || e->probability > best->probability))
1222 {
1223 edge_iterator ei;
1224 edge best2 = NULL;
1225 int best2_len = 0;
1226
1227 /* If the destination is a start of a trace which is only
1228 one block long, then no need to search the successor
1229 blocks of the trace. Accept it. */
1230 if (bbd[e->dest->index].start_of_trace >= 0
1231 && traces[bbd[e->dest->index].start_of_trace].length
1232 == 1)
1233 {
1234 best = e;
1235 try_copy = true;
1236 continue;
1237 }
1238
1239 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1240 {
1241 int di = e2->dest->index;
1242
1243 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1244 || ((e2->flags & EDGE_CAN_FALLTHRU)
1245 && !(e2->flags & EDGE_COMPLEX)
1246 && bbd[di].start_of_trace >= 0
1247 && !connected[bbd[di].start_of_trace]
1248 && BB_PARTITION (e2->dest) == current_partition
1249 && EDGE_FREQUENCY (e2) >= freq_threshold
1250 && e2->count >= count_threshold
1251 && (!best2
1252 || e2->probability > best2->probability
1253 || (e2->probability == best2->probability
1254 && traces[bbd[di].start_of_trace].length
1255 > best2_len))))
1256 {
1257 best = e;
1258 best2 = e2;
1259 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1260 best2_len = traces[bbd[di].start_of_trace].length;
1261 else
1262 best2_len = INT_MAX;
1263 next_bb = e2->dest;
1264 try_copy = true;
1265 }
1266 }
1267 }
1268
1269 if (crtl->has_bb_partition)
1270 try_copy = false;
1271
1272 /* Copy tiny blocks always; copy larger blocks only when the
1273 edge is traversed frequently enough. */
1274 if (try_copy
1275 && copy_bb_p (best->dest,
1276 optimize_edge_for_speed_p (best)
1277 && EDGE_FREQUENCY (best) >= freq_threshold
1278 && best->count >= count_threshold))
1279 {
1280 basic_block new_bb;
1281
1282 if (dump_file)
1283 {
1284 fprintf (dump_file, "Connection: %d %d ",
1285 traces[t].last->index, best->dest->index);
1286 if (!next_bb)
1287 fputc ('\n', dump_file);
1288 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1289 fprintf (dump_file, "exit\n");
1290 else
1291 fprintf (dump_file, "%d\n", next_bb->index);
1292 }
1293
1294 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1295 traces[t].last = new_bb;
1296 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1297 {
1298 t = bbd[next_bb->index].start_of_trace;
1299 traces[last_trace].last->aux = traces[t].first;
1300 connected[t] = true;
1301 last_trace = t;
1302 }
1303 else
1304 break; /* Stop finding the successor traces. */
1305 }
1306 else
1307 break; /* Stop finding the successor traces. */
1308 }
1309 }
1310 }
1311
1312 if (dump_file)
1313 {
1314 basic_block bb;
1315
1316 fprintf (dump_file, "Final order:\n");
1317 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1318 fprintf (dump_file, "%d ", bb->index);
1319 fprintf (dump_file, "\n");
1320 fflush (dump_file);
1321 }
1322
1323 FREE (connected);
1324 }
1325
1326 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1327 when code size is allowed to grow by duplication. */
1328
1329 static bool
1330 copy_bb_p (const_basic_block bb, int code_may_grow)
1331 {
1332 int size = 0;
1333 int max_size = uncond_jump_length;
1334 rtx insn;
1335
1336 if (!bb->frequency)
1337 return false;
1338 if (EDGE_COUNT (bb->preds) < 2)
1339 return false;
1340 if (!can_duplicate_block_p (bb))
1341 return false;
1342
1343 /* Avoid duplicating blocks which have many successors (PR/13430). */
1344 if (EDGE_COUNT (bb->succs) > 8)
1345 return false;
1346
1347 if (code_may_grow && optimize_bb_for_speed_p (bb))
1348 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1349
1350 FOR_BB_INSNS (bb, insn)
1351 {
1352 if (INSN_P (insn))
1353 size += get_attr_min_length (insn);
1354 }
1355
1356 if (size <= max_size)
1357 return true;
1358
1359 if (dump_file)
1360 {
1361 fprintf (dump_file,
1362 "Block %d can't be copied because its size = %d.\n",
1363 bb->index, size);
1364 }
1365
1366 return false;
1367 }
1368
1369 /* Return the length of unconditional jump instruction. */
1370
1371 int
1372 get_uncond_jump_length (void)
1373 {
1374 rtx label, jump;
1375 int length;
1376
1377 label = emit_label_before (gen_label_rtx (), get_insns ());
1378 jump = emit_jump_insn (gen_jump (label));
1379
1380 length = get_attr_min_length (jump);
1381
1382 delete_insn (jump);
1383 delete_insn (label);
1384 return length;
1385 }
1386
1387 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1388 Duplicate the landing pad and split the edges so that no EH edge
1389 crosses partitions. */
1390
1391 static void
1392 fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1393 {
1394 eh_landing_pad new_lp;
1395 basic_block new_bb, last_bb, post_bb;
1396 rtx new_label, jump, post_label;
1397 unsigned new_partition;
1398 edge_iterator ei;
1399 edge e;
1400
1401 /* Generate the new landing-pad structure. */
1402 new_lp = gen_eh_landing_pad (old_lp->region);
1403 new_lp->post_landing_pad = old_lp->post_landing_pad;
1404 new_lp->landing_pad = gen_label_rtx ();
1405 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1406
1407 /* Put appropriate instructions in new bb. */
1408 new_label = emit_label (new_lp->landing_pad);
1409
1410 expand_dw2_landing_pad_for_region (old_lp->region);
1411
1412 post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
1413 post_bb = single_succ (post_bb);
1414 post_label = block_label (post_bb);
1415 jump = emit_jump_insn (gen_jump (post_label));
1416 JUMP_LABEL (jump) = post_label;
1417
1418 /* Create new basic block to be dest for lp. */
1419 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1420 new_bb = create_basic_block (new_label, jump, last_bb);
1421 new_bb->aux = last_bb->aux;
1422 last_bb->aux = new_bb;
1423
1424 emit_barrier_after_bb (new_bb);
1425
1426 make_edge (new_bb, post_bb, 0);
1427
1428 /* Make sure new bb is in the other partition. */
1429 new_partition = BB_PARTITION (old_bb);
1430 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1431 BB_SET_PARTITION (new_bb, new_partition);
1432
1433 /* Fix up the edges. */
1434 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1435 if (BB_PARTITION (e->src) == new_partition)
1436 {
1437 rtx insn = BB_END (e->src);
1438 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1439
1440 gcc_assert (note != NULL);
1441 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1442 XEXP (note, 0) = GEN_INT (new_lp->index);
1443
1444 /* Adjust the edge to the new destination. */
1445 redirect_edge_succ (e, new_bb);
1446 }
1447 else
1448 ei_next (&ei);
1449 }
1450
1451
1452 /* Ensure that all hot bbs are included in a hot path through the
1453 procedure. This is done by calling this function twice, once
1454 with WALK_UP true (to look for paths from the entry to hot bbs) and
1455 once with WALK_UP false (to look for paths from hot bbs to the exit).
1456 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1457 to BBS_IN_HOT_PARTITION. */
1458
1459 static unsigned int
1460 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1461 vec<basic_block> *bbs_in_hot_partition)
1462 {
1463 /* Callers check this. */
1464 gcc_checking_assert (cold_bb_count);
1465
1466 /* Keep examining hot bbs while we still have some left to check
1467 and there are remaining cold bbs. */
1468 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1469 while (! hot_bbs_to_check.is_empty ()
1470 && cold_bb_count)
1471 {
1472 basic_block bb = hot_bbs_to_check.pop ();
1473 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1474 edge e;
1475 edge_iterator ei;
1476 int highest_probability = 0;
1477 int highest_freq = 0;
1478 gcov_type highest_count = 0;
1479 bool found = false;
1480
1481 /* Walk the preds/succs and check if there is at least one already
1482 marked hot. Keep track of the most frequent pred/succ so that we
1483 can mark it hot if we don't find one. */
1484 FOR_EACH_EDGE (e, ei, edges)
1485 {
1486 basic_block reach_bb = walk_up ? e->src : e->dest;
1487
1488 if (e->flags & EDGE_DFS_BACK)
1489 continue;
1490
1491 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1492 {
1493 found = true;
1494 break;
1495 }
1496 /* The following loop will look for the hottest edge via
1497 the edge count, if it is non-zero, then fallback to the edge
1498 frequency and finally the edge probability. */
1499 if (e->count > highest_count)
1500 highest_count = e->count;
1501 int edge_freq = EDGE_FREQUENCY (e);
1502 if (edge_freq > highest_freq)
1503 highest_freq = edge_freq;
1504 if (e->probability > highest_probability)
1505 highest_probability = e->probability;
1506 }
1507
1508 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1509 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1510 then the most frequent pred (or succ) needs to be adjusted. In the
1511 case where multiple preds/succs have the same frequency (e.g. a
1512 50-50 branch), then both will be adjusted. */
1513 if (found)
1514 continue;
1515
1516 FOR_EACH_EDGE (e, ei, edges)
1517 {
1518 if (e->flags & EDGE_DFS_BACK)
1519 continue;
1520 /* Select the hottest edge using the edge count, if it is non-zero,
1521 then fallback to the edge frequency and finally the edge
1522 probability. */
1523 if (highest_count)
1524 {
1525 if (e->count < highest_count)
1526 continue;
1527 }
1528 else if (highest_freq)
1529 {
1530 if (EDGE_FREQUENCY (e) < highest_freq)
1531 continue;
1532 }
1533 else if (e->probability < highest_probability)
1534 continue;
1535
1536 basic_block reach_bb = walk_up ? e->src : e->dest;
1537
1538 /* We have a hot bb with an immediate dominator that is cold.
1539 The dominator needs to be re-marked hot. */
1540 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1541 cold_bb_count--;
1542
1543 /* Now we need to examine newly-hot reach_bb to see if it is also
1544 dominated by a cold bb. */
1545 bbs_in_hot_partition->safe_push (reach_bb);
1546 hot_bbs_to_check.safe_push (reach_bb);
1547 }
1548 }
1549
1550 return cold_bb_count;
1551 }
1552
1553
1554 /* Find the basic blocks that are rarely executed and need to be moved to
1555 a separate section of the .o file (to cut down on paging and improve
1556 cache locality). Return a vector of all edges that cross. */
1557
1558 static vec<edge>
1559 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1560 {
1561 vec<edge> crossing_edges = vNULL;
1562 basic_block bb;
1563 edge e;
1564 edge_iterator ei;
1565 unsigned int cold_bb_count = 0;
1566 vec<basic_block> bbs_in_hot_partition = vNULL;
1567
1568 /* Mark which partition (hot/cold) each basic block belongs in. */
1569 FOR_EACH_BB_FN (bb, cfun)
1570 {
1571 bool cold_bb = false;
1572
1573 if (probably_never_executed_bb_p (cfun, bb))
1574 {
1575 /* Handle profile insanities created by upstream optimizations
1576 by also checking the incoming edge weights. If there is a non-cold
1577 incoming edge, conservatively prevent this block from being split
1578 into the cold section. */
1579 cold_bb = true;
1580 FOR_EACH_EDGE (e, ei, bb->preds)
1581 if (!probably_never_executed_edge_p (cfun, e))
1582 {
1583 cold_bb = false;
1584 break;
1585 }
1586 }
1587 if (cold_bb)
1588 {
1589 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1590 cold_bb_count++;
1591 }
1592 else
1593 {
1594 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1595 bbs_in_hot_partition.safe_push (bb);
1596 }
1597 }
1598
1599 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1600 Several different possibilities may include cold bbs along all paths
1601 to/from a hot bb. One is that there are edge weight insanities
1602 due to optimization phases that do not properly update basic block profile
1603 counts. The second is that the entry of the function may not be hot, because
1604 it is entered fewer times than the number of profile training runs, but there
1605 is a loop inside the function that causes blocks within the function to be
1606 above the threshold for hotness. This is fixed by walking up from hot bbs
1607 to the entry block, and then down from hot bbs to the exit, performing
1608 partitioning fixups as necessary. */
1609 if (cold_bb_count)
1610 {
1611 mark_dfs_back_edges ();
1612 cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1613 &bbs_in_hot_partition);
1614 if (cold_bb_count)
1615 sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1616 }
1617
1618 /* The format of .gcc_except_table does not allow landing pads to
1619 be in a different partition as the throw. Fix this by either
1620 moving or duplicating the landing pads. */
1621 if (cfun->eh->lp_array)
1622 {
1623 unsigned i;
1624 eh_landing_pad lp;
1625
1626 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1627 {
1628 bool all_same, all_diff;
1629
1630 if (lp == NULL
1631 || lp->landing_pad == NULL_RTX
1632 || !LABEL_P (lp->landing_pad))
1633 continue;
1634
1635 all_same = all_diff = true;
1636 bb = BLOCK_FOR_INSN (lp->landing_pad);
1637 FOR_EACH_EDGE (e, ei, bb->preds)
1638 {
1639 gcc_assert (e->flags & EDGE_EH);
1640 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1641 all_diff = false;
1642 else
1643 all_same = false;
1644 }
1645
1646 if (all_same)
1647 ;
1648 else if (all_diff)
1649 {
1650 int which = BB_PARTITION (bb);
1651 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1652 BB_SET_PARTITION (bb, which);
1653 }
1654 else
1655 fix_up_crossing_landing_pad (lp, bb);
1656 }
1657 }
1658
1659 /* Mark every edge that crosses between sections. */
1660
1661 FOR_EACH_BB_FN (bb, cfun)
1662 FOR_EACH_EDGE (e, ei, bb->succs)
1663 {
1664 unsigned int flags = e->flags;
1665
1666 /* We should never have EDGE_CROSSING set yet. */
1667 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1668
1669 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1670 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1671 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1672 {
1673 crossing_edges.safe_push (e);
1674 flags |= EDGE_CROSSING;
1675 }
1676
1677 /* Now that we've split eh edges as appropriate, allow landing pads
1678 to be merged with the post-landing pads. */
1679 flags &= ~EDGE_PRESERVE;
1680
1681 e->flags = flags;
1682 }
1683
1684 return crossing_edges;
1685 }
1686
1687 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1688
1689 static void
1690 set_edge_can_fallthru_flag (void)
1691 {
1692 basic_block bb;
1693
1694 FOR_EACH_BB_FN (bb, cfun)
1695 {
1696 edge e;
1697 edge_iterator ei;
1698
1699 FOR_EACH_EDGE (e, ei, bb->succs)
1700 {
1701 e->flags &= ~EDGE_CAN_FALLTHRU;
1702
1703 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1704 if (e->flags & EDGE_FALLTHRU)
1705 e->flags |= EDGE_CAN_FALLTHRU;
1706 }
1707
1708 /* If the BB ends with an invertible condjump all (2) edges are
1709 CAN_FALLTHRU edges. */
1710 if (EDGE_COUNT (bb->succs) != 2)
1711 continue;
1712 if (!any_condjump_p (BB_END (bb)))
1713 continue;
1714 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
1715 continue;
1716 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
1717 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1718 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1719 }
1720 }
1721
1722 /* If any destination of a crossing edge does not have a label, add label;
1723 Convert any easy fall-through crossing edges to unconditional jumps. */
1724
1725 static void
1726 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1727 {
1728 size_t i;
1729 edge e;
1730
1731 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1732 {
1733 basic_block src = e->src;
1734 basic_block dest = e->dest;
1735 rtx label, new_jump;
1736
1737 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1738 continue;
1739
1740 /* Make sure dest has a label. */
1741 label = block_label (dest);
1742
1743 /* Nothing to do for non-fallthru edges. */
1744 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1745 continue;
1746 if ((e->flags & EDGE_FALLTHRU) == 0)
1747 continue;
1748
1749 /* If the block does not end with a control flow insn, then we
1750 can trivially add a jump to the end to fixup the crossing.
1751 Otherwise the jump will have to go in a new bb, which will
1752 be handled by fix_up_fall_thru_edges function. */
1753 if (control_flow_insn_p (BB_END (src)))
1754 continue;
1755
1756 /* Make sure there's only one successor. */
1757 gcc_assert (single_succ_p (src));
1758
1759 new_jump = emit_jump_insn_after (gen_jump (label), BB_END (src));
1760 BB_END (src) = new_jump;
1761 JUMP_LABEL (new_jump) = label;
1762 LABEL_NUSES (label) += 1;
1763
1764 emit_barrier_after_bb (src);
1765
1766 /* Mark edge as non-fallthru. */
1767 e->flags &= ~EDGE_FALLTHRU;
1768 }
1769 }
1770
1771 /* Find any bb's where the fall-through edge is a crossing edge (note that
1772 these bb's must also contain a conditional jump or end with a call
1773 instruction; we've already dealt with fall-through edges for blocks
1774 that didn't have a conditional jump or didn't end with call instruction
1775 in the call to add_labels_and_missing_jumps). Convert the fall-through
1776 edge to non-crossing edge by inserting a new bb to fall-through into.
1777 The new bb will contain an unconditional jump (crossing edge) to the
1778 original fall through destination. */
1779
1780 static void
1781 fix_up_fall_thru_edges (void)
1782 {
1783 basic_block cur_bb;
1784 basic_block new_bb;
1785 edge succ1;
1786 edge succ2;
1787 edge fall_thru;
1788 edge cond_jump = NULL;
1789 edge e;
1790 bool cond_jump_crosses;
1791 int invert_worked;
1792 rtx old_jump;
1793 rtx fall_thru_label;
1794
1795 FOR_EACH_BB_FN (cur_bb, cfun)
1796 {
1797 fall_thru = NULL;
1798 if (EDGE_COUNT (cur_bb->succs) > 0)
1799 succ1 = EDGE_SUCC (cur_bb, 0);
1800 else
1801 succ1 = NULL;
1802
1803 if (EDGE_COUNT (cur_bb->succs) > 1)
1804 succ2 = EDGE_SUCC (cur_bb, 1);
1805 else
1806 succ2 = NULL;
1807
1808 /* Find the fall-through edge. */
1809
1810 if (succ1
1811 && (succ1->flags & EDGE_FALLTHRU))
1812 {
1813 fall_thru = succ1;
1814 cond_jump = succ2;
1815 }
1816 else if (succ2
1817 && (succ2->flags & EDGE_FALLTHRU))
1818 {
1819 fall_thru = succ2;
1820 cond_jump = succ1;
1821 }
1822 else if (succ1
1823 && (block_ends_with_call_p (cur_bb)
1824 || can_throw_internal (BB_END (cur_bb))))
1825 {
1826 edge e;
1827 edge_iterator ei;
1828
1829 /* Find EDGE_CAN_FALLTHRU edge. */
1830 FOR_EACH_EDGE (e, ei, cur_bb->succs)
1831 if (e->flags & EDGE_CAN_FALLTHRU)
1832 {
1833 fall_thru = e;
1834 break;
1835 }
1836 }
1837
1838 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1839 {
1840 /* Check to see if the fall-thru edge is a crossing edge. */
1841
1842 if (fall_thru->flags & EDGE_CROSSING)
1843 {
1844 /* The fall_thru edge crosses; now check the cond jump edge, if
1845 it exists. */
1846
1847 cond_jump_crosses = true;
1848 invert_worked = 0;
1849 old_jump = BB_END (cur_bb);
1850
1851 /* Find the jump instruction, if there is one. */
1852
1853 if (cond_jump)
1854 {
1855 if (!(cond_jump->flags & EDGE_CROSSING))
1856 cond_jump_crosses = false;
1857
1858 /* We know the fall-thru edge crosses; if the cond
1859 jump edge does NOT cross, and its destination is the
1860 next block in the bb order, invert the jump
1861 (i.e. fix it so the fall through does not cross and
1862 the cond jump does). */
1863
1864 if (!cond_jump_crosses)
1865 {
1866 /* Find label in fall_thru block. We've already added
1867 any missing labels, so there must be one. */
1868
1869 fall_thru_label = block_label (fall_thru->dest);
1870
1871 if (old_jump && JUMP_P (old_jump) && fall_thru_label)
1872 invert_worked = invert_jump (old_jump,
1873 fall_thru_label,0);
1874 if (invert_worked)
1875 {
1876 fall_thru->flags &= ~EDGE_FALLTHRU;
1877 cond_jump->flags |= EDGE_FALLTHRU;
1878 update_br_prob_note (cur_bb);
1879 e = fall_thru;
1880 fall_thru = cond_jump;
1881 cond_jump = e;
1882 cond_jump->flags |= EDGE_CROSSING;
1883 fall_thru->flags &= ~EDGE_CROSSING;
1884 }
1885 }
1886 }
1887
1888 if (cond_jump_crosses || !invert_worked)
1889 {
1890 /* This is the case where both edges out of the basic
1891 block are crossing edges. Here we will fix up the
1892 fall through edge. The jump edge will be taken care
1893 of later. The EDGE_CROSSING flag of fall_thru edge
1894 is unset before the call to force_nonfallthru
1895 function because if a new basic-block is created
1896 this edge remains in the current section boundary
1897 while the edge between new_bb and the fall_thru->dest
1898 becomes EDGE_CROSSING. */
1899
1900 fall_thru->flags &= ~EDGE_CROSSING;
1901 new_bb = force_nonfallthru (fall_thru);
1902
1903 if (new_bb)
1904 {
1905 new_bb->aux = cur_bb->aux;
1906 cur_bb->aux = new_bb;
1907
1908 /* This is done by force_nonfallthru_and_redirect. */
1909 gcc_assert (BB_PARTITION (new_bb)
1910 == BB_PARTITION (cur_bb));
1911
1912 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1913 }
1914 else
1915 {
1916 /* If a new basic-block was not created; restore
1917 the EDGE_CROSSING flag. */
1918 fall_thru->flags |= EDGE_CROSSING;
1919 }
1920
1921 /* Add barrier after new jump */
1922 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1923 }
1924 }
1925 }
1926 }
1927 }
1928
1929 /* This function checks the destination block of a "crossing jump" to
1930 see if it has any crossing predecessors that begin with a code label
1931 and end with an unconditional jump. If so, it returns that predecessor
1932 block. (This is to avoid creating lots of new basic blocks that all
1933 contain unconditional jumps to the same destination). */
1934
1935 static basic_block
1936 find_jump_block (basic_block jump_dest)
1937 {
1938 basic_block source_bb = NULL;
1939 edge e;
1940 rtx insn;
1941 edge_iterator ei;
1942
1943 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1944 if (e->flags & EDGE_CROSSING)
1945 {
1946 basic_block src = e->src;
1947
1948 /* Check each predecessor to see if it has a label, and contains
1949 only one executable instruction, which is an unconditional jump.
1950 If so, we can use it. */
1951
1952 if (LABEL_P (BB_HEAD (src)))
1953 for (insn = BB_HEAD (src);
1954 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1955 insn = NEXT_INSN (insn))
1956 {
1957 if (INSN_P (insn)
1958 && insn == BB_END (src)
1959 && JUMP_P (insn)
1960 && !any_condjump_p (insn))
1961 {
1962 source_bb = src;
1963 break;
1964 }
1965 }
1966
1967 if (source_bb)
1968 break;
1969 }
1970
1971 return source_bb;
1972 }
1973
1974 /* Find all BB's with conditional jumps that are crossing edges;
1975 insert a new bb and make the conditional jump branch to the new
1976 bb instead (make the new bb same color so conditional branch won't
1977 be a 'crossing' edge). Insert an unconditional jump from the
1978 new bb to the original destination of the conditional jump. */
1979
1980 static void
1981 fix_crossing_conditional_branches (void)
1982 {
1983 basic_block cur_bb;
1984 basic_block new_bb;
1985 basic_block dest;
1986 edge succ1;
1987 edge succ2;
1988 edge crossing_edge;
1989 edge new_edge;
1990 rtx old_jump;
1991 rtx set_src;
1992 rtx old_label = NULL_RTX;
1993 rtx new_label;
1994
1995 FOR_EACH_BB_FN (cur_bb, cfun)
1996 {
1997 crossing_edge = NULL;
1998 if (EDGE_COUNT (cur_bb->succs) > 0)
1999 succ1 = EDGE_SUCC (cur_bb, 0);
2000 else
2001 succ1 = NULL;
2002
2003 if (EDGE_COUNT (cur_bb->succs) > 1)
2004 succ2 = EDGE_SUCC (cur_bb, 1);
2005 else
2006 succ2 = NULL;
2007
2008 /* We already took care of fall-through edges, so only one successor
2009 can be a crossing edge. */
2010
2011 if (succ1 && (succ1->flags & EDGE_CROSSING))
2012 crossing_edge = succ1;
2013 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2014 crossing_edge = succ2;
2015
2016 if (crossing_edge)
2017 {
2018 old_jump = BB_END (cur_bb);
2019
2020 /* Check to make sure the jump instruction is a
2021 conditional jump. */
2022
2023 set_src = NULL_RTX;
2024
2025 if (any_condjump_p (old_jump))
2026 {
2027 if (GET_CODE (PATTERN (old_jump)) == SET)
2028 set_src = SET_SRC (PATTERN (old_jump));
2029 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2030 {
2031 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2032 if (GET_CODE (set_src) == SET)
2033 set_src = SET_SRC (set_src);
2034 else
2035 set_src = NULL_RTX;
2036 }
2037 }
2038
2039 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2040 {
2041 if (GET_CODE (XEXP (set_src, 1)) == PC)
2042 old_label = XEXP (set_src, 2);
2043 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2044 old_label = XEXP (set_src, 1);
2045
2046 /* Check to see if new bb for jumping to that dest has
2047 already been created; if so, use it; if not, create
2048 a new one. */
2049
2050 new_bb = find_jump_block (crossing_edge->dest);
2051
2052 if (new_bb)
2053 new_label = block_label (new_bb);
2054 else
2055 {
2056 basic_block last_bb;
2057 rtx new_jump;
2058
2059 /* Create new basic block to be dest for
2060 conditional jump. */
2061
2062 /* Put appropriate instructions in new bb. */
2063
2064 new_label = gen_label_rtx ();
2065 emit_label (new_label);
2066
2067 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2068 old_label = JUMP_LABEL (old_jump);
2069 new_jump = emit_jump_insn (gen_jump (old_label));
2070 JUMP_LABEL (new_jump) = old_label;
2071
2072 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2073 new_bb = create_basic_block (new_label, new_jump, last_bb);
2074 new_bb->aux = last_bb->aux;
2075 last_bb->aux = new_bb;
2076
2077 emit_barrier_after_bb (new_bb);
2078
2079 /* Make sure new bb is in same partition as source
2080 of conditional branch. */
2081 BB_COPY_PARTITION (new_bb, cur_bb);
2082 }
2083
2084 /* Make old jump branch to new bb. */
2085
2086 redirect_jump (old_jump, new_label, 0);
2087
2088 /* Remove crossing_edge as predecessor of 'dest'. */
2089
2090 dest = crossing_edge->dest;
2091
2092 redirect_edge_succ (crossing_edge, new_bb);
2093
2094 /* Make a new edge from new_bb to old dest; new edge
2095 will be a successor for new_bb and a predecessor
2096 for 'dest'. */
2097
2098 if (EDGE_COUNT (new_bb->succs) == 0)
2099 new_edge = make_edge (new_bb, dest, 0);
2100 else
2101 new_edge = EDGE_SUCC (new_bb, 0);
2102
2103 crossing_edge->flags &= ~EDGE_CROSSING;
2104 new_edge->flags |= EDGE_CROSSING;
2105 }
2106 }
2107 }
2108 }
2109
2110 /* Find any unconditional branches that cross between hot and cold
2111 sections. Convert them into indirect jumps instead. */
2112
2113 static void
2114 fix_crossing_unconditional_branches (void)
2115 {
2116 basic_block cur_bb;
2117 rtx last_insn;
2118 rtx label;
2119 rtx label_addr;
2120 rtx indirect_jump_sequence;
2121 rtx jump_insn = NULL_RTX;
2122 rtx new_reg;
2123 rtx cur_insn;
2124 edge succ;
2125
2126 FOR_EACH_BB_FN (cur_bb, cfun)
2127 {
2128 last_insn = BB_END (cur_bb);
2129
2130 if (EDGE_COUNT (cur_bb->succs) < 1)
2131 continue;
2132
2133 succ = EDGE_SUCC (cur_bb, 0);
2134
2135 /* Check to see if bb ends in a crossing (unconditional) jump. At
2136 this point, no crossing jumps should be conditional. */
2137
2138 if (JUMP_P (last_insn)
2139 && (succ->flags & EDGE_CROSSING))
2140 {
2141 gcc_assert (!any_condjump_p (last_insn));
2142
2143 /* Make sure the jump is not already an indirect or table jump. */
2144
2145 if (!computed_jump_p (last_insn)
2146 && !tablejump_p (last_insn, NULL, NULL))
2147 {
2148 /* We have found a "crossing" unconditional branch. Now
2149 we must convert it to an indirect jump. First create
2150 reference of label, as target for jump. */
2151
2152 label = JUMP_LABEL (last_insn);
2153 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2154 LABEL_NUSES (label) += 1;
2155
2156 /* Get a register to use for the indirect jump. */
2157
2158 new_reg = gen_reg_rtx (Pmode);
2159
2160 /* Generate indirect the jump sequence. */
2161
2162 start_sequence ();
2163 emit_move_insn (new_reg, label_addr);
2164 emit_indirect_jump (new_reg);
2165 indirect_jump_sequence = get_insns ();
2166 end_sequence ();
2167
2168 /* Make sure every instruction in the new jump sequence has
2169 its basic block set to be cur_bb. */
2170
2171 for (cur_insn = indirect_jump_sequence; cur_insn;
2172 cur_insn = NEXT_INSN (cur_insn))
2173 {
2174 if (!BARRIER_P (cur_insn))
2175 BLOCK_FOR_INSN (cur_insn) = cur_bb;
2176 if (JUMP_P (cur_insn))
2177 jump_insn = cur_insn;
2178 }
2179
2180 /* Insert the new (indirect) jump sequence immediately before
2181 the unconditional jump, then delete the unconditional jump. */
2182
2183 emit_insn_before (indirect_jump_sequence, last_insn);
2184 delete_insn (last_insn);
2185
2186 /* Make BB_END for cur_bb be the jump instruction (NOT the
2187 barrier instruction at the end of the sequence...). */
2188
2189 BB_END (cur_bb) = jump_insn;
2190 }
2191 }
2192 }
2193 }
2194
2195 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
2196
2197 static void
2198 add_reg_crossing_jump_notes (void)
2199 {
2200 basic_block bb;
2201 edge e;
2202 edge_iterator ei;
2203
2204 FOR_EACH_BB_FN (bb, cfun)
2205 FOR_EACH_EDGE (e, ei, bb->succs)
2206 if ((e->flags & EDGE_CROSSING)
2207 && JUMP_P (BB_END (e->src))
2208 /* Some notes were added during fix_up_fall_thru_edges, via
2209 force_nonfallthru_and_redirect. */
2210 && !find_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX))
2211 add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
2212 }
2213
2214 /* Reorder basic blocks. The main entry point to this file. FLAGS is
2215 the set of flags to pass to cfg_layout_initialize(). */
2216
2217 static void
2218 reorder_basic_blocks (void)
2219 {
2220 int n_traces;
2221 int i;
2222 struct trace *traces;
2223
2224 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2225
2226 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2227 return;
2228
2229 set_edge_can_fallthru_flag ();
2230 mark_dfs_back_edges ();
2231
2232 /* We are estimating the length of uncond jump insn only once since the code
2233 for getting the insn length always returns the minimal length now. */
2234 if (uncond_jump_length == 0)
2235 uncond_jump_length = get_uncond_jump_length ();
2236
2237 /* We need to know some information for each basic block. */
2238 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2239 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2240 for (i = 0; i < array_size; i++)
2241 {
2242 bbd[i].start_of_trace = -1;
2243 bbd[i].end_of_trace = -1;
2244 bbd[i].in_trace = -1;
2245 bbd[i].visited = 0;
2246 bbd[i].heap = NULL;
2247 bbd[i].node = NULL;
2248 }
2249
2250 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2251 n_traces = 0;
2252 find_traces (&n_traces, traces);
2253 connect_traces (n_traces, traces);
2254 FREE (traces);
2255 FREE (bbd);
2256
2257 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2258
2259 if (dump_file)
2260 {
2261 if (dump_flags & TDF_DETAILS)
2262 dump_reg_info (dump_file);
2263 dump_flow_info (dump_file, dump_flags);
2264 }
2265
2266 /* Signal that rtl_verify_flow_info_1 can now verify that there
2267 is at most one switch between hot/cold sections. */
2268 crtl->bb_reorder_complete = true;
2269 }
2270
2271 /* Determine which partition the first basic block in the function
2272 belongs to, then find the first basic block in the current function
2273 that belongs to a different section, and insert a
2274 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2275 instruction stream. When writing out the assembly code,
2276 encountering this note will make the compiler switch between the
2277 hot and cold text sections. */
2278
2279 void
2280 insert_section_boundary_note (void)
2281 {
2282 basic_block bb;
2283 bool switched_sections = false;
2284 int current_partition = 0;
2285
2286 if (!crtl->has_bb_partition)
2287 return;
2288
2289 FOR_EACH_BB_FN (bb, cfun)
2290 {
2291 if (!current_partition)
2292 current_partition = BB_PARTITION (bb);
2293 if (BB_PARTITION (bb) != current_partition)
2294 {
2295 gcc_assert (!switched_sections);
2296 switched_sections = true;
2297 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2298 current_partition = BB_PARTITION (bb);
2299 }
2300 }
2301 }
2302
2303 static bool
2304 gate_handle_reorder_blocks (void)
2305 {
2306 if (targetm.cannot_modify_jumps_p ())
2307 return false;
2308 return (optimize > 0
2309 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2310 }
2311
2312 static unsigned int
2313 rest_of_handle_reorder_blocks (void)
2314 {
2315 basic_block bb;
2316
2317 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2318 splitting possibly introduced more crossjumping opportunities. */
2319 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2320
2321 reorder_basic_blocks ();
2322 cleanup_cfg (CLEANUP_EXPENSIVE);
2323
2324 FOR_EACH_BB_FN (bb, cfun)
2325 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2326 bb->aux = bb->next_bb;
2327 cfg_layout_finalize ();
2328
2329 return 0;
2330 }
2331
2332 namespace {
2333
2334 const pass_data pass_data_reorder_blocks =
2335 {
2336 RTL_PASS, /* type */
2337 "bbro", /* name */
2338 OPTGROUP_NONE, /* optinfo_flags */
2339 true, /* has_gate */
2340 true, /* has_execute */
2341 TV_REORDER_BLOCKS, /* tv_id */
2342 0, /* properties_required */
2343 0, /* properties_provided */
2344 0, /* properties_destroyed */
2345 0, /* todo_flags_start */
2346 TODO_verify_rtl_sharing, /* todo_flags_finish */
2347 };
2348
2349 class pass_reorder_blocks : public rtl_opt_pass
2350 {
2351 public:
2352 pass_reorder_blocks (gcc::context *ctxt)
2353 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2354 {}
2355
2356 /* opt_pass methods: */
2357 bool gate () { return gate_handle_reorder_blocks (); }
2358 unsigned int execute () { return rest_of_handle_reorder_blocks (); }
2359
2360 }; // class pass_reorder_blocks
2361
2362 } // anon namespace
2363
2364 rtl_opt_pass *
2365 make_pass_reorder_blocks (gcc::context *ctxt)
2366 {
2367 return new pass_reorder_blocks (ctxt);
2368 }
2369
2370 /* Duplicate the blocks containing computed gotos. This basically unfactors
2371 computed gotos that were factored early on in the compilation process to
2372 speed up edge based data flow. We used to not unfactoring them again,
2373 which can seriously pessimize code with many computed jumps in the source
2374 code, such as interpreters. See e.g. PR15242. */
2375
2376 static bool
2377 gate_duplicate_computed_gotos (void)
2378 {
2379 if (targetm.cannot_modify_jumps_p ())
2380 return false;
2381 return (optimize > 0
2382 && flag_expensive_optimizations
2383 && ! optimize_function_for_size_p (cfun));
2384 }
2385
2386
2387 static unsigned int
2388 duplicate_computed_gotos (void)
2389 {
2390 basic_block bb, new_bb;
2391 bitmap candidates;
2392 int max_size;
2393 bool changed = false;
2394
2395 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2396 return 0;
2397
2398 clear_bb_flags ();
2399 cfg_layout_initialize (0);
2400
2401 /* We are estimating the length of uncond jump insn only once
2402 since the code for getting the insn length always returns
2403 the minimal length now. */
2404 if (uncond_jump_length == 0)
2405 uncond_jump_length = get_uncond_jump_length ();
2406
2407 max_size
2408 = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2409 candidates = BITMAP_ALLOC (NULL);
2410
2411 /* Look for blocks that end in a computed jump, and see if such blocks
2412 are suitable for unfactoring. If a block is a candidate for unfactoring,
2413 mark it in the candidates. */
2414 FOR_EACH_BB_FN (bb, cfun)
2415 {
2416 rtx insn;
2417 edge e;
2418 edge_iterator ei;
2419 int size, all_flags;
2420
2421 /* Build the reorder chain for the original order of blocks. */
2422 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2423 bb->aux = bb->next_bb;
2424
2425 /* Obviously the block has to end in a computed jump. */
2426 if (!computed_jump_p (BB_END (bb)))
2427 continue;
2428
2429 /* Only consider blocks that can be duplicated. */
2430 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2431 || !can_duplicate_block_p (bb))
2432 continue;
2433
2434 /* Make sure that the block is small enough. */
2435 size = 0;
2436 FOR_BB_INSNS (bb, insn)
2437 if (INSN_P (insn))
2438 {
2439 size += get_attr_min_length (insn);
2440 if (size > max_size)
2441 break;
2442 }
2443 if (size > max_size)
2444 continue;
2445
2446 /* Final check: there must not be any incoming abnormal edges. */
2447 all_flags = 0;
2448 FOR_EACH_EDGE (e, ei, bb->preds)
2449 all_flags |= e->flags;
2450 if (all_flags & EDGE_COMPLEX)
2451 continue;
2452
2453 bitmap_set_bit (candidates, bb->index);
2454 }
2455
2456 /* Nothing to do if there is no computed jump here. */
2457 if (bitmap_empty_p (candidates))
2458 goto done;
2459
2460 /* Duplicate computed gotos. */
2461 FOR_EACH_BB_FN (bb, cfun)
2462 {
2463 if (bb->flags & BB_VISITED)
2464 continue;
2465
2466 bb->flags |= BB_VISITED;
2467
2468 /* BB must have one outgoing edge. That edge must not lead to
2469 the exit block or the next block.
2470 The destination must have more than one predecessor. */
2471 if (!single_succ_p (bb)
2472 || single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2473 || single_succ (bb) == bb->next_bb
2474 || single_pred_p (single_succ (bb)))
2475 continue;
2476
2477 /* The successor block has to be a duplication candidate. */
2478 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2479 continue;
2480
2481 /* Don't duplicate a partition crossing edge, which requires difficult
2482 fixup. */
2483 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX))
2484 continue;
2485
2486 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2487 new_bb->aux = bb->aux;
2488 bb->aux = new_bb;
2489 new_bb->flags |= BB_VISITED;
2490 changed = true;
2491 }
2492
2493 done:
2494 /* Duplicating blocks above will redirect edges and may cause hot blocks
2495 previously reached by both hot and cold blocks to become dominated only
2496 by cold blocks. */
2497 if (changed)
2498 fixup_partitions ();
2499 cfg_layout_finalize ();
2500
2501 BITMAP_FREE (candidates);
2502 return 0;
2503 }
2504
2505 namespace {
2506
2507 const pass_data pass_data_duplicate_computed_gotos =
2508 {
2509 RTL_PASS, /* type */
2510 "compgotos", /* name */
2511 OPTGROUP_NONE, /* optinfo_flags */
2512 true, /* has_gate */
2513 true, /* has_execute */
2514 TV_REORDER_BLOCKS, /* tv_id */
2515 0, /* properties_required */
2516 0, /* properties_provided */
2517 0, /* properties_destroyed */
2518 0, /* todo_flags_start */
2519 TODO_verify_rtl_sharing, /* todo_flags_finish */
2520 };
2521
2522 class pass_duplicate_computed_gotos : public rtl_opt_pass
2523 {
2524 public:
2525 pass_duplicate_computed_gotos (gcc::context *ctxt)
2526 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2527 {}
2528
2529 /* opt_pass methods: */
2530 bool gate () { return gate_duplicate_computed_gotos (); }
2531 unsigned int execute () { return duplicate_computed_gotos (); }
2532
2533 }; // class pass_duplicate_computed_gotos
2534
2535 } // anon namespace
2536
2537 rtl_opt_pass *
2538 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2539 {
2540 return new pass_duplicate_computed_gotos (ctxt);
2541 }
2542
2543 static bool
2544 gate_handle_partition_blocks (void)
2545 {
2546 /* The optimization to partition hot/cold basic blocks into separate
2547 sections of the .o file does not work well with linkonce or with
2548 user defined section attributes. Don't call it if either case
2549 arises. */
2550 return (flag_reorder_blocks_and_partition
2551 && optimize
2552 /* See gate_handle_reorder_blocks. We should not partition if
2553 we are going to omit the reordering. */
2554 && optimize_function_for_speed_p (cfun)
2555 && !DECL_ONE_ONLY (current_function_decl)
2556 && !user_defined_section_attribute);
2557 }
2558
2559 /* This function is the main 'entrance' for the optimization that
2560 partitions hot and cold basic blocks into separate sections of the
2561 .o file (to improve performance and cache locality). Ideally it
2562 would be called after all optimizations that rearrange the CFG have
2563 been called. However part of this optimization may introduce new
2564 register usage, so it must be called before register allocation has
2565 occurred. This means that this optimization is actually called
2566 well before the optimization that reorders basic blocks (see
2567 function above).
2568
2569 This optimization checks the feedback information to determine
2570 which basic blocks are hot/cold, updates flags on the basic blocks
2571 to indicate which section they belong in. This information is
2572 later used for writing out sections in the .o file. Because hot
2573 and cold sections can be arbitrarily large (within the bounds of
2574 memory), far beyond the size of a single function, it is necessary
2575 to fix up all edges that cross section boundaries, to make sure the
2576 instructions used can actually span the required distance. The
2577 fixes are described below.
2578
2579 Fall-through edges must be changed into jumps; it is not safe or
2580 legal to fall through across a section boundary. Whenever a
2581 fall-through edge crossing a section boundary is encountered, a new
2582 basic block is inserted (in the same section as the fall-through
2583 source), and the fall through edge is redirected to the new basic
2584 block. The new basic block contains an unconditional jump to the
2585 original fall-through target. (If the unconditional jump is
2586 insufficient to cross section boundaries, that is dealt with a
2587 little later, see below).
2588
2589 In order to deal with architectures that have short conditional
2590 branches (which cannot span all of memory) we take any conditional
2591 jump that attempts to cross a section boundary and add a level of
2592 indirection: it becomes a conditional jump to a new basic block, in
2593 the same section. The new basic block contains an unconditional
2594 jump to the original target, in the other section.
2595
2596 For those architectures whose unconditional branch is also
2597 incapable of reaching all of memory, those unconditional jumps are
2598 converted into indirect jumps, through a register.
2599
2600 IMPORTANT NOTE: This optimization causes some messy interactions
2601 with the cfg cleanup optimizations; those optimizations want to
2602 merge blocks wherever possible, and to collapse indirect jump
2603 sequences (change "A jumps to B jumps to C" directly into "A jumps
2604 to C"). Those optimizations can undo the jump fixes that
2605 partitioning is required to make (see above), in order to ensure
2606 that jumps attempting to cross section boundaries are really able
2607 to cover whatever distance the jump requires (on many architectures
2608 conditional or unconditional jumps are not able to reach all of
2609 memory). Therefore tests have to be inserted into each such
2610 optimization to make sure that it does not undo stuff necessary to
2611 cross partition boundaries. This would be much less of a problem
2612 if we could perform this optimization later in the compilation, but
2613 unfortunately the fact that we may need to create indirect jumps
2614 (through registers) requires that this optimization be performed
2615 before register allocation.
2616
2617 Hot and cold basic blocks are partitioned and put in separate
2618 sections of the .o file, to reduce paging and improve cache
2619 performance (hopefully). This can result in bits of code from the
2620 same function being widely separated in the .o file. However this
2621 is not obvious to the current bb structure. Therefore we must take
2622 care to ensure that: 1). There are no fall_thru edges that cross
2623 between sections; 2). For those architectures which have "short"
2624 conditional branches, all conditional branches that attempt to
2625 cross between sections are converted to unconditional branches;
2626 and, 3). For those architectures which have "short" unconditional
2627 branches, all unconditional branches that attempt to cross between
2628 sections are converted to indirect jumps.
2629
2630 The code for fixing up fall_thru edges that cross between hot and
2631 cold basic blocks does so by creating new basic blocks containing
2632 unconditional branches to the appropriate label in the "other"
2633 section. The new basic block is then put in the same (hot or cold)
2634 section as the original conditional branch, and the fall_thru edge
2635 is modified to fall into the new basic block instead. By adding
2636 this level of indirection we end up with only unconditional branches
2637 crossing between hot and cold sections.
2638
2639 Conditional branches are dealt with by adding a level of indirection.
2640 A new basic block is added in the same (hot/cold) section as the
2641 conditional branch, and the conditional branch is retargeted to the
2642 new basic block. The new basic block contains an unconditional branch
2643 to the original target of the conditional branch (in the other section).
2644
2645 Unconditional branches are dealt with by converting them into
2646 indirect jumps. */
2647
2648 static unsigned
2649 partition_hot_cold_basic_blocks (void)
2650 {
2651 vec<edge> crossing_edges;
2652
2653 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2654 return 0;
2655
2656 df_set_flags (DF_DEFER_INSN_RESCAN);
2657
2658 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2659 if (!crossing_edges.exists ())
2660 return 0;
2661
2662 crtl->has_bb_partition = true;
2663
2664 /* Make sure the source of any crossing edge ends in a jump and the
2665 destination of any crossing edge has a label. */
2666 add_labels_and_missing_jumps (crossing_edges);
2667
2668 /* Convert all crossing fall_thru edges to non-crossing fall
2669 thrus to unconditional jumps (that jump to the original fall
2670 through dest). */
2671 fix_up_fall_thru_edges ();
2672
2673 /* If the architecture does not have conditional branches that can
2674 span all of memory, convert crossing conditional branches into
2675 crossing unconditional branches. */
2676 if (!HAS_LONG_COND_BRANCH)
2677 fix_crossing_conditional_branches ();
2678
2679 /* If the architecture does not have unconditional branches that
2680 can span all of memory, convert crossing unconditional branches
2681 into indirect jumps. Since adding an indirect jump also adds
2682 a new register usage, update the register usage information as
2683 well. */
2684 if (!HAS_LONG_UNCOND_BRANCH)
2685 fix_crossing_unconditional_branches ();
2686
2687 add_reg_crossing_jump_notes ();
2688
2689 /* Clear bb->aux fields that the above routines were using. */
2690 clear_aux_for_blocks ();
2691
2692 crossing_edges.release ();
2693
2694 /* ??? FIXME: DF generates the bb info for a block immediately.
2695 And by immediately, I mean *during* creation of the block.
2696
2697 #0 df_bb_refs_collect
2698 #1 in df_bb_refs_record
2699 #2 in create_basic_block_structure
2700
2701 Which means that the bb_has_eh_pred test in df_bb_refs_collect
2702 will *always* fail, because no edges can have been added to the
2703 block yet. Which of course means we don't add the right
2704 artificial refs, which means we fail df_verify (much) later.
2705
2706 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2707 that we also shouldn't grab data from the new blocks those new
2708 insns are in either. In this way one can create the block, link
2709 it up properly, and have everything Just Work later, when deferred
2710 insns are processed.
2711
2712 In the meantime, we have no other option but to throw away all
2713 of the DF data and recompute it all. */
2714 if (cfun->eh->lp_array)
2715 {
2716 df_finish_pass (true);
2717 df_scan_alloc (NULL);
2718 df_scan_blocks ();
2719 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2720 data. We blindly generated all of them when creating the new
2721 landing pad. Delete those assignments we don't use. */
2722 df_set_flags (DF_LR_RUN_DCE);
2723 df_analyze ();
2724 }
2725
2726 return TODO_verify_flow | TODO_verify_rtl_sharing;
2727 }
2728
2729 namespace {
2730
2731 const pass_data pass_data_partition_blocks =
2732 {
2733 RTL_PASS, /* type */
2734 "bbpart", /* name */
2735 OPTGROUP_NONE, /* optinfo_flags */
2736 true, /* has_gate */
2737 true, /* has_execute */
2738 TV_REORDER_BLOCKS, /* tv_id */
2739 PROP_cfglayout, /* properties_required */
2740 0, /* properties_provided */
2741 0, /* properties_destroyed */
2742 0, /* todo_flags_start */
2743 0, /* todo_flags_finish */
2744 };
2745
2746 class pass_partition_blocks : public rtl_opt_pass
2747 {
2748 public:
2749 pass_partition_blocks (gcc::context *ctxt)
2750 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2751 {}
2752
2753 /* opt_pass methods: */
2754 bool gate () { return gate_handle_partition_blocks (); }
2755 unsigned int execute () { return partition_hot_cold_basic_blocks (); }
2756
2757 }; // class pass_partition_blocks
2758
2759 } // anon namespace
2760
2761 rtl_opt_pass *
2762 make_pass_partition_blocks (gcc::context *ctxt)
2763 {
2764 return new pass_partition_blocks (ctxt);
2765 }