]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/bitmap.h
bitmap.h (bitmap_and_into): Update prototype.
[thirdparty/gcc.git] / gcc / bitmap.h
1 /* Functions to support general ended bitmaps.
2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22
23 /* Implementation of sparse integer sets as a linked list.
24
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe. The set is represented as a double-linked
27 list of container nodes (struct bitmap_element_def). Each node consists
28 of an index for the first member that could be held in the container,
29 a small array of integers that represent the members in the container,
30 and pointers to the next and previous element in the linked list. The
31 elements in the list are sorted in ascending order, i.e. the head of
32 the list holds the element with the smallest member of the set.
33
34 For a given member I in the set:
35 - the element for I will have index is I / (bits per element)
36 - the position for I within element is I % (bits per element)
37
38 This representation is very space-efficient for large sparse sets, and
39 the size of the set can be changed dynamically without much overhead.
40 An important parameter is the number of bits per element. In this
41 implementation, there are 128 bits per element. This results in a
42 high storage overhead *per element*, but a small overall overhead if
43 the set is very sparse.
44
45 The downside is that many operations are relatively slow because the
46 linked list has to be traversed to test membership (i.e. member_p/
47 add_member/remove_member). To improve the performance of this set
48 representation, the last accessed element and its index are cached.
49 For membership tests on members close to recently accessed members,
50 the cached last element improves membership test to a constant-time
51 operation.
52
53 The following operations can always be performed in O(1) time:
54
55 * clear : bitmap_clear
56 * choose_one : (not implemented, but could be
57 implemented in constant time)
58
59 The following operations can be performed in O(E) time worst-case (with
60 E the number of elements in the linked list), but in O(1) time with a
61 suitable access patterns:
62
63 * member_p : bitmap_bit_p
64 * add_member : bitmap_set_bit
65 * remove_member : bitmap_clear_bit
66
67 The following operations can be performed in O(E) time:
68
69 * cardinality : bitmap_count_bits
70 * set_size : bitmap_last_set_bit (but this could
71 in constant time with a pointer to
72 the last element in the chain)
73
74 Additionally, the linked-list sparse set representation supports
75 enumeration of the members in O(E) time:
76
77 * forall : EXECUTE_IF_SET_IN_BITMAP
78 * set_copy : bitmap_copy
79 * set_intersection : bitmap_intersect_p /
80 bitmap_and / bitmap_and_into /
81 EXECUTE_IF_AND_IN_BITMAP
82 * set_union : bitmap_ior / bitmap_ior_into
83 * set_difference : bitmap_intersect_compl_p /
84 bitmap_and_comp / bitmap_and_comp_into /
85 EXECUTE_IF_AND_COMPL_IN_BITMAP
86 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87 * set_compare : bitmap_equal_p
88
89 Some operations on 3 sets that occur frequently in in data flow problems
90 are also implemented:
91
92 * A | (B & C) : bitmap_ior_and_into
93 * A | (B & ~C) : bitmap_ior_and_compl /
94 bitmap_ior_and_compl_into
95
96 The storage requirements for linked-list sparse sets are O(E), with E->N
97 in the worst case (a sparse set with large distances between the values
98 of the set members).
99
100 The linked-list set representation works well for problems involving very
101 sparse sets. The canonical example in GCC is, of course, the "set of
102 sets" for some CFG-based data flow problems (liveness analysis, dominance
103 frontiers, etc.).
104
105 This representation also works well for data flow problems where the size
106 of the set may grow dynamically, but care must be taken that the member_p,
107 add_member, and remove_member operations occur with a suitable access
108 pattern.
109
110 For random-access sets with a known, relatively small universe size, the
111 SparseSet or simple bitmap representations may be more efficient than a
112 linked-list set. For random-access sets of unknown universe, a hash table
113 or a balanced binary tree representation is likely to be a more suitable
114 choice.
115
116 Traversing linked lists is usually cache-unfriendly, even with the last
117 accessed element cached.
118
119 Cache performance can be improved by keeping the elements in the set
120 grouped together in memory, using a dedicated obstack for a set (or group
121 of related sets). Elements allocated on obstacks are released to a
122 free-list and taken off the free list. If multiple sets are allocated on
123 the same obstack, elements freed from one set may be re-used for one of
124 the other sets. This usually helps avoid cache misses.
125
126 A single free-list is used for all sets allocated in GGC space. This is
127 bad for persistent sets, so persistent sets should be allocated on an
128 obstack whenever possible. */
129
130 #include "hashtab.h"
131 #include "statistics.h"
132 #include "obstack.h"
133
134 /* Fundamental storage type for bitmap. */
135
136 typedef unsigned long BITMAP_WORD;
137 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
138 it is used in preprocessor directives -- hence the 1u. */
139 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
140
141 /* Number of words to use for each element in the linked list. */
142
143 #ifndef BITMAP_ELEMENT_WORDS
144 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
145 #endif
146
147 /* Number of bits in each actual element of a bitmap. */
148
149 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
150
151 /* Obstack for allocating bitmaps and elements from. */
152 typedef struct GTY (()) bitmap_obstack {
153 struct bitmap_element_def *elements;
154 struct bitmap_head_def *heads;
155 struct obstack GTY ((skip)) obstack;
156 } bitmap_obstack;
157
158 /* Bitmap set element. We use a linked list to hold only the bits that
159 are set. This allows for use to grow the bitset dynamically without
160 having to realloc and copy a giant bit array.
161
162 The free list is implemented as a list of lists. There is one
163 outer list connected together by prev fields. Each element of that
164 outer is an inner list (that may consist only of the outer list
165 element) that are connected by the next fields. The prev pointer
166 is undefined for interior elements. This allows
167 bitmap_elt_clear_from to be implemented in unit time rather than
168 linear in the number of elements to be freed. */
169
170 typedef struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element_def {
171 struct bitmap_element_def *next; /* Next element. */
172 struct bitmap_element_def *prev; /* Previous element. */
173 unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
174 BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
175 } bitmap_element;
176
177 struct bitmap_descriptor;
178 /* Head of bitmap linked list. gengtype ignores ifdefs, but for
179 statistics we need to add a bitmap descriptor pointer. As it is
180 not collected, we can just GTY((skip(""))) it. Likewise current
181 points to something already pointed to by the chain started by first,
182 no need to walk it again. */
183
184 typedef struct GTY(()) bitmap_head_def {
185 bitmap_element *first; /* First element in linked list. */
186 bitmap_element * GTY((skip(""))) current; /* Last element looked at. */
187 unsigned int indx; /* Index of last element looked at. */
188 bitmap_obstack *obstack; /* Obstack to allocate elements from.
189 If NULL, then use GGC allocation. */
190 struct bitmap_descriptor GTY((skip(""))) *desc;
191 } bitmap_head;
192
193 /* Global data */
194 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
195 extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
196
197 /* Clear a bitmap by freeing up the linked list. */
198 extern void bitmap_clear (bitmap);
199
200 /* Copy a bitmap to another bitmap. */
201 extern void bitmap_copy (bitmap, const_bitmap);
202
203 /* True if two bitmaps are identical. */
204 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
205
206 /* True if the bitmaps intersect (their AND is non-empty). */
207 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
208
209 /* True if the complement of the second intersects the first (their
210 AND_COMPL is non-empty). */
211 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
212
213 /* True if MAP is an empty bitmap. */
214 #define bitmap_empty_p(MAP) (!(MAP)->first)
215
216 /* True if the bitmap has only a single bit set. */
217 extern bool bitmap_single_bit_set_p (const_bitmap);
218
219 /* Count the number of bits set in the bitmap. */
220 extern unsigned long bitmap_count_bits (const_bitmap);
221
222 /* Boolean operations on bitmaps. The _into variants are two operand
223 versions that modify the first source operand. The other variants
224 are three operand versions that to not destroy the source bitmaps.
225 The operations supported are &, & ~, |, ^. */
226 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
227 extern bool bitmap_and_into (bitmap, const_bitmap);
228 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
229 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
230 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
231 extern void bitmap_compl_and_into (bitmap, const_bitmap);
232 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
233 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
234 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
235 extern bool bitmap_ior_into (bitmap, const_bitmap);
236 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
237 extern void bitmap_xor_into (bitmap, const_bitmap);
238
239 /* DST = A | (B & C). Return true if DST changes. */
240 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
241 /* DST = A | (B & ~C). Return true if DST changes. */
242 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
243 const_bitmap B, const_bitmap C);
244 /* A |= (B & ~C). Return true if A changes. */
245 extern bool bitmap_ior_and_compl_into (bitmap A,
246 const_bitmap B, const_bitmap C);
247
248 /* Clear a single bit in a bitmap. Return true if the bit changed. */
249 extern bool bitmap_clear_bit (bitmap, int);
250
251 /* Set a single bit in a bitmap. Return true if the bit changed. */
252 extern bool bitmap_set_bit (bitmap, int);
253
254 /* Return true if a register is set in a register set. */
255 extern int bitmap_bit_p (bitmap, int);
256
257 /* Debug functions to print a bitmap linked list. */
258 extern void debug_bitmap (const_bitmap);
259 extern void debug_bitmap_file (FILE *, const_bitmap);
260
261 /* Print a bitmap. */
262 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
263
264 /* Initialize and release a bitmap obstack. */
265 extern void bitmap_obstack_initialize (bitmap_obstack *);
266 extern void bitmap_obstack_release (bitmap_obstack *);
267 extern void bitmap_register (bitmap MEM_STAT_DECL);
268 extern void dump_bitmap_statistics (void);
269
270 /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
271 to allocate from, NULL for GC'd bitmap. */
272
273 static inline void
274 bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
275 {
276 head->first = head->current = NULL;
277 head->obstack = obstack;
278 if (GATHER_STATISTICS)
279 bitmap_register (head PASS_MEM_STAT);
280 }
281 #define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
282
283 /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
284 extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
285 #define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
286 extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
287 #define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
288 extern void bitmap_obstack_free (bitmap);
289
290 /* A few compatibility/functions macros for compatibility with sbitmaps */
291 #define dump_bitmap(file, bitmap) bitmap_print (file, bitmap, "", "\n")
292 #define bitmap_zero(a) bitmap_clear (a)
293 extern unsigned bitmap_first_set_bit (const_bitmap);
294 extern unsigned bitmap_last_set_bit (const_bitmap);
295
296 /* Compute bitmap hash (for purposes of hashing etc.) */
297 extern hashval_t bitmap_hash(const_bitmap);
298
299 /* Allocate a bitmap from a bit obstack. */
300 #define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
301
302 /* Allocate a gc'd bitmap. */
303 #define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
304
305 /* Do any cleanup needed on a bitmap when it is no longer used. */
306 #define BITMAP_FREE(BITMAP) \
307 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
308
309 /* Iterator for bitmaps. */
310
311 typedef struct
312 {
313 /* Pointer to the current bitmap element. */
314 bitmap_element *elt1;
315
316 /* Pointer to 2nd bitmap element when two are involved. */
317 bitmap_element *elt2;
318
319 /* Word within the current element. */
320 unsigned word_no;
321
322 /* Contents of the actually processed word. When finding next bit
323 it is shifted right, so that the actual bit is always the least
324 significant bit of ACTUAL. */
325 BITMAP_WORD bits;
326 } bitmap_iterator;
327
328 /* Initialize a single bitmap iterator. START_BIT is the first bit to
329 iterate from. */
330
331 static inline void
332 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
333 unsigned start_bit, unsigned *bit_no)
334 {
335 bi->elt1 = map->first;
336 bi->elt2 = NULL;
337
338 /* Advance elt1 until it is not before the block containing start_bit. */
339 while (1)
340 {
341 if (!bi->elt1)
342 {
343 bi->elt1 = &bitmap_zero_bits;
344 break;
345 }
346
347 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
348 break;
349 bi->elt1 = bi->elt1->next;
350 }
351
352 /* We might have gone past the start bit, so reinitialize it. */
353 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
354 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
355
356 /* Initialize for what is now start_bit. */
357 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
358 bi->bits = bi->elt1->bits[bi->word_no];
359 bi->bits >>= start_bit % BITMAP_WORD_BITS;
360
361 /* If this word is zero, we must make sure we're not pointing at the
362 first bit, otherwise our incrementing to the next word boundary
363 will fail. It won't matter if this increment moves us into the
364 next word. */
365 start_bit += !bi->bits;
366
367 *bit_no = start_bit;
368 }
369
370 /* Initialize an iterator to iterate over the intersection of two
371 bitmaps. START_BIT is the bit to commence from. */
372
373 static inline void
374 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
375 unsigned start_bit, unsigned *bit_no)
376 {
377 bi->elt1 = map1->first;
378 bi->elt2 = map2->first;
379
380 /* Advance elt1 until it is not before the block containing
381 start_bit. */
382 while (1)
383 {
384 if (!bi->elt1)
385 {
386 bi->elt2 = NULL;
387 break;
388 }
389
390 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
391 break;
392 bi->elt1 = bi->elt1->next;
393 }
394
395 /* Advance elt2 until it is not before elt1. */
396 while (1)
397 {
398 if (!bi->elt2)
399 {
400 bi->elt1 = bi->elt2 = &bitmap_zero_bits;
401 break;
402 }
403
404 if (bi->elt2->indx >= bi->elt1->indx)
405 break;
406 bi->elt2 = bi->elt2->next;
407 }
408
409 /* If we're at the same index, then we have some intersecting bits. */
410 if (bi->elt1->indx == bi->elt2->indx)
411 {
412 /* We might have advanced beyond the start_bit, so reinitialize
413 for that. */
414 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
415 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
416
417 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
418 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
419 bi->bits >>= start_bit % BITMAP_WORD_BITS;
420 }
421 else
422 {
423 /* Otherwise we must immediately advance elt1, so initialize for
424 that. */
425 bi->word_no = BITMAP_ELEMENT_WORDS - 1;
426 bi->bits = 0;
427 }
428
429 /* If this word is zero, we must make sure we're not pointing at the
430 first bit, otherwise our incrementing to the next word boundary
431 will fail. It won't matter if this increment moves us into the
432 next word. */
433 start_bit += !bi->bits;
434
435 *bit_no = start_bit;
436 }
437
438 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
439 */
440
441 static inline void
442 bmp_iter_and_compl_init (bitmap_iterator *bi,
443 const_bitmap map1, const_bitmap map2,
444 unsigned start_bit, unsigned *bit_no)
445 {
446 bi->elt1 = map1->first;
447 bi->elt2 = map2->first;
448
449 /* Advance elt1 until it is not before the block containing start_bit. */
450 while (1)
451 {
452 if (!bi->elt1)
453 {
454 bi->elt1 = &bitmap_zero_bits;
455 break;
456 }
457
458 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
459 break;
460 bi->elt1 = bi->elt1->next;
461 }
462
463 /* Advance elt2 until it is not before elt1. */
464 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
465 bi->elt2 = bi->elt2->next;
466
467 /* We might have advanced beyond the start_bit, so reinitialize for
468 that. */
469 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
470 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
471
472 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
473 bi->bits = bi->elt1->bits[bi->word_no];
474 if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
475 bi->bits &= ~bi->elt2->bits[bi->word_no];
476 bi->bits >>= start_bit % BITMAP_WORD_BITS;
477
478 /* If this word is zero, we must make sure we're not pointing at the
479 first bit, otherwise our incrementing to the next word boundary
480 will fail. It won't matter if this increment moves us into the
481 next word. */
482 start_bit += !bi->bits;
483
484 *bit_no = start_bit;
485 }
486
487 /* Advance to the next bit in BI. We don't advance to the next
488 nonzero bit yet. */
489
490 static inline void
491 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
492 {
493 bi->bits >>= 1;
494 *bit_no += 1;
495 }
496
497 /* Advance to first set bit in BI. */
498
499 static inline void
500 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
501 {
502 #if (GCC_VERSION >= 3004)
503 {
504 unsigned int n = __builtin_ctzl (bi->bits);
505 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
506 bi->bits >>= n;
507 *bit_no += n;
508 }
509 #else
510 while (!(bi->bits & 1))
511 {
512 bi->bits >>= 1;
513 *bit_no += 1;
514 }
515 #endif
516 }
517
518 /* Advance to the next nonzero bit of a single bitmap, we will have
519 already advanced past the just iterated bit. Return true if there
520 is a bit to iterate. */
521
522 static inline bool
523 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
524 {
525 /* If our current word is nonzero, it contains the bit we want. */
526 if (bi->bits)
527 {
528 next_bit:
529 bmp_iter_next_bit (bi, bit_no);
530 return true;
531 }
532
533 /* Round up to the word boundary. We might have just iterated past
534 the end of the last word, hence the -1. It is not possible for
535 bit_no to point at the beginning of the now last word. */
536 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
537 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
538 bi->word_no++;
539
540 while (1)
541 {
542 /* Find the next nonzero word in this elt. */
543 while (bi->word_no != BITMAP_ELEMENT_WORDS)
544 {
545 bi->bits = bi->elt1->bits[bi->word_no];
546 if (bi->bits)
547 goto next_bit;
548 *bit_no += BITMAP_WORD_BITS;
549 bi->word_no++;
550 }
551
552 /* Advance to the next element. */
553 bi->elt1 = bi->elt1->next;
554 if (!bi->elt1)
555 return false;
556 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
557 bi->word_no = 0;
558 }
559 }
560
561 /* Advance to the next nonzero bit of an intersecting pair of
562 bitmaps. We will have already advanced past the just iterated bit.
563 Return true if there is a bit to iterate. */
564
565 static inline bool
566 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
567 {
568 /* If our current word is nonzero, it contains the bit we want. */
569 if (bi->bits)
570 {
571 next_bit:
572 bmp_iter_next_bit (bi, bit_no);
573 return true;
574 }
575
576 /* Round up to the word boundary. We might have just iterated past
577 the end of the last word, hence the -1. It is not possible for
578 bit_no to point at the beginning of the now last word. */
579 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
580 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
581 bi->word_no++;
582
583 while (1)
584 {
585 /* Find the next nonzero word in this elt. */
586 while (bi->word_no != BITMAP_ELEMENT_WORDS)
587 {
588 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
589 if (bi->bits)
590 goto next_bit;
591 *bit_no += BITMAP_WORD_BITS;
592 bi->word_no++;
593 }
594
595 /* Advance to the next identical element. */
596 do
597 {
598 /* Advance elt1 while it is less than elt2. We always want
599 to advance one elt. */
600 do
601 {
602 bi->elt1 = bi->elt1->next;
603 if (!bi->elt1)
604 return false;
605 }
606 while (bi->elt1->indx < bi->elt2->indx);
607
608 /* Advance elt2 to be no less than elt1. This might not
609 advance. */
610 while (bi->elt2->indx < bi->elt1->indx)
611 {
612 bi->elt2 = bi->elt2->next;
613 if (!bi->elt2)
614 return false;
615 }
616 }
617 while (bi->elt1->indx != bi->elt2->indx);
618
619 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
620 bi->word_no = 0;
621 }
622 }
623
624 /* Advance to the next nonzero bit in the intersection of
625 complemented bitmaps. We will have already advanced past the just
626 iterated bit. */
627
628 static inline bool
629 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
630 {
631 /* If our current word is nonzero, it contains the bit we want. */
632 if (bi->bits)
633 {
634 next_bit:
635 bmp_iter_next_bit (bi, bit_no);
636 return true;
637 }
638
639 /* Round up to the word boundary. We might have just iterated past
640 the end of the last word, hence the -1. It is not possible for
641 bit_no to point at the beginning of the now last word. */
642 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
643 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
644 bi->word_no++;
645
646 while (1)
647 {
648 /* Find the next nonzero word in this elt. */
649 while (bi->word_no != BITMAP_ELEMENT_WORDS)
650 {
651 bi->bits = bi->elt1->bits[bi->word_no];
652 if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
653 bi->bits &= ~bi->elt2->bits[bi->word_no];
654 if (bi->bits)
655 goto next_bit;
656 *bit_no += BITMAP_WORD_BITS;
657 bi->word_no++;
658 }
659
660 /* Advance to the next element of elt1. */
661 bi->elt1 = bi->elt1->next;
662 if (!bi->elt1)
663 return false;
664
665 /* Advance elt2 until it is no less than elt1. */
666 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
667 bi->elt2 = bi->elt2->next;
668
669 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
670 bi->word_no = 0;
671 }
672 }
673
674 /* Loop over all bits set in BITMAP, starting with MIN and setting
675 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
676 should be treated as a read-only variable as it contains loop
677 state. */
678
679 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
680 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
681 bmp_iter_set (&(ITER), &(BITNUM)); \
682 bmp_iter_next (&(ITER), &(BITNUM)))
683
684 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
685 and setting BITNUM to the bit number. ITER is a bitmap iterator.
686 BITNUM should be treated as a read-only variable as it contains
687 loop state. */
688
689 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
690 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
691 &(BITNUM)); \
692 bmp_iter_and (&(ITER), &(BITNUM)); \
693 bmp_iter_next (&(ITER), &(BITNUM)))
694
695 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
696 and setting BITNUM to the bit number. ITER is a bitmap iterator.
697 BITNUM should be treated as a read-only variable as it contains
698 loop state. */
699
700 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
701 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
702 &(BITNUM)); \
703 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
704 bmp_iter_next (&(ITER), &(BITNUM)))
705
706 #endif /* GCC_BITMAP_H */