]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/bb-reorder.c
Eliminate ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR macros
[thirdparty/gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This (greedy) algorithm constructs traces in several rounds.
21 The construction starts from "seeds". The seed for the first round
22 is the entry point of the function. When there are more than one seed,
23 the one with the lowest key in the heap is selected first (see bb_to_key).
24 Then the algorithm repeatedly adds the most probable successor to the end
25 of a trace. Finally it connects the traces.
26
27 There are two parameters: Branch Threshold and Exec Threshold.
28 If the probability of an edge to a successor of the current basic block is
29 lower than Branch Threshold or its frequency is lower than Exec Threshold,
30 then the successor will be the seed in one of the next rounds.
31 Each round has these parameters lower than the previous one.
32 The last round has to have these parameters set to zero so that the
33 remaining blocks are picked up.
34
35 The algorithm selects the most probable successor from all unvisited
36 successors and successors that have been added to this trace.
37 The other successors (that has not been "sent" to the next round) will be
38 other seeds for this round and the secondary traces will start from them.
39 If the successor has not been visited in this trace, it is added to the
40 trace (however, there is some heuristic for simple branches).
41 If the successor has been visited in this trace, a loop has been found.
42 If the loop has many iterations, the loop is rotated so that the source
43 block of the most probable edge going out of the loop is the last block
44 of the trace.
45 If the loop has few iterations and there is no edge from the last block of
46 the loop going out of the loop, the loop header is duplicated.
47
48 When connecting traces, the algorithm first checks whether there is an edge
49 from the last block of a trace to the first block of another trace.
50 When there are still some unconnected traces it checks whether there exists
51 a basic block BB such that BB is a successor of the last block of a trace
52 and BB is a predecessor of the first block of another trace. In this case,
53 BB is duplicated, added at the end of the first trace and the traces are
54 connected through it.
55 The rest of traces are simply connected so there will be a jump to the
56 beginning of the rest of traces.
57
58 The above description is for the full algorithm, which is used when the
59 function is optimized for speed. When the function is optimized for size,
60 in order to reduce long jumps and connect more fallthru edges, the
61 algorithm is modified as follows:
62 (1) Break long traces to short ones. A trace is broken at a block that has
63 multiple predecessors/ successors during trace discovery. When connecting
64 traces, only connect Trace n with Trace n + 1. This change reduces most
65 long jumps compared with the above algorithm.
66 (2) Ignore the edge probability and frequency for fallthru edges.
67 (3) Keep the original order of blocks when there is no chance to fall
68 through. We rely on the results of cfg_cleanup.
69
70 To implement the change for code size optimization, block's index is
71 selected as the key and all traces are found in one round.
72
73 References:
74
75 "Software Trace Cache"
76 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
77 http://citeseer.nj.nec.com/15361.html
78
79 */
80
81 #include "config.h"
82 #include "system.h"
83 #include "coretypes.h"
84 #include "tm.h"
85 #include "tree.h"
86 #include "rtl.h"
87 #include "regs.h"
88 #include "flags.h"
89 #include "output.h"
90 #include "fibheap.h"
91 #include "target.h"
92 #include "function.h"
93 #include "tm_p.h"
94 #include "obstack.h"
95 #include "expr.h"
96 #include "params.h"
97 #include "diagnostic-core.h"
98 #include "toplev.h" /* user_defined_section_attribute */
99 #include "tree-pass.h"
100 #include "df.h"
101 #include "bb-reorder.h"
102 #include "except.h"
103
104 /* The number of rounds. In most cases there will only be 4 rounds, but
105 when partitioning hot and cold basic blocks into separate sections of
106 the object file there will be an extra round. */
107 #define N_ROUNDS 5
108
109 /* Stubs in case we don't have a return insn.
110 We have to check at run time too, not only compile time. */
111
112 #ifndef HAVE_return
113 #define HAVE_return 0
114 #define gen_return() NULL_RTX
115 #endif
116
117
118 struct target_bb_reorder default_target_bb_reorder;
119 #if SWITCHABLE_TARGET
120 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
121 #endif
122
123 #define uncond_jump_length \
124 (this_target_bb_reorder->x_uncond_jump_length)
125
126 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
127 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
128
129 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
130 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
131
132 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
133 block the edge destination is not duplicated while connecting traces. */
134 #define DUPLICATION_THRESHOLD 100
135
136 /* Structure to hold needed information for each basic block. */
137 typedef struct bbro_basic_block_data_def
138 {
139 /* Which trace is the bb start of (-1 means it is not a start of any). */
140 int start_of_trace;
141
142 /* Which trace is the bb end of (-1 means it is not an end of any). */
143 int end_of_trace;
144
145 /* Which trace is the bb in? */
146 int in_trace;
147
148 /* Which trace was this bb visited in? */
149 int visited;
150
151 /* Which heap is BB in (if any)? */
152 fibheap_t heap;
153
154 /* Which heap node is BB in (if any)? */
155 fibnode_t node;
156 } bbro_basic_block_data;
157
158 /* The current size of the following dynamic array. */
159 static int array_size;
160
161 /* The array which holds needed information for basic blocks. */
162 static bbro_basic_block_data *bbd;
163
164 /* To avoid frequent reallocation the size of arrays is greater than needed,
165 the number of elements is (not less than) 1.25 * size_wanted. */
166 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
167
168 /* Free the memory and set the pointer to NULL. */
169 #define FREE(P) (gcc_assert (P), free (P), P = 0)
170
171 /* Structure for holding information about a trace. */
172 struct trace
173 {
174 /* First and last basic block of the trace. */
175 basic_block first, last;
176
177 /* The round of the STC creation which this trace was found in. */
178 int round;
179
180 /* The length (i.e. the number of basic blocks) of the trace. */
181 int length;
182 };
183
184 /* Maximum frequency and count of one of the entry blocks. */
185 static int max_entry_frequency;
186 static gcov_type max_entry_count;
187
188 /* Local function prototypes. */
189 static void find_traces (int *, struct trace *);
190 static basic_block rotate_loop (edge, struct trace *, int);
191 static void mark_bb_visited (basic_block, int);
192 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
193 int, fibheap_t *, int);
194 static basic_block copy_bb (basic_block, edge, basic_block, int);
195 static fibheapkey_t bb_to_key (basic_block);
196 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int,
197 const_edge);
198 static bool connect_better_edge_p (const_edge, bool, int, const_edge,
199 struct trace *);
200 static void connect_traces (int, struct trace *);
201 static bool copy_bb_p (const_basic_block, int);
202 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
203 \f
204 /* Return the trace number in which BB was visited. */
205
206 static int
207 bb_visited_trace (const_basic_block bb)
208 {
209 gcc_assert (bb->index < array_size);
210 return bbd[bb->index].visited;
211 }
212
213 /* This function marks BB that it was visited in trace number TRACE. */
214
215 static void
216 mark_bb_visited (basic_block bb, int trace)
217 {
218 bbd[bb->index].visited = trace;
219 if (bbd[bb->index].heap)
220 {
221 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
222 bbd[bb->index].heap = NULL;
223 bbd[bb->index].node = NULL;
224 }
225 }
226
227 /* Check to see if bb should be pushed into the next round of trace
228 collections or not. Reasons for pushing the block forward are 1).
229 If the block is cold, we are doing partitioning, and there will be
230 another round (cold partition blocks are not supposed to be
231 collected into traces until the very last round); or 2). There will
232 be another round, and the basic block is not "hot enough" for the
233 current round of trace collection. */
234
235 static bool
236 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
237 int exec_th, gcov_type count_th)
238 {
239 bool there_exists_another_round;
240 bool block_not_hot_enough;
241
242 there_exists_another_round = round < number_of_rounds - 1;
243
244 block_not_hot_enough = (bb->frequency < exec_th
245 || bb->count < count_th
246 || probably_never_executed_bb_p (cfun, bb));
247
248 if (there_exists_another_round
249 && block_not_hot_enough)
250 return true;
251 else
252 return false;
253 }
254
255 /* Find the traces for Software Trace Cache. Chain each trace through
256 RBI()->next. Store the number of traces to N_TRACES and description of
257 traces to TRACES. */
258
259 static void
260 find_traces (int *n_traces, struct trace *traces)
261 {
262 int i;
263 int number_of_rounds;
264 edge e;
265 edge_iterator ei;
266 fibheap_t heap;
267
268 /* Add one extra round of trace collection when partitioning hot/cold
269 basic blocks into separate sections. The last round is for all the
270 cold blocks (and ONLY the cold blocks). */
271
272 number_of_rounds = N_ROUNDS - 1;
273
274 /* Insert entry points of function into heap. */
275 heap = fibheap_new ();
276 max_entry_frequency = 0;
277 max_entry_count = 0;
278 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
279 {
280 bbd[e->dest->index].heap = heap;
281 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
282 e->dest);
283 if (e->dest->frequency > max_entry_frequency)
284 max_entry_frequency = e->dest->frequency;
285 if (e->dest->count > max_entry_count)
286 max_entry_count = e->dest->count;
287 }
288
289 /* Find the traces. */
290 for (i = 0; i < number_of_rounds; i++)
291 {
292 gcov_type count_threshold;
293
294 if (dump_file)
295 fprintf (dump_file, "STC - round %d\n", i + 1);
296
297 if (max_entry_count < INT_MAX / 1000)
298 count_threshold = max_entry_count * exec_threshold[i] / 1000;
299 else
300 count_threshold = max_entry_count / 1000 * exec_threshold[i];
301
302 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
303 max_entry_frequency * exec_threshold[i] / 1000,
304 count_threshold, traces, n_traces, i, &heap,
305 number_of_rounds);
306 }
307 fibheap_delete (heap);
308
309 if (dump_file)
310 {
311 for (i = 0; i < *n_traces; i++)
312 {
313 basic_block bb;
314 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
315 traces[i].round + 1);
316 for (bb = traces[i].first;
317 bb != traces[i].last;
318 bb = (basic_block) bb->aux)
319 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
320 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
321 }
322 fflush (dump_file);
323 }
324 }
325
326 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
327 (with sequential number TRACE_N). */
328
329 static basic_block
330 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
331 {
332 basic_block bb;
333
334 /* Information about the best end (end after rotation) of the loop. */
335 basic_block best_bb = NULL;
336 edge best_edge = NULL;
337 int best_freq = -1;
338 gcov_type best_count = -1;
339 /* The best edge is preferred when its destination is not visited yet
340 or is a start block of some trace. */
341 bool is_preferred = false;
342
343 /* Find the most frequent edge that goes out from current trace. */
344 bb = back_edge->dest;
345 do
346 {
347 edge e;
348 edge_iterator ei;
349
350 FOR_EACH_EDGE (e, ei, bb->succs)
351 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
352 && bb_visited_trace (e->dest) != trace_n
353 && (e->flags & EDGE_CAN_FALLTHRU)
354 && !(e->flags & EDGE_COMPLEX))
355 {
356 if (is_preferred)
357 {
358 /* The best edge is preferred. */
359 if (!bb_visited_trace (e->dest)
360 || bbd[e->dest->index].start_of_trace >= 0)
361 {
362 /* The current edge E is also preferred. */
363 int freq = EDGE_FREQUENCY (e);
364 if (freq > best_freq || e->count > best_count)
365 {
366 best_freq = freq;
367 best_count = e->count;
368 best_edge = e;
369 best_bb = bb;
370 }
371 }
372 }
373 else
374 {
375 if (!bb_visited_trace (e->dest)
376 || bbd[e->dest->index].start_of_trace >= 0)
377 {
378 /* The current edge E is preferred. */
379 is_preferred = true;
380 best_freq = EDGE_FREQUENCY (e);
381 best_count = e->count;
382 best_edge = e;
383 best_bb = bb;
384 }
385 else
386 {
387 int freq = EDGE_FREQUENCY (e);
388 if (!best_edge || freq > best_freq || e->count > best_count)
389 {
390 best_freq = freq;
391 best_count = e->count;
392 best_edge = e;
393 best_bb = bb;
394 }
395 }
396 }
397 }
398 bb = (basic_block) bb->aux;
399 }
400 while (bb != back_edge->dest);
401
402 if (best_bb)
403 {
404 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
405 the trace. */
406 if (back_edge->dest == trace->first)
407 {
408 trace->first = (basic_block) best_bb->aux;
409 }
410 else
411 {
412 basic_block prev_bb;
413
414 for (prev_bb = trace->first;
415 prev_bb->aux != back_edge->dest;
416 prev_bb = (basic_block) prev_bb->aux)
417 ;
418 prev_bb->aux = best_bb->aux;
419
420 /* Try to get rid of uncond jump to cond jump. */
421 if (single_succ_p (prev_bb))
422 {
423 basic_block header = single_succ (prev_bb);
424
425 /* Duplicate HEADER if it is a small block containing cond jump
426 in the end. */
427 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
428 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
429 NULL_RTX))
430 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
431 }
432 }
433 }
434 else
435 {
436 /* We have not found suitable loop tail so do no rotation. */
437 best_bb = back_edge->src;
438 }
439 best_bb->aux = NULL;
440 return best_bb;
441 }
442
443 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
444 not include basic blocks whose probability is lower than BRANCH_TH or whose
445 frequency is lower than EXEC_TH into traces (or whose count is lower than
446 COUNT_TH). Store the new traces into TRACES and modify the number of
447 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
448 The function expects starting basic blocks to be in *HEAP and will delete
449 *HEAP and store starting points for the next round into new *HEAP. */
450
451 static void
452 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
453 struct trace *traces, int *n_traces, int round,
454 fibheap_t *heap, int number_of_rounds)
455 {
456 /* Heap for discarded basic blocks which are possible starting points for
457 the next round. */
458 fibheap_t new_heap = fibheap_new ();
459 bool for_size = optimize_function_for_size_p (cfun);
460
461 while (!fibheap_empty (*heap))
462 {
463 basic_block bb;
464 struct trace *trace;
465 edge best_edge, e;
466 fibheapkey_t key;
467 edge_iterator ei;
468
469 bb = (basic_block) fibheap_extract_min (*heap);
470 bbd[bb->index].heap = NULL;
471 bbd[bb->index].node = NULL;
472
473 if (dump_file)
474 fprintf (dump_file, "Getting bb %d\n", bb->index);
475
476 /* If the BB's frequency is too low, send BB to the next round. When
477 partitioning hot/cold blocks into separate sections, make sure all
478 the cold blocks (and ONLY the cold blocks) go into the (extra) final
479 round. When optimizing for size, do not push to next round. */
480
481 if (!for_size
482 && push_to_next_round_p (bb, round, number_of_rounds, exec_th,
483 count_th))
484 {
485 int key = bb_to_key (bb);
486 bbd[bb->index].heap = new_heap;
487 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
488
489 if (dump_file)
490 fprintf (dump_file,
491 " Possible start point of next round: %d (key: %d)\n",
492 bb->index, key);
493 continue;
494 }
495
496 trace = traces + *n_traces;
497 trace->first = bb;
498 trace->round = round;
499 trace->length = 0;
500 bbd[bb->index].in_trace = *n_traces;
501 (*n_traces)++;
502
503 do
504 {
505 int prob, freq;
506 bool ends_in_call;
507
508 /* The probability and frequency of the best edge. */
509 int best_prob = INT_MIN / 2;
510 int best_freq = INT_MIN / 2;
511
512 best_edge = NULL;
513 mark_bb_visited (bb, *n_traces);
514 trace->length++;
515
516 if (dump_file)
517 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
518 bb->index, *n_traces - 1);
519
520 ends_in_call = block_ends_with_call_p (bb);
521
522 /* Select the successor that will be placed after BB. */
523 FOR_EACH_EDGE (e, ei, bb->succs)
524 {
525 gcc_assert (!(e->flags & EDGE_FAKE));
526
527 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
528 continue;
529
530 if (bb_visited_trace (e->dest)
531 && bb_visited_trace (e->dest) != *n_traces)
532 continue;
533
534 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
535 continue;
536
537 prob = e->probability;
538 freq = e->dest->frequency;
539
540 /* The only sensible preference for a call instruction is the
541 fallthru edge. Don't bother selecting anything else. */
542 if (ends_in_call)
543 {
544 if (e->flags & EDGE_CAN_FALLTHRU)
545 {
546 best_edge = e;
547 best_prob = prob;
548 best_freq = freq;
549 }
550 continue;
551 }
552
553 /* Edge that cannot be fallthru or improbable or infrequent
554 successor (i.e. it is unsuitable successor). When optimizing
555 for size, ignore the probability and frequency. */
556 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
557 || ((prob < branch_th || EDGE_FREQUENCY (e) < exec_th
558 || e->count < count_th) && (!for_size)))
559 continue;
560
561 /* If partitioning hot/cold basic blocks, don't consider edges
562 that cross section boundaries. */
563
564 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
565 best_edge))
566 {
567 best_edge = e;
568 best_prob = prob;
569 best_freq = freq;
570 }
571 }
572
573 /* If the best destination has multiple predecessors, and can be
574 duplicated cheaper than a jump, don't allow it to be added
575 to a trace. We'll duplicate it when connecting traces. */
576 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
577 && copy_bb_p (best_edge->dest, 0))
578 best_edge = NULL;
579
580 /* If the best destination has multiple successors or predecessors,
581 don't allow it to be added when optimizing for size. This makes
582 sure predecessors with smaller index are handled before the best
583 destinarion. It breaks long trace and reduces long jumps.
584
585 Take if-then-else as an example.
586 A
587 / \
588 B C
589 \ /
590 D
591 If we do not remove the best edge B->D/C->D, the final order might
592 be A B D ... C. C is at the end of the program. If D's successors
593 and D are complicated, might need long jumps for A->C and C->D.
594 Similar issue for order: A C D ... B.
595
596 After removing the best edge, the final result will be ABCD/ ACBD.
597 It does not add jump compared with the previous order. But it
598 reduces the possibility of long jumps. */
599 if (best_edge && for_size
600 && (EDGE_COUNT (best_edge->dest->succs) > 1
601 || EDGE_COUNT (best_edge->dest->preds) > 1))
602 best_edge = NULL;
603
604 /* Add all non-selected successors to the heaps. */
605 FOR_EACH_EDGE (e, ei, bb->succs)
606 {
607 if (e == best_edge
608 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
609 || bb_visited_trace (e->dest))
610 continue;
611
612 key = bb_to_key (e->dest);
613
614 if (bbd[e->dest->index].heap)
615 {
616 /* E->DEST is already in some heap. */
617 if (key != bbd[e->dest->index].node->key)
618 {
619 if (dump_file)
620 {
621 fprintf (dump_file,
622 "Changing key for bb %d from %ld to %ld.\n",
623 e->dest->index,
624 (long) bbd[e->dest->index].node->key,
625 key);
626 }
627 fibheap_replace_key (bbd[e->dest->index].heap,
628 bbd[e->dest->index].node, key);
629 }
630 }
631 else
632 {
633 fibheap_t which_heap = *heap;
634
635 prob = e->probability;
636 freq = EDGE_FREQUENCY (e);
637
638 if (!(e->flags & EDGE_CAN_FALLTHRU)
639 || (e->flags & EDGE_COMPLEX)
640 || prob < branch_th || freq < exec_th
641 || e->count < count_th)
642 {
643 /* When partitioning hot/cold basic blocks, make sure
644 the cold blocks (and only the cold blocks) all get
645 pushed to the last round of trace collection. When
646 optimizing for size, do not push to next round. */
647
648 if (!for_size && push_to_next_round_p (e->dest, round,
649 number_of_rounds,
650 exec_th, count_th))
651 which_heap = new_heap;
652 }
653
654 bbd[e->dest->index].heap = which_heap;
655 bbd[e->dest->index].node = fibheap_insert (which_heap,
656 key, e->dest);
657
658 if (dump_file)
659 {
660 fprintf (dump_file,
661 " Possible start of %s round: %d (key: %ld)\n",
662 (which_heap == new_heap) ? "next" : "this",
663 e->dest->index, (long) key);
664 }
665
666 }
667 }
668
669 if (best_edge) /* Suitable successor was found. */
670 {
671 if (bb_visited_trace (best_edge->dest) == *n_traces)
672 {
673 /* We do nothing with one basic block loops. */
674 if (best_edge->dest != bb)
675 {
676 if (EDGE_FREQUENCY (best_edge)
677 > 4 * best_edge->dest->frequency / 5)
678 {
679 /* The loop has at least 4 iterations. If the loop
680 header is not the first block of the function
681 we can rotate the loop. */
682
683 if (best_edge->dest
684 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
685 {
686 if (dump_file)
687 {
688 fprintf (dump_file,
689 "Rotating loop %d - %d\n",
690 best_edge->dest->index, bb->index);
691 }
692 bb->aux = best_edge->dest;
693 bbd[best_edge->dest->index].in_trace =
694 (*n_traces) - 1;
695 bb = rotate_loop (best_edge, trace, *n_traces);
696 }
697 }
698 else
699 {
700 /* The loop has less than 4 iterations. */
701
702 if (single_succ_p (bb)
703 && copy_bb_p (best_edge->dest,
704 optimize_edge_for_speed_p
705 (best_edge)))
706 {
707 bb = copy_bb (best_edge->dest, best_edge, bb,
708 *n_traces);
709 trace->length++;
710 }
711 }
712 }
713
714 /* Terminate the trace. */
715 break;
716 }
717 else
718 {
719 /* Check for a situation
720
721 A
722 /|
723 B |
724 \|
725 C
726
727 where
728 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
729 >= EDGE_FREQUENCY (AC).
730 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
731 Best ordering is then A B C.
732
733 When optimizing for size, A B C is always the best order.
734
735 This situation is created for example by:
736
737 if (A) B;
738 C;
739
740 */
741
742 FOR_EACH_EDGE (e, ei, bb->succs)
743 if (e != best_edge
744 && (e->flags & EDGE_CAN_FALLTHRU)
745 && !(e->flags & EDGE_COMPLEX)
746 && !bb_visited_trace (e->dest)
747 && single_pred_p (e->dest)
748 && !(e->flags & EDGE_CROSSING)
749 && single_succ_p (e->dest)
750 && (single_succ_edge (e->dest)->flags
751 & EDGE_CAN_FALLTHRU)
752 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
753 && single_succ (e->dest) == best_edge->dest
754 && (2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge)
755 || for_size))
756 {
757 best_edge = e;
758 if (dump_file)
759 fprintf (dump_file, "Selecting BB %d\n",
760 best_edge->dest->index);
761 break;
762 }
763
764 bb->aux = best_edge->dest;
765 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
766 bb = best_edge->dest;
767 }
768 }
769 }
770 while (best_edge);
771 trace->last = bb;
772 bbd[trace->first->index].start_of_trace = *n_traces - 1;
773 bbd[trace->last->index].end_of_trace = *n_traces - 1;
774
775 /* The trace is terminated so we have to recount the keys in heap
776 (some block can have a lower key because now one of its predecessors
777 is an end of the trace). */
778 FOR_EACH_EDGE (e, ei, bb->succs)
779 {
780 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
781 || bb_visited_trace (e->dest))
782 continue;
783
784 if (bbd[e->dest->index].heap)
785 {
786 key = bb_to_key (e->dest);
787 if (key != bbd[e->dest->index].node->key)
788 {
789 if (dump_file)
790 {
791 fprintf (dump_file,
792 "Changing key for bb %d from %ld to %ld.\n",
793 e->dest->index,
794 (long) bbd[e->dest->index].node->key, key);
795 }
796 fibheap_replace_key (bbd[e->dest->index].heap,
797 bbd[e->dest->index].node,
798 key);
799 }
800 }
801 }
802 }
803
804 fibheap_delete (*heap);
805
806 /* "Return" the new heap. */
807 *heap = new_heap;
808 }
809
810 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
811 it to trace after BB, mark OLD_BB visited and update pass' data structures
812 (TRACE is a number of trace which OLD_BB is duplicated to). */
813
814 static basic_block
815 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
816 {
817 basic_block new_bb;
818
819 new_bb = duplicate_block (old_bb, e, bb);
820 BB_COPY_PARTITION (new_bb, old_bb);
821
822 gcc_assert (e->dest == new_bb);
823
824 if (dump_file)
825 fprintf (dump_file,
826 "Duplicated bb %d (created bb %d)\n",
827 old_bb->index, new_bb->index);
828
829 if (new_bb->index >= array_size || last_basic_block > array_size)
830 {
831 int i;
832 int new_size;
833
834 new_size = MAX (last_basic_block, new_bb->index + 1);
835 new_size = GET_ARRAY_SIZE (new_size);
836 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
837 for (i = array_size; i < new_size; i++)
838 {
839 bbd[i].start_of_trace = -1;
840 bbd[i].end_of_trace = -1;
841 bbd[i].in_trace = -1;
842 bbd[i].visited = 0;
843 bbd[i].heap = NULL;
844 bbd[i].node = NULL;
845 }
846 array_size = new_size;
847
848 if (dump_file)
849 {
850 fprintf (dump_file,
851 "Growing the dynamic array to %d elements.\n",
852 array_size);
853 }
854 }
855
856 gcc_assert (!bb_visited_trace (e->dest));
857 mark_bb_visited (new_bb, trace);
858 new_bb->aux = bb->aux;
859 bb->aux = new_bb;
860
861 bbd[new_bb->index].in_trace = trace;
862
863 return new_bb;
864 }
865
866 /* Compute and return the key (for the heap) of the basic block BB. */
867
868 static fibheapkey_t
869 bb_to_key (basic_block bb)
870 {
871 edge e;
872 edge_iterator ei;
873 int priority = 0;
874
875 /* Use index as key to align with its original order. */
876 if (optimize_function_for_size_p (cfun))
877 return bb->index;
878
879 /* Do not start in probably never executed blocks. */
880
881 if (BB_PARTITION (bb) == BB_COLD_PARTITION
882 || probably_never_executed_bb_p (cfun, bb))
883 return BB_FREQ_MAX;
884
885 /* Prefer blocks whose predecessor is an end of some trace
886 or whose predecessor edge is EDGE_DFS_BACK. */
887 FOR_EACH_EDGE (e, ei, bb->preds)
888 {
889 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
890 && bbd[e->src->index].end_of_trace >= 0)
891 || (e->flags & EDGE_DFS_BACK))
892 {
893 int edge_freq = EDGE_FREQUENCY (e);
894
895 if (edge_freq > priority)
896 priority = edge_freq;
897 }
898 }
899
900 if (priority)
901 /* The block with priority should have significantly lower key. */
902 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
903
904 return -bb->frequency;
905 }
906
907 /* Return true when the edge E from basic block BB is better than the temporary
908 best edge (details are in function). The probability of edge E is PROB. The
909 frequency of the successor is FREQ. The current best probability is
910 BEST_PROB, the best frequency is BEST_FREQ.
911 The edge is considered to be equivalent when PROB does not differ much from
912 BEST_PROB; similarly for frequency. */
913
914 static bool
915 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq,
916 int best_prob, int best_freq, const_edge cur_best_edge)
917 {
918 bool is_better_edge;
919
920 /* The BEST_* values do not have to be best, but can be a bit smaller than
921 maximum values. */
922 int diff_prob = best_prob / 10;
923 int diff_freq = best_freq / 10;
924
925 /* The smaller one is better to keep the original order. */
926 if (optimize_function_for_size_p (cfun))
927 return !cur_best_edge
928 || cur_best_edge->dest->index > e->dest->index;
929
930 if (prob > best_prob + diff_prob)
931 /* The edge has higher probability than the temporary best edge. */
932 is_better_edge = true;
933 else if (prob < best_prob - diff_prob)
934 /* The edge has lower probability than the temporary best edge. */
935 is_better_edge = false;
936 else if (freq < best_freq - diff_freq)
937 /* The edge and the temporary best edge have almost equivalent
938 probabilities. The higher frequency of a successor now means
939 that there is another edge going into that successor.
940 This successor has lower frequency so it is better. */
941 is_better_edge = true;
942 else if (freq > best_freq + diff_freq)
943 /* This successor has higher frequency so it is worse. */
944 is_better_edge = false;
945 else if (e->dest->prev_bb == bb)
946 /* The edges have equivalent probabilities and the successors
947 have equivalent frequencies. Select the previous successor. */
948 is_better_edge = true;
949 else
950 is_better_edge = false;
951
952 /* If we are doing hot/cold partitioning, make sure that we always favor
953 non-crossing edges over crossing edges. */
954
955 if (!is_better_edge
956 && flag_reorder_blocks_and_partition
957 && cur_best_edge
958 && (cur_best_edge->flags & EDGE_CROSSING)
959 && !(e->flags & EDGE_CROSSING))
960 is_better_edge = true;
961
962 return is_better_edge;
963 }
964
965 /* Return true when the edge E is better than the temporary best edge
966 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
967 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
968 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
969 TRACES record the information about traces.
970 When optimizing for size, the edge with smaller index is better.
971 When optimizing for speed, the edge with bigger probability or longer trace
972 is better. */
973
974 static bool
975 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
976 const_edge cur_best_edge, struct trace *traces)
977 {
978 int e_index;
979 int b_index;
980 bool is_better_edge;
981
982 if (!cur_best_edge)
983 return true;
984
985 if (optimize_function_for_size_p (cfun))
986 {
987 e_index = src_index_p ? e->src->index : e->dest->index;
988 b_index = src_index_p ? cur_best_edge->src->index
989 : cur_best_edge->dest->index;
990 /* The smaller one is better to keep the original order. */
991 return b_index > e_index;
992 }
993
994 if (src_index_p)
995 {
996 e_index = e->src->index;
997
998 if (e->probability > cur_best_edge->probability)
999 /* The edge has higher probability than the temporary best edge. */
1000 is_better_edge = true;
1001 else if (e->probability < cur_best_edge->probability)
1002 /* The edge has lower probability than the temporary best edge. */
1003 is_better_edge = false;
1004 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1005 /* The edge and the temporary best edge have equivalent probabilities.
1006 The edge with longer trace is better. */
1007 is_better_edge = true;
1008 else
1009 is_better_edge = false;
1010 }
1011 else
1012 {
1013 e_index = e->dest->index;
1014
1015 if (e->probability > cur_best_edge->probability)
1016 /* The edge has higher probability than the temporary best edge. */
1017 is_better_edge = true;
1018 else if (e->probability < cur_best_edge->probability)
1019 /* The edge has lower probability than the temporary best edge. */
1020 is_better_edge = false;
1021 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1022 /* The edge and the temporary best edge have equivalent probabilities.
1023 The edge with longer trace is better. */
1024 is_better_edge = true;
1025 else
1026 is_better_edge = false;
1027 }
1028
1029 return is_better_edge;
1030 }
1031
1032 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
1033
1034 static void
1035 connect_traces (int n_traces, struct trace *traces)
1036 {
1037 int i;
1038 bool *connected;
1039 bool two_passes;
1040 int last_trace;
1041 int current_pass;
1042 int current_partition;
1043 int freq_threshold;
1044 gcov_type count_threshold;
1045 bool for_size = optimize_function_for_size_p (cfun);
1046
1047 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
1048 if (max_entry_count < INT_MAX / 1000)
1049 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
1050 else
1051 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
1052
1053 connected = XCNEWVEC (bool, n_traces);
1054 last_trace = -1;
1055 current_pass = 1;
1056 current_partition = BB_PARTITION (traces[0].first);
1057 two_passes = false;
1058
1059 if (crtl->has_bb_partition)
1060 for (i = 0; i < n_traces && !two_passes; i++)
1061 if (BB_PARTITION (traces[0].first)
1062 != BB_PARTITION (traces[i].first))
1063 two_passes = true;
1064
1065 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1066 {
1067 int t = i;
1068 int t2;
1069 edge e, best;
1070 int best_len;
1071
1072 if (i >= n_traces)
1073 {
1074 gcc_assert (two_passes && current_pass == 1);
1075 i = 0;
1076 t = i;
1077 current_pass = 2;
1078 if (current_partition == BB_HOT_PARTITION)
1079 current_partition = BB_COLD_PARTITION;
1080 else
1081 current_partition = BB_HOT_PARTITION;
1082 }
1083
1084 if (connected[t])
1085 continue;
1086
1087 if (two_passes
1088 && BB_PARTITION (traces[t].first) != current_partition)
1089 continue;
1090
1091 connected[t] = true;
1092
1093 /* Find the predecessor traces. */
1094 for (t2 = t; t2 > 0;)
1095 {
1096 edge_iterator ei;
1097 best = NULL;
1098 best_len = 0;
1099 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1100 {
1101 int si = e->src->index;
1102
1103 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1104 && (e->flags & EDGE_CAN_FALLTHRU)
1105 && !(e->flags & EDGE_COMPLEX)
1106 && bbd[si].end_of_trace >= 0
1107 && !connected[bbd[si].end_of_trace]
1108 && (BB_PARTITION (e->src) == current_partition)
1109 && connect_better_edge_p (e, true, best_len, best, traces))
1110 {
1111 best = e;
1112 best_len = traces[bbd[si].end_of_trace].length;
1113 }
1114 }
1115 if (best)
1116 {
1117 best->src->aux = best->dest;
1118 t2 = bbd[best->src->index].end_of_trace;
1119 connected[t2] = true;
1120
1121 if (dump_file)
1122 {
1123 fprintf (dump_file, "Connection: %d %d\n",
1124 best->src->index, best->dest->index);
1125 }
1126 }
1127 else
1128 break;
1129 }
1130
1131 if (last_trace >= 0)
1132 traces[last_trace].last->aux = traces[t2].first;
1133 last_trace = t;
1134
1135 /* Find the successor traces. */
1136 while (1)
1137 {
1138 /* Find the continuation of the chain. */
1139 edge_iterator ei;
1140 best = NULL;
1141 best_len = 0;
1142 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1143 {
1144 int di = e->dest->index;
1145
1146 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1147 && (e->flags & EDGE_CAN_FALLTHRU)
1148 && !(e->flags & EDGE_COMPLEX)
1149 && bbd[di].start_of_trace >= 0
1150 && !connected[bbd[di].start_of_trace]
1151 && (BB_PARTITION (e->dest) == current_partition)
1152 && connect_better_edge_p (e, false, best_len, best, traces))
1153 {
1154 best = e;
1155 best_len = traces[bbd[di].start_of_trace].length;
1156 }
1157 }
1158
1159 if (for_size)
1160 {
1161 if (!best)
1162 /* Stop finding the successor traces. */
1163 break;
1164
1165 /* It is OK to connect block n with block n + 1 or a block
1166 before n. For others, only connect to the loop header. */
1167 if (best->dest->index > (traces[t].last->index + 1))
1168 {
1169 int count = EDGE_COUNT (best->dest->preds);
1170
1171 FOR_EACH_EDGE (e, ei, best->dest->preds)
1172 if (e->flags & EDGE_DFS_BACK)
1173 count--;
1174
1175 /* If dest has multiple predecessors, skip it. We expect
1176 that one predecessor with smaller index connects with it
1177 later. */
1178 if (count != 1)
1179 break;
1180 }
1181
1182 /* Only connect Trace n with Trace n + 1. It is conservative
1183 to keep the order as close as possible to the original order.
1184 It also helps to reduce long jumps. */
1185 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1186 break;
1187
1188 if (dump_file)
1189 fprintf (dump_file, "Connection: %d %d\n",
1190 best->src->index, best->dest->index);
1191
1192 t = bbd[best->dest->index].start_of_trace;
1193 traces[last_trace].last->aux = traces[t].first;
1194 connected[t] = true;
1195 last_trace = t;
1196 }
1197 else if (best)
1198 {
1199 if (dump_file)
1200 {
1201 fprintf (dump_file, "Connection: %d %d\n",
1202 best->src->index, best->dest->index);
1203 }
1204 t = bbd[best->dest->index].start_of_trace;
1205 traces[last_trace].last->aux = traces[t].first;
1206 connected[t] = true;
1207 last_trace = t;
1208 }
1209 else
1210 {
1211 /* Try to connect the traces by duplication of 1 block. */
1212 edge e2;
1213 basic_block next_bb = NULL;
1214 bool try_copy = false;
1215
1216 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1217 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1218 && (e->flags & EDGE_CAN_FALLTHRU)
1219 && !(e->flags & EDGE_COMPLEX)
1220 && (!best || e->probability > best->probability))
1221 {
1222 edge_iterator ei;
1223 edge best2 = NULL;
1224 int best2_len = 0;
1225
1226 /* If the destination is a start of a trace which is only
1227 one block long, then no need to search the successor
1228 blocks of the trace. Accept it. */
1229 if (bbd[e->dest->index].start_of_trace >= 0
1230 && traces[bbd[e->dest->index].start_of_trace].length
1231 == 1)
1232 {
1233 best = e;
1234 try_copy = true;
1235 continue;
1236 }
1237
1238 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1239 {
1240 int di = e2->dest->index;
1241
1242 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1243 || ((e2->flags & EDGE_CAN_FALLTHRU)
1244 && !(e2->flags & EDGE_COMPLEX)
1245 && bbd[di].start_of_trace >= 0
1246 && !connected[bbd[di].start_of_trace]
1247 && BB_PARTITION (e2->dest) == current_partition
1248 && EDGE_FREQUENCY (e2) >= freq_threshold
1249 && e2->count >= count_threshold
1250 && (!best2
1251 || e2->probability > best2->probability
1252 || (e2->probability == best2->probability
1253 && traces[bbd[di].start_of_trace].length
1254 > best2_len))))
1255 {
1256 best = e;
1257 best2 = e2;
1258 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1259 best2_len = traces[bbd[di].start_of_trace].length;
1260 else
1261 best2_len = INT_MAX;
1262 next_bb = e2->dest;
1263 try_copy = true;
1264 }
1265 }
1266 }
1267
1268 if (crtl->has_bb_partition)
1269 try_copy = false;
1270
1271 /* Copy tiny blocks always; copy larger blocks only when the
1272 edge is traversed frequently enough. */
1273 if (try_copy
1274 && copy_bb_p (best->dest,
1275 optimize_edge_for_speed_p (best)
1276 && EDGE_FREQUENCY (best) >= freq_threshold
1277 && best->count >= count_threshold))
1278 {
1279 basic_block new_bb;
1280
1281 if (dump_file)
1282 {
1283 fprintf (dump_file, "Connection: %d %d ",
1284 traces[t].last->index, best->dest->index);
1285 if (!next_bb)
1286 fputc ('\n', dump_file);
1287 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1288 fprintf (dump_file, "exit\n");
1289 else
1290 fprintf (dump_file, "%d\n", next_bb->index);
1291 }
1292
1293 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1294 traces[t].last = new_bb;
1295 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1296 {
1297 t = bbd[next_bb->index].start_of_trace;
1298 traces[last_trace].last->aux = traces[t].first;
1299 connected[t] = true;
1300 last_trace = t;
1301 }
1302 else
1303 break; /* Stop finding the successor traces. */
1304 }
1305 else
1306 break; /* Stop finding the successor traces. */
1307 }
1308 }
1309 }
1310
1311 if (dump_file)
1312 {
1313 basic_block bb;
1314
1315 fprintf (dump_file, "Final order:\n");
1316 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1317 fprintf (dump_file, "%d ", bb->index);
1318 fprintf (dump_file, "\n");
1319 fflush (dump_file);
1320 }
1321
1322 FREE (connected);
1323 }
1324
1325 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1326 when code size is allowed to grow by duplication. */
1327
1328 static bool
1329 copy_bb_p (const_basic_block bb, int code_may_grow)
1330 {
1331 int size = 0;
1332 int max_size = uncond_jump_length;
1333 rtx insn;
1334
1335 if (!bb->frequency)
1336 return false;
1337 if (EDGE_COUNT (bb->preds) < 2)
1338 return false;
1339 if (!can_duplicate_block_p (bb))
1340 return false;
1341
1342 /* Avoid duplicating blocks which have many successors (PR/13430). */
1343 if (EDGE_COUNT (bb->succs) > 8)
1344 return false;
1345
1346 if (code_may_grow && optimize_bb_for_speed_p (bb))
1347 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1348
1349 FOR_BB_INSNS (bb, insn)
1350 {
1351 if (INSN_P (insn))
1352 size += get_attr_min_length (insn);
1353 }
1354
1355 if (size <= max_size)
1356 return true;
1357
1358 if (dump_file)
1359 {
1360 fprintf (dump_file,
1361 "Block %d can't be copied because its size = %d.\n",
1362 bb->index, size);
1363 }
1364
1365 return false;
1366 }
1367
1368 /* Return the length of unconditional jump instruction. */
1369
1370 int
1371 get_uncond_jump_length (void)
1372 {
1373 rtx label, jump;
1374 int length;
1375
1376 label = emit_label_before (gen_label_rtx (), get_insns ());
1377 jump = emit_jump_insn (gen_jump (label));
1378
1379 length = get_attr_min_length (jump);
1380
1381 delete_insn (jump);
1382 delete_insn (label);
1383 return length;
1384 }
1385
1386 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1387 Duplicate the landing pad and split the edges so that no EH edge
1388 crosses partitions. */
1389
1390 static void
1391 fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1392 {
1393 eh_landing_pad new_lp;
1394 basic_block new_bb, last_bb, post_bb;
1395 rtx new_label, jump, post_label;
1396 unsigned new_partition;
1397 edge_iterator ei;
1398 edge e;
1399
1400 /* Generate the new landing-pad structure. */
1401 new_lp = gen_eh_landing_pad (old_lp->region);
1402 new_lp->post_landing_pad = old_lp->post_landing_pad;
1403 new_lp->landing_pad = gen_label_rtx ();
1404 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1405
1406 /* Put appropriate instructions in new bb. */
1407 new_label = emit_label (new_lp->landing_pad);
1408
1409 expand_dw2_landing_pad_for_region (old_lp->region);
1410
1411 post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
1412 post_bb = single_succ (post_bb);
1413 post_label = block_label (post_bb);
1414 jump = emit_jump_insn (gen_jump (post_label));
1415 JUMP_LABEL (jump) = post_label;
1416
1417 /* Create new basic block to be dest for lp. */
1418 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1419 new_bb = create_basic_block (new_label, jump, last_bb);
1420 new_bb->aux = last_bb->aux;
1421 last_bb->aux = new_bb;
1422
1423 emit_barrier_after_bb (new_bb);
1424
1425 make_edge (new_bb, post_bb, 0);
1426
1427 /* Make sure new bb is in the other partition. */
1428 new_partition = BB_PARTITION (old_bb);
1429 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1430 BB_SET_PARTITION (new_bb, new_partition);
1431
1432 /* Fix up the edges. */
1433 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1434 if (BB_PARTITION (e->src) == new_partition)
1435 {
1436 rtx insn = BB_END (e->src);
1437 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1438
1439 gcc_assert (note != NULL);
1440 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1441 XEXP (note, 0) = GEN_INT (new_lp->index);
1442
1443 /* Adjust the edge to the new destination. */
1444 redirect_edge_succ (e, new_bb);
1445 }
1446 else
1447 ei_next (&ei);
1448 }
1449
1450
1451 /* Ensure that all hot bbs are included in a hot path through the
1452 procedure. This is done by calling this function twice, once
1453 with WALK_UP true (to look for paths from the entry to hot bbs) and
1454 once with WALK_UP false (to look for paths from hot bbs to the exit).
1455 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1456 to BBS_IN_HOT_PARTITION. */
1457
1458 static unsigned int
1459 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1460 vec<basic_block> *bbs_in_hot_partition)
1461 {
1462 /* Callers check this. */
1463 gcc_checking_assert (cold_bb_count);
1464
1465 /* Keep examining hot bbs while we still have some left to check
1466 and there are remaining cold bbs. */
1467 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1468 while (! hot_bbs_to_check.is_empty ()
1469 && cold_bb_count)
1470 {
1471 basic_block bb = hot_bbs_to_check.pop ();
1472 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1473 edge e;
1474 edge_iterator ei;
1475 int highest_probability = 0;
1476 int highest_freq = 0;
1477 gcov_type highest_count = 0;
1478 bool found = false;
1479
1480 /* Walk the preds/succs and check if there is at least one already
1481 marked hot. Keep track of the most frequent pred/succ so that we
1482 can mark it hot if we don't find one. */
1483 FOR_EACH_EDGE (e, ei, edges)
1484 {
1485 basic_block reach_bb = walk_up ? e->src : e->dest;
1486
1487 if (e->flags & EDGE_DFS_BACK)
1488 continue;
1489
1490 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1491 {
1492 found = true;
1493 break;
1494 }
1495 /* The following loop will look for the hottest edge via
1496 the edge count, if it is non-zero, then fallback to the edge
1497 frequency and finally the edge probability. */
1498 if (e->count > highest_count)
1499 highest_count = e->count;
1500 int edge_freq = EDGE_FREQUENCY (e);
1501 if (edge_freq > highest_freq)
1502 highest_freq = edge_freq;
1503 if (e->probability > highest_probability)
1504 highest_probability = e->probability;
1505 }
1506
1507 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1508 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1509 then the most frequent pred (or succ) needs to be adjusted. In the
1510 case where multiple preds/succs have the same frequency (e.g. a
1511 50-50 branch), then both will be adjusted. */
1512 if (found)
1513 continue;
1514
1515 FOR_EACH_EDGE (e, ei, edges)
1516 {
1517 if (e->flags & EDGE_DFS_BACK)
1518 continue;
1519 /* Select the hottest edge using the edge count, if it is non-zero,
1520 then fallback to the edge frequency and finally the edge
1521 probability. */
1522 if (highest_count)
1523 {
1524 if (e->count < highest_count)
1525 continue;
1526 }
1527 else if (highest_freq)
1528 {
1529 if (EDGE_FREQUENCY (e) < highest_freq)
1530 continue;
1531 }
1532 else if (e->probability < highest_probability)
1533 continue;
1534
1535 basic_block reach_bb = walk_up ? e->src : e->dest;
1536
1537 /* We have a hot bb with an immediate dominator that is cold.
1538 The dominator needs to be re-marked hot. */
1539 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1540 cold_bb_count--;
1541
1542 /* Now we need to examine newly-hot reach_bb to see if it is also
1543 dominated by a cold bb. */
1544 bbs_in_hot_partition->safe_push (reach_bb);
1545 hot_bbs_to_check.safe_push (reach_bb);
1546 }
1547 }
1548
1549 return cold_bb_count;
1550 }
1551
1552
1553 /* Find the basic blocks that are rarely executed and need to be moved to
1554 a separate section of the .o file (to cut down on paging and improve
1555 cache locality). Return a vector of all edges that cross. */
1556
1557 static vec<edge>
1558 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1559 {
1560 vec<edge> crossing_edges = vNULL;
1561 basic_block bb;
1562 edge e;
1563 edge_iterator ei;
1564 unsigned int cold_bb_count = 0;
1565 vec<basic_block> bbs_in_hot_partition = vNULL;
1566
1567 /* Mark which partition (hot/cold) each basic block belongs in. */
1568 FOR_EACH_BB (bb)
1569 {
1570 bool cold_bb = false;
1571
1572 if (probably_never_executed_bb_p (cfun, bb))
1573 {
1574 /* Handle profile insanities created by upstream optimizations
1575 by also checking the incoming edge weights. If there is a non-cold
1576 incoming edge, conservatively prevent this block from being split
1577 into the cold section. */
1578 cold_bb = true;
1579 FOR_EACH_EDGE (e, ei, bb->preds)
1580 if (!probably_never_executed_edge_p (cfun, e))
1581 {
1582 cold_bb = false;
1583 break;
1584 }
1585 }
1586 if (cold_bb)
1587 {
1588 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1589 cold_bb_count++;
1590 }
1591 else
1592 {
1593 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1594 bbs_in_hot_partition.safe_push (bb);
1595 }
1596 }
1597
1598 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1599 Several different possibilities may include cold bbs along all paths
1600 to/from a hot bb. One is that there are edge weight insanities
1601 due to optimization phases that do not properly update basic block profile
1602 counts. The second is that the entry of the function may not be hot, because
1603 it is entered fewer times than the number of profile training runs, but there
1604 is a loop inside the function that causes blocks within the function to be
1605 above the threshold for hotness. This is fixed by walking up from hot bbs
1606 to the entry block, and then down from hot bbs to the exit, performing
1607 partitioning fixups as necessary. */
1608 if (cold_bb_count)
1609 {
1610 mark_dfs_back_edges ();
1611 cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1612 &bbs_in_hot_partition);
1613 if (cold_bb_count)
1614 sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1615 }
1616
1617 /* The format of .gcc_except_table does not allow landing pads to
1618 be in a different partition as the throw. Fix this by either
1619 moving or duplicating the landing pads. */
1620 if (cfun->eh->lp_array)
1621 {
1622 unsigned i;
1623 eh_landing_pad lp;
1624
1625 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1626 {
1627 bool all_same, all_diff;
1628
1629 if (lp == NULL
1630 || lp->landing_pad == NULL_RTX
1631 || !LABEL_P (lp->landing_pad))
1632 continue;
1633
1634 all_same = all_diff = true;
1635 bb = BLOCK_FOR_INSN (lp->landing_pad);
1636 FOR_EACH_EDGE (e, ei, bb->preds)
1637 {
1638 gcc_assert (e->flags & EDGE_EH);
1639 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1640 all_diff = false;
1641 else
1642 all_same = false;
1643 }
1644
1645 if (all_same)
1646 ;
1647 else if (all_diff)
1648 {
1649 int which = BB_PARTITION (bb);
1650 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1651 BB_SET_PARTITION (bb, which);
1652 }
1653 else
1654 fix_up_crossing_landing_pad (lp, bb);
1655 }
1656 }
1657
1658 /* Mark every edge that crosses between sections. */
1659
1660 FOR_EACH_BB (bb)
1661 FOR_EACH_EDGE (e, ei, bb->succs)
1662 {
1663 unsigned int flags = e->flags;
1664
1665 /* We should never have EDGE_CROSSING set yet. */
1666 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1667
1668 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1669 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1670 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1671 {
1672 crossing_edges.safe_push (e);
1673 flags |= EDGE_CROSSING;
1674 }
1675
1676 /* Now that we've split eh edges as appropriate, allow landing pads
1677 to be merged with the post-landing pads. */
1678 flags &= ~EDGE_PRESERVE;
1679
1680 e->flags = flags;
1681 }
1682
1683 return crossing_edges;
1684 }
1685
1686 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1687
1688 static void
1689 set_edge_can_fallthru_flag (void)
1690 {
1691 basic_block bb;
1692
1693 FOR_EACH_BB (bb)
1694 {
1695 edge e;
1696 edge_iterator ei;
1697
1698 FOR_EACH_EDGE (e, ei, bb->succs)
1699 {
1700 e->flags &= ~EDGE_CAN_FALLTHRU;
1701
1702 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1703 if (e->flags & EDGE_FALLTHRU)
1704 e->flags |= EDGE_CAN_FALLTHRU;
1705 }
1706
1707 /* If the BB ends with an invertible condjump all (2) edges are
1708 CAN_FALLTHRU edges. */
1709 if (EDGE_COUNT (bb->succs) != 2)
1710 continue;
1711 if (!any_condjump_p (BB_END (bb)))
1712 continue;
1713 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
1714 continue;
1715 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
1716 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1717 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1718 }
1719 }
1720
1721 /* If any destination of a crossing edge does not have a label, add label;
1722 Convert any easy fall-through crossing edges to unconditional jumps. */
1723
1724 static void
1725 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1726 {
1727 size_t i;
1728 edge e;
1729
1730 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1731 {
1732 basic_block src = e->src;
1733 basic_block dest = e->dest;
1734 rtx label, new_jump;
1735
1736 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1737 continue;
1738
1739 /* Make sure dest has a label. */
1740 label = block_label (dest);
1741
1742 /* Nothing to do for non-fallthru edges. */
1743 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1744 continue;
1745 if ((e->flags & EDGE_FALLTHRU) == 0)
1746 continue;
1747
1748 /* If the block does not end with a control flow insn, then we
1749 can trivially add a jump to the end to fixup the crossing.
1750 Otherwise the jump will have to go in a new bb, which will
1751 be handled by fix_up_fall_thru_edges function. */
1752 if (control_flow_insn_p (BB_END (src)))
1753 continue;
1754
1755 /* Make sure there's only one successor. */
1756 gcc_assert (single_succ_p (src));
1757
1758 new_jump = emit_jump_insn_after (gen_jump (label), BB_END (src));
1759 BB_END (src) = new_jump;
1760 JUMP_LABEL (new_jump) = label;
1761 LABEL_NUSES (label) += 1;
1762
1763 emit_barrier_after_bb (src);
1764
1765 /* Mark edge as non-fallthru. */
1766 e->flags &= ~EDGE_FALLTHRU;
1767 }
1768 }
1769
1770 /* Find any bb's where the fall-through edge is a crossing edge (note that
1771 these bb's must also contain a conditional jump or end with a call
1772 instruction; we've already dealt with fall-through edges for blocks
1773 that didn't have a conditional jump or didn't end with call instruction
1774 in the call to add_labels_and_missing_jumps). Convert the fall-through
1775 edge to non-crossing edge by inserting a new bb to fall-through into.
1776 The new bb will contain an unconditional jump (crossing edge) to the
1777 original fall through destination. */
1778
1779 static void
1780 fix_up_fall_thru_edges (void)
1781 {
1782 basic_block cur_bb;
1783 basic_block new_bb;
1784 edge succ1;
1785 edge succ2;
1786 edge fall_thru;
1787 edge cond_jump = NULL;
1788 edge e;
1789 bool cond_jump_crosses;
1790 int invert_worked;
1791 rtx old_jump;
1792 rtx fall_thru_label;
1793
1794 FOR_EACH_BB (cur_bb)
1795 {
1796 fall_thru = NULL;
1797 if (EDGE_COUNT (cur_bb->succs) > 0)
1798 succ1 = EDGE_SUCC (cur_bb, 0);
1799 else
1800 succ1 = NULL;
1801
1802 if (EDGE_COUNT (cur_bb->succs) > 1)
1803 succ2 = EDGE_SUCC (cur_bb, 1);
1804 else
1805 succ2 = NULL;
1806
1807 /* Find the fall-through edge. */
1808
1809 if (succ1
1810 && (succ1->flags & EDGE_FALLTHRU))
1811 {
1812 fall_thru = succ1;
1813 cond_jump = succ2;
1814 }
1815 else if (succ2
1816 && (succ2->flags & EDGE_FALLTHRU))
1817 {
1818 fall_thru = succ2;
1819 cond_jump = succ1;
1820 }
1821 else if (succ1
1822 && (block_ends_with_call_p (cur_bb)
1823 || can_throw_internal (BB_END (cur_bb))))
1824 {
1825 edge e;
1826 edge_iterator ei;
1827
1828 /* Find EDGE_CAN_FALLTHRU edge. */
1829 FOR_EACH_EDGE (e, ei, cur_bb->succs)
1830 if (e->flags & EDGE_CAN_FALLTHRU)
1831 {
1832 fall_thru = e;
1833 break;
1834 }
1835 }
1836
1837 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1838 {
1839 /* Check to see if the fall-thru edge is a crossing edge. */
1840
1841 if (fall_thru->flags & EDGE_CROSSING)
1842 {
1843 /* The fall_thru edge crosses; now check the cond jump edge, if
1844 it exists. */
1845
1846 cond_jump_crosses = true;
1847 invert_worked = 0;
1848 old_jump = BB_END (cur_bb);
1849
1850 /* Find the jump instruction, if there is one. */
1851
1852 if (cond_jump)
1853 {
1854 if (!(cond_jump->flags & EDGE_CROSSING))
1855 cond_jump_crosses = false;
1856
1857 /* We know the fall-thru edge crosses; if the cond
1858 jump edge does NOT cross, and its destination is the
1859 next block in the bb order, invert the jump
1860 (i.e. fix it so the fall through does not cross and
1861 the cond jump does). */
1862
1863 if (!cond_jump_crosses)
1864 {
1865 /* Find label in fall_thru block. We've already added
1866 any missing labels, so there must be one. */
1867
1868 fall_thru_label = block_label (fall_thru->dest);
1869
1870 if (old_jump && JUMP_P (old_jump) && fall_thru_label)
1871 invert_worked = invert_jump (old_jump,
1872 fall_thru_label,0);
1873 if (invert_worked)
1874 {
1875 fall_thru->flags &= ~EDGE_FALLTHRU;
1876 cond_jump->flags |= EDGE_FALLTHRU;
1877 update_br_prob_note (cur_bb);
1878 e = fall_thru;
1879 fall_thru = cond_jump;
1880 cond_jump = e;
1881 cond_jump->flags |= EDGE_CROSSING;
1882 fall_thru->flags &= ~EDGE_CROSSING;
1883 }
1884 }
1885 }
1886
1887 if (cond_jump_crosses || !invert_worked)
1888 {
1889 /* This is the case where both edges out of the basic
1890 block are crossing edges. Here we will fix up the
1891 fall through edge. The jump edge will be taken care
1892 of later. The EDGE_CROSSING flag of fall_thru edge
1893 is unset before the call to force_nonfallthru
1894 function because if a new basic-block is created
1895 this edge remains in the current section boundary
1896 while the edge between new_bb and the fall_thru->dest
1897 becomes EDGE_CROSSING. */
1898
1899 fall_thru->flags &= ~EDGE_CROSSING;
1900 new_bb = force_nonfallthru (fall_thru);
1901
1902 if (new_bb)
1903 {
1904 new_bb->aux = cur_bb->aux;
1905 cur_bb->aux = new_bb;
1906
1907 /* This is done by force_nonfallthru_and_redirect. */
1908 gcc_assert (BB_PARTITION (new_bb)
1909 == BB_PARTITION (cur_bb));
1910
1911 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1912 }
1913 else
1914 {
1915 /* If a new basic-block was not created; restore
1916 the EDGE_CROSSING flag. */
1917 fall_thru->flags |= EDGE_CROSSING;
1918 }
1919
1920 /* Add barrier after new jump */
1921 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1922 }
1923 }
1924 }
1925 }
1926 }
1927
1928 /* This function checks the destination block of a "crossing jump" to
1929 see if it has any crossing predecessors that begin with a code label
1930 and end with an unconditional jump. If so, it returns that predecessor
1931 block. (This is to avoid creating lots of new basic blocks that all
1932 contain unconditional jumps to the same destination). */
1933
1934 static basic_block
1935 find_jump_block (basic_block jump_dest)
1936 {
1937 basic_block source_bb = NULL;
1938 edge e;
1939 rtx insn;
1940 edge_iterator ei;
1941
1942 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1943 if (e->flags & EDGE_CROSSING)
1944 {
1945 basic_block src = e->src;
1946
1947 /* Check each predecessor to see if it has a label, and contains
1948 only one executable instruction, which is an unconditional jump.
1949 If so, we can use it. */
1950
1951 if (LABEL_P (BB_HEAD (src)))
1952 for (insn = BB_HEAD (src);
1953 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1954 insn = NEXT_INSN (insn))
1955 {
1956 if (INSN_P (insn)
1957 && insn == BB_END (src)
1958 && JUMP_P (insn)
1959 && !any_condjump_p (insn))
1960 {
1961 source_bb = src;
1962 break;
1963 }
1964 }
1965
1966 if (source_bb)
1967 break;
1968 }
1969
1970 return source_bb;
1971 }
1972
1973 /* Find all BB's with conditional jumps that are crossing edges;
1974 insert a new bb and make the conditional jump branch to the new
1975 bb instead (make the new bb same color so conditional branch won't
1976 be a 'crossing' edge). Insert an unconditional jump from the
1977 new bb to the original destination of the conditional jump. */
1978
1979 static void
1980 fix_crossing_conditional_branches (void)
1981 {
1982 basic_block cur_bb;
1983 basic_block new_bb;
1984 basic_block dest;
1985 edge succ1;
1986 edge succ2;
1987 edge crossing_edge;
1988 edge new_edge;
1989 rtx old_jump;
1990 rtx set_src;
1991 rtx old_label = NULL_RTX;
1992 rtx new_label;
1993
1994 FOR_EACH_BB (cur_bb)
1995 {
1996 crossing_edge = NULL;
1997 if (EDGE_COUNT (cur_bb->succs) > 0)
1998 succ1 = EDGE_SUCC (cur_bb, 0);
1999 else
2000 succ1 = NULL;
2001
2002 if (EDGE_COUNT (cur_bb->succs) > 1)
2003 succ2 = EDGE_SUCC (cur_bb, 1);
2004 else
2005 succ2 = NULL;
2006
2007 /* We already took care of fall-through edges, so only one successor
2008 can be a crossing edge. */
2009
2010 if (succ1 && (succ1->flags & EDGE_CROSSING))
2011 crossing_edge = succ1;
2012 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2013 crossing_edge = succ2;
2014
2015 if (crossing_edge)
2016 {
2017 old_jump = BB_END (cur_bb);
2018
2019 /* Check to make sure the jump instruction is a
2020 conditional jump. */
2021
2022 set_src = NULL_RTX;
2023
2024 if (any_condjump_p (old_jump))
2025 {
2026 if (GET_CODE (PATTERN (old_jump)) == SET)
2027 set_src = SET_SRC (PATTERN (old_jump));
2028 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2029 {
2030 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2031 if (GET_CODE (set_src) == SET)
2032 set_src = SET_SRC (set_src);
2033 else
2034 set_src = NULL_RTX;
2035 }
2036 }
2037
2038 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2039 {
2040 if (GET_CODE (XEXP (set_src, 1)) == PC)
2041 old_label = XEXP (set_src, 2);
2042 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2043 old_label = XEXP (set_src, 1);
2044
2045 /* Check to see if new bb for jumping to that dest has
2046 already been created; if so, use it; if not, create
2047 a new one. */
2048
2049 new_bb = find_jump_block (crossing_edge->dest);
2050
2051 if (new_bb)
2052 new_label = block_label (new_bb);
2053 else
2054 {
2055 basic_block last_bb;
2056 rtx new_jump;
2057
2058 /* Create new basic block to be dest for
2059 conditional jump. */
2060
2061 /* Put appropriate instructions in new bb. */
2062
2063 new_label = gen_label_rtx ();
2064 emit_label (new_label);
2065
2066 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2067 old_label = JUMP_LABEL (old_jump);
2068 new_jump = emit_jump_insn (gen_jump (old_label));
2069 JUMP_LABEL (new_jump) = old_label;
2070
2071 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2072 new_bb = create_basic_block (new_label, new_jump, last_bb);
2073 new_bb->aux = last_bb->aux;
2074 last_bb->aux = new_bb;
2075
2076 emit_barrier_after_bb (new_bb);
2077
2078 /* Make sure new bb is in same partition as source
2079 of conditional branch. */
2080 BB_COPY_PARTITION (new_bb, cur_bb);
2081 }
2082
2083 /* Make old jump branch to new bb. */
2084
2085 redirect_jump (old_jump, new_label, 0);
2086
2087 /* Remove crossing_edge as predecessor of 'dest'. */
2088
2089 dest = crossing_edge->dest;
2090
2091 redirect_edge_succ (crossing_edge, new_bb);
2092
2093 /* Make a new edge from new_bb to old dest; new edge
2094 will be a successor for new_bb and a predecessor
2095 for 'dest'. */
2096
2097 if (EDGE_COUNT (new_bb->succs) == 0)
2098 new_edge = make_edge (new_bb, dest, 0);
2099 else
2100 new_edge = EDGE_SUCC (new_bb, 0);
2101
2102 crossing_edge->flags &= ~EDGE_CROSSING;
2103 new_edge->flags |= EDGE_CROSSING;
2104 }
2105 }
2106 }
2107 }
2108
2109 /* Find any unconditional branches that cross between hot and cold
2110 sections. Convert them into indirect jumps instead. */
2111
2112 static void
2113 fix_crossing_unconditional_branches (void)
2114 {
2115 basic_block cur_bb;
2116 rtx last_insn;
2117 rtx label;
2118 rtx label_addr;
2119 rtx indirect_jump_sequence;
2120 rtx jump_insn = NULL_RTX;
2121 rtx new_reg;
2122 rtx cur_insn;
2123 edge succ;
2124
2125 FOR_EACH_BB (cur_bb)
2126 {
2127 last_insn = BB_END (cur_bb);
2128
2129 if (EDGE_COUNT (cur_bb->succs) < 1)
2130 continue;
2131
2132 succ = EDGE_SUCC (cur_bb, 0);
2133
2134 /* Check to see if bb ends in a crossing (unconditional) jump. At
2135 this point, no crossing jumps should be conditional. */
2136
2137 if (JUMP_P (last_insn)
2138 && (succ->flags & EDGE_CROSSING))
2139 {
2140 gcc_assert (!any_condjump_p (last_insn));
2141
2142 /* Make sure the jump is not already an indirect or table jump. */
2143
2144 if (!computed_jump_p (last_insn)
2145 && !tablejump_p (last_insn, NULL, NULL))
2146 {
2147 /* We have found a "crossing" unconditional branch. Now
2148 we must convert it to an indirect jump. First create
2149 reference of label, as target for jump. */
2150
2151 label = JUMP_LABEL (last_insn);
2152 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2153 LABEL_NUSES (label) += 1;
2154
2155 /* Get a register to use for the indirect jump. */
2156
2157 new_reg = gen_reg_rtx (Pmode);
2158
2159 /* Generate indirect the jump sequence. */
2160
2161 start_sequence ();
2162 emit_move_insn (new_reg, label_addr);
2163 emit_indirect_jump (new_reg);
2164 indirect_jump_sequence = get_insns ();
2165 end_sequence ();
2166
2167 /* Make sure every instruction in the new jump sequence has
2168 its basic block set to be cur_bb. */
2169
2170 for (cur_insn = indirect_jump_sequence; cur_insn;
2171 cur_insn = NEXT_INSN (cur_insn))
2172 {
2173 if (!BARRIER_P (cur_insn))
2174 BLOCK_FOR_INSN (cur_insn) = cur_bb;
2175 if (JUMP_P (cur_insn))
2176 jump_insn = cur_insn;
2177 }
2178
2179 /* Insert the new (indirect) jump sequence immediately before
2180 the unconditional jump, then delete the unconditional jump. */
2181
2182 emit_insn_before (indirect_jump_sequence, last_insn);
2183 delete_insn (last_insn);
2184
2185 /* Make BB_END for cur_bb be the jump instruction (NOT the
2186 barrier instruction at the end of the sequence...). */
2187
2188 BB_END (cur_bb) = jump_insn;
2189 }
2190 }
2191 }
2192 }
2193
2194 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
2195
2196 static void
2197 add_reg_crossing_jump_notes (void)
2198 {
2199 basic_block bb;
2200 edge e;
2201 edge_iterator ei;
2202
2203 FOR_EACH_BB (bb)
2204 FOR_EACH_EDGE (e, ei, bb->succs)
2205 if ((e->flags & EDGE_CROSSING)
2206 && JUMP_P (BB_END (e->src))
2207 /* Some notes were added during fix_up_fall_thru_edges, via
2208 force_nonfallthru_and_redirect. */
2209 && !find_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX))
2210 add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
2211 }
2212
2213 /* Reorder basic blocks. The main entry point to this file. FLAGS is
2214 the set of flags to pass to cfg_layout_initialize(). */
2215
2216 static void
2217 reorder_basic_blocks (void)
2218 {
2219 int n_traces;
2220 int i;
2221 struct trace *traces;
2222
2223 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2224
2225 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2226 return;
2227
2228 set_edge_can_fallthru_flag ();
2229 mark_dfs_back_edges ();
2230
2231 /* We are estimating the length of uncond jump insn only once since the code
2232 for getting the insn length always returns the minimal length now. */
2233 if (uncond_jump_length == 0)
2234 uncond_jump_length = get_uncond_jump_length ();
2235
2236 /* We need to know some information for each basic block. */
2237 array_size = GET_ARRAY_SIZE (last_basic_block);
2238 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2239 for (i = 0; i < array_size; i++)
2240 {
2241 bbd[i].start_of_trace = -1;
2242 bbd[i].end_of_trace = -1;
2243 bbd[i].in_trace = -1;
2244 bbd[i].visited = 0;
2245 bbd[i].heap = NULL;
2246 bbd[i].node = NULL;
2247 }
2248
2249 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2250 n_traces = 0;
2251 find_traces (&n_traces, traces);
2252 connect_traces (n_traces, traces);
2253 FREE (traces);
2254 FREE (bbd);
2255
2256 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2257
2258 if (dump_file)
2259 {
2260 if (dump_flags & TDF_DETAILS)
2261 dump_reg_info (dump_file);
2262 dump_flow_info (dump_file, dump_flags);
2263 }
2264
2265 /* Signal that rtl_verify_flow_info_1 can now verify that there
2266 is at most one switch between hot/cold sections. */
2267 crtl->bb_reorder_complete = true;
2268 }
2269
2270 /* Determine which partition the first basic block in the function
2271 belongs to, then find the first basic block in the current function
2272 that belongs to a different section, and insert a
2273 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2274 instruction stream. When writing out the assembly code,
2275 encountering this note will make the compiler switch between the
2276 hot and cold text sections. */
2277
2278 void
2279 insert_section_boundary_note (void)
2280 {
2281 basic_block bb;
2282 bool switched_sections = false;
2283 int current_partition = 0;
2284
2285 if (!crtl->has_bb_partition)
2286 return;
2287
2288 FOR_EACH_BB (bb)
2289 {
2290 if (!current_partition)
2291 current_partition = BB_PARTITION (bb);
2292 if (BB_PARTITION (bb) != current_partition)
2293 {
2294 gcc_assert (!switched_sections);
2295 switched_sections = true;
2296 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2297 current_partition = BB_PARTITION (bb);
2298 }
2299 }
2300 }
2301
2302 static bool
2303 gate_handle_reorder_blocks (void)
2304 {
2305 if (targetm.cannot_modify_jumps_p ())
2306 return false;
2307 return (optimize > 0
2308 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2309 }
2310
2311 static unsigned int
2312 rest_of_handle_reorder_blocks (void)
2313 {
2314 basic_block bb;
2315
2316 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2317 splitting possibly introduced more crossjumping opportunities. */
2318 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2319
2320 reorder_basic_blocks ();
2321 cleanup_cfg (CLEANUP_EXPENSIVE);
2322
2323 FOR_EACH_BB (bb)
2324 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2325 bb->aux = bb->next_bb;
2326 cfg_layout_finalize ();
2327
2328 return 0;
2329 }
2330
2331 namespace {
2332
2333 const pass_data pass_data_reorder_blocks =
2334 {
2335 RTL_PASS, /* type */
2336 "bbro", /* name */
2337 OPTGROUP_NONE, /* optinfo_flags */
2338 true, /* has_gate */
2339 true, /* has_execute */
2340 TV_REORDER_BLOCKS, /* tv_id */
2341 0, /* properties_required */
2342 0, /* properties_provided */
2343 0, /* properties_destroyed */
2344 0, /* todo_flags_start */
2345 TODO_verify_rtl_sharing, /* todo_flags_finish */
2346 };
2347
2348 class pass_reorder_blocks : public rtl_opt_pass
2349 {
2350 public:
2351 pass_reorder_blocks (gcc::context *ctxt)
2352 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2353 {}
2354
2355 /* opt_pass methods: */
2356 bool gate () { return gate_handle_reorder_blocks (); }
2357 unsigned int execute () { return rest_of_handle_reorder_blocks (); }
2358
2359 }; // class pass_reorder_blocks
2360
2361 } // anon namespace
2362
2363 rtl_opt_pass *
2364 make_pass_reorder_blocks (gcc::context *ctxt)
2365 {
2366 return new pass_reorder_blocks (ctxt);
2367 }
2368
2369 /* Duplicate the blocks containing computed gotos. This basically unfactors
2370 computed gotos that were factored early on in the compilation process to
2371 speed up edge based data flow. We used to not unfactoring them again,
2372 which can seriously pessimize code with many computed jumps in the source
2373 code, such as interpreters. See e.g. PR15242. */
2374
2375 static bool
2376 gate_duplicate_computed_gotos (void)
2377 {
2378 if (targetm.cannot_modify_jumps_p ())
2379 return false;
2380 return (optimize > 0
2381 && flag_expensive_optimizations
2382 && ! optimize_function_for_size_p (cfun));
2383 }
2384
2385
2386 static unsigned int
2387 duplicate_computed_gotos (void)
2388 {
2389 basic_block bb, new_bb;
2390 bitmap candidates;
2391 int max_size;
2392
2393 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2394 return 0;
2395
2396 clear_bb_flags ();
2397 cfg_layout_initialize (0);
2398
2399 /* We are estimating the length of uncond jump insn only once
2400 since the code for getting the insn length always returns
2401 the minimal length now. */
2402 if (uncond_jump_length == 0)
2403 uncond_jump_length = get_uncond_jump_length ();
2404
2405 max_size
2406 = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2407 candidates = BITMAP_ALLOC (NULL);
2408
2409 /* Look for blocks that end in a computed jump, and see if such blocks
2410 are suitable for unfactoring. If a block is a candidate for unfactoring,
2411 mark it in the candidates. */
2412 FOR_EACH_BB (bb)
2413 {
2414 rtx insn;
2415 edge e;
2416 edge_iterator ei;
2417 int size, all_flags;
2418
2419 /* Build the reorder chain for the original order of blocks. */
2420 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2421 bb->aux = bb->next_bb;
2422
2423 /* Obviously the block has to end in a computed jump. */
2424 if (!computed_jump_p (BB_END (bb)))
2425 continue;
2426
2427 /* Only consider blocks that can be duplicated. */
2428 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2429 || !can_duplicate_block_p (bb))
2430 continue;
2431
2432 /* Make sure that the block is small enough. */
2433 size = 0;
2434 FOR_BB_INSNS (bb, insn)
2435 if (INSN_P (insn))
2436 {
2437 size += get_attr_min_length (insn);
2438 if (size > max_size)
2439 break;
2440 }
2441 if (size > max_size)
2442 continue;
2443
2444 /* Final check: there must not be any incoming abnormal edges. */
2445 all_flags = 0;
2446 FOR_EACH_EDGE (e, ei, bb->preds)
2447 all_flags |= e->flags;
2448 if (all_flags & EDGE_COMPLEX)
2449 continue;
2450
2451 bitmap_set_bit (candidates, bb->index);
2452 }
2453
2454 /* Nothing to do if there is no computed jump here. */
2455 if (bitmap_empty_p (candidates))
2456 goto done;
2457
2458 /* Duplicate computed gotos. */
2459 FOR_EACH_BB (bb)
2460 {
2461 if (bb->flags & BB_VISITED)
2462 continue;
2463
2464 bb->flags |= BB_VISITED;
2465
2466 /* BB must have one outgoing edge. That edge must not lead to
2467 the exit block or the next block.
2468 The destination must have more than one predecessor. */
2469 if (!single_succ_p (bb)
2470 || single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2471 || single_succ (bb) == bb->next_bb
2472 || single_pred_p (single_succ (bb)))
2473 continue;
2474
2475 /* The successor block has to be a duplication candidate. */
2476 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2477 continue;
2478
2479 /* Don't duplicate a partition crossing edge, which requires difficult
2480 fixup. */
2481 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX))
2482 continue;
2483
2484 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2485 new_bb->aux = bb->aux;
2486 bb->aux = new_bb;
2487 new_bb->flags |= BB_VISITED;
2488 }
2489
2490 done:
2491 cfg_layout_finalize ();
2492
2493 BITMAP_FREE (candidates);
2494 return 0;
2495 }
2496
2497 namespace {
2498
2499 const pass_data pass_data_duplicate_computed_gotos =
2500 {
2501 RTL_PASS, /* type */
2502 "compgotos", /* name */
2503 OPTGROUP_NONE, /* optinfo_flags */
2504 true, /* has_gate */
2505 true, /* has_execute */
2506 TV_REORDER_BLOCKS, /* tv_id */
2507 0, /* properties_required */
2508 0, /* properties_provided */
2509 0, /* properties_destroyed */
2510 0, /* todo_flags_start */
2511 TODO_verify_rtl_sharing, /* todo_flags_finish */
2512 };
2513
2514 class pass_duplicate_computed_gotos : public rtl_opt_pass
2515 {
2516 public:
2517 pass_duplicate_computed_gotos (gcc::context *ctxt)
2518 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2519 {}
2520
2521 /* opt_pass methods: */
2522 bool gate () { return gate_duplicate_computed_gotos (); }
2523 unsigned int execute () { return duplicate_computed_gotos (); }
2524
2525 }; // class pass_duplicate_computed_gotos
2526
2527 } // anon namespace
2528
2529 rtl_opt_pass *
2530 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2531 {
2532 return new pass_duplicate_computed_gotos (ctxt);
2533 }
2534
2535 static bool
2536 gate_handle_partition_blocks (void)
2537 {
2538 /* The optimization to partition hot/cold basic blocks into separate
2539 sections of the .o file does not work well with linkonce or with
2540 user defined section attributes. Don't call it if either case
2541 arises. */
2542 return (flag_reorder_blocks_and_partition
2543 && optimize
2544 /* See gate_handle_reorder_blocks. We should not partition if
2545 we are going to omit the reordering. */
2546 && optimize_function_for_speed_p (cfun)
2547 && !DECL_ONE_ONLY (current_function_decl)
2548 && !user_defined_section_attribute);
2549 }
2550
2551 /* This function is the main 'entrance' for the optimization that
2552 partitions hot and cold basic blocks into separate sections of the
2553 .o file (to improve performance and cache locality). Ideally it
2554 would be called after all optimizations that rearrange the CFG have
2555 been called. However part of this optimization may introduce new
2556 register usage, so it must be called before register allocation has
2557 occurred. This means that this optimization is actually called
2558 well before the optimization that reorders basic blocks (see
2559 function above).
2560
2561 This optimization checks the feedback information to determine
2562 which basic blocks are hot/cold, updates flags on the basic blocks
2563 to indicate which section they belong in. This information is
2564 later used for writing out sections in the .o file. Because hot
2565 and cold sections can be arbitrarily large (within the bounds of
2566 memory), far beyond the size of a single function, it is necessary
2567 to fix up all edges that cross section boundaries, to make sure the
2568 instructions used can actually span the required distance. The
2569 fixes are described below.
2570
2571 Fall-through edges must be changed into jumps; it is not safe or
2572 legal to fall through across a section boundary. Whenever a
2573 fall-through edge crossing a section boundary is encountered, a new
2574 basic block is inserted (in the same section as the fall-through
2575 source), and the fall through edge is redirected to the new basic
2576 block. The new basic block contains an unconditional jump to the
2577 original fall-through target. (If the unconditional jump is
2578 insufficient to cross section boundaries, that is dealt with a
2579 little later, see below).
2580
2581 In order to deal with architectures that have short conditional
2582 branches (which cannot span all of memory) we take any conditional
2583 jump that attempts to cross a section boundary and add a level of
2584 indirection: it becomes a conditional jump to a new basic block, in
2585 the same section. The new basic block contains an unconditional
2586 jump to the original target, in the other section.
2587
2588 For those architectures whose unconditional branch is also
2589 incapable of reaching all of memory, those unconditional jumps are
2590 converted into indirect jumps, through a register.
2591
2592 IMPORTANT NOTE: This optimization causes some messy interactions
2593 with the cfg cleanup optimizations; those optimizations want to
2594 merge blocks wherever possible, and to collapse indirect jump
2595 sequences (change "A jumps to B jumps to C" directly into "A jumps
2596 to C"). Those optimizations can undo the jump fixes that
2597 partitioning is required to make (see above), in order to ensure
2598 that jumps attempting to cross section boundaries are really able
2599 to cover whatever distance the jump requires (on many architectures
2600 conditional or unconditional jumps are not able to reach all of
2601 memory). Therefore tests have to be inserted into each such
2602 optimization to make sure that it does not undo stuff necessary to
2603 cross partition boundaries. This would be much less of a problem
2604 if we could perform this optimization later in the compilation, but
2605 unfortunately the fact that we may need to create indirect jumps
2606 (through registers) requires that this optimization be performed
2607 before register allocation.
2608
2609 Hot and cold basic blocks are partitioned and put in separate
2610 sections of the .o file, to reduce paging and improve cache
2611 performance (hopefully). This can result in bits of code from the
2612 same function being widely separated in the .o file. However this
2613 is not obvious to the current bb structure. Therefore we must take
2614 care to ensure that: 1). There are no fall_thru edges that cross
2615 between sections; 2). For those architectures which have "short"
2616 conditional branches, all conditional branches that attempt to
2617 cross between sections are converted to unconditional branches;
2618 and, 3). For those architectures which have "short" unconditional
2619 branches, all unconditional branches that attempt to cross between
2620 sections are converted to indirect jumps.
2621
2622 The code for fixing up fall_thru edges that cross between hot and
2623 cold basic blocks does so by creating new basic blocks containing
2624 unconditional branches to the appropriate label in the "other"
2625 section. The new basic block is then put in the same (hot or cold)
2626 section as the original conditional branch, and the fall_thru edge
2627 is modified to fall into the new basic block instead. By adding
2628 this level of indirection we end up with only unconditional branches
2629 crossing between hot and cold sections.
2630
2631 Conditional branches are dealt with by adding a level of indirection.
2632 A new basic block is added in the same (hot/cold) section as the
2633 conditional branch, and the conditional branch is retargeted to the
2634 new basic block. The new basic block contains an unconditional branch
2635 to the original target of the conditional branch (in the other section).
2636
2637 Unconditional branches are dealt with by converting them into
2638 indirect jumps. */
2639
2640 static unsigned
2641 partition_hot_cold_basic_blocks (void)
2642 {
2643 vec<edge> crossing_edges;
2644
2645 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2646 return 0;
2647
2648 df_set_flags (DF_DEFER_INSN_RESCAN);
2649
2650 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2651 if (!crossing_edges.exists ())
2652 return 0;
2653
2654 crtl->has_bb_partition = true;
2655
2656 /* Make sure the source of any crossing edge ends in a jump and the
2657 destination of any crossing edge has a label. */
2658 add_labels_and_missing_jumps (crossing_edges);
2659
2660 /* Convert all crossing fall_thru edges to non-crossing fall
2661 thrus to unconditional jumps (that jump to the original fall
2662 through dest). */
2663 fix_up_fall_thru_edges ();
2664
2665 /* If the architecture does not have conditional branches that can
2666 span all of memory, convert crossing conditional branches into
2667 crossing unconditional branches. */
2668 if (!HAS_LONG_COND_BRANCH)
2669 fix_crossing_conditional_branches ();
2670
2671 /* If the architecture does not have unconditional branches that
2672 can span all of memory, convert crossing unconditional branches
2673 into indirect jumps. Since adding an indirect jump also adds
2674 a new register usage, update the register usage information as
2675 well. */
2676 if (!HAS_LONG_UNCOND_BRANCH)
2677 fix_crossing_unconditional_branches ();
2678
2679 add_reg_crossing_jump_notes ();
2680
2681 /* Clear bb->aux fields that the above routines were using. */
2682 clear_aux_for_blocks ();
2683
2684 crossing_edges.release ();
2685
2686 /* ??? FIXME: DF generates the bb info for a block immediately.
2687 And by immediately, I mean *during* creation of the block.
2688
2689 #0 df_bb_refs_collect
2690 #1 in df_bb_refs_record
2691 #2 in create_basic_block_structure
2692
2693 Which means that the bb_has_eh_pred test in df_bb_refs_collect
2694 will *always* fail, because no edges can have been added to the
2695 block yet. Which of course means we don't add the right
2696 artificial refs, which means we fail df_verify (much) later.
2697
2698 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2699 that we also shouldn't grab data from the new blocks those new
2700 insns are in either. In this way one can create the block, link
2701 it up properly, and have everything Just Work later, when deferred
2702 insns are processed.
2703
2704 In the meantime, we have no other option but to throw away all
2705 of the DF data and recompute it all. */
2706 if (cfun->eh->lp_array)
2707 {
2708 df_finish_pass (true);
2709 df_scan_alloc (NULL);
2710 df_scan_blocks ();
2711 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2712 data. We blindly generated all of them when creating the new
2713 landing pad. Delete those assignments we don't use. */
2714 df_set_flags (DF_LR_RUN_DCE);
2715 df_analyze ();
2716 }
2717
2718 return TODO_verify_flow | TODO_verify_rtl_sharing;
2719 }
2720
2721 namespace {
2722
2723 const pass_data pass_data_partition_blocks =
2724 {
2725 RTL_PASS, /* type */
2726 "bbpart", /* name */
2727 OPTGROUP_NONE, /* optinfo_flags */
2728 true, /* has_gate */
2729 true, /* has_execute */
2730 TV_REORDER_BLOCKS, /* tv_id */
2731 PROP_cfglayout, /* properties_required */
2732 0, /* properties_provided */
2733 0, /* properties_destroyed */
2734 0, /* todo_flags_start */
2735 0, /* todo_flags_finish */
2736 };
2737
2738 class pass_partition_blocks : public rtl_opt_pass
2739 {
2740 public:
2741 pass_partition_blocks (gcc::context *ctxt)
2742 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2743 {}
2744
2745 /* opt_pass methods: */
2746 bool gate () { return gate_handle_partition_blocks (); }
2747 unsigned int execute () { return partition_hot_cold_basic_blocks (); }
2748
2749 }; // class pass_partition_blocks
2750
2751 } // anon namespace
2752
2753 rtl_opt_pass *
2754 make_pass_partition_blocks (gcc::context *ctxt)
2755 {
2756 return new pass_partition_blocks (ctxt);
2757 }