]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/c-typeck.c
* c-lang.c (LANG_HOOKS_INCOMPLETE_TYPE_ERROR): Redefine.
[thirdparty/gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization.
27
28 There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
29 and to process initializations in declarations (since they work
30 like a strange sort of assignment). */
31
32 #include "config.h"
33 #include "system.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45
46 /* Nonzero if we've already printed a "missing braces around initializer"
47 message within this initializer. */
48 static int missing_braces_mentioned;
49
50 /* 1 if we explained undeclared var errors. */
51 static int undeclared_variable_notice;
52
53 static tree qualify_type PARAMS ((tree, tree));
54 static int comp_target_types PARAMS ((tree, tree));
55 static int function_types_compatible_p PARAMS ((tree, tree));
56 static int type_lists_compatible_p PARAMS ((tree, tree));
57 static tree decl_constant_value_for_broken_optimization PARAMS ((tree));
58 static tree default_function_array_conversion PARAMS ((tree));
59 static tree lookup_field PARAMS ((tree, tree));
60 static tree convert_arguments PARAMS ((tree, tree, tree, tree));
61 static tree pointer_diff PARAMS ((tree, tree));
62 static tree unary_complex_lvalue PARAMS ((enum tree_code, tree, int));
63 static void pedantic_lvalue_warning PARAMS ((enum tree_code));
64 static tree internal_build_compound_expr PARAMS ((tree, int));
65 static tree convert_for_assignment PARAMS ((tree, tree, const char *,
66 tree, tree, int));
67 static void warn_for_assignment PARAMS ((const char *, const char *,
68 tree, int));
69 static tree valid_compound_expr_initializer PARAMS ((tree, tree));
70 static void push_string PARAMS ((const char *));
71 static void push_member_name PARAMS ((tree));
72 static void push_array_bounds PARAMS ((int));
73 static int spelling_length PARAMS ((void));
74 static char *print_spelling PARAMS ((char *));
75 static void warning_init PARAMS ((const char *));
76 static tree digest_init PARAMS ((tree, tree, int));
77 static void output_init_element PARAMS ((tree, tree, tree, int));
78 static void output_pending_init_elements PARAMS ((int));
79 static int set_designator PARAMS ((int));
80 static void push_range_stack PARAMS ((tree));
81 static void add_pending_init PARAMS ((tree, tree));
82 static void set_nonincremental_init PARAMS ((void));
83 static void set_nonincremental_init_from_string PARAMS ((tree));
84 static tree find_init_member PARAMS ((tree));
85 \f
86 /* Do `exp = require_complete_type (exp);' to make sure exp
87 does not have an incomplete type. (That includes void types.) */
88
89 tree
90 require_complete_type (value)
91 tree value;
92 {
93 tree type = TREE_TYPE (value);
94
95 if (value == error_mark_node || type == error_mark_node)
96 return error_mark_node;
97
98 /* First, detect a valid value with a complete type. */
99 if (COMPLETE_TYPE_P (type))
100 return value;
101
102 c_incomplete_type_error (value, type);
103 return error_mark_node;
104 }
105
106 /* Print an error message for invalid use of an incomplete type.
107 VALUE is the expression that was used (or 0 if that isn't known)
108 and TYPE is the type that was invalid. */
109
110 void
111 c_incomplete_type_error (value, type)
112 tree value;
113 tree type;
114 {
115 const char *type_code_string;
116
117 /* Avoid duplicate error message. */
118 if (TREE_CODE (type) == ERROR_MARK)
119 return;
120
121 if (value != 0 && (TREE_CODE (value) == VAR_DECL
122 || TREE_CODE (value) == PARM_DECL))
123 error ("`%s' has an incomplete type",
124 IDENTIFIER_POINTER (DECL_NAME (value)));
125 else
126 {
127 retry:
128 /* We must print an error message. Be clever about what it says. */
129
130 switch (TREE_CODE (type))
131 {
132 case RECORD_TYPE:
133 type_code_string = "struct";
134 break;
135
136 case UNION_TYPE:
137 type_code_string = "union";
138 break;
139
140 case ENUMERAL_TYPE:
141 type_code_string = "enum";
142 break;
143
144 case VOID_TYPE:
145 error ("invalid use of void expression");
146 return;
147
148 case ARRAY_TYPE:
149 if (TYPE_DOMAIN (type))
150 {
151 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
152 {
153 error ("invalid use of flexible array member");
154 return;
155 }
156 type = TREE_TYPE (type);
157 goto retry;
158 }
159 error ("invalid use of array with unspecified bounds");
160 return;
161
162 default:
163 abort ();
164 }
165
166 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
167 error ("invalid use of undefined type `%s %s'",
168 type_code_string, IDENTIFIER_POINTER (TYPE_NAME (type)));
169 else
170 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
171 error ("invalid use of incomplete typedef `%s'",
172 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
173 }
174 }
175
176 /* Return a variant of TYPE which has all the type qualifiers of LIKE
177 as well as those of TYPE. */
178
179 static tree
180 qualify_type (type, like)
181 tree type, like;
182 {
183 return c_build_qualified_type (type,
184 TYPE_QUALS (type) | TYPE_QUALS (like));
185 }
186 \f
187 /* Return the common type of two types.
188 We assume that comptypes has already been done and returned 1;
189 if that isn't so, this may crash. In particular, we assume that qualifiers
190 match.
191
192 This is the type for the result of most arithmetic operations
193 if the operands have the given two types. */
194
195 tree
196 common_type (t1, t2)
197 tree t1, t2;
198 {
199 enum tree_code code1;
200 enum tree_code code2;
201 tree attributes;
202
203 /* Save time if the two types are the same. */
204
205 if (t1 == t2) return t1;
206
207 /* If one type is nonsense, use the other. */
208 if (t1 == error_mark_node)
209 return t2;
210 if (t2 == error_mark_node)
211 return t1;
212
213 /* Merge the attributes. */
214 attributes = (*targetm.merge_type_attributes) (t1, t2);
215
216 /* Treat an enum type as the unsigned integer type of the same width. */
217
218 if (TREE_CODE (t1) == ENUMERAL_TYPE)
219 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
220 if (TREE_CODE (t2) == ENUMERAL_TYPE)
221 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
222
223 code1 = TREE_CODE (t1);
224 code2 = TREE_CODE (t2);
225
226 /* If one type is complex, form the common type of the non-complex
227 components, then make that complex. Use T1 or T2 if it is the
228 required type. */
229 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
230 {
231 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
232 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
233 tree subtype = common_type (subtype1, subtype2);
234
235 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
236 return build_type_attribute_variant (t1, attributes);
237 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
238 return build_type_attribute_variant (t2, attributes);
239 else
240 return build_type_attribute_variant (build_complex_type (subtype),
241 attributes);
242 }
243
244 switch (code1)
245 {
246 case INTEGER_TYPE:
247 case REAL_TYPE:
248 /* If only one is real, use it as the result. */
249
250 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
251 return build_type_attribute_variant (t1, attributes);
252
253 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
254 return build_type_attribute_variant (t2, attributes);
255
256 /* Both real or both integers; use the one with greater precision. */
257
258 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
259 return build_type_attribute_variant (t1, attributes);
260 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
261 return build_type_attribute_variant (t2, attributes);
262
263 /* Same precision. Prefer longs to ints even when same size. */
264
265 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
266 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
267 return build_type_attribute_variant (long_unsigned_type_node,
268 attributes);
269
270 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
271 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
272 {
273 /* But preserve unsignedness from the other type,
274 since long cannot hold all the values of an unsigned int. */
275 if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
276 t1 = long_unsigned_type_node;
277 else
278 t1 = long_integer_type_node;
279 return build_type_attribute_variant (t1, attributes);
280 }
281
282 /* Likewise, prefer long double to double even if same size. */
283 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
284 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
285 return build_type_attribute_variant (long_double_type_node,
286 attributes);
287
288 /* Otherwise prefer the unsigned one. */
289
290 if (TREE_UNSIGNED (t1))
291 return build_type_attribute_variant (t1, attributes);
292 else
293 return build_type_attribute_variant (t2, attributes);
294
295 case POINTER_TYPE:
296 /* For two pointers, do this recursively on the target type,
297 and combine the qualifiers of the two types' targets. */
298 /* This code was turned off; I don't know why.
299 But ANSI C specifies doing this with the qualifiers.
300 So I turned it on again. */
301 {
302 tree pointed_to_1 = TREE_TYPE (t1);
303 tree pointed_to_2 = TREE_TYPE (t2);
304 tree target = common_type (TYPE_MAIN_VARIANT (pointed_to_1),
305 TYPE_MAIN_VARIANT (pointed_to_2));
306 t1 = build_pointer_type (c_build_qualified_type
307 (target,
308 TYPE_QUALS (pointed_to_1) |
309 TYPE_QUALS (pointed_to_2)));
310 return build_type_attribute_variant (t1, attributes);
311 }
312 #if 0
313 t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
314 return build_type_attribute_variant (t1, attributes);
315 #endif
316
317 case ARRAY_TYPE:
318 {
319 tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
320 /* Save space: see if the result is identical to one of the args. */
321 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
322 return build_type_attribute_variant (t1, attributes);
323 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
324 return build_type_attribute_variant (t2, attributes);
325 /* Merge the element types, and have a size if either arg has one. */
326 t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
327 return build_type_attribute_variant (t1, attributes);
328 }
329
330 case FUNCTION_TYPE:
331 /* Function types: prefer the one that specified arg types.
332 If both do, merge the arg types. Also merge the return types. */
333 {
334 tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
335 tree p1 = TYPE_ARG_TYPES (t1);
336 tree p2 = TYPE_ARG_TYPES (t2);
337 int len;
338 tree newargs, n;
339 int i;
340
341 /* Save space: see if the result is identical to one of the args. */
342 if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
343 return build_type_attribute_variant (t1, attributes);
344 if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
345 return build_type_attribute_variant (t2, attributes);
346
347 /* Simple way if one arg fails to specify argument types. */
348 if (TYPE_ARG_TYPES (t1) == 0)
349 {
350 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
351 return build_type_attribute_variant (t1, attributes);
352 }
353 if (TYPE_ARG_TYPES (t2) == 0)
354 {
355 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
356 return build_type_attribute_variant (t1, attributes);
357 }
358
359 /* If both args specify argument types, we must merge the two
360 lists, argument by argument. */
361
362 pushlevel (0);
363 declare_parm_level (1);
364
365 len = list_length (p1);
366 newargs = 0;
367
368 for (i = 0; i < len; i++)
369 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
370
371 n = newargs;
372
373 for (; p1;
374 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
375 {
376 /* A null type means arg type is not specified.
377 Take whatever the other function type has. */
378 if (TREE_VALUE (p1) == 0)
379 {
380 TREE_VALUE (n) = TREE_VALUE (p2);
381 goto parm_done;
382 }
383 if (TREE_VALUE (p2) == 0)
384 {
385 TREE_VALUE (n) = TREE_VALUE (p1);
386 goto parm_done;
387 }
388
389 /* Given wait (union {union wait *u; int *i} *)
390 and wait (union wait *),
391 prefer union wait * as type of parm. */
392 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
393 && TREE_VALUE (p1) != TREE_VALUE (p2))
394 {
395 tree memb;
396 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
397 memb; memb = TREE_CHAIN (memb))
398 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
399 {
400 TREE_VALUE (n) = TREE_VALUE (p2);
401 if (pedantic)
402 pedwarn ("function types not truly compatible in ISO C");
403 goto parm_done;
404 }
405 }
406 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
407 && TREE_VALUE (p2) != TREE_VALUE (p1))
408 {
409 tree memb;
410 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
411 memb; memb = TREE_CHAIN (memb))
412 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
413 {
414 TREE_VALUE (n) = TREE_VALUE (p1);
415 if (pedantic)
416 pedwarn ("function types not truly compatible in ISO C");
417 goto parm_done;
418 }
419 }
420 TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
421 parm_done: ;
422 }
423
424 poplevel (0, 0, 0);
425
426 t1 = build_function_type (valtype, newargs);
427 /* ... falls through ... */
428 }
429
430 default:
431 return build_type_attribute_variant (t1, attributes);
432 }
433
434 }
435 \f
436 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
437 or various other operations. Return 2 if they are compatible
438 but a warning may be needed if you use them together. */
439
440 int
441 comptypes (type1, type2)
442 tree type1, type2;
443 {
444 tree t1 = type1;
445 tree t2 = type2;
446 int attrval, val;
447
448 /* Suppress errors caused by previously reported errors. */
449
450 if (t1 == t2 || !t1 || !t2
451 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
452 return 1;
453
454 /* If either type is the internal version of sizetype, return the
455 language version. */
456 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
457 && TYPE_DOMAIN (t1) != 0)
458 t1 = TYPE_DOMAIN (t1);
459
460 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
461 && TYPE_DOMAIN (t2) != 0)
462 t2 = TYPE_DOMAIN (t2);
463
464 /* Treat an enum type as the integer type of the same width and
465 signedness. */
466
467 if (TREE_CODE (t1) == ENUMERAL_TYPE)
468 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
469 if (TREE_CODE (t2) == ENUMERAL_TYPE)
470 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
471
472 if (t1 == t2)
473 return 1;
474
475 /* Different classes of types can't be compatible. */
476
477 if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
478
479 /* Qualifiers must match. */
480
481 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
482 return 0;
483
484 /* Allow for two different type nodes which have essentially the same
485 definition. Note that we already checked for equality of the type
486 qualifiers (just above). */
487
488 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
489 return 1;
490
491 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
492 if (! (attrval = (*targetm.comp_type_attributes) (t1, t2)))
493 return 0;
494
495 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
496 val = 0;
497
498 switch (TREE_CODE (t1))
499 {
500 case POINTER_TYPE:
501 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
502 ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
503 break;
504
505 case FUNCTION_TYPE:
506 val = function_types_compatible_p (t1, t2);
507 break;
508
509 case ARRAY_TYPE:
510 {
511 tree d1 = TYPE_DOMAIN (t1);
512 tree d2 = TYPE_DOMAIN (t2);
513 bool d1_variable, d2_variable;
514 bool d1_zero, d2_zero;
515 val = 1;
516
517 /* Target types must match incl. qualifiers. */
518 if (TREE_TYPE (t1) != TREE_TYPE (t2)
519 && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
520 return 0;
521
522 /* Sizes must match unless one is missing or variable. */
523 if (d1 == 0 || d2 == 0 || d1 == d2)
524 break;
525
526 d1_zero = ! TYPE_MAX_VALUE (d1);
527 d2_zero = ! TYPE_MAX_VALUE (d2);
528
529 d1_variable = (! d1_zero
530 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
531 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
532 d2_variable = (! d2_zero
533 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
534 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
535
536 if (d1_variable || d2_variable)
537 break;
538 if (d1_zero && d2_zero)
539 break;
540 if (d1_zero || d2_zero
541 || ! tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
542 || ! tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
543 val = 0;
544
545 break;
546 }
547
548 case RECORD_TYPE:
549 if (maybe_objc_comptypes (t1, t2, 0) == 1)
550 val = 1;
551 break;
552
553 default:
554 break;
555 }
556 return attrval == 2 && val == 1 ? 2 : val;
557 }
558
559 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
560 ignoring their qualifiers. */
561
562 static int
563 comp_target_types (ttl, ttr)
564 tree ttl, ttr;
565 {
566 int val;
567
568 /* Give maybe_objc_comptypes a crack at letting these types through. */
569 if ((val = maybe_objc_comptypes (ttl, ttr, 1)) >= 0)
570 return val;
571
572 val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
573 TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
574
575 if (val == 2 && pedantic)
576 pedwarn ("types are not quite compatible");
577 return val;
578 }
579 \f
580 /* Subroutines of `comptypes'. */
581
582 /* Return 1 if two function types F1 and F2 are compatible.
583 If either type specifies no argument types,
584 the other must specify a fixed number of self-promoting arg types.
585 Otherwise, if one type specifies only the number of arguments,
586 the other must specify that number of self-promoting arg types.
587 Otherwise, the argument types must match. */
588
589 static int
590 function_types_compatible_p (f1, f2)
591 tree f1, f2;
592 {
593 tree args1, args2;
594 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
595 int val = 1;
596 int val1;
597
598 if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
599 || (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
600 return 0;
601
602 args1 = TYPE_ARG_TYPES (f1);
603 args2 = TYPE_ARG_TYPES (f2);
604
605 /* An unspecified parmlist matches any specified parmlist
606 whose argument types don't need default promotions. */
607
608 if (args1 == 0)
609 {
610 if (!self_promoting_args_p (args2))
611 return 0;
612 /* If one of these types comes from a non-prototype fn definition,
613 compare that with the other type's arglist.
614 If they don't match, ask for a warning (but no error). */
615 if (TYPE_ACTUAL_ARG_TYPES (f1)
616 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
617 val = 2;
618 return val;
619 }
620 if (args2 == 0)
621 {
622 if (!self_promoting_args_p (args1))
623 return 0;
624 if (TYPE_ACTUAL_ARG_TYPES (f2)
625 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
626 val = 2;
627 return val;
628 }
629
630 /* Both types have argument lists: compare them and propagate results. */
631 val1 = type_lists_compatible_p (args1, args2);
632 return val1 != 1 ? val1 : val;
633 }
634
635 /* Check two lists of types for compatibility,
636 returning 0 for incompatible, 1 for compatible,
637 or 2 for compatible with warning. */
638
639 static int
640 type_lists_compatible_p (args1, args2)
641 tree args1, args2;
642 {
643 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
644 int val = 1;
645 int newval = 0;
646
647 while (1)
648 {
649 if (args1 == 0 && args2 == 0)
650 return val;
651 /* If one list is shorter than the other,
652 they fail to match. */
653 if (args1 == 0 || args2 == 0)
654 return 0;
655 /* A null pointer instead of a type
656 means there is supposed to be an argument
657 but nothing is specified about what type it has.
658 So match anything that self-promotes. */
659 if (TREE_VALUE (args1) == 0)
660 {
661 if (simple_type_promotes_to (TREE_VALUE (args2)) != NULL_TREE)
662 return 0;
663 }
664 else if (TREE_VALUE (args2) == 0)
665 {
666 if (simple_type_promotes_to (TREE_VALUE (args1)) != NULL_TREE)
667 return 0;
668 }
669 else if (! (newval = comptypes (TYPE_MAIN_VARIANT (TREE_VALUE (args1)),
670 TYPE_MAIN_VARIANT (TREE_VALUE (args2)))))
671 {
672 /* Allow wait (union {union wait *u; int *i} *)
673 and wait (union wait *) to be compatible. */
674 if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
675 && (TYPE_NAME (TREE_VALUE (args1)) == 0
676 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
677 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
678 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
679 TYPE_SIZE (TREE_VALUE (args2))))
680 {
681 tree memb;
682 for (memb = TYPE_FIELDS (TREE_VALUE (args1));
683 memb; memb = TREE_CHAIN (memb))
684 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
685 break;
686 if (memb == 0)
687 return 0;
688 }
689 else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
690 && (TYPE_NAME (TREE_VALUE (args2)) == 0
691 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
692 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
693 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
694 TYPE_SIZE (TREE_VALUE (args1))))
695 {
696 tree memb;
697 for (memb = TYPE_FIELDS (TREE_VALUE (args2));
698 memb; memb = TREE_CHAIN (memb))
699 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
700 break;
701 if (memb == 0)
702 return 0;
703 }
704 else
705 return 0;
706 }
707
708 /* comptypes said ok, but record if it said to warn. */
709 if (newval > val)
710 val = newval;
711
712 args1 = TREE_CHAIN (args1);
713 args2 = TREE_CHAIN (args2);
714 }
715 }
716 \f
717 /* Compute the value of the `sizeof' operator. */
718
719 tree
720 c_sizeof (type)
721 tree type;
722 {
723 enum tree_code code = TREE_CODE (type);
724 tree size;
725
726 if (code == FUNCTION_TYPE)
727 {
728 if (pedantic || warn_pointer_arith)
729 pedwarn ("sizeof applied to a function type");
730 size = size_one_node;
731 }
732 else if (code == VOID_TYPE)
733 {
734 if (pedantic || warn_pointer_arith)
735 pedwarn ("sizeof applied to a void type");
736 size = size_one_node;
737 }
738 else if (code == ERROR_MARK)
739 size = size_one_node;
740 else if (!COMPLETE_TYPE_P (type))
741 {
742 error ("sizeof applied to an incomplete type");
743 size = size_zero_node;
744 }
745 else
746 /* Convert in case a char is more than one unit. */
747 size = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
748 size_int (TYPE_PRECISION (char_type_node)
749 / BITS_PER_UNIT));
750
751 /* SIZE will have an integer type with TYPE_IS_SIZETYPE set.
752 TYPE_IS_SIZETYPE means that certain things (like overflow) will
753 never happen. However, this node should really have type
754 `size_t', which is just a typedef for an ordinary integer type. */
755 return fold (build1 (NOP_EXPR, c_size_type_node, size));
756 }
757
758 tree
759 c_sizeof_nowarn (type)
760 tree type;
761 {
762 enum tree_code code = TREE_CODE (type);
763 tree size;
764
765 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
766 size = size_one_node;
767 else if (!COMPLETE_TYPE_P (type))
768 size = size_zero_node;
769 else
770 /* Convert in case a char is more than one unit. */
771 size = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
772 size_int (TYPE_PRECISION (char_type_node)
773 / BITS_PER_UNIT));
774
775 /* SIZE will have an integer type with TYPE_IS_SIZETYPE set.
776 TYPE_IS_SIZETYPE means that certain things (like overflow) will
777 never happen. However, this node should really have type
778 `size_t', which is just a typedef for an ordinary integer type. */
779 return fold (build1 (NOP_EXPR, c_size_type_node, size));
780 }
781
782 /* Compute the size to increment a pointer by. */
783
784 tree
785 c_size_in_bytes (type)
786 tree type;
787 {
788 enum tree_code code = TREE_CODE (type);
789
790 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
791 return size_one_node;
792
793 if (!COMPLETE_OR_VOID_TYPE_P (type))
794 {
795 error ("arithmetic on pointer to an incomplete type");
796 return size_one_node;
797 }
798
799 /* Convert in case a char is more than one unit. */
800 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
801 size_int (TYPE_PRECISION (char_type_node)
802 / BITS_PER_UNIT));
803 }
804 \f
805 /* Return either DECL or its known constant value (if it has one). */
806
807 tree
808 decl_constant_value (decl)
809 tree decl;
810 {
811 if (/* Don't change a variable array bound or initial value to a constant
812 in a place where a variable is invalid. */
813 current_function_decl != 0
814 && ! TREE_THIS_VOLATILE (decl)
815 && TREE_READONLY (decl)
816 && DECL_INITIAL (decl) != 0
817 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
818 /* This is invalid if initial value is not constant.
819 If it has either a function call, a memory reference,
820 or a variable, then re-evaluating it could give different results. */
821 && TREE_CONSTANT (DECL_INITIAL (decl))
822 /* Check for cases where this is sub-optimal, even though valid. */
823 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
824 return DECL_INITIAL (decl);
825 return decl;
826 }
827
828 /* Return either DECL or its known constant value (if it has one), but
829 return DECL if pedantic or DECL has mode BLKmode. This is for
830 bug-compatibility with the old behavior of decl_constant_value
831 (before GCC 3.0); every use of this function is a bug and it should
832 be removed before GCC 3.1. It is not appropriate to use pedantic
833 in a way that affects optimization, and BLKmode is probably not the
834 right test for avoiding misoptimizations either. */
835
836 static tree
837 decl_constant_value_for_broken_optimization (decl)
838 tree decl;
839 {
840 if (pedantic || DECL_MODE (decl) == BLKmode)
841 return decl;
842 else
843 return decl_constant_value (decl);
844 }
845
846
847 /* Perform the default conversion of arrays and functions to pointers.
848 Return the result of converting EXP. For any other expression, just
849 return EXP. */
850
851 static tree
852 default_function_array_conversion (exp)
853 tree exp;
854 {
855 tree orig_exp;
856 tree type = TREE_TYPE (exp);
857 enum tree_code code = TREE_CODE (type);
858 int not_lvalue = 0;
859
860 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
861 an lvalue.
862
863 Do not use STRIP_NOPS here! It will remove conversions from pointer
864 to integer and cause infinite recursion. */
865 orig_exp = exp;
866 while (TREE_CODE (exp) == NON_LVALUE_EXPR
867 || (TREE_CODE (exp) == NOP_EXPR
868 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
869 {
870 if (TREE_CODE (exp) == NON_LVALUE_EXPR)
871 not_lvalue = 1;
872 exp = TREE_OPERAND (exp, 0);
873 }
874
875 /* Preserve the original expression code. */
876 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
877 C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
878
879 if (code == FUNCTION_TYPE)
880 {
881 return build_unary_op (ADDR_EXPR, exp, 0);
882 }
883 if (code == ARRAY_TYPE)
884 {
885 tree adr;
886 tree restype = TREE_TYPE (type);
887 tree ptrtype;
888 int constp = 0;
889 int volatilep = 0;
890 int lvalue_array_p;
891
892 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r' || DECL_P (exp))
893 {
894 constp = TREE_READONLY (exp);
895 volatilep = TREE_THIS_VOLATILE (exp);
896 }
897
898 if (TYPE_QUALS (type) || constp || volatilep)
899 restype
900 = c_build_qualified_type (restype,
901 TYPE_QUALS (type)
902 | (constp * TYPE_QUAL_CONST)
903 | (volatilep * TYPE_QUAL_VOLATILE));
904
905 if (TREE_CODE (exp) == INDIRECT_REF)
906 return convert (TYPE_POINTER_TO (restype),
907 TREE_OPERAND (exp, 0));
908
909 if (TREE_CODE (exp) == COMPOUND_EXPR)
910 {
911 tree op1 = default_conversion (TREE_OPERAND (exp, 1));
912 return build (COMPOUND_EXPR, TREE_TYPE (op1),
913 TREE_OPERAND (exp, 0), op1);
914 }
915
916 lvalue_array_p = !not_lvalue && lvalue_p (exp);
917 if (!flag_isoc99 && !lvalue_array_p)
918 {
919 /* Before C99, non-lvalue arrays do not decay to pointers.
920 Normally, using such an array would be invalid; but it can
921 be used correctly inside sizeof or as a statement expression.
922 Thus, do not give an error here; an error will result later. */
923 return exp;
924 }
925
926 ptrtype = build_pointer_type (restype);
927
928 if (TREE_CODE (exp) == VAR_DECL)
929 {
930 /* ??? This is not really quite correct
931 in that the type of the operand of ADDR_EXPR
932 is not the target type of the type of the ADDR_EXPR itself.
933 Question is, can this lossage be avoided? */
934 adr = build1 (ADDR_EXPR, ptrtype, exp);
935 if (!c_mark_addressable (exp))
936 return error_mark_node;
937 TREE_CONSTANT (adr) = staticp (exp);
938 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
939 return adr;
940 }
941 /* This way is better for a COMPONENT_REF since it can
942 simplify the offset for a component. */
943 adr = build_unary_op (ADDR_EXPR, exp, 1);
944 return convert (ptrtype, adr);
945 }
946 return exp;
947 }
948
949 /* Perform default promotions for C data used in expressions.
950 Arrays and functions are converted to pointers;
951 enumeral types or short or char, to int.
952 In addition, manifest constants symbols are replaced by their values. */
953
954 tree
955 default_conversion (exp)
956 tree exp;
957 {
958 tree orig_exp;
959 tree type = TREE_TYPE (exp);
960 enum tree_code code = TREE_CODE (type);
961
962 if (code == FUNCTION_TYPE || code == ARRAY_TYPE)
963 return default_function_array_conversion (exp);
964
965 /* Constants can be used directly unless they're not loadable. */
966 if (TREE_CODE (exp) == CONST_DECL)
967 exp = DECL_INITIAL (exp);
968
969 /* Replace a nonvolatile const static variable with its value unless
970 it is an array, in which case we must be sure that taking the
971 address of the array produces consistent results. */
972 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
973 {
974 exp = decl_constant_value_for_broken_optimization (exp);
975 type = TREE_TYPE (exp);
976 }
977
978 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
979 an lvalue.
980
981 Do not use STRIP_NOPS here! It will remove conversions from pointer
982 to integer and cause infinite recursion. */
983 orig_exp = exp;
984 while (TREE_CODE (exp) == NON_LVALUE_EXPR
985 || (TREE_CODE (exp) == NOP_EXPR
986 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
987 exp = TREE_OPERAND (exp, 0);
988
989 /* Preserve the original expression code. */
990 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
991 C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
992
993 /* Normally convert enums to int,
994 but convert wide enums to something wider. */
995 if (code == ENUMERAL_TYPE)
996 {
997 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
998 TYPE_PRECISION (integer_type_node)),
999 ((TYPE_PRECISION (type)
1000 >= TYPE_PRECISION (integer_type_node))
1001 && TREE_UNSIGNED (type)));
1002
1003 return convert (type, exp);
1004 }
1005
1006 if (TREE_CODE (exp) == COMPONENT_REF
1007 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1008 /* If it's thinner than an int, promote it like a
1009 c_promoting_integer_type_p, otherwise leave it alone. */
1010 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1011 TYPE_PRECISION (integer_type_node)))
1012 return convert (integer_type_node, exp);
1013
1014 if (c_promoting_integer_type_p (type))
1015 {
1016 /* Preserve unsignedness if not really getting any wider. */
1017 if (TREE_UNSIGNED (type)
1018 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1019 return convert (unsigned_type_node, exp);
1020
1021 return convert (integer_type_node, exp);
1022 }
1023
1024 if (code == VOID_TYPE)
1025 {
1026 error ("void value not ignored as it ought to be");
1027 return error_mark_node;
1028 }
1029 return exp;
1030 }
1031 \f
1032 /* Look up COMPONENT in a structure or union DECL.
1033
1034 If the component name is not found, returns NULL_TREE. Otherwise,
1035 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1036 stepping down the chain to the component, which is in the last
1037 TREE_VALUE of the list. Normally the list is of length one, but if
1038 the component is embedded within (nested) anonymous structures or
1039 unions, the list steps down the chain to the component. */
1040
1041 static tree
1042 lookup_field (decl, component)
1043 tree decl, component;
1044 {
1045 tree type = TREE_TYPE (decl);
1046 tree field;
1047
1048 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1049 to the field elements. Use a binary search on this array to quickly
1050 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1051 will always be set for structures which have many elements. */
1052
1053 if (TYPE_LANG_SPECIFIC (type))
1054 {
1055 int bot, top, half;
1056 tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
1057
1058 field = TYPE_FIELDS (type);
1059 bot = 0;
1060 top = TYPE_LANG_SPECIFIC (type)->len;
1061 while (top - bot > 1)
1062 {
1063 half = (top - bot + 1) >> 1;
1064 field = field_array[bot+half];
1065
1066 if (DECL_NAME (field) == NULL_TREE)
1067 {
1068 /* Step through all anon unions in linear fashion. */
1069 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1070 {
1071 field = field_array[bot++];
1072 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1073 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1074 {
1075 tree anon = lookup_field (field, component);
1076
1077 if (anon)
1078 return tree_cons (NULL_TREE, field, anon);
1079 }
1080 }
1081
1082 /* Entire record is only anon unions. */
1083 if (bot > top)
1084 return NULL_TREE;
1085
1086 /* Restart the binary search, with new lower bound. */
1087 continue;
1088 }
1089
1090 if (DECL_NAME (field) == component)
1091 break;
1092 if (DECL_NAME (field) < component)
1093 bot += half;
1094 else
1095 top = bot + half;
1096 }
1097
1098 if (DECL_NAME (field_array[bot]) == component)
1099 field = field_array[bot];
1100 else if (DECL_NAME (field) != component)
1101 return NULL_TREE;
1102 }
1103 else
1104 {
1105 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1106 {
1107 if (DECL_NAME (field) == NULL_TREE
1108 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1109 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1110 {
1111 tree anon = lookup_field (field, component);
1112
1113 if (anon)
1114 return tree_cons (NULL_TREE, field, anon);
1115 }
1116
1117 if (DECL_NAME (field) == component)
1118 break;
1119 }
1120
1121 if (field == NULL_TREE)
1122 return NULL_TREE;
1123 }
1124
1125 return tree_cons (NULL_TREE, field, NULL_TREE);
1126 }
1127
1128 /* Make an expression to refer to the COMPONENT field of
1129 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1130
1131 tree
1132 build_component_ref (datum, component)
1133 tree datum, component;
1134 {
1135 tree type = TREE_TYPE (datum);
1136 enum tree_code code = TREE_CODE (type);
1137 tree field = NULL;
1138 tree ref;
1139
1140 /* If DATUM is a COMPOUND_EXPR, move our reference inside it.
1141 If pedantic ensure that the arguments are not lvalues; otherwise,
1142 if the component is an array, it would wrongly decay to a pointer in
1143 C89 mode.
1144 We cannot do this with a COND_EXPR, because in a conditional expression
1145 the default promotions are applied to both sides, and this would yield
1146 the wrong type of the result; for example, if the components have
1147 type "char". */
1148 switch (TREE_CODE (datum))
1149 {
1150 case COMPOUND_EXPR:
1151 {
1152 tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
1153 return build (COMPOUND_EXPR, TREE_TYPE (value),
1154 TREE_OPERAND (datum, 0), pedantic_non_lvalue (value));
1155 }
1156 default:
1157 break;
1158 }
1159
1160 /* See if there is a field or component with name COMPONENT. */
1161
1162 if (code == RECORD_TYPE || code == UNION_TYPE)
1163 {
1164 if (!COMPLETE_TYPE_P (type))
1165 {
1166 c_incomplete_type_error (NULL_TREE, type);
1167 return error_mark_node;
1168 }
1169
1170 field = lookup_field (datum, component);
1171
1172 if (!field)
1173 {
1174 error ("%s has no member named `%s'",
1175 code == RECORD_TYPE ? "structure" : "union",
1176 IDENTIFIER_POINTER (component));
1177 return error_mark_node;
1178 }
1179
1180 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1181 This might be better solved in future the way the C++ front
1182 end does it - by giving the anonymous entities each a
1183 separate name and type, and then have build_component_ref
1184 recursively call itself. We can't do that here. */
1185 for (; field; field = TREE_CHAIN (field))
1186 {
1187 tree subdatum = TREE_VALUE (field);
1188
1189 if (TREE_TYPE (subdatum) == error_mark_node)
1190 return error_mark_node;
1191
1192 ref = build (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum);
1193 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1194 TREE_READONLY (ref) = 1;
1195 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1196 TREE_THIS_VOLATILE (ref) = 1;
1197
1198 if (TREE_DEPRECATED (subdatum))
1199 warn_deprecated_use (subdatum);
1200
1201 datum = ref;
1202 }
1203
1204 return ref;
1205 }
1206 else if (code != ERROR_MARK)
1207 error ("request for member `%s' in something not a structure or union",
1208 IDENTIFIER_POINTER (component));
1209
1210 return error_mark_node;
1211 }
1212 \f
1213 /* Given an expression PTR for a pointer, return an expression
1214 for the value pointed to.
1215 ERRORSTRING is the name of the operator to appear in error messages. */
1216
1217 tree
1218 build_indirect_ref (ptr, errorstring)
1219 tree ptr;
1220 const char *errorstring;
1221 {
1222 tree pointer = default_conversion (ptr);
1223 tree type = TREE_TYPE (pointer);
1224
1225 if (TREE_CODE (type) == POINTER_TYPE)
1226 {
1227 if (TREE_CODE (pointer) == ADDR_EXPR
1228 && !flag_volatile
1229 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1230 == TREE_TYPE (type)))
1231 return TREE_OPERAND (pointer, 0);
1232 else
1233 {
1234 tree t = TREE_TYPE (type);
1235 tree ref = build1 (INDIRECT_REF, TYPE_MAIN_VARIANT (t), pointer);
1236
1237 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1238 {
1239 error ("dereferencing pointer to incomplete type");
1240 return error_mark_node;
1241 }
1242 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1243 warning ("dereferencing `void *' pointer");
1244
1245 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1246 so that we get the proper error message if the result is used
1247 to assign to. Also, &* is supposed to be a no-op.
1248 And ANSI C seems to specify that the type of the result
1249 should be the const type. */
1250 /* A de-reference of a pointer to const is not a const. It is valid
1251 to change it via some other pointer. */
1252 TREE_READONLY (ref) = TYPE_READONLY (t);
1253 TREE_SIDE_EFFECTS (ref)
1254 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
1255 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1256 return ref;
1257 }
1258 }
1259 else if (TREE_CODE (pointer) != ERROR_MARK)
1260 error ("invalid type argument of `%s'", errorstring);
1261 return error_mark_node;
1262 }
1263
1264 /* This handles expressions of the form "a[i]", which denotes
1265 an array reference.
1266
1267 This is logically equivalent in C to *(a+i), but we may do it differently.
1268 If A is a variable or a member, we generate a primitive ARRAY_REF.
1269 This avoids forcing the array out of registers, and can work on
1270 arrays that are not lvalues (for example, members of structures returned
1271 by functions). */
1272
1273 tree
1274 build_array_ref (array, index)
1275 tree array, index;
1276 {
1277 if (index == 0)
1278 {
1279 error ("subscript missing in array reference");
1280 return error_mark_node;
1281 }
1282
1283 if (TREE_TYPE (array) == error_mark_node
1284 || TREE_TYPE (index) == error_mark_node)
1285 return error_mark_node;
1286
1287 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
1288 && TREE_CODE (array) != INDIRECT_REF)
1289 {
1290 tree rval, type;
1291
1292 /* Subscripting with type char is likely to lose
1293 on a machine where chars are signed.
1294 So warn on any machine, but optionally.
1295 Don't warn for unsigned char since that type is safe.
1296 Don't warn for signed char because anyone who uses that
1297 must have done so deliberately. */
1298 if (warn_char_subscripts
1299 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1300 warning ("array subscript has type `char'");
1301
1302 /* Apply default promotions *after* noticing character types. */
1303 index = default_conversion (index);
1304
1305 /* Require integer *after* promotion, for sake of enums. */
1306 if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
1307 {
1308 error ("array subscript is not an integer");
1309 return error_mark_node;
1310 }
1311
1312 /* An array that is indexed by a non-constant
1313 cannot be stored in a register; we must be able to do
1314 address arithmetic on its address.
1315 Likewise an array of elements of variable size. */
1316 if (TREE_CODE (index) != INTEGER_CST
1317 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1318 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1319 {
1320 if (!c_mark_addressable (array))
1321 return error_mark_node;
1322 }
1323 /* An array that is indexed by a constant value which is not within
1324 the array bounds cannot be stored in a register either; because we
1325 would get a crash in store_bit_field/extract_bit_field when trying
1326 to access a non-existent part of the register. */
1327 if (TREE_CODE (index) == INTEGER_CST
1328 && TYPE_VALUES (TREE_TYPE (array))
1329 && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
1330 {
1331 if (!c_mark_addressable (array))
1332 return error_mark_node;
1333 }
1334
1335 if (pedantic)
1336 {
1337 tree foo = array;
1338 while (TREE_CODE (foo) == COMPONENT_REF)
1339 foo = TREE_OPERAND (foo, 0);
1340 if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
1341 pedwarn ("ISO C forbids subscripting `register' array");
1342 else if (! flag_isoc99 && ! lvalue_p (foo))
1343 pedwarn ("ISO C89 forbids subscripting non-lvalue array");
1344 }
1345
1346 type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
1347 rval = build (ARRAY_REF, type, array, index);
1348 /* Array ref is const/volatile if the array elements are
1349 or if the array is. */
1350 TREE_READONLY (rval)
1351 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1352 | TREE_READONLY (array));
1353 TREE_SIDE_EFFECTS (rval)
1354 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1355 | TREE_SIDE_EFFECTS (array));
1356 TREE_THIS_VOLATILE (rval)
1357 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1358 /* This was added by rms on 16 Nov 91.
1359 It fixes vol struct foo *a; a->elts[1]
1360 in an inline function.
1361 Hope it doesn't break something else. */
1362 | TREE_THIS_VOLATILE (array));
1363 return require_complete_type (fold (rval));
1364 }
1365
1366 {
1367 tree ar = default_conversion (array);
1368 tree ind = default_conversion (index);
1369
1370 /* Do the same warning check as above, but only on the part that's
1371 syntactically the index and only if it is also semantically
1372 the index. */
1373 if (warn_char_subscripts
1374 && TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
1375 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1376 warning ("subscript has type `char'");
1377
1378 /* Put the integer in IND to simplify error checking. */
1379 if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
1380 {
1381 tree temp = ar;
1382 ar = ind;
1383 ind = temp;
1384 }
1385
1386 if (ar == error_mark_node)
1387 return ar;
1388
1389 if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
1390 || TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
1391 {
1392 error ("subscripted value is neither array nor pointer");
1393 return error_mark_node;
1394 }
1395 if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
1396 {
1397 error ("array subscript is not an integer");
1398 return error_mark_node;
1399 }
1400
1401 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
1402 "array indexing");
1403 }
1404 }
1405 \f
1406 /* Build an external reference to identifier ID. FUN indicates
1407 whether this will be used for a function call. */
1408 tree
1409 build_external_ref (id, fun)
1410 tree id;
1411 int fun;
1412 {
1413 tree ref;
1414 tree decl = lookup_name (id);
1415 tree objc_ivar = lookup_objc_ivar (id);
1416
1417 if (decl && TREE_DEPRECATED (decl))
1418 warn_deprecated_use (decl);
1419
1420 if (!decl || decl == error_mark_node || C_DECL_ANTICIPATED (decl))
1421 {
1422 if (objc_ivar)
1423 ref = objc_ivar;
1424 else if (fun)
1425 {
1426 if (!decl || decl == error_mark_node)
1427 /* Ordinary implicit function declaration. */
1428 ref = implicitly_declare (id);
1429 else
1430 {
1431 /* Implicit declaration of built-in function. Don't
1432 change the built-in declaration, but don't let this
1433 go by silently, either. */
1434 implicit_decl_warning (id);
1435
1436 /* only issue this warning once */
1437 C_DECL_ANTICIPATED (decl) = 0;
1438 ref = decl;
1439 }
1440 }
1441 else
1442 {
1443 /* Reference to undeclared variable, including reference to
1444 builtin outside of function-call context. */
1445 if (current_function_decl == 0)
1446 error ("`%s' undeclared here (not in a function)",
1447 IDENTIFIER_POINTER (id));
1448 else
1449 {
1450 if (IDENTIFIER_GLOBAL_VALUE (id) != error_mark_node
1451 || IDENTIFIER_ERROR_LOCUS (id) != current_function_decl)
1452 {
1453 error ("`%s' undeclared (first use in this function)",
1454 IDENTIFIER_POINTER (id));
1455
1456 if (! undeclared_variable_notice)
1457 {
1458 error ("(Each undeclared identifier is reported only once");
1459 error ("for each function it appears in.)");
1460 undeclared_variable_notice = 1;
1461 }
1462 }
1463 IDENTIFIER_GLOBAL_VALUE (id) = error_mark_node;
1464 IDENTIFIER_ERROR_LOCUS (id) = current_function_decl;
1465 }
1466 return error_mark_node;
1467 }
1468 }
1469 else
1470 {
1471 /* Properly declared variable or function reference. */
1472 if (!objc_ivar)
1473 ref = decl;
1474 else if (decl != objc_ivar && IDENTIFIER_LOCAL_VALUE (id))
1475 {
1476 warning ("local declaration of `%s' hides instance variable",
1477 IDENTIFIER_POINTER (id));
1478 ref = decl;
1479 }
1480 else
1481 ref = objc_ivar;
1482 }
1483
1484 if (TREE_TYPE (ref) == error_mark_node)
1485 return error_mark_node;
1486
1487 assemble_external (ref);
1488 TREE_USED (ref) = 1;
1489
1490 if (TREE_CODE (ref) == CONST_DECL)
1491 {
1492 ref = DECL_INITIAL (ref);
1493 TREE_CONSTANT (ref) = 1;
1494 }
1495
1496 return ref;
1497 }
1498
1499 /* Build a function call to function FUNCTION with parameters PARAMS.
1500 PARAMS is a list--a chain of TREE_LIST nodes--in which the
1501 TREE_VALUE of each node is a parameter-expression.
1502 FUNCTION's data type may be a function type or a pointer-to-function. */
1503
1504 tree
1505 build_function_call (function, params)
1506 tree function, params;
1507 {
1508 tree fntype, fundecl = 0;
1509 tree coerced_params;
1510 tree name = NULL_TREE, assembler_name = NULL_TREE, result;
1511
1512 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1513 STRIP_TYPE_NOPS (function);
1514
1515 /* Convert anything with function type to a pointer-to-function. */
1516 if (TREE_CODE (function) == FUNCTION_DECL)
1517 {
1518 name = DECL_NAME (function);
1519 assembler_name = DECL_ASSEMBLER_NAME (function);
1520
1521 /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1522 (because calling an inline function does not mean the function
1523 needs to be separately compiled). */
1524 fntype = build_type_variant (TREE_TYPE (function),
1525 TREE_READONLY (function),
1526 TREE_THIS_VOLATILE (function));
1527 fundecl = function;
1528 function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1529 }
1530 else
1531 function = default_conversion (function);
1532
1533 fntype = TREE_TYPE (function);
1534
1535 if (TREE_CODE (fntype) == ERROR_MARK)
1536 return error_mark_node;
1537
1538 if (!(TREE_CODE (fntype) == POINTER_TYPE
1539 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
1540 {
1541 error ("called object is not a function");
1542 return error_mark_node;
1543 }
1544
1545 if (fundecl && TREE_THIS_VOLATILE (fundecl))
1546 current_function_returns_abnormally = 1;
1547
1548 /* fntype now gets the type of function pointed to. */
1549 fntype = TREE_TYPE (fntype);
1550
1551 /* Convert the parameters to the types declared in the
1552 function prototype, or apply default promotions. */
1553
1554 coerced_params
1555 = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
1556
1557 /* Check for errors in format strings. */
1558
1559 if (warn_format)
1560 check_function_format (NULL, TYPE_ATTRIBUTES (fntype), coerced_params);
1561
1562 /* Recognize certain built-in functions so we can make tree-codes
1563 other than CALL_EXPR. We do this when it enables fold-const.c
1564 to do something useful. */
1565
1566 if (TREE_CODE (function) == ADDR_EXPR
1567 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
1568 && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
1569 {
1570 result = expand_tree_builtin (TREE_OPERAND (function, 0),
1571 params, coerced_params);
1572 if (result)
1573 return result;
1574 }
1575
1576 result = build (CALL_EXPR, TREE_TYPE (fntype),
1577 function, coerced_params, NULL_TREE);
1578 TREE_SIDE_EFFECTS (result) = 1;
1579 result = fold (result);
1580
1581 if (VOID_TYPE_P (TREE_TYPE (result)))
1582 return result;
1583 return require_complete_type (result);
1584 }
1585 \f
1586 /* Convert the argument expressions in the list VALUES
1587 to the types in the list TYPELIST. The result is a list of converted
1588 argument expressions.
1589
1590 If TYPELIST is exhausted, or when an element has NULL as its type,
1591 perform the default conversions.
1592
1593 PARMLIST is the chain of parm decls for the function being called.
1594 It may be 0, if that info is not available.
1595 It is used only for generating error messages.
1596
1597 NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
1598
1599 This is also where warnings about wrong number of args are generated.
1600
1601 Both VALUES and the returned value are chains of TREE_LIST nodes
1602 with the elements of the list in the TREE_VALUE slots of those nodes. */
1603
1604 static tree
1605 convert_arguments (typelist, values, name, fundecl)
1606 tree typelist, values, name, fundecl;
1607 {
1608 tree typetail, valtail;
1609 tree result = NULL;
1610 int parmnum;
1611
1612 /* Scan the given expressions and types, producing individual
1613 converted arguments and pushing them on RESULT in reverse order. */
1614
1615 for (valtail = values, typetail = typelist, parmnum = 0;
1616 valtail;
1617 valtail = TREE_CHAIN (valtail), parmnum++)
1618 {
1619 tree type = typetail ? TREE_VALUE (typetail) : 0;
1620 tree val = TREE_VALUE (valtail);
1621
1622 if (type == void_type_node)
1623 {
1624 if (name)
1625 error ("too many arguments to function `%s'",
1626 IDENTIFIER_POINTER (name));
1627 else
1628 error ("too many arguments to function");
1629 break;
1630 }
1631
1632 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
1633 /* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
1634 to convert automatically to a pointer. */
1635 if (TREE_CODE (val) == NON_LVALUE_EXPR)
1636 val = TREE_OPERAND (val, 0);
1637
1638 val = default_function_array_conversion (val);
1639
1640 val = require_complete_type (val);
1641
1642 if (type != 0)
1643 {
1644 /* Formal parm type is specified by a function prototype. */
1645 tree parmval;
1646
1647 if (!COMPLETE_TYPE_P (type))
1648 {
1649 error ("type of formal parameter %d is incomplete", parmnum + 1);
1650 parmval = val;
1651 }
1652 else
1653 {
1654 /* Optionally warn about conversions that
1655 differ from the default conversions. */
1656 if (warn_conversion || warn_traditional)
1657 {
1658 int formal_prec = TYPE_PRECISION (type);
1659
1660 if (INTEGRAL_TYPE_P (type)
1661 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1662 warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1663 if (INTEGRAL_TYPE_P (type)
1664 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1665 warn_for_assignment ("%s as integer rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1666 else if (TREE_CODE (type) == COMPLEX_TYPE
1667 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1668 warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1669 else if (TREE_CODE (type) == REAL_TYPE
1670 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1671 warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1672 else if (TREE_CODE (type) == COMPLEX_TYPE
1673 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1674 warn_for_assignment ("%s as complex rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1675 else if (TREE_CODE (type) == REAL_TYPE
1676 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1677 warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1678 /* ??? At some point, messages should be written about
1679 conversions between complex types, but that's too messy
1680 to do now. */
1681 else if (TREE_CODE (type) == REAL_TYPE
1682 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1683 {
1684 /* Warn if any argument is passed as `float',
1685 since without a prototype it would be `double'. */
1686 if (formal_prec == TYPE_PRECISION (float_type_node))
1687 warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
1688 }
1689 /* Detect integer changing in width or signedness.
1690 These warnings are only activated with
1691 -Wconversion, not with -Wtraditional. */
1692 else if (warn_conversion && INTEGRAL_TYPE_P (type)
1693 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1694 {
1695 tree would_have_been = default_conversion (val);
1696 tree type1 = TREE_TYPE (would_have_been);
1697
1698 if (TREE_CODE (type) == ENUMERAL_TYPE
1699 && (TYPE_MAIN_VARIANT (type)
1700 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1701 /* No warning if function asks for enum
1702 and the actual arg is that enum type. */
1703 ;
1704 else if (formal_prec != TYPE_PRECISION (type1))
1705 warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
1706 else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
1707 ;
1708 /* Don't complain if the formal parameter type
1709 is an enum, because we can't tell now whether
1710 the value was an enum--even the same enum. */
1711 else if (TREE_CODE (type) == ENUMERAL_TYPE)
1712 ;
1713 else if (TREE_CODE (val) == INTEGER_CST
1714 && int_fits_type_p (val, type))
1715 /* Change in signedness doesn't matter
1716 if a constant value is unaffected. */
1717 ;
1718 /* Likewise for a constant in a NOP_EXPR. */
1719 else if (TREE_CODE (val) == NOP_EXPR
1720 && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
1721 && int_fits_type_p (TREE_OPERAND (val, 0), type))
1722 ;
1723 #if 0 /* We never get such tree structure here. */
1724 else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
1725 && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
1726 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
1727 /* Change in signedness doesn't matter
1728 if an enum value is unaffected. */
1729 ;
1730 #endif
1731 /* If the value is extended from a narrower
1732 unsigned type, it doesn't matter whether we
1733 pass it as signed or unsigned; the value
1734 certainly is the same either way. */
1735 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
1736 && TREE_UNSIGNED (TREE_TYPE (val)))
1737 ;
1738 else if (TREE_UNSIGNED (type))
1739 warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
1740 else
1741 warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
1742 }
1743 }
1744
1745 parmval = convert_for_assignment (type, val,
1746 (char *) 0, /* arg passing */
1747 fundecl, name, parmnum + 1);
1748
1749 if (PROMOTE_PROTOTYPES
1750 && INTEGRAL_TYPE_P (type)
1751 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
1752 parmval = default_conversion (parmval);
1753 }
1754 result = tree_cons (NULL_TREE, parmval, result);
1755 }
1756 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
1757 && (TYPE_PRECISION (TREE_TYPE (val))
1758 < TYPE_PRECISION (double_type_node)))
1759 /* Convert `float' to `double'. */
1760 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
1761 else
1762 /* Convert `short' and `char' to full-size `int'. */
1763 result = tree_cons (NULL_TREE, default_conversion (val), result);
1764
1765 if (typetail)
1766 typetail = TREE_CHAIN (typetail);
1767 }
1768
1769 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
1770 {
1771 if (name)
1772 error ("too few arguments to function `%s'",
1773 IDENTIFIER_POINTER (name));
1774 else
1775 error ("too few arguments to function");
1776 }
1777
1778 return nreverse (result);
1779 }
1780 \f
1781 /* This is the entry point used by the parser
1782 for binary operators in the input.
1783 In addition to constructing the expression,
1784 we check for operands that were written with other binary operators
1785 in a way that is likely to confuse the user. */
1786
1787 tree
1788 parser_build_binary_op (code, arg1, arg2)
1789 enum tree_code code;
1790 tree arg1, arg2;
1791 {
1792 tree result = build_binary_op (code, arg1, arg2, 1);
1793
1794 char class;
1795 char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
1796 char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
1797 enum tree_code code1 = ERROR_MARK;
1798 enum tree_code code2 = ERROR_MARK;
1799
1800 if (TREE_CODE (result) == ERROR_MARK)
1801 return error_mark_node;
1802
1803 if (IS_EXPR_CODE_CLASS (class1))
1804 code1 = C_EXP_ORIGINAL_CODE (arg1);
1805 if (IS_EXPR_CODE_CLASS (class2))
1806 code2 = C_EXP_ORIGINAL_CODE (arg2);
1807
1808 /* Check for cases such as x+y<<z which users are likely
1809 to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
1810 is cleared to prevent these warnings. */
1811 if (warn_parentheses)
1812 {
1813 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
1814 {
1815 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1816 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1817 warning ("suggest parentheses around + or - inside shift");
1818 }
1819
1820 if (code == TRUTH_ORIF_EXPR)
1821 {
1822 if (code1 == TRUTH_ANDIF_EXPR
1823 || code2 == TRUTH_ANDIF_EXPR)
1824 warning ("suggest parentheses around && within ||");
1825 }
1826
1827 if (code == BIT_IOR_EXPR)
1828 {
1829 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
1830 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1831 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
1832 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1833 warning ("suggest parentheses around arithmetic in operand of |");
1834 /* Check cases like x|y==z */
1835 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1836 warning ("suggest parentheses around comparison in operand of |");
1837 }
1838
1839 if (code == BIT_XOR_EXPR)
1840 {
1841 if (code1 == BIT_AND_EXPR
1842 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1843 || code2 == BIT_AND_EXPR
1844 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1845 warning ("suggest parentheses around arithmetic in operand of ^");
1846 /* Check cases like x^y==z */
1847 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1848 warning ("suggest parentheses around comparison in operand of ^");
1849 }
1850
1851 if (code == BIT_AND_EXPR)
1852 {
1853 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1854 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1855 warning ("suggest parentheses around + or - in operand of &");
1856 /* Check cases like x&y==z */
1857 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1858 warning ("suggest parentheses around comparison in operand of &");
1859 }
1860 }
1861
1862 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
1863 if (TREE_CODE_CLASS (code) == '<' && extra_warnings
1864 && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
1865 warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1866
1867 unsigned_conversion_warning (result, arg1);
1868 unsigned_conversion_warning (result, arg2);
1869 overflow_warning (result);
1870
1871 class = TREE_CODE_CLASS (TREE_CODE (result));
1872
1873 /* Record the code that was specified in the source,
1874 for the sake of warnings about confusing nesting. */
1875 if (IS_EXPR_CODE_CLASS (class))
1876 C_SET_EXP_ORIGINAL_CODE (result, code);
1877 else
1878 {
1879 int flag = TREE_CONSTANT (result);
1880 /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1881 so that convert_for_assignment wouldn't strip it.
1882 That way, we got warnings for things like p = (1 - 1).
1883 But it turns out we should not get those warnings. */
1884 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
1885 C_SET_EXP_ORIGINAL_CODE (result, code);
1886 TREE_CONSTANT (result) = flag;
1887 }
1888
1889 return result;
1890 }
1891
1892 /* Build a binary-operation expression without default conversions.
1893 CODE is the kind of expression to build.
1894 This function differs from `build' in several ways:
1895 the data type of the result is computed and recorded in it,
1896 warnings are generated if arg data types are invalid,
1897 special handling for addition and subtraction of pointers is known,
1898 and some optimization is done (operations on narrow ints
1899 are done in the narrower type when that gives the same result).
1900 Constant folding is also done before the result is returned.
1901
1902 Note that the operands will never have enumeral types, or function
1903 or array types, because either they will have the default conversions
1904 performed or they have both just been converted to some other type in which
1905 the arithmetic is to be done. */
1906
1907 tree
1908 build_binary_op (code, orig_op0, orig_op1, convert_p)
1909 enum tree_code code;
1910 tree orig_op0, orig_op1;
1911 int convert_p;
1912 {
1913 tree type0, type1;
1914 enum tree_code code0, code1;
1915 tree op0, op1;
1916
1917 /* Expression code to give to the expression when it is built.
1918 Normally this is CODE, which is what the caller asked for,
1919 but in some special cases we change it. */
1920 enum tree_code resultcode = code;
1921
1922 /* Data type in which the computation is to be performed.
1923 In the simplest cases this is the common type of the arguments. */
1924 tree result_type = NULL;
1925
1926 /* Nonzero means operands have already been type-converted
1927 in whatever way is necessary.
1928 Zero means they need to be converted to RESULT_TYPE. */
1929 int converted = 0;
1930
1931 /* Nonzero means create the expression with this type, rather than
1932 RESULT_TYPE. */
1933 tree build_type = 0;
1934
1935 /* Nonzero means after finally constructing the expression
1936 convert it to this type. */
1937 tree final_type = 0;
1938
1939 /* Nonzero if this is an operation like MIN or MAX which can
1940 safely be computed in short if both args are promoted shorts.
1941 Also implies COMMON.
1942 -1 indicates a bitwise operation; this makes a difference
1943 in the exact conditions for when it is safe to do the operation
1944 in a narrower mode. */
1945 int shorten = 0;
1946
1947 /* Nonzero if this is a comparison operation;
1948 if both args are promoted shorts, compare the original shorts.
1949 Also implies COMMON. */
1950 int short_compare = 0;
1951
1952 /* Nonzero if this is a right-shift operation, which can be computed on the
1953 original short and then promoted if the operand is a promoted short. */
1954 int short_shift = 0;
1955
1956 /* Nonzero means set RESULT_TYPE to the common type of the args. */
1957 int common = 0;
1958
1959 if (convert_p)
1960 {
1961 op0 = default_conversion (orig_op0);
1962 op1 = default_conversion (orig_op1);
1963 }
1964 else
1965 {
1966 op0 = orig_op0;
1967 op1 = orig_op1;
1968 }
1969
1970 type0 = TREE_TYPE (op0);
1971 type1 = TREE_TYPE (op1);
1972
1973 /* The expression codes of the data types of the arguments tell us
1974 whether the arguments are integers, floating, pointers, etc. */
1975 code0 = TREE_CODE (type0);
1976 code1 = TREE_CODE (type1);
1977
1978 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1979 STRIP_TYPE_NOPS (op0);
1980 STRIP_TYPE_NOPS (op1);
1981
1982 /* If an error was already reported for one of the arguments,
1983 avoid reporting another error. */
1984
1985 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
1986 return error_mark_node;
1987
1988 switch (code)
1989 {
1990 case PLUS_EXPR:
1991 /* Handle the pointer + int case. */
1992 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
1993 return pointer_int_sum (PLUS_EXPR, op0, op1);
1994 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
1995 return pointer_int_sum (PLUS_EXPR, op1, op0);
1996 else
1997 common = 1;
1998 break;
1999
2000 case MINUS_EXPR:
2001 /* Subtraction of two similar pointers.
2002 We must subtract them as integers, then divide by object size. */
2003 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
2004 && comp_target_types (type0, type1))
2005 return pointer_diff (op0, op1);
2006 /* Handle pointer minus int. Just like pointer plus int. */
2007 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2008 return pointer_int_sum (MINUS_EXPR, op0, op1);
2009 else
2010 common = 1;
2011 break;
2012
2013 case MULT_EXPR:
2014 common = 1;
2015 break;
2016
2017 case TRUNC_DIV_EXPR:
2018 case CEIL_DIV_EXPR:
2019 case FLOOR_DIV_EXPR:
2020 case ROUND_DIV_EXPR:
2021 case EXACT_DIV_EXPR:
2022 /* Floating point division by zero is a legitimate way to obtain
2023 infinities and NaNs. */
2024 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
2025 warning ("division by zero");
2026
2027 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2028 || code0 == COMPLEX_TYPE)
2029 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2030 || code1 == COMPLEX_TYPE))
2031 {
2032 if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
2033 resultcode = RDIV_EXPR;
2034 else
2035 /* Although it would be tempting to shorten always here, that
2036 loses on some targets, since the modulo instruction is
2037 undefined if the quotient can't be represented in the
2038 computation mode. We shorten only if unsigned or if
2039 dividing by something we know != -1. */
2040 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2041 || (TREE_CODE (op1) == INTEGER_CST
2042 && ! integer_all_onesp (op1)));
2043 common = 1;
2044 }
2045 break;
2046
2047 case BIT_AND_EXPR:
2048 case BIT_ANDTC_EXPR:
2049 case BIT_IOR_EXPR:
2050 case BIT_XOR_EXPR:
2051 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2052 shorten = -1;
2053 break;
2054
2055 case TRUNC_MOD_EXPR:
2056 case FLOOR_MOD_EXPR:
2057 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
2058 warning ("division by zero");
2059
2060 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2061 {
2062 /* Although it would be tempting to shorten always here, that loses
2063 on some targets, since the modulo instruction is undefined if the
2064 quotient can't be represented in the computation mode. We shorten
2065 only if unsigned or if dividing by something we know != -1. */
2066 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2067 || (TREE_CODE (op1) == INTEGER_CST
2068 && ! integer_all_onesp (op1)));
2069 common = 1;
2070 }
2071 break;
2072
2073 case TRUTH_ANDIF_EXPR:
2074 case TRUTH_ORIF_EXPR:
2075 case TRUTH_AND_EXPR:
2076 case TRUTH_OR_EXPR:
2077 case TRUTH_XOR_EXPR:
2078 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
2079 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2080 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
2081 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2082 {
2083 /* Result of these operations is always an int,
2084 but that does not mean the operands should be
2085 converted to ints! */
2086 result_type = integer_type_node;
2087 op0 = c_common_truthvalue_conversion (op0);
2088 op1 = c_common_truthvalue_conversion (op1);
2089 converted = 1;
2090 }
2091 break;
2092
2093 /* Shift operations: result has same type as first operand;
2094 always convert second operand to int.
2095 Also set SHORT_SHIFT if shifting rightward. */
2096
2097 case RSHIFT_EXPR:
2098 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2099 {
2100 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2101 {
2102 if (tree_int_cst_sgn (op1) < 0)
2103 warning ("right shift count is negative");
2104 else
2105 {
2106 if (! integer_zerop (op1))
2107 short_shift = 1;
2108
2109 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2110 warning ("right shift count >= width of type");
2111 }
2112 }
2113
2114 /* Use the type of the value to be shifted. */
2115 result_type = type0;
2116 /* Convert the shift-count to an integer, regardless of size
2117 of value being shifted. */
2118 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2119 op1 = convert (integer_type_node, op1);
2120 /* Avoid converting op1 to result_type later. */
2121 converted = 1;
2122 }
2123 break;
2124
2125 case LSHIFT_EXPR:
2126 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2127 {
2128 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2129 {
2130 if (tree_int_cst_sgn (op1) < 0)
2131 warning ("left shift count is negative");
2132
2133 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2134 warning ("left shift count >= width of type");
2135 }
2136
2137 /* Use the type of the value to be shifted. */
2138 result_type = type0;
2139 /* Convert the shift-count to an integer, regardless of size
2140 of value being shifted. */
2141 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2142 op1 = convert (integer_type_node, op1);
2143 /* Avoid converting op1 to result_type later. */
2144 converted = 1;
2145 }
2146 break;
2147
2148 case RROTATE_EXPR:
2149 case LROTATE_EXPR:
2150 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2151 {
2152 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2153 {
2154 if (tree_int_cst_sgn (op1) < 0)
2155 warning ("shift count is negative");
2156 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2157 warning ("shift count >= width of type");
2158 }
2159
2160 /* Use the type of the value to be shifted. */
2161 result_type = type0;
2162 /* Convert the shift-count to an integer, regardless of size
2163 of value being shifted. */
2164 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2165 op1 = convert (integer_type_node, op1);
2166 /* Avoid converting op1 to result_type later. */
2167 converted = 1;
2168 }
2169 break;
2170
2171 case EQ_EXPR:
2172 case NE_EXPR:
2173 if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
2174 warning ("comparing floating point with == or != is unsafe");
2175 /* Result of comparison is always int,
2176 but don't convert the args to int! */
2177 build_type = integer_type_node;
2178 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2179 || code0 == COMPLEX_TYPE)
2180 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2181 || code1 == COMPLEX_TYPE))
2182 short_compare = 1;
2183 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2184 {
2185 tree tt0 = TREE_TYPE (type0);
2186 tree tt1 = TREE_TYPE (type1);
2187 /* Anything compares with void *. void * compares with anything.
2188 Otherwise, the targets must be compatible
2189 and both must be object or both incomplete. */
2190 if (comp_target_types (type0, type1))
2191 result_type = common_type (type0, type1);
2192 else if (VOID_TYPE_P (tt0))
2193 {
2194 /* op0 != orig_op0 detects the case of something
2195 whose value is 0 but which isn't a valid null ptr const. */
2196 if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
2197 && TREE_CODE (tt1) == FUNCTION_TYPE)
2198 pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2199 }
2200 else if (VOID_TYPE_P (tt1))
2201 {
2202 if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
2203 && TREE_CODE (tt0) == FUNCTION_TYPE)
2204 pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2205 }
2206 else
2207 pedwarn ("comparison of distinct pointer types lacks a cast");
2208
2209 if (result_type == NULL_TREE)
2210 result_type = ptr_type_node;
2211 }
2212 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2213 && integer_zerop (op1))
2214 result_type = type0;
2215 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2216 && integer_zerop (op0))
2217 result_type = type1;
2218 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2219 {
2220 result_type = type0;
2221 pedwarn ("comparison between pointer and integer");
2222 }
2223 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2224 {
2225 result_type = type1;
2226 pedwarn ("comparison between pointer and integer");
2227 }
2228 break;
2229
2230 case MAX_EXPR:
2231 case MIN_EXPR:
2232 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2233 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2234 shorten = 1;
2235 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2236 {
2237 if (comp_target_types (type0, type1))
2238 {
2239 result_type = common_type (type0, type1);
2240 if (pedantic
2241 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2242 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2243 }
2244 else
2245 {
2246 result_type = ptr_type_node;
2247 pedwarn ("comparison of distinct pointer types lacks a cast");
2248 }
2249 }
2250 break;
2251
2252 case LE_EXPR:
2253 case GE_EXPR:
2254 case LT_EXPR:
2255 case GT_EXPR:
2256 build_type = integer_type_node;
2257 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2258 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2259 short_compare = 1;
2260 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2261 {
2262 if (comp_target_types (type0, type1))
2263 {
2264 result_type = common_type (type0, type1);
2265 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
2266 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
2267 pedwarn ("comparison of complete and incomplete pointers");
2268 else if (pedantic
2269 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2270 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2271 }
2272 else
2273 {
2274 result_type = ptr_type_node;
2275 pedwarn ("comparison of distinct pointer types lacks a cast");
2276 }
2277 }
2278 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2279 && integer_zerop (op1))
2280 {
2281 result_type = type0;
2282 if (pedantic || extra_warnings)
2283 pedwarn ("ordered comparison of pointer with integer zero");
2284 }
2285 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2286 && integer_zerop (op0))
2287 {
2288 result_type = type1;
2289 if (pedantic)
2290 pedwarn ("ordered comparison of pointer with integer zero");
2291 }
2292 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2293 {
2294 result_type = type0;
2295 pedwarn ("comparison between pointer and integer");
2296 }
2297 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2298 {
2299 result_type = type1;
2300 pedwarn ("comparison between pointer and integer");
2301 }
2302 break;
2303
2304 case UNORDERED_EXPR:
2305 case ORDERED_EXPR:
2306 case UNLT_EXPR:
2307 case UNLE_EXPR:
2308 case UNGT_EXPR:
2309 case UNGE_EXPR:
2310 case UNEQ_EXPR:
2311 build_type = integer_type_node;
2312 if (code0 != REAL_TYPE || code1 != REAL_TYPE)
2313 {
2314 error ("unordered comparison on non-floating point argument");
2315 return error_mark_node;
2316 }
2317 common = 1;
2318 break;
2319
2320 default:
2321 break;
2322 }
2323
2324 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2325 &&
2326 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2327 {
2328 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
2329
2330 if (shorten || common || short_compare)
2331 result_type = common_type (type0, type1);
2332
2333 /* For certain operations (which identify themselves by shorten != 0)
2334 if both args were extended from the same smaller type,
2335 do the arithmetic in that type and then extend.
2336
2337 shorten !=0 and !=1 indicates a bitwise operation.
2338 For them, this optimization is safe only if
2339 both args are zero-extended or both are sign-extended.
2340 Otherwise, we might change the result.
2341 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2342 but calculated in (unsigned short) it would be (unsigned short)-1. */
2343
2344 if (shorten && none_complex)
2345 {
2346 int unsigned0, unsigned1;
2347 tree arg0 = get_narrower (op0, &unsigned0);
2348 tree arg1 = get_narrower (op1, &unsigned1);
2349 /* UNS is 1 if the operation to be done is an unsigned one. */
2350 int uns = TREE_UNSIGNED (result_type);
2351 tree type;
2352
2353 final_type = result_type;
2354
2355 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2356 but it *requires* conversion to FINAL_TYPE. */
2357
2358 if ((TYPE_PRECISION (TREE_TYPE (op0))
2359 == TYPE_PRECISION (TREE_TYPE (arg0)))
2360 && TREE_TYPE (op0) != final_type)
2361 unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
2362 if ((TYPE_PRECISION (TREE_TYPE (op1))
2363 == TYPE_PRECISION (TREE_TYPE (arg1)))
2364 && TREE_TYPE (op1) != final_type)
2365 unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
2366
2367 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
2368
2369 /* For bitwise operations, signedness of nominal type
2370 does not matter. Consider only how operands were extended. */
2371 if (shorten == -1)
2372 uns = unsigned0;
2373
2374 /* Note that in all three cases below we refrain from optimizing
2375 an unsigned operation on sign-extended args.
2376 That would not be valid. */
2377
2378 /* Both args variable: if both extended in same way
2379 from same width, do it in that width.
2380 Do it unsigned if args were zero-extended. */
2381 if ((TYPE_PRECISION (TREE_TYPE (arg0))
2382 < TYPE_PRECISION (result_type))
2383 && (TYPE_PRECISION (TREE_TYPE (arg1))
2384 == TYPE_PRECISION (TREE_TYPE (arg0)))
2385 && unsigned0 == unsigned1
2386 && (unsigned0 || !uns))
2387 result_type
2388 = c_common_signed_or_unsigned_type
2389 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
2390 else if (TREE_CODE (arg0) == INTEGER_CST
2391 && (unsigned1 || !uns)
2392 && (TYPE_PRECISION (TREE_TYPE (arg1))
2393 < TYPE_PRECISION (result_type))
2394 && (type
2395 = c_common_signed_or_unsigned_type (unsigned1,
2396 TREE_TYPE (arg1)),
2397 int_fits_type_p (arg0, type)))
2398 result_type = type;
2399 else if (TREE_CODE (arg1) == INTEGER_CST
2400 && (unsigned0 || !uns)
2401 && (TYPE_PRECISION (TREE_TYPE (arg0))
2402 < TYPE_PRECISION (result_type))
2403 && (type
2404 = c_common_signed_or_unsigned_type (unsigned0,
2405 TREE_TYPE (arg0)),
2406 int_fits_type_p (arg1, type)))
2407 result_type = type;
2408 }
2409
2410 /* Shifts can be shortened if shifting right. */
2411
2412 if (short_shift)
2413 {
2414 int unsigned_arg;
2415 tree arg0 = get_narrower (op0, &unsigned_arg);
2416
2417 final_type = result_type;
2418
2419 if (arg0 == op0 && final_type == TREE_TYPE (op0))
2420 unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
2421
2422 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
2423 /* We can shorten only if the shift count is less than the
2424 number of bits in the smaller type size. */
2425 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
2426 /* We cannot drop an unsigned shift after sign-extension. */
2427 && (!TREE_UNSIGNED (final_type) || unsigned_arg))
2428 {
2429 /* Do an unsigned shift if the operand was zero-extended. */
2430 result_type
2431 = c_common_signed_or_unsigned_type (unsigned_arg,
2432 TREE_TYPE (arg0));
2433 /* Convert value-to-be-shifted to that type. */
2434 if (TREE_TYPE (op0) != result_type)
2435 op0 = convert (result_type, op0);
2436 converted = 1;
2437 }
2438 }
2439
2440 /* Comparison operations are shortened too but differently.
2441 They identify themselves by setting short_compare = 1. */
2442
2443 if (short_compare)
2444 {
2445 /* Don't write &op0, etc., because that would prevent op0
2446 from being kept in a register.
2447 Instead, make copies of the our local variables and
2448 pass the copies by reference, then copy them back afterward. */
2449 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
2450 enum tree_code xresultcode = resultcode;
2451 tree val
2452 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
2453
2454 if (val != 0)
2455 return val;
2456
2457 op0 = xop0, op1 = xop1;
2458 converted = 1;
2459 resultcode = xresultcode;
2460
2461 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
2462 && skip_evaluation == 0)
2463 {
2464 int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
2465 int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
2466 int unsignedp0, unsignedp1;
2467 tree primop0 = get_narrower (op0, &unsignedp0);
2468 tree primop1 = get_narrower (op1, &unsignedp1);
2469
2470 xop0 = orig_op0;
2471 xop1 = orig_op1;
2472 STRIP_TYPE_NOPS (xop0);
2473 STRIP_TYPE_NOPS (xop1);
2474
2475 /* Give warnings for comparisons between signed and unsigned
2476 quantities that may fail.
2477
2478 Do the checking based on the original operand trees, so that
2479 casts will be considered, but default promotions won't be.
2480
2481 Do not warn if the comparison is being done in a signed type,
2482 since the signed type will only be chosen if it can represent
2483 all the values of the unsigned type. */
2484 if (! TREE_UNSIGNED (result_type))
2485 /* OK */;
2486 /* Do not warn if both operands are the same signedness. */
2487 else if (op0_signed == op1_signed)
2488 /* OK */;
2489 else
2490 {
2491 tree sop, uop;
2492
2493 if (op0_signed)
2494 sop = xop0, uop = xop1;
2495 else
2496 sop = xop1, uop = xop0;
2497
2498 /* Do not warn if the signed quantity is an
2499 unsuffixed integer literal (or some static
2500 constant expression involving such literals or a
2501 conditional expression involving such literals)
2502 and it is non-negative. */
2503 if (tree_expr_nonnegative_p (sop))
2504 /* OK */;
2505 /* Do not warn if the comparison is an equality operation,
2506 the unsigned quantity is an integral constant, and it
2507 would fit in the result if the result were signed. */
2508 else if (TREE_CODE (uop) == INTEGER_CST
2509 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
2510 && int_fits_type_p
2511 (uop, c_common_signed_type (result_type)))
2512 /* OK */;
2513 /* Do not warn if the unsigned quantity is an enumeration
2514 constant and its maximum value would fit in the result
2515 if the result were signed. */
2516 else if (TREE_CODE (uop) == INTEGER_CST
2517 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
2518 && int_fits_type_p
2519 (TYPE_MAX_VALUE (TREE_TYPE(uop)),
2520 c_common_signed_type (result_type)))
2521 /* OK */;
2522 else
2523 warning ("comparison between signed and unsigned");
2524 }
2525
2526 /* Warn if two unsigned values are being compared in a size
2527 larger than their original size, and one (and only one) is the
2528 result of a `~' operator. This comparison will always fail.
2529
2530 Also warn if one operand is a constant, and the constant
2531 does not have all bits set that are set in the ~ operand
2532 when it is extended. */
2533
2534 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
2535 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
2536 {
2537 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
2538 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
2539 &unsignedp0);
2540 else
2541 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
2542 &unsignedp1);
2543
2544 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
2545 {
2546 tree primop;
2547 HOST_WIDE_INT constant, mask;
2548 int unsignedp, bits;
2549
2550 if (host_integerp (primop0, 0))
2551 {
2552 primop = primop1;
2553 unsignedp = unsignedp1;
2554 constant = tree_low_cst (primop0, 0);
2555 }
2556 else
2557 {
2558 primop = primop0;
2559 unsignedp = unsignedp0;
2560 constant = tree_low_cst (primop1, 0);
2561 }
2562
2563 bits = TYPE_PRECISION (TREE_TYPE (primop));
2564 if (bits < TYPE_PRECISION (result_type)
2565 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
2566 {
2567 mask = (~ (HOST_WIDE_INT) 0) << bits;
2568 if ((mask & constant) != mask)
2569 warning ("comparison of promoted ~unsigned with constant");
2570 }
2571 }
2572 else if (unsignedp0 && unsignedp1
2573 && (TYPE_PRECISION (TREE_TYPE (primop0))
2574 < TYPE_PRECISION (result_type))
2575 && (TYPE_PRECISION (TREE_TYPE (primop1))
2576 < TYPE_PRECISION (result_type)))
2577 warning ("comparison of promoted ~unsigned with unsigned");
2578 }
2579 }
2580 }
2581 }
2582
2583 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2584 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2585 Then the expression will be built.
2586 It will be given type FINAL_TYPE if that is nonzero;
2587 otherwise, it will be given type RESULT_TYPE. */
2588
2589 if (!result_type)
2590 {
2591 binary_op_error (code);
2592 return error_mark_node;
2593 }
2594
2595 if (! converted)
2596 {
2597 if (TREE_TYPE (op0) != result_type)
2598 op0 = convert (result_type, op0);
2599 if (TREE_TYPE (op1) != result_type)
2600 op1 = convert (result_type, op1);
2601 }
2602
2603 if (build_type == NULL_TREE)
2604 build_type = result_type;
2605
2606 {
2607 tree result = build (resultcode, build_type, op0, op1);
2608 tree folded;
2609
2610 folded = fold (result);
2611 if (folded == result)
2612 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2613 if (final_type != 0)
2614 return convert (final_type, folded);
2615 return folded;
2616 }
2617 }
2618 \f
2619 /* Return a tree for the difference of pointers OP0 and OP1.
2620 The resulting tree has type int. */
2621
2622 static tree
2623 pointer_diff (op0, op1)
2624 tree op0, op1;
2625 {
2626 tree result, folded;
2627 tree restype = ptrdiff_type_node;
2628
2629 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2630 tree con0, con1, lit0, lit1;
2631 tree orig_op1 = op1;
2632
2633 if (pedantic || warn_pointer_arith)
2634 {
2635 if (TREE_CODE (target_type) == VOID_TYPE)
2636 pedwarn ("pointer of type `void *' used in subtraction");
2637 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2638 pedwarn ("pointer to a function used in subtraction");
2639 }
2640
2641 /* If the conversion to ptrdiff_type does anything like widening or
2642 converting a partial to an integral mode, we get a convert_expression
2643 that is in the way to do any simplifications.
2644 (fold-const.c doesn't know that the extra bits won't be needed.
2645 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2646 different mode in place.)
2647 So first try to find a common term here 'by hand'; we want to cover
2648 at least the cases that occur in legal static initializers. */
2649 con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2650 con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2651
2652 if (TREE_CODE (con0) == PLUS_EXPR)
2653 {
2654 lit0 = TREE_OPERAND (con0, 1);
2655 con0 = TREE_OPERAND (con0, 0);
2656 }
2657 else
2658 lit0 = integer_zero_node;
2659
2660 if (TREE_CODE (con1) == PLUS_EXPR)
2661 {
2662 lit1 = TREE_OPERAND (con1, 1);
2663 con1 = TREE_OPERAND (con1, 0);
2664 }
2665 else
2666 lit1 = integer_zero_node;
2667
2668 if (operand_equal_p (con0, con1, 0))
2669 {
2670 op0 = lit0;
2671 op1 = lit1;
2672 }
2673
2674
2675 /* First do the subtraction as integers;
2676 then drop through to build the divide operator.
2677 Do not do default conversions on the minus operator
2678 in case restype is a short type. */
2679
2680 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2681 convert (restype, op1), 0);
2682 /* This generates an error if op1 is pointer to incomplete type. */
2683 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2684 error ("arithmetic on pointer to an incomplete type");
2685
2686 /* This generates an error if op0 is pointer to incomplete type. */
2687 op1 = c_size_in_bytes (target_type);
2688
2689 /* Divide by the size, in easiest possible way. */
2690
2691 result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2692
2693 folded = fold (result);
2694 if (folded == result)
2695 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2696 return folded;
2697 }
2698 \f
2699 /* Construct and perhaps optimize a tree representation
2700 for a unary operation. CODE, a tree_code, specifies the operation
2701 and XARG is the operand.
2702 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2703 the default promotions (such as from short to int).
2704 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2705 allows non-lvalues; this is only used to handle conversion of non-lvalue
2706 arrays to pointers in C99. */
2707
2708 tree
2709 build_unary_op (code, xarg, flag)
2710 enum tree_code code;
2711 tree xarg;
2712 int flag;
2713 {
2714 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2715 tree arg = xarg;
2716 tree argtype = 0;
2717 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2718 tree val;
2719 int noconvert = flag;
2720
2721 if (typecode == ERROR_MARK)
2722 return error_mark_node;
2723 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2724 typecode = INTEGER_TYPE;
2725
2726 switch (code)
2727 {
2728 case CONVERT_EXPR:
2729 /* This is used for unary plus, because a CONVERT_EXPR
2730 is enough to prevent anybody from looking inside for
2731 associativity, but won't generate any code. */
2732 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2733 || typecode == COMPLEX_TYPE))
2734 {
2735 error ("wrong type argument to unary plus");
2736 return error_mark_node;
2737 }
2738 else if (!noconvert)
2739 arg = default_conversion (arg);
2740 break;
2741
2742 case NEGATE_EXPR:
2743 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2744 || typecode == COMPLEX_TYPE))
2745 {
2746 error ("wrong type argument to unary minus");
2747 return error_mark_node;
2748 }
2749 else if (!noconvert)
2750 arg = default_conversion (arg);
2751 break;
2752
2753 case BIT_NOT_EXPR:
2754 if (typecode == COMPLEX_TYPE)
2755 {
2756 code = CONJ_EXPR;
2757 if (pedantic)
2758 pedwarn ("ISO C does not support `~' for complex conjugation");
2759 if (!noconvert)
2760 arg = default_conversion (arg);
2761 }
2762 else if (typecode != INTEGER_TYPE)
2763 {
2764 error ("wrong type argument to bit-complement");
2765 return error_mark_node;
2766 }
2767 else if (!noconvert)
2768 arg = default_conversion (arg);
2769 break;
2770
2771 case ABS_EXPR:
2772 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2773 || typecode == COMPLEX_TYPE))
2774 {
2775 error ("wrong type argument to abs");
2776 return error_mark_node;
2777 }
2778 else if (!noconvert)
2779 arg = default_conversion (arg);
2780 break;
2781
2782 case CONJ_EXPR:
2783 /* Conjugating a real value is a no-op, but allow it anyway. */
2784 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2785 || typecode == COMPLEX_TYPE))
2786 {
2787 error ("wrong type argument to conjugation");
2788 return error_mark_node;
2789 }
2790 else if (!noconvert)
2791 arg = default_conversion (arg);
2792 break;
2793
2794 case TRUTH_NOT_EXPR:
2795 if (typecode != INTEGER_TYPE
2796 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2797 && typecode != COMPLEX_TYPE
2798 /* These will convert to a pointer. */
2799 && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2800 {
2801 error ("wrong type argument to unary exclamation mark");
2802 return error_mark_node;
2803 }
2804 arg = c_common_truthvalue_conversion (arg);
2805 return invert_truthvalue (arg);
2806
2807 case NOP_EXPR:
2808 break;
2809
2810 case REALPART_EXPR:
2811 if (TREE_CODE (arg) == COMPLEX_CST)
2812 return TREE_REALPART (arg);
2813 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2814 return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2815 else
2816 return arg;
2817
2818 case IMAGPART_EXPR:
2819 if (TREE_CODE (arg) == COMPLEX_CST)
2820 return TREE_IMAGPART (arg);
2821 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2822 return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2823 else
2824 return convert (TREE_TYPE (arg), integer_zero_node);
2825
2826 case PREINCREMENT_EXPR:
2827 case POSTINCREMENT_EXPR:
2828 case PREDECREMENT_EXPR:
2829 case POSTDECREMENT_EXPR:
2830 /* Handle complex lvalues (when permitted)
2831 by reduction to simpler cases. */
2832
2833 val = unary_complex_lvalue (code, arg, 0);
2834 if (val != 0)
2835 return val;
2836
2837 /* Increment or decrement the real part of the value,
2838 and don't change the imaginary part. */
2839 if (typecode == COMPLEX_TYPE)
2840 {
2841 tree real, imag;
2842
2843 if (pedantic)
2844 pedwarn ("ISO C does not support `++' and `--' on complex types");
2845
2846 arg = stabilize_reference (arg);
2847 real = build_unary_op (REALPART_EXPR, arg, 1);
2848 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2849 return build (COMPLEX_EXPR, TREE_TYPE (arg),
2850 build_unary_op (code, real, 1), imag);
2851 }
2852
2853 /* Report invalid types. */
2854
2855 if (typecode != POINTER_TYPE
2856 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2857 {
2858 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2859 error ("wrong type argument to increment");
2860 else
2861 error ("wrong type argument to decrement");
2862
2863 return error_mark_node;
2864 }
2865
2866 {
2867 tree inc;
2868 tree result_type = TREE_TYPE (arg);
2869
2870 arg = get_unwidened (arg, 0);
2871 argtype = TREE_TYPE (arg);
2872
2873 /* Compute the increment. */
2874
2875 if (typecode == POINTER_TYPE)
2876 {
2877 /* If pointer target is an undefined struct,
2878 we just cannot know how to do the arithmetic. */
2879 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2880 {
2881 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2882 error ("increment of pointer to unknown structure");
2883 else
2884 error ("decrement of pointer to unknown structure");
2885 }
2886 else if ((pedantic || warn_pointer_arith)
2887 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2888 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2889 {
2890 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2891 pedwarn ("wrong type argument to increment");
2892 else
2893 pedwarn ("wrong type argument to decrement");
2894 }
2895
2896 inc = c_size_in_bytes (TREE_TYPE (result_type));
2897 }
2898 else
2899 inc = integer_one_node;
2900
2901 inc = convert (argtype, inc);
2902
2903 /* Handle incrementing a cast-expression. */
2904
2905 while (1)
2906 switch (TREE_CODE (arg))
2907 {
2908 case NOP_EXPR:
2909 case CONVERT_EXPR:
2910 case FLOAT_EXPR:
2911 case FIX_TRUNC_EXPR:
2912 case FIX_FLOOR_EXPR:
2913 case FIX_ROUND_EXPR:
2914 case FIX_CEIL_EXPR:
2915 pedantic_lvalue_warning (CONVERT_EXPR);
2916 /* If the real type has the same machine representation
2917 as the type it is cast to, we can make better output
2918 by adding directly to the inside of the cast. */
2919 if ((TREE_CODE (TREE_TYPE (arg))
2920 == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
2921 && (TYPE_MODE (TREE_TYPE (arg))
2922 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
2923 arg = TREE_OPERAND (arg, 0);
2924 else
2925 {
2926 tree incremented, modify, value;
2927 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2928 value = boolean_increment (code, arg);
2929 else
2930 {
2931 arg = stabilize_reference (arg);
2932 if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
2933 value = arg;
2934 else
2935 value = save_expr (arg);
2936 incremented = build (((code == PREINCREMENT_EXPR
2937 || code == POSTINCREMENT_EXPR)
2938 ? PLUS_EXPR : MINUS_EXPR),
2939 argtype, value, inc);
2940 TREE_SIDE_EFFECTS (incremented) = 1;
2941 modify = build_modify_expr (arg, NOP_EXPR, incremented);
2942 value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
2943 }
2944 TREE_USED (value) = 1;
2945 return value;
2946 }
2947 break;
2948
2949 default:
2950 goto give_up;
2951 }
2952 give_up:
2953
2954 /* Complain about anything else that is not a true lvalue. */
2955 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2956 || code == POSTINCREMENT_EXPR)
2957 ? "invalid lvalue in increment"
2958 : "invalid lvalue in decrement")))
2959 return error_mark_node;
2960
2961 /* Report a read-only lvalue. */
2962 if (TREE_READONLY (arg))
2963 readonly_warning (arg,
2964 ((code == PREINCREMENT_EXPR
2965 || code == POSTINCREMENT_EXPR)
2966 ? "increment" : "decrement"));
2967
2968 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2969 val = boolean_increment (code, arg);
2970 else
2971 val = build (code, TREE_TYPE (arg), arg, inc);
2972 TREE_SIDE_EFFECTS (val) = 1;
2973 val = convert (result_type, val);
2974 if (TREE_CODE (val) != code)
2975 TREE_NO_UNUSED_WARNING (val) = 1;
2976 return val;
2977 }
2978
2979 case ADDR_EXPR:
2980 /* Note that this operation never does default_conversion. */
2981
2982 /* Let &* cancel out to simplify resulting code. */
2983 if (TREE_CODE (arg) == INDIRECT_REF)
2984 {
2985 /* Don't let this be an lvalue. */
2986 if (lvalue_p (TREE_OPERAND (arg, 0)))
2987 return non_lvalue (TREE_OPERAND (arg, 0));
2988 return TREE_OPERAND (arg, 0);
2989 }
2990
2991 /* For &x[y], return x+y */
2992 if (TREE_CODE (arg) == ARRAY_REF)
2993 {
2994 if (!c_mark_addressable (TREE_OPERAND (arg, 0)))
2995 return error_mark_node;
2996 return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
2997 TREE_OPERAND (arg, 1), 1);
2998 }
2999
3000 /* Handle complex lvalues (when permitted)
3001 by reduction to simpler cases. */
3002 val = unary_complex_lvalue (code, arg, flag);
3003 if (val != 0)
3004 return val;
3005
3006 #if 0 /* Turned off because inconsistent;
3007 float f; *&(int)f = 3.4 stores in int format
3008 whereas (int)f = 3.4 stores in float format. */
3009 /* Address of a cast is just a cast of the address
3010 of the operand of the cast. */
3011 switch (TREE_CODE (arg))
3012 {
3013 case NOP_EXPR:
3014 case CONVERT_EXPR:
3015 case FLOAT_EXPR:
3016 case FIX_TRUNC_EXPR:
3017 case FIX_FLOOR_EXPR:
3018 case FIX_ROUND_EXPR:
3019 case FIX_CEIL_EXPR:
3020 if (pedantic)
3021 pedwarn ("ISO C forbids the address of a cast expression");
3022 return convert (build_pointer_type (TREE_TYPE (arg)),
3023 build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
3024 0));
3025 }
3026 #endif
3027
3028 /* Anything not already handled and not a true memory reference
3029 or a non-lvalue array is an error. */
3030 else if (typecode != FUNCTION_TYPE && !flag
3031 && !lvalue_or_else (arg, "invalid lvalue in unary `&'"))
3032 return error_mark_node;
3033
3034 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3035 argtype = TREE_TYPE (arg);
3036
3037 /* If the lvalue is const or volatile, merge that into the type
3038 to which the address will point. Note that you can't get a
3039 restricted pointer by taking the address of something, so we
3040 only have to deal with `const' and `volatile' here. */
3041 if ((DECL_P (arg) || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
3042 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3043 argtype = c_build_type_variant (argtype,
3044 TREE_READONLY (arg),
3045 TREE_THIS_VOLATILE (arg));
3046
3047 argtype = build_pointer_type (argtype);
3048
3049 if (!c_mark_addressable (arg))
3050 return error_mark_node;
3051
3052 {
3053 tree addr;
3054
3055 if (TREE_CODE (arg) == COMPONENT_REF)
3056 {
3057 tree field = TREE_OPERAND (arg, 1);
3058
3059 addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), flag);
3060
3061 if (DECL_C_BIT_FIELD (field))
3062 {
3063 error ("attempt to take address of bit-field structure member `%s'",
3064 IDENTIFIER_POINTER (DECL_NAME (field)));
3065 return error_mark_node;
3066 }
3067
3068 addr = fold (build (PLUS_EXPR, argtype,
3069 convert (argtype, addr),
3070 convert (argtype, byte_position (field))));
3071 }
3072 else
3073 addr = build1 (code, argtype, arg);
3074
3075 /* Address of a static or external variable or
3076 file-scope function counts as a constant. */
3077 if (staticp (arg)
3078 && ! (TREE_CODE (arg) == FUNCTION_DECL
3079 && DECL_CONTEXT (arg) != 0))
3080 TREE_CONSTANT (addr) = 1;
3081 return addr;
3082 }
3083
3084 default:
3085 break;
3086 }
3087
3088 if (argtype == 0)
3089 argtype = TREE_TYPE (arg);
3090 return fold (build1 (code, argtype, arg));
3091 }
3092
3093 #if 0
3094 /* If CONVERSIONS is a conversion expression or a nested sequence of such,
3095 convert ARG with the same conversions in the same order
3096 and return the result. */
3097
3098 static tree
3099 convert_sequence (conversions, arg)
3100 tree conversions;
3101 tree arg;
3102 {
3103 switch (TREE_CODE (conversions))
3104 {
3105 case NOP_EXPR:
3106 case CONVERT_EXPR:
3107 case FLOAT_EXPR:
3108 case FIX_TRUNC_EXPR:
3109 case FIX_FLOOR_EXPR:
3110 case FIX_ROUND_EXPR:
3111 case FIX_CEIL_EXPR:
3112 return convert (TREE_TYPE (conversions),
3113 convert_sequence (TREE_OPERAND (conversions, 0),
3114 arg));
3115
3116 default:
3117 return arg;
3118 }
3119 }
3120 #endif /* 0 */
3121
3122 /* Return nonzero if REF is an lvalue valid for this language.
3123 Lvalues can be assigned, unless their type has TYPE_READONLY.
3124 Lvalues can have their address taken, unless they have DECL_REGISTER. */
3125
3126 int
3127 lvalue_p (ref)
3128 tree ref;
3129 {
3130 enum tree_code code = TREE_CODE (ref);
3131
3132 switch (code)
3133 {
3134 case REALPART_EXPR:
3135 case IMAGPART_EXPR:
3136 case COMPONENT_REF:
3137 return lvalue_p (TREE_OPERAND (ref, 0));
3138
3139 case COMPOUND_LITERAL_EXPR:
3140 case STRING_CST:
3141 return 1;
3142
3143 case INDIRECT_REF:
3144 case ARRAY_REF:
3145 case VAR_DECL:
3146 case PARM_DECL:
3147 case RESULT_DECL:
3148 case ERROR_MARK:
3149 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3150 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3151
3152 case BIND_EXPR:
3153 case RTL_EXPR:
3154 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3155
3156 default:
3157 return 0;
3158 }
3159 }
3160
3161 /* Return nonzero if REF is an lvalue valid for this language;
3162 otherwise, print an error message and return zero. */
3163
3164 int
3165 lvalue_or_else (ref, msgid)
3166 tree ref;
3167 const char *msgid;
3168 {
3169 int win = lvalue_p (ref);
3170
3171 if (! win)
3172 error ("%s", msgid);
3173
3174 return win;
3175 }
3176
3177 /* Apply unary lvalue-demanding operator CODE to the expression ARG
3178 for certain kinds of expressions which are not really lvalues
3179 but which we can accept as lvalues. If FLAG is nonzero, then
3180 non-lvalues are OK since we may be converting a non-lvalue array to
3181 a pointer in C99.
3182
3183 If ARG is not a kind of expression we can handle, return zero. */
3184
3185 static tree
3186 unary_complex_lvalue (code, arg, flag)
3187 enum tree_code code;
3188 tree arg;
3189 int flag;
3190 {
3191 /* Handle (a, b) used as an "lvalue". */
3192 if (TREE_CODE (arg) == COMPOUND_EXPR)
3193 {
3194 tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3195
3196 /* If this returns a function type, it isn't really being used as
3197 an lvalue, so don't issue a warning about it. */
3198 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3199 pedantic_lvalue_warning (COMPOUND_EXPR);
3200
3201 return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3202 TREE_OPERAND (arg, 0), real_result);
3203 }
3204
3205 /* Handle (a ? b : c) used as an "lvalue". */
3206 if (TREE_CODE (arg) == COND_EXPR)
3207 {
3208 if (!flag)
3209 pedantic_lvalue_warning (COND_EXPR);
3210 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3211 pedantic_lvalue_warning (COMPOUND_EXPR);
3212
3213 return (build_conditional_expr
3214 (TREE_OPERAND (arg, 0),
3215 build_unary_op (code, TREE_OPERAND (arg, 1), flag),
3216 build_unary_op (code, TREE_OPERAND (arg, 2), flag)));
3217 }
3218
3219 return 0;
3220 }
3221
3222 /* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
3223 COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
3224
3225 static void
3226 pedantic_lvalue_warning (code)
3227 enum tree_code code;
3228 {
3229 if (pedantic)
3230 switch (code)
3231 {
3232 case COND_EXPR:
3233 pedwarn ("ISO C forbids use of conditional expressions as lvalues");
3234 break;
3235 case COMPOUND_EXPR:
3236 pedwarn ("ISO C forbids use of compound expressions as lvalues");
3237 break;
3238 default:
3239 pedwarn ("ISO C forbids use of cast expressions as lvalues");
3240 break;
3241 }
3242 }
3243 \f
3244 /* Warn about storing in something that is `const'. */
3245
3246 void
3247 readonly_warning (arg, msgid)
3248 tree arg;
3249 const char *msgid;
3250 {
3251 if (TREE_CODE (arg) == COMPONENT_REF)
3252 {
3253 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3254 readonly_warning (TREE_OPERAND (arg, 0), msgid);
3255 else
3256 pedwarn ("%s of read-only member `%s'", _(msgid),
3257 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
3258 }
3259 else if (TREE_CODE (arg) == VAR_DECL)
3260 pedwarn ("%s of read-only variable `%s'", _(msgid),
3261 IDENTIFIER_POINTER (DECL_NAME (arg)));
3262 else
3263 pedwarn ("%s of read-only location", _(msgid));
3264 }
3265 \f
3266 /* Mark EXP saying that we need to be able to take the
3267 address of it; it should not be allocated in a register.
3268 Returns true if successful. */
3269
3270 bool
3271 c_mark_addressable (exp)
3272 tree exp;
3273 {
3274 tree x = exp;
3275
3276 while (1)
3277 switch (TREE_CODE (x))
3278 {
3279 case COMPONENT_REF:
3280 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3281 {
3282 error ("cannot take address of bit-field `%s'",
3283 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
3284 return false;
3285 }
3286
3287 /* ... fall through ... */
3288
3289 case ADDR_EXPR:
3290 case ARRAY_REF:
3291 case REALPART_EXPR:
3292 case IMAGPART_EXPR:
3293 x = TREE_OPERAND (x, 0);
3294 break;
3295
3296 case COMPOUND_LITERAL_EXPR:
3297 case CONSTRUCTOR:
3298 TREE_ADDRESSABLE (x) = 1;
3299 return true;
3300
3301 case VAR_DECL:
3302 case CONST_DECL:
3303 case PARM_DECL:
3304 case RESULT_DECL:
3305 if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
3306 && DECL_NONLOCAL (x))
3307 {
3308 if (TREE_PUBLIC (x))
3309 {
3310 error ("global register variable `%s' used in nested function",
3311 IDENTIFIER_POINTER (DECL_NAME (x)));
3312 return false;
3313 }
3314 pedwarn ("register variable `%s' used in nested function",
3315 IDENTIFIER_POINTER (DECL_NAME (x)));
3316 }
3317 else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
3318 {
3319 if (TREE_PUBLIC (x))
3320 {
3321 error ("address of global register variable `%s' requested",
3322 IDENTIFIER_POINTER (DECL_NAME (x)));
3323 return false;
3324 }
3325
3326 /* If we are making this addressable due to its having
3327 volatile components, give a different error message. Also
3328 handle the case of an unnamed parameter by not trying
3329 to give the name. */
3330
3331 else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
3332 {
3333 error ("cannot put object with volatile field into register");
3334 return false;
3335 }
3336
3337 pedwarn ("address of register variable `%s' requested",
3338 IDENTIFIER_POINTER (DECL_NAME (x)));
3339 }
3340 put_var_into_stack (x);
3341
3342 /* drops in */
3343 case FUNCTION_DECL:
3344 TREE_ADDRESSABLE (x) = 1;
3345 #if 0 /* poplevel deals with this now. */
3346 if (DECL_CONTEXT (x) == 0)
3347 TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
3348 #endif
3349
3350 default:
3351 return true;
3352 }
3353 }
3354 \f
3355 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3356
3357 tree
3358 build_conditional_expr (ifexp, op1, op2)
3359 tree ifexp, op1, op2;
3360 {
3361 tree type1;
3362 tree type2;
3363 enum tree_code code1;
3364 enum tree_code code2;
3365 tree result_type = NULL;
3366 tree orig_op1 = op1, orig_op2 = op2;
3367
3368 ifexp = c_common_truthvalue_conversion (default_conversion (ifexp));
3369
3370 #if 0 /* Produces wrong result if within sizeof. */
3371 /* Don't promote the operands separately if they promote
3372 the same way. Return the unpromoted type and let the combined
3373 value get promoted if necessary. */
3374
3375 if (TREE_TYPE (op1) == TREE_TYPE (op2)
3376 && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
3377 && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
3378 && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
3379 {
3380 if (TREE_CODE (ifexp) == INTEGER_CST)
3381 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3382
3383 return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
3384 }
3385 #endif
3386
3387 /* Promote both alternatives. */
3388
3389 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3390 op1 = default_conversion (op1);
3391 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3392 op2 = default_conversion (op2);
3393
3394 if (TREE_CODE (ifexp) == ERROR_MARK
3395 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3396 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3397 return error_mark_node;
3398
3399 type1 = TREE_TYPE (op1);
3400 code1 = TREE_CODE (type1);
3401 type2 = TREE_TYPE (op2);
3402 code2 = TREE_CODE (type2);
3403
3404 /* Quickly detect the usual case where op1 and op2 have the same type
3405 after promotion. */
3406 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3407 {
3408 if (type1 == type2)
3409 result_type = type1;
3410 else
3411 result_type = TYPE_MAIN_VARIANT (type1);
3412 }
3413 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3414 || code1 == COMPLEX_TYPE)
3415 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3416 || code2 == COMPLEX_TYPE))
3417 {
3418 result_type = common_type (type1, type2);
3419
3420 /* If -Wsign-compare, warn here if type1 and type2 have
3421 different signedness. We'll promote the signed to unsigned
3422 and later code won't know it used to be different.
3423 Do this check on the original types, so that explicit casts
3424 will be considered, but default promotions won't. */
3425 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare)
3426 && !skip_evaluation)
3427 {
3428 int unsigned_op1 = TREE_UNSIGNED (TREE_TYPE (orig_op1));
3429 int unsigned_op2 = TREE_UNSIGNED (TREE_TYPE (orig_op2));
3430
3431 if (unsigned_op1 ^ unsigned_op2)
3432 {
3433 /* Do not warn if the result type is signed, since the
3434 signed type will only be chosen if it can represent
3435 all the values of the unsigned type. */
3436 if (! TREE_UNSIGNED (result_type))
3437 /* OK */;
3438 /* Do not warn if the signed quantity is an unsuffixed
3439 integer literal (or some static constant expression
3440 involving such literals) and it is non-negative. */
3441 else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3442 || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3443 /* OK */;
3444 else
3445 warning ("signed and unsigned type in conditional expression");
3446 }
3447 }
3448 }
3449 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3450 {
3451 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3452 pedwarn ("ISO C forbids conditional expr with only one void side");
3453 result_type = void_type_node;
3454 }
3455 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3456 {
3457 if (comp_target_types (type1, type2))
3458 result_type = common_type (type1, type2);
3459 else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3460 && TREE_CODE (orig_op1) != NOP_EXPR)
3461 result_type = qualify_type (type2, type1);
3462 else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3463 && TREE_CODE (orig_op2) != NOP_EXPR)
3464 result_type = qualify_type (type1, type2);
3465 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3466 {
3467 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3468 pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3469 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3470 TREE_TYPE (type2)));
3471 }
3472 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3473 {
3474 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3475 pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3476 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3477 TREE_TYPE (type1)));
3478 }
3479 else
3480 {
3481 pedwarn ("pointer type mismatch in conditional expression");
3482 result_type = build_pointer_type (void_type_node);
3483 }
3484 }
3485 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3486 {
3487 if (! integer_zerop (op2))
3488 pedwarn ("pointer/integer type mismatch in conditional expression");
3489 else
3490 {
3491 op2 = null_pointer_node;
3492 }
3493 result_type = type1;
3494 }
3495 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3496 {
3497 if (!integer_zerop (op1))
3498 pedwarn ("pointer/integer type mismatch in conditional expression");
3499 else
3500 {
3501 op1 = null_pointer_node;
3502 }
3503 result_type = type2;
3504 }
3505
3506 if (!result_type)
3507 {
3508 if (flag_cond_mismatch)
3509 result_type = void_type_node;
3510 else
3511 {
3512 error ("type mismatch in conditional expression");
3513 return error_mark_node;
3514 }
3515 }
3516
3517 /* Merge const and volatile flags of the incoming types. */
3518 result_type
3519 = build_type_variant (result_type,
3520 TREE_READONLY (op1) || TREE_READONLY (op2),
3521 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3522
3523 if (result_type != TREE_TYPE (op1))
3524 op1 = convert_and_check (result_type, op1);
3525 if (result_type != TREE_TYPE (op2))
3526 op2 = convert_and_check (result_type, op2);
3527
3528 if (TREE_CODE (ifexp) == INTEGER_CST)
3529 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3530
3531 return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
3532 }
3533 \f
3534 /* Given a list of expressions, return a compound expression
3535 that performs them all and returns the value of the last of them. */
3536
3537 tree
3538 build_compound_expr (list)
3539 tree list;
3540 {
3541 return internal_build_compound_expr (list, TRUE);
3542 }
3543
3544 static tree
3545 internal_build_compound_expr (list, first_p)
3546 tree list;
3547 int first_p;
3548 {
3549 tree rest;
3550
3551 if (TREE_CHAIN (list) == 0)
3552 {
3553 /* Convert arrays and functions to pointers when there
3554 really is a comma operator. */
3555 if (!first_p)
3556 TREE_VALUE (list)
3557 = default_function_array_conversion (TREE_VALUE (list));
3558
3559 #if 0 /* If something inside inhibited lvalueness, we should not override. */
3560 /* Consider (x, y+0), which is not an lvalue since y+0 is not. */
3561
3562 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3563 if (TREE_CODE (list) == NON_LVALUE_EXPR)
3564 list = TREE_OPERAND (list, 0);
3565 #endif
3566
3567 /* Don't let (0, 0) be null pointer constant. */
3568 if (!first_p && integer_zerop (TREE_VALUE (list)))
3569 return non_lvalue (TREE_VALUE (list));
3570 return TREE_VALUE (list);
3571 }
3572
3573 rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
3574
3575 if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
3576 {
3577 /* The left-hand operand of a comma expression is like an expression
3578 statement: with -W or -Wunused, we should warn if it doesn't have
3579 any side-effects, unless it was explicitly cast to (void). */
3580 if ((extra_warnings || warn_unused_value)
3581 && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
3582 && VOID_TYPE_P (TREE_TYPE (TREE_VALUE (list)))))
3583 warning ("left-hand operand of comma expression has no effect");
3584
3585 /* When pedantic, a compound expression can be neither an lvalue
3586 nor an integer constant expression. */
3587 if (! pedantic)
3588 return rest;
3589 }
3590
3591 /* With -Wunused, we should also warn if the left-hand operand does have
3592 side-effects, but computes a value which is not used. For example, in
3593 `foo() + bar(), baz()' the result of the `+' operator is not used,
3594 so we should issue a warning. */
3595 else if (warn_unused_value)
3596 warn_if_unused_value (TREE_VALUE (list));
3597
3598 return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
3599 }
3600
3601 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3602
3603 tree
3604 build_c_cast (type, expr)
3605 tree type;
3606 tree expr;
3607 {
3608 tree value = expr;
3609
3610 if (type == error_mark_node || expr == error_mark_node)
3611 return error_mark_node;
3612 type = TYPE_MAIN_VARIANT (type);
3613
3614 #if 0
3615 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3616 if (TREE_CODE (value) == NON_LVALUE_EXPR)
3617 value = TREE_OPERAND (value, 0);
3618 #endif
3619
3620 if (TREE_CODE (type) == ARRAY_TYPE)
3621 {
3622 error ("cast specifies array type");
3623 return error_mark_node;
3624 }
3625
3626 if (TREE_CODE (type) == FUNCTION_TYPE)
3627 {
3628 error ("cast specifies function type");
3629 return error_mark_node;
3630 }
3631
3632 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3633 {
3634 if (pedantic)
3635 {
3636 if (TREE_CODE (type) == RECORD_TYPE
3637 || TREE_CODE (type) == UNION_TYPE)
3638 pedwarn ("ISO C forbids casting nonscalar to the same type");
3639 }
3640 }
3641 else if (TREE_CODE (type) == UNION_TYPE)
3642 {
3643 tree field;
3644 value = default_function_array_conversion (value);
3645
3646 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3647 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3648 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3649 break;
3650
3651 if (field)
3652 {
3653 const char *name;
3654 tree t;
3655
3656 if (pedantic)
3657 pedwarn ("ISO C forbids casts to union type");
3658 if (TYPE_NAME (type) != 0)
3659 {
3660 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3661 name = IDENTIFIER_POINTER (TYPE_NAME (type));
3662 else
3663 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
3664 }
3665 else
3666 name = "";
3667 t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
3668 build_tree_list (field, value)), 0);
3669 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3670 return t;
3671 }
3672 error ("cast to union type from type not present in union");
3673 return error_mark_node;
3674 }
3675 else
3676 {
3677 tree otype, ovalue;
3678
3679 /* If casting to void, avoid the error that would come
3680 from default_conversion in the case of a non-lvalue array. */
3681 if (type == void_type_node)
3682 return build1 (CONVERT_EXPR, type, value);
3683
3684 /* Convert functions and arrays to pointers,
3685 but don't convert any other types. */
3686 value = default_function_array_conversion (value);
3687 otype = TREE_TYPE (value);
3688
3689 /* Optionally warn about potentially worrisome casts. */
3690
3691 if (warn_cast_qual
3692 && TREE_CODE (type) == POINTER_TYPE
3693 && TREE_CODE (otype) == POINTER_TYPE)
3694 {
3695 tree in_type = type;
3696 tree in_otype = otype;
3697 int added = 0;
3698 int discarded = 0;
3699
3700 /* Check that the qualifiers on IN_TYPE are a superset of
3701 the qualifiers of IN_OTYPE. The outermost level of
3702 POINTER_TYPE nodes is uninteresting and we stop as soon
3703 as we hit a non-POINTER_TYPE node on either type. */
3704 do
3705 {
3706 in_otype = TREE_TYPE (in_otype);
3707 in_type = TREE_TYPE (in_type);
3708
3709 /* GNU C allows cv-qualified function types. 'const'
3710 means the function is very pure, 'volatile' means it
3711 can't return. We need to warn when such qualifiers
3712 are added, not when they're taken away. */
3713 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3714 && TREE_CODE (in_type) == FUNCTION_TYPE)
3715 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3716 else
3717 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3718 }
3719 while (TREE_CODE (in_type) == POINTER_TYPE
3720 && TREE_CODE (in_otype) == POINTER_TYPE);
3721
3722 if (added)
3723 warning ("cast adds new qualifiers to function type");
3724
3725 if (discarded)
3726 /* There are qualifiers present in IN_OTYPE that are not
3727 present in IN_TYPE. */
3728 warning ("cast discards qualifiers from pointer target type");
3729 }
3730
3731 /* Warn about possible alignment problems. */
3732 if (STRICT_ALIGNMENT && warn_cast_align
3733 && TREE_CODE (type) == POINTER_TYPE
3734 && TREE_CODE (otype) == POINTER_TYPE
3735 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3736 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3737 /* Don't warn about opaque types, where the actual alignment
3738 restriction is unknown. */
3739 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3740 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3741 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3742 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3743 warning ("cast increases required alignment of target type");
3744
3745 if (TREE_CODE (type) == INTEGER_TYPE
3746 && TREE_CODE (otype) == POINTER_TYPE
3747 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3748 && !TREE_CONSTANT (value))
3749 warning ("cast from pointer to integer of different size");
3750
3751 if (warn_bad_function_cast
3752 && TREE_CODE (value) == CALL_EXPR
3753 && TREE_CODE (type) != TREE_CODE (otype))
3754 warning ("cast does not match function type");
3755
3756 if (TREE_CODE (type) == POINTER_TYPE
3757 && TREE_CODE (otype) == INTEGER_TYPE
3758 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3759 /* Don't warn about converting any constant. */
3760 && !TREE_CONSTANT (value))
3761 warning ("cast to pointer from integer of different size");
3762
3763 ovalue = value;
3764 value = convert (type, value);
3765
3766 /* Ignore any integer overflow caused by the cast. */
3767 if (TREE_CODE (value) == INTEGER_CST)
3768 {
3769 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3770 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3771 }
3772 }
3773
3774 /* Pedantically, don't let (void *) (FOO *) 0 be a null pointer constant. */
3775 if (pedantic && TREE_CODE (value) == INTEGER_CST
3776 && TREE_CODE (expr) == INTEGER_CST
3777 && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
3778 value = non_lvalue (value);
3779
3780 /* If pedantic, don't let a cast be an lvalue. */
3781 if (value == expr && pedantic)
3782 value = non_lvalue (value);
3783
3784 return value;
3785 }
3786
3787 /* Interpret a cast of expression EXPR to type TYPE. */
3788 tree
3789 c_cast_expr (type, expr)
3790 tree type, expr;
3791 {
3792 int saved_wsp = warn_strict_prototypes;
3793
3794 /* This avoids warnings about unprototyped casts on
3795 integers. E.g. "#define SIG_DFL (void(*)())0". */
3796 if (TREE_CODE (expr) == INTEGER_CST)
3797 warn_strict_prototypes = 0;
3798 type = groktypename (type);
3799 warn_strict_prototypes = saved_wsp;
3800
3801 return build_c_cast (type, expr);
3802 }
3803
3804 \f
3805 /* Build an assignment expression of lvalue LHS from value RHS.
3806 MODIFYCODE is the code for a binary operator that we use
3807 to combine the old value of LHS with RHS to get the new value.
3808 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3809
3810 tree
3811 build_modify_expr (lhs, modifycode, rhs)
3812 tree lhs, rhs;
3813 enum tree_code modifycode;
3814 {
3815 tree result;
3816 tree newrhs;
3817 tree lhstype = TREE_TYPE (lhs);
3818 tree olhstype = lhstype;
3819
3820 /* Types that aren't fully specified cannot be used in assignments. */
3821 lhs = require_complete_type (lhs);
3822
3823 /* Avoid duplicate error messages from operands that had errors. */
3824 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3825 return error_mark_node;
3826
3827 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3828 /* Do not use STRIP_NOPS here. We do not want an enumerator
3829 whose value is 0 to count as a null pointer constant. */
3830 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3831 rhs = TREE_OPERAND (rhs, 0);
3832
3833 newrhs = rhs;
3834
3835 /* Handle control structure constructs used as "lvalues". */
3836
3837 switch (TREE_CODE (lhs))
3838 {
3839 /* Handle (a, b) used as an "lvalue". */
3840 case COMPOUND_EXPR:
3841 pedantic_lvalue_warning (COMPOUND_EXPR);
3842 newrhs = build_modify_expr (TREE_OPERAND (lhs, 1), modifycode, rhs);
3843 if (TREE_CODE (newrhs) == ERROR_MARK)
3844 return error_mark_node;
3845 return build (COMPOUND_EXPR, lhstype,
3846 TREE_OPERAND (lhs, 0), newrhs);
3847
3848 /* Handle (a ? b : c) used as an "lvalue". */
3849 case COND_EXPR:
3850 pedantic_lvalue_warning (COND_EXPR);
3851 rhs = save_expr (rhs);
3852 {
3853 /* Produce (a ? (b = rhs) : (c = rhs))
3854 except that the RHS goes through a save-expr
3855 so the code to compute it is only emitted once. */
3856 tree cond
3857 = build_conditional_expr (TREE_OPERAND (lhs, 0),
3858 build_modify_expr (TREE_OPERAND (lhs, 1),
3859 modifycode, rhs),
3860 build_modify_expr (TREE_OPERAND (lhs, 2),
3861 modifycode, rhs));
3862 if (TREE_CODE (cond) == ERROR_MARK)
3863 return cond;
3864 /* Make sure the code to compute the rhs comes out
3865 before the split. */
3866 return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3867 /* But cast it to void to avoid an "unused" error. */
3868 convert (void_type_node, rhs), cond);
3869 }
3870 default:
3871 break;
3872 }
3873
3874 /* If a binary op has been requested, combine the old LHS value with the RHS
3875 producing the value we should actually store into the LHS. */
3876
3877 if (modifycode != NOP_EXPR)
3878 {
3879 lhs = stabilize_reference (lhs);
3880 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3881 }
3882
3883 /* Handle a cast used as an "lvalue".
3884 We have already performed any binary operator using the value as cast.
3885 Now convert the result to the cast type of the lhs,
3886 and then true type of the lhs and store it there;
3887 then convert result back to the cast type to be the value
3888 of the assignment. */
3889
3890 switch (TREE_CODE (lhs))
3891 {
3892 case NOP_EXPR:
3893 case CONVERT_EXPR:
3894 case FLOAT_EXPR:
3895 case FIX_TRUNC_EXPR:
3896 case FIX_FLOOR_EXPR:
3897 case FIX_ROUND_EXPR:
3898 case FIX_CEIL_EXPR:
3899 newrhs = default_function_array_conversion (newrhs);
3900 {
3901 tree inner_lhs = TREE_OPERAND (lhs, 0);
3902 tree result;
3903 result = build_modify_expr (inner_lhs, NOP_EXPR,
3904 convert (TREE_TYPE (inner_lhs),
3905 convert (lhstype, newrhs)));
3906 if (TREE_CODE (result) == ERROR_MARK)
3907 return result;
3908 pedantic_lvalue_warning (CONVERT_EXPR);
3909 return convert (TREE_TYPE (lhs), result);
3910 }
3911
3912 default:
3913 break;
3914 }
3915
3916 /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3917 Reject anything strange now. */
3918
3919 if (!lvalue_or_else (lhs, "invalid lvalue in assignment"))
3920 return error_mark_node;
3921
3922 /* Warn about storing in something that is `const'. */
3923
3924 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3925 || ((TREE_CODE (lhstype) == RECORD_TYPE
3926 || TREE_CODE (lhstype) == UNION_TYPE)
3927 && C_TYPE_FIELDS_READONLY (lhstype)))
3928 readonly_warning (lhs, "assignment");
3929
3930 /* If storing into a structure or union member,
3931 it has probably been given type `int'.
3932 Compute the type that would go with
3933 the actual amount of storage the member occupies. */
3934
3935 if (TREE_CODE (lhs) == COMPONENT_REF
3936 && (TREE_CODE (lhstype) == INTEGER_TYPE
3937 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3938 || TREE_CODE (lhstype) == REAL_TYPE
3939 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3940 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3941
3942 /* If storing in a field that is in actuality a short or narrower than one,
3943 we must store in the field in its actual type. */
3944
3945 if (lhstype != TREE_TYPE (lhs))
3946 {
3947 lhs = copy_node (lhs);
3948 TREE_TYPE (lhs) = lhstype;
3949 }
3950
3951 /* Convert new value to destination type. */
3952
3953 newrhs = convert_for_assignment (lhstype, newrhs, _("assignment"),
3954 NULL_TREE, NULL_TREE, 0);
3955 if (TREE_CODE (newrhs) == ERROR_MARK)
3956 return error_mark_node;
3957
3958 /* Scan operands */
3959
3960 result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
3961 TREE_SIDE_EFFECTS (result) = 1;
3962
3963 /* If we got the LHS in a different type for storing in,
3964 convert the result back to the nominal type of LHS
3965 so that the value we return always has the same type
3966 as the LHS argument. */
3967
3968 if (olhstype == TREE_TYPE (result))
3969 return result;
3970 return convert_for_assignment (olhstype, result, _("assignment"),
3971 NULL_TREE, NULL_TREE, 0);
3972 }
3973 \f
3974 /* Convert value RHS to type TYPE as preparation for an assignment
3975 to an lvalue of type TYPE.
3976 The real work of conversion is done by `convert'.
3977 The purpose of this function is to generate error messages
3978 for assignments that are not allowed in C.
3979 ERRTYPE is a string to use in error messages:
3980 "assignment", "return", etc. If it is null, this is parameter passing
3981 for a function call (and different error messages are output).
3982
3983 FUNNAME is the name of the function being called,
3984 as an IDENTIFIER_NODE, or null.
3985 PARMNUM is the number of the argument, for printing in error messages. */
3986
3987 static tree
3988 convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
3989 tree type, rhs;
3990 const char *errtype;
3991 tree fundecl, funname;
3992 int parmnum;
3993 {
3994 enum tree_code codel = TREE_CODE (type);
3995 tree rhstype;
3996 enum tree_code coder;
3997
3998 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3999 /* Do not use STRIP_NOPS here. We do not want an enumerator
4000 whose value is 0 to count as a null pointer constant. */
4001 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
4002 rhs = TREE_OPERAND (rhs, 0);
4003
4004 if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
4005 || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
4006 rhs = default_conversion (rhs);
4007 else if (optimize && TREE_CODE (rhs) == VAR_DECL)
4008 rhs = decl_constant_value_for_broken_optimization (rhs);
4009
4010 rhstype = TREE_TYPE (rhs);
4011 coder = TREE_CODE (rhstype);
4012
4013 if (coder == ERROR_MARK)
4014 return error_mark_node;
4015
4016 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4017 {
4018 overflow_warning (rhs);
4019 /* Check for Objective-C protocols. This will issue a warning if
4020 there are protocol violations. No need to use the return value. */
4021 maybe_objc_comptypes (type, rhstype, 0);
4022 return rhs;
4023 }
4024
4025 if (coder == VOID_TYPE)
4026 {
4027 error ("void value not ignored as it ought to be");
4028 return error_mark_node;
4029 }
4030 /* A type converts to a reference to it.
4031 This code doesn't fully support references, it's just for the
4032 special case of va_start and va_copy. */
4033 if (codel == REFERENCE_TYPE
4034 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4035 {
4036 if (!lvalue_p (rhs))
4037 {
4038 error ("cannot pass rvalue to reference parameter");
4039 return error_mark_node;
4040 }
4041 if (!c_mark_addressable (rhs))
4042 return error_mark_node;
4043 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4044
4045 /* We already know that these two types are compatible, but they
4046 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4047 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4048 likely to be va_list, a typedef to __builtin_va_list, which
4049 is different enough that it will cause problems later. */
4050 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4051 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4052
4053 rhs = build1 (NOP_EXPR, type, rhs);
4054 return rhs;
4055 }
4056 /* Arithmetic types all interconvert, and enum is treated like int. */
4057 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4058 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4059 || codel == BOOLEAN_TYPE)
4060 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4061 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4062 || coder == BOOLEAN_TYPE))
4063 return convert_and_check (type, rhs);
4064
4065 /* Conversion to a transparent union from its member types.
4066 This applies only to function arguments. */
4067 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
4068 {
4069 tree memb_types;
4070 tree marginal_memb_type = 0;
4071
4072 for (memb_types = TYPE_FIELDS (type); memb_types;
4073 memb_types = TREE_CHAIN (memb_types))
4074 {
4075 tree memb_type = TREE_TYPE (memb_types);
4076
4077 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4078 TYPE_MAIN_VARIANT (rhstype)))
4079 break;
4080
4081 if (TREE_CODE (memb_type) != POINTER_TYPE)
4082 continue;
4083
4084 if (coder == POINTER_TYPE)
4085 {
4086 tree ttl = TREE_TYPE (memb_type);
4087 tree ttr = TREE_TYPE (rhstype);
4088
4089 /* Any non-function converts to a [const][volatile] void *
4090 and vice versa; otherwise, targets must be the same.
4091 Meanwhile, the lhs target must have all the qualifiers of
4092 the rhs. */
4093 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4094 || comp_target_types (memb_type, rhstype))
4095 {
4096 /* If this type won't generate any warnings, use it. */
4097 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4098 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4099 && TREE_CODE (ttl) == FUNCTION_TYPE)
4100 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4101 == TYPE_QUALS (ttr))
4102 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4103 == TYPE_QUALS (ttl))))
4104 break;
4105
4106 /* Keep looking for a better type, but remember this one. */
4107 if (! marginal_memb_type)
4108 marginal_memb_type = memb_type;
4109 }
4110 }
4111
4112 /* Can convert integer zero to any pointer type. */
4113 if (integer_zerop (rhs)
4114 || (TREE_CODE (rhs) == NOP_EXPR
4115 && integer_zerop (TREE_OPERAND (rhs, 0))))
4116 {
4117 rhs = null_pointer_node;
4118 break;
4119 }
4120 }
4121
4122 if (memb_types || marginal_memb_type)
4123 {
4124 if (! memb_types)
4125 {
4126 /* We have only a marginally acceptable member type;
4127 it needs a warning. */
4128 tree ttl = TREE_TYPE (marginal_memb_type);
4129 tree ttr = TREE_TYPE (rhstype);
4130
4131 /* Const and volatile mean something different for function
4132 types, so the usual warnings are not appropriate. */
4133 if (TREE_CODE (ttr) == FUNCTION_TYPE
4134 && TREE_CODE (ttl) == FUNCTION_TYPE)
4135 {
4136 /* Because const and volatile on functions are
4137 restrictions that say the function will not do
4138 certain things, it is okay to use a const or volatile
4139 function where an ordinary one is wanted, but not
4140 vice-versa. */
4141 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4142 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4143 errtype, funname, parmnum);
4144 }
4145 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4146 warn_for_assignment ("%s discards qualifiers from pointer target type",
4147 errtype, funname,
4148 parmnum);
4149 }
4150
4151 if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
4152 pedwarn ("ISO C prohibits argument conversion to union type");
4153
4154 return build1 (NOP_EXPR, type, rhs);
4155 }
4156 }
4157
4158 /* Conversions among pointers */
4159 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4160 && (coder == codel))
4161 {
4162 tree ttl = TREE_TYPE (type);
4163 tree ttr = TREE_TYPE (rhstype);
4164
4165 /* Any non-function converts to a [const][volatile] void *
4166 and vice versa; otherwise, targets must be the same.
4167 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4168 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4169 || comp_target_types (type, rhstype)
4170 || (c_common_unsigned_type (TYPE_MAIN_VARIANT (ttl))
4171 == c_common_unsigned_type (TYPE_MAIN_VARIANT (ttr))))
4172 {
4173 if (pedantic
4174 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4175 ||
4176 (VOID_TYPE_P (ttr)
4177 /* Check TREE_CODE to catch cases like (void *) (char *) 0
4178 which are not ANSI null ptr constants. */
4179 && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4180 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4181 warn_for_assignment ("ISO C forbids %s between function pointer and `void *'",
4182 errtype, funname, parmnum);
4183 /* Const and volatile mean something different for function types,
4184 so the usual warnings are not appropriate. */
4185 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4186 && TREE_CODE (ttl) != FUNCTION_TYPE)
4187 {
4188 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4189 warn_for_assignment ("%s discards qualifiers from pointer target type",
4190 errtype, funname, parmnum);
4191 /* If this is not a case of ignoring a mismatch in signedness,
4192 no warning. */
4193 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4194 || comp_target_types (type, rhstype))
4195 ;
4196 /* If there is a mismatch, do warn. */
4197 else if (pedantic)
4198 warn_for_assignment ("pointer targets in %s differ in signedness",
4199 errtype, funname, parmnum);
4200 }
4201 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4202 && TREE_CODE (ttr) == FUNCTION_TYPE)
4203 {
4204 /* Because const and volatile on functions are restrictions
4205 that say the function will not do certain things,
4206 it is okay to use a const or volatile function
4207 where an ordinary one is wanted, but not vice-versa. */
4208 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4209 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4210 errtype, funname, parmnum);
4211 }
4212 }
4213 else
4214 warn_for_assignment ("%s from incompatible pointer type",
4215 errtype, funname, parmnum);
4216 return convert (type, rhs);
4217 }
4218 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4219 {
4220 /* An explicit constant 0 can convert to a pointer,
4221 or one that results from arithmetic, even including
4222 a cast to integer type. */
4223 if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4224 &&
4225 ! (TREE_CODE (rhs) == NOP_EXPR
4226 && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4227 && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4228 && integer_zerop (TREE_OPERAND (rhs, 0))))
4229 {
4230 warn_for_assignment ("%s makes pointer from integer without a cast",
4231 errtype, funname, parmnum);
4232 return convert (type, rhs);
4233 }
4234 return null_pointer_node;
4235 }
4236 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4237 {
4238 warn_for_assignment ("%s makes integer from pointer without a cast",
4239 errtype, funname, parmnum);
4240 return convert (type, rhs);
4241 }
4242 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4243 return convert (type, rhs);
4244
4245 if (!errtype)
4246 {
4247 if (funname)
4248 {
4249 tree selector = maybe_building_objc_message_expr ();
4250
4251 if (selector && parmnum > 2)
4252 error ("incompatible type for argument %d of `%s'",
4253 parmnum - 2, IDENTIFIER_POINTER (selector));
4254 else
4255 error ("incompatible type for argument %d of `%s'",
4256 parmnum, IDENTIFIER_POINTER (funname));
4257 }
4258 else
4259 error ("incompatible type for argument %d of indirect function call",
4260 parmnum);
4261 }
4262 else
4263 error ("incompatible types in %s", errtype);
4264
4265 return error_mark_node;
4266 }
4267
4268 /* Convert VALUE for assignment into inlined parameter PARM. */
4269
4270 tree
4271 c_convert_parm_for_inlining (parm, value, fn)
4272 tree parm, value, fn;
4273 {
4274 tree ret, type;
4275
4276 /* If FN was prototyped, the value has been converted already
4277 in convert_arguments. */
4278 if (! value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
4279 return value;
4280
4281 type = TREE_TYPE (parm);
4282 ret = convert_for_assignment (type, value,
4283 (char *) 0 /* arg passing */, fn,
4284 DECL_NAME (fn), 0);
4285 if (PROMOTE_PROTOTYPES
4286 && INTEGRAL_TYPE_P (type)
4287 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4288 ret = default_conversion (ret);
4289 return ret;
4290 }
4291
4292 /* Print a warning using MSGID.
4293 It gets OPNAME as its one parameter.
4294 If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4295 FUNCTION and ARGNUM are handled specially if we are building an
4296 Objective-C selector. */
4297
4298 static void
4299 warn_for_assignment (msgid, opname, function, argnum)
4300 const char *msgid;
4301 const char *opname;
4302 tree function;
4303 int argnum;
4304 {
4305 if (opname == 0)
4306 {
4307 tree selector = maybe_building_objc_message_expr ();
4308 char * new_opname;
4309
4310 if (selector && argnum > 2)
4311 {
4312 function = selector;
4313 argnum -= 2;
4314 }
4315 if (function)
4316 {
4317 /* Function name is known; supply it. */
4318 const char *const argstring = _("passing arg %d of `%s'");
4319 new_opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4320 + strlen (argstring) + 1 + 25
4321 /*%d*/ + 1);
4322 sprintf (new_opname, argstring, argnum,
4323 IDENTIFIER_POINTER (function));
4324 }
4325 else
4326 {
4327 /* Function name unknown (call through ptr); just give arg number. */
4328 const char *const argnofun = _("passing arg %d of pointer to function");
4329 new_opname = (char *) alloca (strlen (argnofun) + 1 + 25 /*%d*/ + 1);
4330 sprintf (new_opname, argnofun, argnum);
4331 }
4332 opname = new_opname;
4333 }
4334 pedwarn (msgid, opname);
4335 }
4336 \f
4337 /* If VALUE is a compound expr all of whose expressions are constant, then
4338 return its value. Otherwise, return error_mark_node.
4339
4340 This is for handling COMPOUND_EXPRs as initializer elements
4341 which is allowed with a warning when -pedantic is specified. */
4342
4343 static tree
4344 valid_compound_expr_initializer (value, endtype)
4345 tree value;
4346 tree endtype;
4347 {
4348 if (TREE_CODE (value) == COMPOUND_EXPR)
4349 {
4350 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4351 == error_mark_node)
4352 return error_mark_node;
4353 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4354 endtype);
4355 }
4356 else if (! TREE_CONSTANT (value)
4357 && ! initializer_constant_valid_p (value, endtype))
4358 return error_mark_node;
4359 else
4360 return value;
4361 }
4362 \f
4363 /* Perform appropriate conversions on the initial value of a variable,
4364 store it in the declaration DECL,
4365 and print any error messages that are appropriate.
4366 If the init is invalid, store an ERROR_MARK. */
4367
4368 void
4369 store_init_value (decl, init)
4370 tree decl, init;
4371 {
4372 tree value, type;
4373
4374 /* If variable's type was invalidly declared, just ignore it. */
4375
4376 type = TREE_TYPE (decl);
4377 if (TREE_CODE (type) == ERROR_MARK)
4378 return;
4379
4380 /* Digest the specified initializer into an expression. */
4381
4382 value = digest_init (type, init, TREE_STATIC (decl));
4383
4384 /* Store the expression if valid; else report error. */
4385
4386 #if 0
4387 /* Note that this is the only place we can detect the error
4388 in a case such as struct foo bar = (struct foo) { x, y };
4389 where there is one initial value which is a constructor expression. */
4390 if (value == error_mark_node)
4391 ;
4392 else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
4393 {
4394 error ("initializer for static variable is not constant");
4395 value = error_mark_node;
4396 }
4397 else if (TREE_STATIC (decl)
4398 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
4399 {
4400 error ("initializer for static variable uses complicated arithmetic");
4401 value = error_mark_node;
4402 }
4403 else
4404 {
4405 if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
4406 {
4407 if (! TREE_CONSTANT (value))
4408 pedwarn ("aggregate initializer is not constant");
4409 else if (! TREE_STATIC (value))
4410 pedwarn ("aggregate initializer uses complicated arithmetic");
4411 }
4412 }
4413 #endif
4414
4415 if (warn_traditional && !in_system_header
4416 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && ! TREE_STATIC (decl))
4417 warning ("traditional C rejects automatic aggregate initialization");
4418
4419 DECL_INITIAL (decl) = value;
4420
4421 /* ANSI wants warnings about out-of-range constant initializers. */
4422 STRIP_TYPE_NOPS (value);
4423 constant_expression_warning (value);
4424
4425 /* Check if we need to set array size from compound literal size. */
4426 if (TREE_CODE (type) == ARRAY_TYPE
4427 && TYPE_DOMAIN (type) == 0
4428 && value != error_mark_node)
4429 {
4430 tree inside_init = init;
4431
4432 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4433 inside_init = TREE_OPERAND (init, 0);
4434 inside_init = fold (inside_init);
4435
4436 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4437 {
4438 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4439
4440 if (TYPE_DOMAIN (TREE_TYPE (decl)))
4441 {
4442 /* For int foo[] = (int [3]){1}; we need to set array size
4443 now since later on array initializer will be just the
4444 brace enclosed list of the compound literal. */
4445 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4446 layout_type (type);
4447 layout_decl (decl, 0);
4448 }
4449 }
4450 }
4451 }
4452 \f
4453 /* Methods for storing and printing names for error messages. */
4454
4455 /* Implement a spelling stack that allows components of a name to be pushed
4456 and popped. Each element on the stack is this structure. */
4457
4458 struct spelling
4459 {
4460 int kind;
4461 union
4462 {
4463 int i;
4464 const char *s;
4465 } u;
4466 };
4467
4468 #define SPELLING_STRING 1
4469 #define SPELLING_MEMBER 2
4470 #define SPELLING_BOUNDS 3
4471
4472 static struct spelling *spelling; /* Next stack element (unused). */
4473 static struct spelling *spelling_base; /* Spelling stack base. */
4474 static int spelling_size; /* Size of the spelling stack. */
4475
4476 /* Macros to save and restore the spelling stack around push_... functions.
4477 Alternative to SAVE_SPELLING_STACK. */
4478
4479 #define SPELLING_DEPTH() (spelling - spelling_base)
4480 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4481
4482 /* Save and restore the spelling stack around arbitrary C code. */
4483
4484 #define SAVE_SPELLING_DEPTH(code) \
4485 { \
4486 int __depth = SPELLING_DEPTH (); \
4487 code; \
4488 RESTORE_SPELLING_DEPTH (__depth); \
4489 }
4490
4491 /* Push an element on the spelling stack with type KIND and assign VALUE
4492 to MEMBER. */
4493
4494 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4495 { \
4496 int depth = SPELLING_DEPTH (); \
4497 \
4498 if (depth >= spelling_size) \
4499 { \
4500 spelling_size += 10; \
4501 if (spelling_base == 0) \
4502 spelling_base \
4503 = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
4504 else \
4505 spelling_base \
4506 = (struct spelling *) xrealloc (spelling_base, \
4507 spelling_size * sizeof (struct spelling)); \
4508 RESTORE_SPELLING_DEPTH (depth); \
4509 } \
4510 \
4511 spelling->kind = (KIND); \
4512 spelling->MEMBER = (VALUE); \
4513 spelling++; \
4514 }
4515
4516 /* Push STRING on the stack. Printed literally. */
4517
4518 static void
4519 push_string (string)
4520 const char *string;
4521 {
4522 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4523 }
4524
4525 /* Push a member name on the stack. Printed as '.' STRING. */
4526
4527 static void
4528 push_member_name (decl)
4529 tree decl;
4530
4531 {
4532 const char *const string
4533 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4534 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4535 }
4536
4537 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4538
4539 static void
4540 push_array_bounds (bounds)
4541 int bounds;
4542 {
4543 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4544 }
4545
4546 /* Compute the maximum size in bytes of the printed spelling. */
4547
4548 static int
4549 spelling_length ()
4550 {
4551 int size = 0;
4552 struct spelling *p;
4553
4554 for (p = spelling_base; p < spelling; p++)
4555 {
4556 if (p->kind == SPELLING_BOUNDS)
4557 size += 25;
4558 else
4559 size += strlen (p->u.s) + 1;
4560 }
4561
4562 return size;
4563 }
4564
4565 /* Print the spelling to BUFFER and return it. */
4566
4567 static char *
4568 print_spelling (buffer)
4569 char *buffer;
4570 {
4571 char *d = buffer;
4572 struct spelling *p;
4573
4574 for (p = spelling_base; p < spelling; p++)
4575 if (p->kind == SPELLING_BOUNDS)
4576 {
4577 sprintf (d, "[%d]", p->u.i);
4578 d += strlen (d);
4579 }
4580 else
4581 {
4582 const char *s;
4583 if (p->kind == SPELLING_MEMBER)
4584 *d++ = '.';
4585 for (s = p->u.s; (*d = *s++); d++)
4586 ;
4587 }
4588 *d++ = '\0';
4589 return buffer;
4590 }
4591
4592 /* Issue an error message for a bad initializer component.
4593 MSGID identifies the message.
4594 The component name is taken from the spelling stack. */
4595
4596 void
4597 error_init (msgid)
4598 const char *msgid;
4599 {
4600 char *ofwhat;
4601
4602 error ("%s", _(msgid));
4603 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4604 if (*ofwhat)
4605 error ("(near initialization for `%s')", ofwhat);
4606 }
4607
4608 /* Issue a pedantic warning for a bad initializer component.
4609 MSGID identifies the message.
4610 The component name is taken from the spelling stack. */
4611
4612 void
4613 pedwarn_init (msgid)
4614 const char *msgid;
4615 {
4616 char *ofwhat;
4617
4618 pedwarn ("%s", _(msgid));
4619 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4620 if (*ofwhat)
4621 pedwarn ("(near initialization for `%s')", ofwhat);
4622 }
4623
4624 /* Issue a warning for a bad initializer component.
4625 MSGID identifies the message.
4626 The component name is taken from the spelling stack. */
4627
4628 static void
4629 warning_init (msgid)
4630 const char *msgid;
4631 {
4632 char *ofwhat;
4633
4634 warning ("%s", _(msgid));
4635 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4636 if (*ofwhat)
4637 warning ("(near initialization for `%s')", ofwhat);
4638 }
4639 \f
4640 /* Digest the parser output INIT as an initializer for type TYPE.
4641 Return a C expression of type TYPE to represent the initial value.
4642
4643 REQUIRE_CONSTANT requests an error if non-constant initializers or
4644 elements are seen. */
4645
4646 static tree
4647 digest_init (type, init, require_constant)
4648 tree type, init;
4649 int require_constant;
4650 {
4651 enum tree_code code = TREE_CODE (type);
4652 tree inside_init = init;
4653
4654 if (type == error_mark_node
4655 || init == error_mark_node
4656 || TREE_TYPE (init) == error_mark_node)
4657 return error_mark_node;
4658
4659 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4660 /* Do not use STRIP_NOPS here. We do not want an enumerator
4661 whose value is 0 to count as a null pointer constant. */
4662 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4663 inside_init = TREE_OPERAND (init, 0);
4664
4665 inside_init = fold (inside_init);
4666
4667 /* Initialization of an array of chars from a string constant
4668 optionally enclosed in braces. */
4669
4670 if (code == ARRAY_TYPE)
4671 {
4672 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4673 if ((typ1 == char_type_node
4674 || typ1 == signed_char_type_node
4675 || typ1 == unsigned_char_type_node
4676 || typ1 == unsigned_wchar_type_node
4677 || typ1 == signed_wchar_type_node)
4678 && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
4679 {
4680 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4681 TYPE_MAIN_VARIANT (type)))
4682 return inside_init;
4683
4684 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4685 != char_type_node)
4686 && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
4687 {
4688 error_init ("char-array initialized from wide string");
4689 return error_mark_node;
4690 }
4691 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4692 == char_type_node)
4693 && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
4694 {
4695 error_init ("int-array initialized from non-wide string");
4696 return error_mark_node;
4697 }
4698
4699 TREE_TYPE (inside_init) = type;
4700 if (TYPE_DOMAIN (type) != 0
4701 && TYPE_SIZE (type) != 0
4702 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4703 /* Subtract 1 (or sizeof (wchar_t))
4704 because it's ok to ignore the terminating null char
4705 that is counted in the length of the constant. */
4706 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4707 TREE_STRING_LENGTH (inside_init)
4708 - ((TYPE_PRECISION (typ1)
4709 != TYPE_PRECISION (char_type_node))
4710 ? (TYPE_PRECISION (wchar_type_node)
4711 / BITS_PER_UNIT)
4712 : 1)))
4713 pedwarn_init ("initializer-string for array of chars is too long");
4714
4715 return inside_init;
4716 }
4717 }
4718
4719 /* Any type can be initialized
4720 from an expression of the same type, optionally with braces. */
4721
4722 if (inside_init && TREE_TYPE (inside_init) != 0
4723 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4724 TYPE_MAIN_VARIANT (type))
4725 || (code == ARRAY_TYPE
4726 && comptypes (TREE_TYPE (inside_init), type))
4727 || (code == VECTOR_TYPE
4728 && comptypes (TREE_TYPE (inside_init), type))
4729 || (code == POINTER_TYPE
4730 && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4731 || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
4732 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4733 TREE_TYPE (type)))))
4734 {
4735 if (code == POINTER_TYPE)
4736 inside_init = default_function_array_conversion (inside_init);
4737
4738 if (require_constant && !flag_isoc99
4739 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4740 {
4741 /* As an extension, allow initializing objects with static storage
4742 duration with compound literals (which are then treated just as
4743 the brace enclosed list they contain). */
4744 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4745 inside_init = DECL_INITIAL (decl);
4746 }
4747
4748 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4749 && TREE_CODE (inside_init) != CONSTRUCTOR)
4750 {
4751 error_init ("array initialized from non-constant array expression");
4752 return error_mark_node;
4753 }
4754
4755 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4756 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4757
4758 /* Compound expressions can only occur here if -pedantic or
4759 -pedantic-errors is specified. In the later case, we always want
4760 an error. In the former case, we simply want a warning. */
4761 if (require_constant && pedantic
4762 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4763 {
4764 inside_init
4765 = valid_compound_expr_initializer (inside_init,
4766 TREE_TYPE (inside_init));
4767 if (inside_init == error_mark_node)
4768 error_init ("initializer element is not constant");
4769 else
4770 pedwarn_init ("initializer element is not constant");
4771 if (flag_pedantic_errors)
4772 inside_init = error_mark_node;
4773 }
4774 else if (require_constant
4775 && (!TREE_CONSTANT (inside_init)
4776 /* This test catches things like `7 / 0' which
4777 result in an expression for which TREE_CONSTANT
4778 is true, but which is not actually something
4779 that is a legal constant. We really should not
4780 be using this function, because it is a part of
4781 the back-end. Instead, the expression should
4782 already have been turned into ERROR_MARK_NODE. */
4783 || !initializer_constant_valid_p (inside_init,
4784 TREE_TYPE (inside_init))))
4785 {
4786 error_init ("initializer element is not constant");
4787 inside_init = error_mark_node;
4788 }
4789
4790 return inside_init;
4791 }
4792
4793 /* Handle scalar types, including conversions. */
4794
4795 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4796 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE)
4797 {
4798 /* Note that convert_for_assignment calls default_conversion
4799 for arrays and functions. We must not call it in the
4800 case where inside_init is a null pointer constant. */
4801 inside_init
4802 = convert_for_assignment (type, init, _("initialization"),
4803 NULL_TREE, NULL_TREE, 0);
4804
4805 if (require_constant && ! TREE_CONSTANT (inside_init))
4806 {
4807 error_init ("initializer element is not constant");
4808 inside_init = error_mark_node;
4809 }
4810 else if (require_constant
4811 && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4812 {
4813 error_init ("initializer element is not computable at load time");
4814 inside_init = error_mark_node;
4815 }
4816
4817 return inside_init;
4818 }
4819
4820 /* Come here only for records and arrays. */
4821
4822 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4823 {
4824 error_init ("variable-sized object may not be initialized");
4825 return error_mark_node;
4826 }
4827
4828 error_init ("invalid initializer");
4829 return error_mark_node;
4830 }
4831 \f
4832 /* Handle initializers that use braces. */
4833
4834 /* Type of object we are accumulating a constructor for.
4835 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4836 static tree constructor_type;
4837
4838 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4839 left to fill. */
4840 static tree constructor_fields;
4841
4842 /* For an ARRAY_TYPE, this is the specified index
4843 at which to store the next element we get. */
4844 static tree constructor_index;
4845
4846 /* For an ARRAY_TYPE, this is the maximum index. */
4847 static tree constructor_max_index;
4848
4849 /* For a RECORD_TYPE, this is the first field not yet written out. */
4850 static tree constructor_unfilled_fields;
4851
4852 /* For an ARRAY_TYPE, this is the index of the first element
4853 not yet written out. */
4854 static tree constructor_unfilled_index;
4855
4856 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4857 This is so we can generate gaps between fields, when appropriate. */
4858 static tree constructor_bit_index;
4859
4860 /* If we are saving up the elements rather than allocating them,
4861 this is the list of elements so far (in reverse order,
4862 most recent first). */
4863 static tree constructor_elements;
4864
4865 /* 1 if constructor should be incrementally stored into a constructor chain,
4866 0 if all the elements should be kept in AVL tree. */
4867 static int constructor_incremental;
4868
4869 /* 1 if so far this constructor's elements are all compile-time constants. */
4870 static int constructor_constant;
4871
4872 /* 1 if so far this constructor's elements are all valid address constants. */
4873 static int constructor_simple;
4874
4875 /* 1 if this constructor is erroneous so far. */
4876 static int constructor_erroneous;
4877
4878 /* 1 if have called defer_addressed_constants. */
4879 static int constructor_subconstants_deferred;
4880
4881 /* Structure for managing pending initializer elements, organized as an
4882 AVL tree. */
4883
4884 struct init_node
4885 {
4886 struct init_node *left, *right;
4887 struct init_node *parent;
4888 int balance;
4889 tree purpose;
4890 tree value;
4891 };
4892
4893 /* Tree of pending elements at this constructor level.
4894 These are elements encountered out of order
4895 which belong at places we haven't reached yet in actually
4896 writing the output.
4897 Will never hold tree nodes across GC runs. */
4898 static struct init_node *constructor_pending_elts;
4899
4900 /* The SPELLING_DEPTH of this constructor. */
4901 static int constructor_depth;
4902
4903 /* 0 if implicitly pushing constructor levels is allowed. */
4904 int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages. */
4905
4906 static int require_constant_value;
4907 static int require_constant_elements;
4908
4909 /* DECL node for which an initializer is being read.
4910 0 means we are reading a constructor expression
4911 such as (struct foo) {...}. */
4912 static tree constructor_decl;
4913
4914 /* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
4915 static const char *constructor_asmspec;
4916
4917 /* Nonzero if this is an initializer for a top-level decl. */
4918 static int constructor_top_level;
4919
4920 /* Nonzero if there were any member designators in this initializer. */
4921 static int constructor_designated;
4922
4923 /* Nesting depth of designator list. */
4924 static int designator_depth;
4925
4926 /* Nonzero if there were diagnosed errors in this designator list. */
4927 static int designator_errorneous;
4928
4929 \f
4930 /* This stack has a level for each implicit or explicit level of
4931 structuring in the initializer, including the outermost one. It
4932 saves the values of most of the variables above. */
4933
4934 struct constructor_range_stack;
4935
4936 struct constructor_stack
4937 {
4938 struct constructor_stack *next;
4939 tree type;
4940 tree fields;
4941 tree index;
4942 tree max_index;
4943 tree unfilled_index;
4944 tree unfilled_fields;
4945 tree bit_index;
4946 tree elements;
4947 struct init_node *pending_elts;
4948 int offset;
4949 int depth;
4950 /* If nonzero, this value should replace the entire
4951 constructor at this level. */
4952 tree replacement_value;
4953 struct constructor_range_stack *range_stack;
4954 char constant;
4955 char simple;
4956 char implicit;
4957 char erroneous;
4958 char outer;
4959 char incremental;
4960 char designated;
4961 };
4962
4963 struct constructor_stack *constructor_stack;
4964
4965 /* This stack represents designators from some range designator up to
4966 the last designator in the list. */
4967
4968 struct constructor_range_stack
4969 {
4970 struct constructor_range_stack *next, *prev;
4971 struct constructor_stack *stack;
4972 tree range_start;
4973 tree index;
4974 tree range_end;
4975 tree fields;
4976 };
4977
4978 struct constructor_range_stack *constructor_range_stack;
4979
4980 /* This stack records separate initializers that are nested.
4981 Nested initializers can't happen in ANSI C, but GNU C allows them
4982 in cases like { ... (struct foo) { ... } ... }. */
4983
4984 struct initializer_stack
4985 {
4986 struct initializer_stack *next;
4987 tree decl;
4988 const char *asmspec;
4989 struct constructor_stack *constructor_stack;
4990 struct constructor_range_stack *constructor_range_stack;
4991 tree elements;
4992 struct spelling *spelling;
4993 struct spelling *spelling_base;
4994 int spelling_size;
4995 char top_level;
4996 char require_constant_value;
4997 char require_constant_elements;
4998 char deferred;
4999 };
5000
5001 struct initializer_stack *initializer_stack;
5002 \f
5003 /* Prepare to parse and output the initializer for variable DECL. */
5004
5005 void
5006 start_init (decl, asmspec_tree, top_level)
5007 tree decl;
5008 tree asmspec_tree;
5009 int top_level;
5010 {
5011 const char *locus;
5012 struct initializer_stack *p
5013 = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
5014 const char *asmspec = 0;
5015
5016 if (asmspec_tree)
5017 asmspec = TREE_STRING_POINTER (asmspec_tree);
5018
5019 p->decl = constructor_decl;
5020 p->asmspec = constructor_asmspec;
5021 p->require_constant_value = require_constant_value;
5022 p->require_constant_elements = require_constant_elements;
5023 p->constructor_stack = constructor_stack;
5024 p->constructor_range_stack = constructor_range_stack;
5025 p->elements = constructor_elements;
5026 p->spelling = spelling;
5027 p->spelling_base = spelling_base;
5028 p->spelling_size = spelling_size;
5029 p->deferred = constructor_subconstants_deferred;
5030 p->top_level = constructor_top_level;
5031 p->next = initializer_stack;
5032 initializer_stack = p;
5033
5034 constructor_decl = decl;
5035 constructor_asmspec = asmspec;
5036 constructor_subconstants_deferred = 0;
5037 constructor_designated = 0;
5038 constructor_top_level = top_level;
5039
5040 if (decl != 0)
5041 {
5042 require_constant_value = TREE_STATIC (decl);
5043 require_constant_elements
5044 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5045 /* For a scalar, you can always use any value to initialize,
5046 even within braces. */
5047 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5048 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5049 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5050 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5051 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5052 }
5053 else
5054 {
5055 require_constant_value = 0;
5056 require_constant_elements = 0;
5057 locus = "(anonymous)";
5058 }
5059
5060 constructor_stack = 0;
5061 constructor_range_stack = 0;
5062
5063 missing_braces_mentioned = 0;
5064
5065 spelling_base = 0;
5066 spelling_size = 0;
5067 RESTORE_SPELLING_DEPTH (0);
5068
5069 if (locus)
5070 push_string (locus);
5071 }
5072
5073 void
5074 finish_init ()
5075 {
5076 struct initializer_stack *p = initializer_stack;
5077
5078 /* Output subconstants (string constants, usually)
5079 that were referenced within this initializer and saved up.
5080 Must do this if and only if we called defer_addressed_constants. */
5081 if (constructor_subconstants_deferred)
5082 output_deferred_addressed_constants ();
5083
5084 /* Free the whole constructor stack of this initializer. */
5085 while (constructor_stack)
5086 {
5087 struct constructor_stack *q = constructor_stack;
5088 constructor_stack = q->next;
5089 free (q);
5090 }
5091
5092 if (constructor_range_stack)
5093 abort ();
5094
5095 /* Pop back to the data of the outer initializer (if any). */
5096 constructor_decl = p->decl;
5097 constructor_asmspec = p->asmspec;
5098 require_constant_value = p->require_constant_value;
5099 require_constant_elements = p->require_constant_elements;
5100 constructor_stack = p->constructor_stack;
5101 constructor_range_stack = p->constructor_range_stack;
5102 constructor_elements = p->elements;
5103 spelling = p->spelling;
5104 spelling_base = p->spelling_base;
5105 spelling_size = p->spelling_size;
5106 constructor_subconstants_deferred = p->deferred;
5107 constructor_top_level = p->top_level;
5108 initializer_stack = p->next;
5109 free (p);
5110 }
5111 \f
5112 /* Call here when we see the initializer is surrounded by braces.
5113 This is instead of a call to push_init_level;
5114 it is matched by a call to pop_init_level.
5115
5116 TYPE is the type to initialize, for a constructor expression.
5117 For an initializer for a decl, TYPE is zero. */
5118
5119 void
5120 really_start_incremental_init (type)
5121 tree type;
5122 {
5123 struct constructor_stack *p
5124 = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5125
5126 if (type == 0)
5127 type = TREE_TYPE (constructor_decl);
5128
5129 p->type = constructor_type;
5130 p->fields = constructor_fields;
5131 p->index = constructor_index;
5132 p->max_index = constructor_max_index;
5133 p->unfilled_index = constructor_unfilled_index;
5134 p->unfilled_fields = constructor_unfilled_fields;
5135 p->bit_index = constructor_bit_index;
5136 p->elements = constructor_elements;
5137 p->constant = constructor_constant;
5138 p->simple = constructor_simple;
5139 p->erroneous = constructor_erroneous;
5140 p->pending_elts = constructor_pending_elts;
5141 p->depth = constructor_depth;
5142 p->replacement_value = 0;
5143 p->implicit = 0;
5144 p->range_stack = 0;
5145 p->outer = 0;
5146 p->incremental = constructor_incremental;
5147 p->designated = constructor_designated;
5148 p->next = 0;
5149 constructor_stack = p;
5150
5151 constructor_constant = 1;
5152 constructor_simple = 1;
5153 constructor_depth = SPELLING_DEPTH ();
5154 constructor_elements = 0;
5155 constructor_pending_elts = 0;
5156 constructor_type = type;
5157 constructor_incremental = 1;
5158 constructor_designated = 0;
5159 designator_depth = 0;
5160 designator_errorneous = 0;
5161
5162 if (TREE_CODE (constructor_type) == RECORD_TYPE
5163 || TREE_CODE (constructor_type) == UNION_TYPE)
5164 {
5165 constructor_fields = TYPE_FIELDS (constructor_type);
5166 /* Skip any nameless bit fields at the beginning. */
5167 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5168 && DECL_NAME (constructor_fields) == 0)
5169 constructor_fields = TREE_CHAIN (constructor_fields);
5170
5171 constructor_unfilled_fields = constructor_fields;
5172 constructor_bit_index = bitsize_zero_node;
5173 }
5174 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5175 {
5176 if (TYPE_DOMAIN (constructor_type))
5177 {
5178 constructor_max_index
5179 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5180
5181 /* Detect non-empty initializations of zero-length arrays. */
5182 if (constructor_max_index == NULL_TREE
5183 && TYPE_SIZE (constructor_type))
5184 constructor_max_index = build_int_2 (-1, -1);
5185
5186 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5187 to initialize VLAs will cause an proper error; avoid tree
5188 checking errors as well by setting a safe value. */
5189 if (constructor_max_index
5190 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5191 constructor_max_index = build_int_2 (-1, -1);
5192
5193 constructor_index
5194 = convert (bitsizetype,
5195 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5196 }
5197 else
5198 constructor_index = bitsize_zero_node;
5199
5200 constructor_unfilled_index = constructor_index;
5201 }
5202 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5203 {
5204 /* Vectors are like simple fixed-size arrays. */
5205 constructor_max_index =
5206 build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
5207 constructor_index = convert (bitsizetype, bitsize_zero_node);
5208 constructor_unfilled_index = constructor_index;
5209 }
5210 else
5211 {
5212 /* Handle the case of int x = {5}; */
5213 constructor_fields = constructor_type;
5214 constructor_unfilled_fields = constructor_type;
5215 }
5216 }
5217 \f
5218 /* Push down into a subobject, for initialization.
5219 If this is for an explicit set of braces, IMPLICIT is 0.
5220 If it is because the next element belongs at a lower level,
5221 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5222
5223 void
5224 push_init_level (implicit)
5225 int implicit;
5226 {
5227 struct constructor_stack *p;
5228 tree value = NULL_TREE;
5229
5230 /* If we've exhausted any levels that didn't have braces,
5231 pop them now. */
5232 while (constructor_stack->implicit)
5233 {
5234 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5235 || TREE_CODE (constructor_type) == UNION_TYPE)
5236 && constructor_fields == 0)
5237 process_init_element (pop_init_level (1));
5238 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5239 && tree_int_cst_lt (constructor_max_index, constructor_index))
5240 process_init_element (pop_init_level (1));
5241 else
5242 break;
5243 }
5244
5245 /* Unless this is an explicit brace, we need to preserve previous
5246 content if any. */
5247 if (implicit)
5248 {
5249 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5250 || TREE_CODE (constructor_type) == UNION_TYPE)
5251 && constructor_fields)
5252 value = find_init_member (constructor_fields);
5253 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5254 value = find_init_member (constructor_index);
5255 }
5256
5257 p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5258 p->type = constructor_type;
5259 p->fields = constructor_fields;
5260 p->index = constructor_index;
5261 p->max_index = constructor_max_index;
5262 p->unfilled_index = constructor_unfilled_index;
5263 p->unfilled_fields = constructor_unfilled_fields;
5264 p->bit_index = constructor_bit_index;
5265 p->elements = constructor_elements;
5266 p->constant = constructor_constant;
5267 p->simple = constructor_simple;
5268 p->erroneous = constructor_erroneous;
5269 p->pending_elts = constructor_pending_elts;
5270 p->depth = constructor_depth;
5271 p->replacement_value = 0;
5272 p->implicit = implicit;
5273 p->outer = 0;
5274 p->incremental = constructor_incremental;
5275 p->designated = constructor_designated;
5276 p->next = constructor_stack;
5277 p->range_stack = 0;
5278 constructor_stack = p;
5279
5280 constructor_constant = 1;
5281 constructor_simple = 1;
5282 constructor_depth = SPELLING_DEPTH ();
5283 constructor_elements = 0;
5284 constructor_incremental = 1;
5285 constructor_designated = 0;
5286 constructor_pending_elts = 0;
5287 if (!implicit)
5288 {
5289 p->range_stack = constructor_range_stack;
5290 constructor_range_stack = 0;
5291 designator_depth = 0;
5292 designator_errorneous = 0;
5293 }
5294
5295 /* Don't die if an entire brace-pair level is superfluous
5296 in the containing level. */
5297 if (constructor_type == 0)
5298 ;
5299 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5300 || TREE_CODE (constructor_type) == UNION_TYPE)
5301 {
5302 /* Don't die if there are extra init elts at the end. */
5303 if (constructor_fields == 0)
5304 constructor_type = 0;
5305 else
5306 {
5307 constructor_type = TREE_TYPE (constructor_fields);
5308 push_member_name (constructor_fields);
5309 constructor_depth++;
5310 }
5311 }
5312 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5313 {
5314 constructor_type = TREE_TYPE (constructor_type);
5315 push_array_bounds (tree_low_cst (constructor_index, 0));
5316 constructor_depth++;
5317 }
5318
5319 if (constructor_type == 0)
5320 {
5321 error_init ("extra brace group at end of initializer");
5322 constructor_fields = 0;
5323 constructor_unfilled_fields = 0;
5324 return;
5325 }
5326
5327 if (value && TREE_CODE (value) == CONSTRUCTOR)
5328 {
5329 constructor_constant = TREE_CONSTANT (value);
5330 constructor_simple = TREE_STATIC (value);
5331 constructor_elements = TREE_OPERAND (value, 1);
5332 if (constructor_elements
5333 && (TREE_CODE (constructor_type) == RECORD_TYPE
5334 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5335 set_nonincremental_init ();
5336 }
5337
5338 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5339 {
5340 missing_braces_mentioned = 1;
5341 warning_init ("missing braces around initializer");
5342 }
5343
5344 if (TREE_CODE (constructor_type) == RECORD_TYPE
5345 || TREE_CODE (constructor_type) == UNION_TYPE)
5346 {
5347 constructor_fields = TYPE_FIELDS (constructor_type);
5348 /* Skip any nameless bit fields at the beginning. */
5349 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5350 && DECL_NAME (constructor_fields) == 0)
5351 constructor_fields = TREE_CHAIN (constructor_fields);
5352
5353 constructor_unfilled_fields = constructor_fields;
5354 constructor_bit_index = bitsize_zero_node;
5355 }
5356 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5357 {
5358 /* Vectors are like simple fixed-size arrays. */
5359 constructor_max_index =
5360 build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
5361 constructor_index = convert (bitsizetype, integer_zero_node);
5362 constructor_unfilled_index = constructor_index;
5363 }
5364 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5365 {
5366 if (TYPE_DOMAIN (constructor_type))
5367 {
5368 constructor_max_index
5369 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5370
5371 /* Detect non-empty initializations of zero-length arrays. */
5372 if (constructor_max_index == NULL_TREE
5373 && TYPE_SIZE (constructor_type))
5374 constructor_max_index = build_int_2 (-1, -1);
5375
5376 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5377 to initialize VLAs will cause an proper error; avoid tree
5378 checking errors as well by setting a safe value. */
5379 if (constructor_max_index
5380 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5381 constructor_max_index = build_int_2 (-1, -1);
5382
5383 constructor_index
5384 = convert (bitsizetype,
5385 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5386 }
5387 else
5388 constructor_index = bitsize_zero_node;
5389
5390 constructor_unfilled_index = constructor_index;
5391 if (value && TREE_CODE (value) == STRING_CST)
5392 {
5393 /* We need to split the char/wchar array into individual
5394 characters, so that we don't have to special case it
5395 everywhere. */
5396 set_nonincremental_init_from_string (value);
5397 }
5398 }
5399 else
5400 {
5401 warning_init ("braces around scalar initializer");
5402 constructor_fields = constructor_type;
5403 constructor_unfilled_fields = constructor_type;
5404 }
5405 }
5406
5407 /* At the end of an implicit or explicit brace level,
5408 finish up that level of constructor.
5409 If we were outputting the elements as they are read, return 0
5410 from inner levels (process_init_element ignores that),
5411 but return error_mark_node from the outermost level
5412 (that's what we want to put in DECL_INITIAL).
5413 Otherwise, return a CONSTRUCTOR expression. */
5414
5415 tree
5416 pop_init_level (implicit)
5417 int implicit;
5418 {
5419 struct constructor_stack *p;
5420 tree constructor = 0;
5421
5422 if (implicit == 0)
5423 {
5424 /* When we come to an explicit close brace,
5425 pop any inner levels that didn't have explicit braces. */
5426 while (constructor_stack->implicit)
5427 process_init_element (pop_init_level (1));
5428
5429 if (constructor_range_stack)
5430 abort ();
5431 }
5432
5433 p = constructor_stack;
5434
5435 /* Error for initializing a flexible array member, or a zero-length
5436 array member in an inappropriate context. */
5437 if (constructor_type && constructor_fields
5438 && TREE_CODE (constructor_type) == ARRAY_TYPE
5439 && TYPE_DOMAIN (constructor_type)
5440 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5441 {
5442 /* Silently discard empty initializations. The parser will
5443 already have pedwarned for empty brackets. */
5444 if (integer_zerop (constructor_unfilled_index))
5445 constructor_type = NULL_TREE;
5446 else if (! TYPE_SIZE (constructor_type))
5447 {
5448 if (constructor_depth > 2)
5449 error_init ("initialization of flexible array member in a nested context");
5450 else if (pedantic)
5451 pedwarn_init ("initialization of a flexible array member");
5452
5453 /* We have already issued an error message for the existence
5454 of a flexible array member not at the end of the structure.
5455 Discard the initializer so that we do not abort later. */
5456 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5457 constructor_type = NULL_TREE;
5458 }
5459 else
5460 /* Zero-length arrays are no longer special, so we should no longer
5461 get here. */
5462 abort ();
5463 }
5464
5465 /* Warn when some struct elements are implicitly initialized to zero. */
5466 if (extra_warnings
5467 && constructor_type
5468 && TREE_CODE (constructor_type) == RECORD_TYPE
5469 && constructor_unfilled_fields)
5470 {
5471 /* Do not warn for flexible array members or zero-length arrays. */
5472 while (constructor_unfilled_fields
5473 && (! DECL_SIZE (constructor_unfilled_fields)
5474 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5475 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5476
5477 /* Do not warn if this level of the initializer uses member
5478 designators; it is likely to be deliberate. */
5479 if (constructor_unfilled_fields && !constructor_designated)
5480 {
5481 push_member_name (constructor_unfilled_fields);
5482 warning_init ("missing initializer");
5483 RESTORE_SPELLING_DEPTH (constructor_depth);
5484 }
5485 }
5486
5487 /* Now output all pending elements. */
5488 constructor_incremental = 1;
5489 output_pending_init_elements (1);
5490
5491 /* Pad out the end of the structure. */
5492 if (p->replacement_value)
5493 /* If this closes a superfluous brace pair,
5494 just pass out the element between them. */
5495 constructor = p->replacement_value;
5496 else if (constructor_type == 0)
5497 ;
5498 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5499 && TREE_CODE (constructor_type) != UNION_TYPE
5500 && TREE_CODE (constructor_type) != ARRAY_TYPE
5501 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5502 {
5503 /* A nonincremental scalar initializer--just return
5504 the element, after verifying there is just one. */
5505 if (constructor_elements == 0)
5506 {
5507 if (!constructor_erroneous)
5508 error_init ("empty scalar initializer");
5509 constructor = error_mark_node;
5510 }
5511 else if (TREE_CHAIN (constructor_elements) != 0)
5512 {
5513 error_init ("extra elements in scalar initializer");
5514 constructor = TREE_VALUE (constructor_elements);
5515 }
5516 else
5517 constructor = TREE_VALUE (constructor_elements);
5518 }
5519 else
5520 {
5521 if (constructor_erroneous)
5522 constructor = error_mark_node;
5523 else
5524 {
5525 constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
5526 nreverse (constructor_elements));
5527 if (constructor_constant)
5528 TREE_CONSTANT (constructor) = 1;
5529 if (constructor_constant && constructor_simple)
5530 TREE_STATIC (constructor) = 1;
5531 }
5532 }
5533
5534 constructor_type = p->type;
5535 constructor_fields = p->fields;
5536 constructor_index = p->index;
5537 constructor_max_index = p->max_index;
5538 constructor_unfilled_index = p->unfilled_index;
5539 constructor_unfilled_fields = p->unfilled_fields;
5540 constructor_bit_index = p->bit_index;
5541 constructor_elements = p->elements;
5542 constructor_constant = p->constant;
5543 constructor_simple = p->simple;
5544 constructor_erroneous = p->erroneous;
5545 constructor_incremental = p->incremental;
5546 constructor_designated = p->designated;
5547 constructor_pending_elts = p->pending_elts;
5548 constructor_depth = p->depth;
5549 if (!p->implicit)
5550 constructor_range_stack = p->range_stack;
5551 RESTORE_SPELLING_DEPTH (constructor_depth);
5552
5553 constructor_stack = p->next;
5554 free (p);
5555
5556 if (constructor == 0)
5557 {
5558 if (constructor_stack == 0)
5559 return error_mark_node;
5560 return NULL_TREE;
5561 }
5562 return constructor;
5563 }
5564
5565 /* Common handling for both array range and field name designators.
5566 ARRAY argument is non-zero for array ranges. Returns zero for success. */
5567
5568 static int
5569 set_designator (array)
5570 int array;
5571 {
5572 tree subtype;
5573 enum tree_code subcode;
5574
5575 /* Don't die if an entire brace-pair level is superfluous
5576 in the containing level. */
5577 if (constructor_type == 0)
5578 return 1;
5579
5580 /* If there were errors in this designator list already, bail out silently. */
5581 if (designator_errorneous)
5582 return 1;
5583
5584 if (!designator_depth)
5585 {
5586 if (constructor_range_stack)
5587 abort ();
5588
5589 /* Designator list starts at the level of closest explicit
5590 braces. */
5591 while (constructor_stack->implicit)
5592 process_init_element (pop_init_level (1));
5593 constructor_designated = 1;
5594 return 0;
5595 }
5596
5597 if (constructor_no_implicit)
5598 {
5599 error_init ("initialization designators may not nest");
5600 return 1;
5601 }
5602
5603 if (TREE_CODE (constructor_type) == RECORD_TYPE
5604 || TREE_CODE (constructor_type) == UNION_TYPE)
5605 {
5606 subtype = TREE_TYPE (constructor_fields);
5607 if (subtype != error_mark_node)
5608 subtype = TYPE_MAIN_VARIANT (subtype);
5609 }
5610 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5611 {
5612 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5613 }
5614 else
5615 abort ();
5616
5617 subcode = TREE_CODE (subtype);
5618 if (array && subcode != ARRAY_TYPE)
5619 {
5620 error_init ("array index in non-array initializer");
5621 return 1;
5622 }
5623 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5624 {
5625 error_init ("field name not in record or union initializer");
5626 return 1;
5627 }
5628
5629 constructor_designated = 1;
5630 push_init_level (2);
5631 return 0;
5632 }
5633
5634 /* If there are range designators in designator list, push a new designator
5635 to constructor_range_stack. RANGE_END is end of such stack range or
5636 NULL_TREE if there is no range designator at this level. */
5637
5638 static void
5639 push_range_stack (range_end)
5640 tree range_end;
5641 {
5642 struct constructor_range_stack *p;
5643
5644 p = (struct constructor_range_stack *)
5645 ggc_alloc (sizeof (struct constructor_range_stack));
5646 p->prev = constructor_range_stack;
5647 p->next = 0;
5648 p->fields = constructor_fields;
5649 p->range_start = constructor_index;
5650 p->index = constructor_index;
5651 p->stack = constructor_stack;
5652 p->range_end = range_end;
5653 if (constructor_range_stack)
5654 constructor_range_stack->next = p;
5655 constructor_range_stack = p;
5656 }
5657
5658 /* Within an array initializer, specify the next index to be initialized.
5659 FIRST is that index. If LAST is nonzero, then initialize a range
5660 of indices, running from FIRST through LAST. */
5661
5662 void
5663 set_init_index (first, last)
5664 tree first, last;
5665 {
5666 if (set_designator (1))
5667 return;
5668
5669 designator_errorneous = 1;
5670
5671 while ((TREE_CODE (first) == NOP_EXPR
5672 || TREE_CODE (first) == CONVERT_EXPR
5673 || TREE_CODE (first) == NON_LVALUE_EXPR)
5674 && (TYPE_MODE (TREE_TYPE (first))
5675 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
5676 first = TREE_OPERAND (first, 0);
5677
5678 if (last)
5679 while ((TREE_CODE (last) == NOP_EXPR
5680 || TREE_CODE (last) == CONVERT_EXPR
5681 || TREE_CODE (last) == NON_LVALUE_EXPR)
5682 && (TYPE_MODE (TREE_TYPE (last))
5683 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
5684 last = TREE_OPERAND (last, 0);
5685
5686 if (TREE_CODE (first) != INTEGER_CST)
5687 error_init ("nonconstant array index in initializer");
5688 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5689 error_init ("nonconstant array index in initializer");
5690 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5691 error_init ("array index in non-array initializer");
5692 else if (constructor_max_index
5693 && tree_int_cst_lt (constructor_max_index, first))
5694 error_init ("array index in initializer exceeds array bounds");
5695 else
5696 {
5697 constructor_index = convert (bitsizetype, first);
5698
5699 if (last)
5700 {
5701 if (tree_int_cst_equal (first, last))
5702 last = 0;
5703 else if (tree_int_cst_lt (last, first))
5704 {
5705 error_init ("empty index range in initializer");
5706 last = 0;
5707 }
5708 else
5709 {
5710 last = convert (bitsizetype, last);
5711 if (constructor_max_index != 0
5712 && tree_int_cst_lt (constructor_max_index, last))
5713 {
5714 error_init ("array index range in initializer exceeds array bounds");
5715 last = 0;
5716 }
5717 }
5718 }
5719
5720 designator_depth++;
5721 designator_errorneous = 0;
5722 if (constructor_range_stack || last)
5723 push_range_stack (last);
5724 }
5725 }
5726
5727 /* Within a struct initializer, specify the next field to be initialized. */
5728
5729 void
5730 set_init_label (fieldname)
5731 tree fieldname;
5732 {
5733 tree tail;
5734
5735 if (set_designator (0))
5736 return;
5737
5738 designator_errorneous = 1;
5739
5740 if (TREE_CODE (constructor_type) != RECORD_TYPE
5741 && TREE_CODE (constructor_type) != UNION_TYPE)
5742 {
5743 error_init ("field name not in record or union initializer");
5744 return;
5745 }
5746
5747 for (tail = TYPE_FIELDS (constructor_type); tail;
5748 tail = TREE_CHAIN (tail))
5749 {
5750 if (DECL_NAME (tail) == fieldname)
5751 break;
5752 }
5753
5754 if (tail == 0)
5755 error ("unknown field `%s' specified in initializer",
5756 IDENTIFIER_POINTER (fieldname));
5757 else
5758 {
5759 constructor_fields = tail;
5760 designator_depth++;
5761 designator_errorneous = 0;
5762 if (constructor_range_stack)
5763 push_range_stack (NULL_TREE);
5764 }
5765 }
5766 \f
5767 /* Add a new initializer to the tree of pending initializers. PURPOSE
5768 identifies the initializer, either array index or field in a structure.
5769 VALUE is the value of that index or field. */
5770
5771 static void
5772 add_pending_init (purpose, value)
5773 tree purpose, value;
5774 {
5775 struct init_node *p, **q, *r;
5776
5777 q = &constructor_pending_elts;
5778 p = 0;
5779
5780 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5781 {
5782 while (*q != 0)
5783 {
5784 p = *q;
5785 if (tree_int_cst_lt (purpose, p->purpose))
5786 q = &p->left;
5787 else if (tree_int_cst_lt (p->purpose, purpose))
5788 q = &p->right;
5789 else
5790 {
5791 if (TREE_SIDE_EFFECTS (p->value))
5792 warning_init ("initialized field with side-effects overwritten");
5793 p->value = value;
5794 return;
5795 }
5796 }
5797 }
5798 else
5799 {
5800 tree bitpos;
5801
5802 bitpos = bit_position (purpose);
5803 while (*q != NULL)
5804 {
5805 p = *q;
5806 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5807 q = &p->left;
5808 else if (p->purpose != purpose)
5809 q = &p->right;
5810 else
5811 {
5812 if (TREE_SIDE_EFFECTS (p->value))
5813 warning_init ("initialized field with side-effects overwritten");
5814 p->value = value;
5815 return;
5816 }
5817 }
5818 }
5819
5820 r = (struct init_node *) ggc_alloc (sizeof (struct init_node));
5821 r->purpose = purpose;
5822 r->value = value;
5823
5824 *q = r;
5825 r->parent = p;
5826 r->left = 0;
5827 r->right = 0;
5828 r->balance = 0;
5829
5830 while (p)
5831 {
5832 struct init_node *s;
5833
5834 if (r == p->left)
5835 {
5836 if (p->balance == 0)
5837 p->balance = -1;
5838 else if (p->balance < 0)
5839 {
5840 if (r->balance < 0)
5841 {
5842 /* L rotation. */
5843 p->left = r->right;
5844 if (p->left)
5845 p->left->parent = p;
5846 r->right = p;
5847
5848 p->balance = 0;
5849 r->balance = 0;
5850
5851 s = p->parent;
5852 p->parent = r;
5853 r->parent = s;
5854 if (s)
5855 {
5856 if (s->left == p)
5857 s->left = r;
5858 else
5859 s->right = r;
5860 }
5861 else
5862 constructor_pending_elts = r;
5863 }
5864 else
5865 {
5866 /* LR rotation. */
5867 struct init_node *t = r->right;
5868
5869 r->right = t->left;
5870 if (r->right)
5871 r->right->parent = r;
5872 t->left = r;
5873
5874 p->left = t->right;
5875 if (p->left)
5876 p->left->parent = p;
5877 t->right = p;
5878
5879 p->balance = t->balance < 0;
5880 r->balance = -(t->balance > 0);
5881 t->balance = 0;
5882
5883 s = p->parent;
5884 p->parent = t;
5885 r->parent = t;
5886 t->parent = s;
5887 if (s)
5888 {
5889 if (s->left == p)
5890 s->left = t;
5891 else
5892 s->right = t;
5893 }
5894 else
5895 constructor_pending_elts = t;
5896 }
5897 break;
5898 }
5899 else
5900 {
5901 /* p->balance == +1; growth of left side balances the node. */
5902 p->balance = 0;
5903 break;
5904 }
5905 }
5906 else /* r == p->right */
5907 {
5908 if (p->balance == 0)
5909 /* Growth propagation from right side. */
5910 p->balance++;
5911 else if (p->balance > 0)
5912 {
5913 if (r->balance > 0)
5914 {
5915 /* R rotation. */
5916 p->right = r->left;
5917 if (p->right)
5918 p->right->parent = p;
5919 r->left = p;
5920
5921 p->balance = 0;
5922 r->balance = 0;
5923
5924 s = p->parent;
5925 p->parent = r;
5926 r->parent = s;
5927 if (s)
5928 {
5929 if (s->left == p)
5930 s->left = r;
5931 else
5932 s->right = r;
5933 }
5934 else
5935 constructor_pending_elts = r;
5936 }
5937 else /* r->balance == -1 */
5938 {
5939 /* RL rotation */
5940 struct init_node *t = r->left;
5941
5942 r->left = t->right;
5943 if (r->left)
5944 r->left->parent = r;
5945 t->right = r;
5946
5947 p->right = t->left;
5948 if (p->right)
5949 p->right->parent = p;
5950 t->left = p;
5951
5952 r->balance = (t->balance < 0);
5953 p->balance = -(t->balance > 0);
5954 t->balance = 0;
5955
5956 s = p->parent;
5957 p->parent = t;
5958 r->parent = t;
5959 t->parent = s;
5960 if (s)
5961 {
5962 if (s->left == p)
5963 s->left = t;
5964 else
5965 s->right = t;
5966 }
5967 else
5968 constructor_pending_elts = t;
5969 }
5970 break;
5971 }
5972 else
5973 {
5974 /* p->balance == -1; growth of right side balances the node. */
5975 p->balance = 0;
5976 break;
5977 }
5978 }
5979
5980 r = p;
5981 p = p->parent;
5982 }
5983 }
5984
5985 /* Build AVL tree from a sorted chain. */
5986
5987 static void
5988 set_nonincremental_init ()
5989 {
5990 tree chain;
5991
5992 if (TREE_CODE (constructor_type) != RECORD_TYPE
5993 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5994 return;
5995
5996 for (chain = constructor_elements; chain; chain = TREE_CHAIN (chain))
5997 add_pending_init (TREE_PURPOSE (chain), TREE_VALUE (chain));
5998 constructor_elements = 0;
5999 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6000 {
6001 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6002 /* Skip any nameless bit fields at the beginning. */
6003 while (constructor_unfilled_fields != 0
6004 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6005 && DECL_NAME (constructor_unfilled_fields) == 0)
6006 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6007
6008 }
6009 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6010 {
6011 if (TYPE_DOMAIN (constructor_type))
6012 constructor_unfilled_index
6013 = convert (bitsizetype,
6014 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6015 else
6016 constructor_unfilled_index = bitsize_zero_node;
6017 }
6018 constructor_incremental = 0;
6019 }
6020
6021 /* Build AVL tree from a string constant. */
6022
6023 static void
6024 set_nonincremental_init_from_string (str)
6025 tree str;
6026 {
6027 tree value, purpose, type;
6028 HOST_WIDE_INT val[2];
6029 const char *p, *end;
6030 int byte, wchar_bytes, charwidth, bitpos;
6031
6032 if (TREE_CODE (constructor_type) != ARRAY_TYPE)
6033 abort ();
6034
6035 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6036 == TYPE_PRECISION (char_type_node))
6037 wchar_bytes = 1;
6038 else if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6039 == TYPE_PRECISION (wchar_type_node))
6040 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6041 else
6042 abort ();
6043
6044 charwidth = TYPE_PRECISION (char_type_node);
6045 type = TREE_TYPE (constructor_type);
6046 p = TREE_STRING_POINTER (str);
6047 end = p + TREE_STRING_LENGTH (str);
6048
6049 for (purpose = bitsize_zero_node;
6050 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6051 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6052 {
6053 if (wchar_bytes == 1)
6054 {
6055 val[1] = (unsigned char) *p++;
6056 val[0] = 0;
6057 }
6058 else
6059 {
6060 val[0] = 0;
6061 val[1] = 0;
6062 for (byte = 0; byte < wchar_bytes; byte++)
6063 {
6064 if (BYTES_BIG_ENDIAN)
6065 bitpos = (wchar_bytes - byte - 1) * charwidth;
6066 else
6067 bitpos = byte * charwidth;
6068 val[bitpos < HOST_BITS_PER_WIDE_INT]
6069 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6070 << (bitpos % HOST_BITS_PER_WIDE_INT);
6071 }
6072 }
6073
6074 if (!TREE_UNSIGNED (type))
6075 {
6076 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6077 if (bitpos < HOST_BITS_PER_WIDE_INT)
6078 {
6079 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6080 {
6081 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6082 val[0] = -1;
6083 }
6084 }
6085 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6086 {
6087 if (val[1] < 0)
6088 val[0] = -1;
6089 }
6090 else if (val[0] & (((HOST_WIDE_INT) 1)
6091 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6092 val[0] |= ((HOST_WIDE_INT) -1)
6093 << (bitpos - HOST_BITS_PER_WIDE_INT);
6094 }
6095
6096 value = build_int_2 (val[1], val[0]);
6097 TREE_TYPE (value) = type;
6098 add_pending_init (purpose, value);
6099 }
6100
6101 constructor_incremental = 0;
6102 }
6103
6104 /* Return value of FIELD in pending initializer or zero if the field was
6105 not initialized yet. */
6106
6107 static tree
6108 find_init_member (field)
6109 tree field;
6110 {
6111 struct init_node *p;
6112
6113 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6114 {
6115 if (constructor_incremental
6116 && tree_int_cst_lt (field, constructor_unfilled_index))
6117 set_nonincremental_init ();
6118
6119 p = constructor_pending_elts;
6120 while (p)
6121 {
6122 if (tree_int_cst_lt (field, p->purpose))
6123 p = p->left;
6124 else if (tree_int_cst_lt (p->purpose, field))
6125 p = p->right;
6126 else
6127 return p->value;
6128 }
6129 }
6130 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6131 {
6132 tree bitpos = bit_position (field);
6133
6134 if (constructor_incremental
6135 && (!constructor_unfilled_fields
6136 || tree_int_cst_lt (bitpos,
6137 bit_position (constructor_unfilled_fields))))
6138 set_nonincremental_init ();
6139
6140 p = constructor_pending_elts;
6141 while (p)
6142 {
6143 if (field == p->purpose)
6144 return p->value;
6145 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6146 p = p->left;
6147 else
6148 p = p->right;
6149 }
6150 }
6151 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6152 {
6153 if (constructor_elements
6154 && TREE_PURPOSE (constructor_elements) == field)
6155 return TREE_VALUE (constructor_elements);
6156 }
6157 return 0;
6158 }
6159
6160 /* "Output" the next constructor element.
6161 At top level, really output it to assembler code now.
6162 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6163 TYPE is the data type that the containing data type wants here.
6164 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6165
6166 PENDING if non-nil means output pending elements that belong
6167 right after this element. (PENDING is normally 1;
6168 it is 0 while outputting pending elements, to avoid recursion.) */
6169
6170 static void
6171 output_init_element (value, type, field, pending)
6172 tree value, type, field;
6173 int pending;
6174 {
6175 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
6176 || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6177 && !(TREE_CODE (value) == STRING_CST
6178 && TREE_CODE (type) == ARRAY_TYPE
6179 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
6180 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6181 TYPE_MAIN_VARIANT (type))))
6182 value = default_conversion (value);
6183
6184 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6185 && require_constant_value && !flag_isoc99 && pending)
6186 {
6187 /* As an extension, allow initializing objects with static storage
6188 duration with compound literals (which are then treated just as
6189 the brace enclosed list they contain). */
6190 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6191 value = DECL_INITIAL (decl);
6192 }
6193
6194 if (value == error_mark_node)
6195 constructor_erroneous = 1;
6196 else if (!TREE_CONSTANT (value))
6197 constructor_constant = 0;
6198 else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
6199 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6200 || TREE_CODE (constructor_type) == UNION_TYPE)
6201 && DECL_C_BIT_FIELD (field)
6202 && TREE_CODE (value) != INTEGER_CST))
6203 constructor_simple = 0;
6204
6205 if (require_constant_value && ! TREE_CONSTANT (value))
6206 {
6207 error_init ("initializer element is not constant");
6208 value = error_mark_node;
6209 }
6210 else if (require_constant_elements
6211 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
6212 pedwarn ("initializer element is not computable at load time");
6213
6214 /* If this field is empty (and not at the end of structure),
6215 don't do anything other than checking the initializer. */
6216 if (field
6217 && (TREE_TYPE (field) == error_mark_node
6218 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6219 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6220 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6221 || TREE_CHAIN (field)))))
6222 return;
6223
6224 value = digest_init (type, value, require_constant_value);
6225 if (value == error_mark_node)
6226 {
6227 constructor_erroneous = 1;
6228 return;
6229 }
6230
6231 /* If this element doesn't come next in sequence,
6232 put it on constructor_pending_elts. */
6233 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6234 && (!constructor_incremental
6235 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6236 {
6237 if (constructor_incremental
6238 && tree_int_cst_lt (field, constructor_unfilled_index))
6239 set_nonincremental_init ();
6240
6241 add_pending_init (field, value);
6242 return;
6243 }
6244 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6245 && (!constructor_incremental
6246 || field != constructor_unfilled_fields))
6247 {
6248 /* We do this for records but not for unions. In a union,
6249 no matter which field is specified, it can be initialized
6250 right away since it starts at the beginning of the union. */
6251 if (constructor_incremental)
6252 {
6253 if (!constructor_unfilled_fields)
6254 set_nonincremental_init ();
6255 else
6256 {
6257 tree bitpos, unfillpos;
6258
6259 bitpos = bit_position (field);
6260 unfillpos = bit_position (constructor_unfilled_fields);
6261
6262 if (tree_int_cst_lt (bitpos, unfillpos))
6263 set_nonincremental_init ();
6264 }
6265 }
6266
6267 add_pending_init (field, value);
6268 return;
6269 }
6270 else if (TREE_CODE (constructor_type) == UNION_TYPE
6271 && constructor_elements)
6272 {
6273 if (TREE_SIDE_EFFECTS (TREE_VALUE (constructor_elements)))
6274 warning_init ("initialized field with side-effects overwritten");
6275
6276 /* We can have just one union field set. */
6277 constructor_elements = 0;
6278 }
6279
6280 /* Otherwise, output this element either to
6281 constructor_elements or to the assembler file. */
6282
6283 if (field && TREE_CODE (field) == INTEGER_CST)
6284 field = copy_node (field);
6285 constructor_elements
6286 = tree_cons (field, value, constructor_elements);
6287
6288 /* Advance the variable that indicates sequential elements output. */
6289 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6290 constructor_unfilled_index
6291 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6292 bitsize_one_node);
6293 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6294 {
6295 constructor_unfilled_fields
6296 = TREE_CHAIN (constructor_unfilled_fields);
6297
6298 /* Skip any nameless bit fields. */
6299 while (constructor_unfilled_fields != 0
6300 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6301 && DECL_NAME (constructor_unfilled_fields) == 0)
6302 constructor_unfilled_fields =
6303 TREE_CHAIN (constructor_unfilled_fields);
6304 }
6305 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6306 constructor_unfilled_fields = 0;
6307
6308 /* Now output any pending elements which have become next. */
6309 if (pending)
6310 output_pending_init_elements (0);
6311 }
6312
6313 /* Output any pending elements which have become next.
6314 As we output elements, constructor_unfilled_{fields,index}
6315 advances, which may cause other elements to become next;
6316 if so, they too are output.
6317
6318 If ALL is 0, we return when there are
6319 no more pending elements to output now.
6320
6321 If ALL is 1, we output space as necessary so that
6322 we can output all the pending elements. */
6323
6324 static void
6325 output_pending_init_elements (all)
6326 int all;
6327 {
6328 struct init_node *elt = constructor_pending_elts;
6329 tree next;
6330
6331 retry:
6332
6333 /* Look thru the whole pending tree.
6334 If we find an element that should be output now,
6335 output it. Otherwise, set NEXT to the element
6336 that comes first among those still pending. */
6337
6338 next = 0;
6339 while (elt)
6340 {
6341 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6342 {
6343 if (tree_int_cst_equal (elt->purpose,
6344 constructor_unfilled_index))
6345 output_init_element (elt->value,
6346 TREE_TYPE (constructor_type),
6347 constructor_unfilled_index, 0);
6348 else if (tree_int_cst_lt (constructor_unfilled_index,
6349 elt->purpose))
6350 {
6351 /* Advance to the next smaller node. */
6352 if (elt->left)
6353 elt = elt->left;
6354 else
6355 {
6356 /* We have reached the smallest node bigger than the
6357 current unfilled index. Fill the space first. */
6358 next = elt->purpose;
6359 break;
6360 }
6361 }
6362 else
6363 {
6364 /* Advance to the next bigger node. */
6365 if (elt->right)
6366 elt = elt->right;
6367 else
6368 {
6369 /* We have reached the biggest node in a subtree. Find
6370 the parent of it, which is the next bigger node. */
6371 while (elt->parent && elt->parent->right == elt)
6372 elt = elt->parent;
6373 elt = elt->parent;
6374 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6375 elt->purpose))
6376 {
6377 next = elt->purpose;
6378 break;
6379 }
6380 }
6381 }
6382 }
6383 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6384 || TREE_CODE (constructor_type) == UNION_TYPE)
6385 {
6386 tree ctor_unfilled_bitpos, elt_bitpos;
6387
6388 /* If the current record is complete we are done. */
6389 if (constructor_unfilled_fields == 0)
6390 break;
6391
6392 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6393 elt_bitpos = bit_position (elt->purpose);
6394 /* We can't compare fields here because there might be empty
6395 fields in between. */
6396 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6397 {
6398 constructor_unfilled_fields = elt->purpose;
6399 output_init_element (elt->value, TREE_TYPE (elt->purpose),
6400 elt->purpose, 0);
6401 }
6402 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6403 {
6404 /* Advance to the next smaller node. */
6405 if (elt->left)
6406 elt = elt->left;
6407 else
6408 {
6409 /* We have reached the smallest node bigger than the
6410 current unfilled field. Fill the space first. */
6411 next = elt->purpose;
6412 break;
6413 }
6414 }
6415 else
6416 {
6417 /* Advance to the next bigger node. */
6418 if (elt->right)
6419 elt = elt->right;
6420 else
6421 {
6422 /* We have reached the biggest node in a subtree. Find
6423 the parent of it, which is the next bigger node. */
6424 while (elt->parent && elt->parent->right == elt)
6425 elt = elt->parent;
6426 elt = elt->parent;
6427 if (elt
6428 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6429 bit_position (elt->purpose))))
6430 {
6431 next = elt->purpose;
6432 break;
6433 }
6434 }
6435 }
6436 }
6437 }
6438
6439 /* Ordinarily return, but not if we want to output all
6440 and there are elements left. */
6441 if (! (all && next != 0))
6442 return;
6443
6444 /* If it's not incremental, just skip over the gap, so that after
6445 jumping to retry we will output the next successive element. */
6446 if (TREE_CODE (constructor_type) == RECORD_TYPE
6447 || TREE_CODE (constructor_type) == UNION_TYPE)
6448 constructor_unfilled_fields = next;
6449 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6450 constructor_unfilled_index = next;
6451
6452 /* ELT now points to the node in the pending tree with the next
6453 initializer to output. */
6454 goto retry;
6455 }
6456 \f
6457 /* Add one non-braced element to the current constructor level.
6458 This adjusts the current position within the constructor's type.
6459 This may also start or terminate implicit levels
6460 to handle a partly-braced initializer.
6461
6462 Once this has found the correct level for the new element,
6463 it calls output_init_element. */
6464
6465 void
6466 process_init_element (value)
6467 tree value;
6468 {
6469 tree orig_value = value;
6470 int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
6471
6472 designator_depth = 0;
6473 designator_errorneous = 0;
6474
6475 /* Handle superfluous braces around string cst as in
6476 char x[] = {"foo"}; */
6477 if (string_flag
6478 && constructor_type
6479 && TREE_CODE (constructor_type) == ARRAY_TYPE
6480 && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
6481 && integer_zerop (constructor_unfilled_index))
6482 {
6483 if (constructor_stack->replacement_value)
6484 error_init ("excess elements in char array initializer");
6485 constructor_stack->replacement_value = value;
6486 return;
6487 }
6488
6489 if (constructor_stack->replacement_value != 0)
6490 {
6491 error_init ("excess elements in struct initializer");
6492 return;
6493 }
6494
6495 /* Ignore elements of a brace group if it is entirely superfluous
6496 and has already been diagnosed. */
6497 if (constructor_type == 0)
6498 return;
6499
6500 /* If we've exhausted any levels that didn't have braces,
6501 pop them now. */
6502 while (constructor_stack->implicit)
6503 {
6504 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6505 || TREE_CODE (constructor_type) == UNION_TYPE)
6506 && constructor_fields == 0)
6507 process_init_element (pop_init_level (1));
6508 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6509 && (constructor_max_index == 0
6510 || tree_int_cst_lt (constructor_max_index,
6511 constructor_index)))
6512 process_init_element (pop_init_level (1));
6513 else
6514 break;
6515 }
6516
6517 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6518 if (constructor_range_stack)
6519 {
6520 /* If value is a compound literal and we'll be just using its
6521 content, don't put it into a SAVE_EXPR. */
6522 if (TREE_CODE (value) != COMPOUND_LITERAL_EXPR
6523 || !require_constant_value
6524 || flag_isoc99)
6525 value = save_expr (value);
6526 }
6527
6528 while (1)
6529 {
6530 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6531 {
6532 tree fieldtype;
6533 enum tree_code fieldcode;
6534
6535 if (constructor_fields == 0)
6536 {
6537 pedwarn_init ("excess elements in struct initializer");
6538 break;
6539 }
6540
6541 fieldtype = TREE_TYPE (constructor_fields);
6542 if (fieldtype != error_mark_node)
6543 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6544 fieldcode = TREE_CODE (fieldtype);
6545
6546 /* Error for non-static initialization of a flexible array member. */
6547 if (fieldcode == ARRAY_TYPE
6548 && !require_constant_value
6549 && TYPE_SIZE (fieldtype) == NULL_TREE
6550 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6551 {
6552 error_init ("non-static initialization of a flexible array member");
6553 break;
6554 }
6555
6556 /* Accept a string constant to initialize a subarray. */
6557 if (value != 0
6558 && fieldcode == ARRAY_TYPE
6559 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6560 && string_flag)
6561 value = orig_value;
6562 /* Otherwise, if we have come to a subaggregate,
6563 and we don't have an element of its type, push into it. */
6564 else if (value != 0 && !constructor_no_implicit
6565 && value != error_mark_node
6566 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6567 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6568 || fieldcode == UNION_TYPE))
6569 {
6570 push_init_level (1);
6571 continue;
6572 }
6573
6574 if (value)
6575 {
6576 push_member_name (constructor_fields);
6577 output_init_element (value, fieldtype, constructor_fields, 1);
6578 RESTORE_SPELLING_DEPTH (constructor_depth);
6579 }
6580 else
6581 /* Do the bookkeeping for an element that was
6582 directly output as a constructor. */
6583 {
6584 /* For a record, keep track of end position of last field. */
6585 if (DECL_SIZE (constructor_fields))
6586 constructor_bit_index
6587 = size_binop (PLUS_EXPR,
6588 bit_position (constructor_fields),
6589 DECL_SIZE (constructor_fields));
6590
6591 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6592 /* Skip any nameless bit fields. */
6593 while (constructor_unfilled_fields != 0
6594 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6595 && DECL_NAME (constructor_unfilled_fields) == 0)
6596 constructor_unfilled_fields =
6597 TREE_CHAIN (constructor_unfilled_fields);
6598 }
6599
6600 constructor_fields = TREE_CHAIN (constructor_fields);
6601 /* Skip any nameless bit fields at the beginning. */
6602 while (constructor_fields != 0
6603 && DECL_C_BIT_FIELD (constructor_fields)
6604 && DECL_NAME (constructor_fields) == 0)
6605 constructor_fields = TREE_CHAIN (constructor_fields);
6606 }
6607 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6608 {
6609 tree fieldtype;
6610 enum tree_code fieldcode;
6611
6612 if (constructor_fields == 0)
6613 {
6614 pedwarn_init ("excess elements in union initializer");
6615 break;
6616 }
6617
6618 fieldtype = TREE_TYPE (constructor_fields);
6619 if (fieldtype != error_mark_node)
6620 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6621 fieldcode = TREE_CODE (fieldtype);
6622
6623 /* Warn that traditional C rejects initialization of unions.
6624 We skip the warning if the value is zero. This is done
6625 under the assumption that the zero initializer in user
6626 code appears conditioned on e.g. __STDC__ to avoid
6627 "missing initializer" warnings and relies on default
6628 initialization to zero in the traditional C case.
6629 We also skip the warning if the initializer is designated,
6630 again on the assumption that this must be conditional on
6631 __STDC__ anyway (and we've already complained about the
6632 member-designator already). */
6633 if (warn_traditional && !in_system_header && !constructor_designated
6634 && !(value && (integer_zerop (value) || real_zerop (value))))
6635 warning ("traditional C rejects initialization of unions");
6636
6637 /* Accept a string constant to initialize a subarray. */
6638 if (value != 0
6639 && fieldcode == ARRAY_TYPE
6640 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6641 && string_flag)
6642 value = orig_value;
6643 /* Otherwise, if we have come to a subaggregate,
6644 and we don't have an element of its type, push into it. */
6645 else if (value != 0 && !constructor_no_implicit
6646 && value != error_mark_node
6647 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6648 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6649 || fieldcode == UNION_TYPE))
6650 {
6651 push_init_level (1);
6652 continue;
6653 }
6654
6655 if (value)
6656 {
6657 push_member_name (constructor_fields);
6658 output_init_element (value, fieldtype, constructor_fields, 1);
6659 RESTORE_SPELLING_DEPTH (constructor_depth);
6660 }
6661 else
6662 /* Do the bookkeeping for an element that was
6663 directly output as a constructor. */
6664 {
6665 constructor_bit_index = DECL_SIZE (constructor_fields);
6666 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6667 }
6668
6669 constructor_fields = 0;
6670 }
6671 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6672 {
6673 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6674 enum tree_code eltcode = TREE_CODE (elttype);
6675
6676 /* Accept a string constant to initialize a subarray. */
6677 if (value != 0
6678 && eltcode == ARRAY_TYPE
6679 && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
6680 && string_flag)
6681 value = orig_value;
6682 /* Otherwise, if we have come to a subaggregate,
6683 and we don't have an element of its type, push into it. */
6684 else if (value != 0 && !constructor_no_implicit
6685 && value != error_mark_node
6686 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
6687 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6688 || eltcode == UNION_TYPE))
6689 {
6690 push_init_level (1);
6691 continue;
6692 }
6693
6694 if (constructor_max_index != 0
6695 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6696 || integer_all_onesp (constructor_max_index)))
6697 {
6698 pedwarn_init ("excess elements in array initializer");
6699 break;
6700 }
6701
6702 /* Now output the actual element. */
6703 if (value)
6704 {
6705 push_array_bounds (tree_low_cst (constructor_index, 0));
6706 output_init_element (value, elttype, constructor_index, 1);
6707 RESTORE_SPELLING_DEPTH (constructor_depth);
6708 }
6709
6710 constructor_index
6711 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6712
6713 if (! value)
6714 /* If we are doing the bookkeeping for an element that was
6715 directly output as a constructor, we must update
6716 constructor_unfilled_index. */
6717 constructor_unfilled_index = constructor_index;
6718 }
6719 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6720 {
6721 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6722
6723 /* Do a basic check of initializer size. Note that vectors
6724 always have a fixed size derived from their type. */
6725 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6726 {
6727 pedwarn_init ("excess elements in vector initializer");
6728 break;
6729 }
6730
6731 /* Now output the actual element. */
6732 if (value)
6733 output_init_element (value, elttype, constructor_index, 1);
6734
6735 constructor_index
6736 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6737
6738 if (! value)
6739 /* If we are doing the bookkeeping for an element that was
6740 directly output as a constructor, we must update
6741 constructor_unfilled_index. */
6742 constructor_unfilled_index = constructor_index;
6743 }
6744
6745 /* Handle the sole element allowed in a braced initializer
6746 for a scalar variable. */
6747 else if (constructor_fields == 0)
6748 {
6749 pedwarn_init ("excess elements in scalar initializer");
6750 break;
6751 }
6752 else
6753 {
6754 if (value)
6755 output_init_element (value, constructor_type, NULL_TREE, 1);
6756 constructor_fields = 0;
6757 }
6758
6759 /* Handle range initializers either at this level or anywhere higher
6760 in the designator stack. */
6761 if (constructor_range_stack)
6762 {
6763 struct constructor_range_stack *p, *range_stack;
6764 int finish = 0;
6765
6766 range_stack = constructor_range_stack;
6767 constructor_range_stack = 0;
6768 while (constructor_stack != range_stack->stack)
6769 {
6770 if (!constructor_stack->implicit)
6771 abort ();
6772 process_init_element (pop_init_level (1));
6773 }
6774 for (p = range_stack;
6775 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6776 p = p->prev)
6777 {
6778 if (!constructor_stack->implicit)
6779 abort ();
6780 process_init_element (pop_init_level (1));
6781 }
6782
6783 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6784 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6785 finish = 1;
6786
6787 while (1)
6788 {
6789 constructor_index = p->index;
6790 constructor_fields = p->fields;
6791 if (finish && p->range_end && p->index == p->range_start)
6792 {
6793 finish = 0;
6794 p->prev = 0;
6795 }
6796 p = p->next;
6797 if (!p)
6798 break;
6799 push_init_level (2);
6800 p->stack = constructor_stack;
6801 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6802 p->index = p->range_start;
6803 }
6804
6805 if (!finish)
6806 constructor_range_stack = range_stack;
6807 continue;
6808 }
6809
6810 break;
6811 }
6812
6813 constructor_range_stack = 0;
6814 }
6815 \f
6816 /* Build a simple asm-statement, from one string literal. */
6817 tree
6818 simple_asm_stmt (expr)
6819 tree expr;
6820 {
6821 STRIP_NOPS (expr);
6822
6823 if (TREE_CODE (expr) == ADDR_EXPR)
6824 expr = TREE_OPERAND (expr, 0);
6825
6826 if (TREE_CODE (expr) == STRING_CST)
6827 {
6828 tree stmt;
6829
6830 if (TREE_CHAIN (expr))
6831 expr = combine_strings (expr);
6832 stmt = add_stmt (build_stmt (ASM_STMT, NULL_TREE, expr,
6833 NULL_TREE, NULL_TREE,
6834 NULL_TREE));
6835 ASM_INPUT_P (stmt) = 1;
6836 return stmt;
6837 }
6838
6839 error ("argument of `asm' is not a constant string");
6840 return NULL_TREE;
6841 }
6842
6843 /* Build an asm-statement, whose components are a CV_QUALIFIER, a
6844 STRING, some OUTPUTS, some INPUTS, and some CLOBBERS. */
6845
6846 tree
6847 build_asm_stmt (cv_qualifier, string, outputs, inputs, clobbers)
6848 tree cv_qualifier;
6849 tree string;
6850 tree outputs;
6851 tree inputs;
6852 tree clobbers;
6853 {
6854 tree tail;
6855
6856 if (TREE_CHAIN (string))
6857 string = combine_strings (string);
6858 if (TREE_CODE (string) != STRING_CST)
6859 {
6860 error ("asm template is not a string constant");
6861 return NULL_TREE;
6862 }
6863
6864 if (cv_qualifier != NULL_TREE
6865 && cv_qualifier != ridpointers[(int) RID_VOLATILE])
6866 {
6867 warning ("%s qualifier ignored on asm",
6868 IDENTIFIER_POINTER (cv_qualifier));
6869 cv_qualifier = NULL_TREE;
6870 }
6871
6872 /* We can remove output conversions that change the type,
6873 but not the mode. */
6874 for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6875 {
6876 tree output = TREE_VALUE (tail);
6877
6878 STRIP_NOPS (output);
6879 TREE_VALUE (tail) = output;
6880
6881 /* Allow conversions as LHS here. build_modify_expr as called below
6882 will do the right thing with them. */
6883 while (TREE_CODE (output) == NOP_EXPR
6884 || TREE_CODE (output) == CONVERT_EXPR
6885 || TREE_CODE (output) == FLOAT_EXPR
6886 || TREE_CODE (output) == FIX_TRUNC_EXPR
6887 || TREE_CODE (output) == FIX_FLOOR_EXPR
6888 || TREE_CODE (output) == FIX_ROUND_EXPR
6889 || TREE_CODE (output) == FIX_CEIL_EXPR)
6890 output = TREE_OPERAND (output, 0);
6891
6892 lvalue_or_else (TREE_VALUE (tail), "invalid lvalue in asm statement");
6893 }
6894
6895 /* Remove output conversions that change the type but not the mode. */
6896 for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6897 {
6898 tree output = TREE_VALUE (tail);
6899 STRIP_NOPS (output);
6900 TREE_VALUE (tail) = output;
6901 }
6902
6903 /* Perform default conversions on array and function inputs.
6904 Don't do this for other types as it would screw up operands
6905 expected to be in memory. */
6906 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
6907 TREE_VALUE (tail) = default_function_array_conversion (TREE_VALUE (tail));
6908
6909 return add_stmt (build_stmt (ASM_STMT, cv_qualifier, string,
6910 outputs, inputs, clobbers));
6911 }
6912
6913 /* Expand an ASM statement with operands, handling output operands
6914 that are not variables or INDIRECT_REFS by transforming such
6915 cases into cases that expand_asm_operands can handle.
6916
6917 Arguments are same as for expand_asm_operands. */
6918
6919 void
6920 c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
6921 tree string, outputs, inputs, clobbers;
6922 int vol;
6923 const char *filename;
6924 int line;
6925 {
6926 int noutputs = list_length (outputs);
6927 int i;
6928 /* o[I] is the place that output number I should be written. */
6929 tree *o = (tree *) alloca (noutputs * sizeof (tree));
6930 tree tail;
6931
6932 /* Record the contents of OUTPUTS before it is modified. */
6933 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6934 o[i] = TREE_VALUE (tail);
6935
6936 /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
6937 OUTPUTS some trees for where the values were actually stored. */
6938 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
6939
6940 /* Copy all the intermediate outputs into the specified outputs. */
6941 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6942 {
6943 if (o[i] != TREE_VALUE (tail))
6944 {
6945 expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
6946 NULL_RTX, VOIDmode, EXPAND_NORMAL);
6947 free_temp_slots ();
6948
6949 /* Restore the original value so that it's correct the next
6950 time we expand this function. */
6951 TREE_VALUE (tail) = o[i];
6952 }
6953 /* Detect modification of read-only values.
6954 (Otherwise done by build_modify_expr.) */
6955 else
6956 {
6957 tree type = TREE_TYPE (o[i]);
6958 if (TREE_READONLY (o[i])
6959 || TYPE_READONLY (type)
6960 || ((TREE_CODE (type) == RECORD_TYPE
6961 || TREE_CODE (type) == UNION_TYPE)
6962 && C_TYPE_FIELDS_READONLY (type)))
6963 readonly_warning (o[i], "modification by `asm'");
6964 }
6965 }
6966
6967 /* Those MODIFY_EXPRs could do autoincrements. */
6968 emit_queue ();
6969 }
6970 \f
6971 /* Expand a C `return' statement.
6972 RETVAL is the expression for what to return,
6973 or a null pointer for `return;' with no value. */
6974
6975 tree
6976 c_expand_return (retval)
6977 tree retval;
6978 {
6979 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
6980
6981 if (TREE_THIS_VOLATILE (current_function_decl))
6982 warning ("function declared `noreturn' has a `return' statement");
6983
6984 if (!retval)
6985 {
6986 current_function_returns_null = 1;
6987 if ((warn_return_type || flag_isoc99)
6988 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6989 pedwarn_c99 ("`return' with no value, in function returning non-void");
6990 }
6991 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6992 {
6993 current_function_returns_null = 1;
6994 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6995 pedwarn ("`return' with a value, in function returning void");
6996 }
6997 else
6998 {
6999 tree t = convert_for_assignment (valtype, retval, _("return"),
7000 NULL_TREE, NULL_TREE, 0);
7001 tree res = DECL_RESULT (current_function_decl);
7002 tree inner;
7003
7004 current_function_returns_value = 1;
7005 if (t == error_mark_node)
7006 return NULL_TREE;
7007
7008 inner = t = convert (TREE_TYPE (res), t);
7009
7010 /* Strip any conversions, additions, and subtractions, and see if
7011 we are returning the address of a local variable. Warn if so. */
7012 while (1)
7013 {
7014 switch (TREE_CODE (inner))
7015 {
7016 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
7017 case PLUS_EXPR:
7018 inner = TREE_OPERAND (inner, 0);
7019 continue;
7020
7021 case MINUS_EXPR:
7022 /* If the second operand of the MINUS_EXPR has a pointer
7023 type (or is converted from it), this may be valid, so
7024 don't give a warning. */
7025 {
7026 tree op1 = TREE_OPERAND (inner, 1);
7027
7028 while (! POINTER_TYPE_P (TREE_TYPE (op1))
7029 && (TREE_CODE (op1) == NOP_EXPR
7030 || TREE_CODE (op1) == NON_LVALUE_EXPR
7031 || TREE_CODE (op1) == CONVERT_EXPR))
7032 op1 = TREE_OPERAND (op1, 0);
7033
7034 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7035 break;
7036
7037 inner = TREE_OPERAND (inner, 0);
7038 continue;
7039 }
7040
7041 case ADDR_EXPR:
7042 inner = TREE_OPERAND (inner, 0);
7043
7044 while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
7045 inner = TREE_OPERAND (inner, 0);
7046
7047 if (TREE_CODE (inner) == VAR_DECL
7048 && ! DECL_EXTERNAL (inner)
7049 && ! TREE_STATIC (inner)
7050 && DECL_CONTEXT (inner) == current_function_decl)
7051 warning ("function returns address of local variable");
7052 break;
7053
7054 default:
7055 break;
7056 }
7057
7058 break;
7059 }
7060
7061 retval = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
7062 }
7063
7064 return add_stmt (build_return_stmt (retval));
7065 }
7066 \f
7067 struct c_switch {
7068 /* The SWITCH_STMT being built. */
7069 tree switch_stmt;
7070 /* A splay-tree mapping the low element of a case range to the high
7071 element, or NULL_TREE if there is no high element. Used to
7072 determine whether or not a new case label duplicates an old case
7073 label. We need a tree, rather than simply a hash table, because
7074 of the GNU case range extension. */
7075 splay_tree cases;
7076 /* The next node on the stack. */
7077 struct c_switch *next;
7078 };
7079
7080 /* A stack of the currently active switch statements. The innermost
7081 switch statement is on the top of the stack. There is no need to
7082 mark the stack for garbage collection because it is only active
7083 during the processing of the body of a function, and we never
7084 collect at that point. */
7085
7086 static struct c_switch *switch_stack;
7087
7088 /* Start a C switch statement, testing expression EXP. Return the new
7089 SWITCH_STMT. */
7090
7091 tree
7092 c_start_case (exp)
7093 tree exp;
7094 {
7095 enum tree_code code;
7096 tree type, orig_type = error_mark_node;
7097 struct c_switch *cs;
7098
7099 if (exp != error_mark_node)
7100 {
7101 code = TREE_CODE (TREE_TYPE (exp));
7102 orig_type = TREE_TYPE (exp);
7103
7104 if (! INTEGRAL_TYPE_P (orig_type)
7105 && code != ERROR_MARK)
7106 {
7107 error ("switch quantity not an integer");
7108 exp = integer_zero_node;
7109 }
7110 else
7111 {
7112 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7113
7114 if (warn_traditional && !in_system_header
7115 && (type == long_integer_type_node
7116 || type == long_unsigned_type_node))
7117 warning ("`long' switch expression not converted to `int' in ISO C");
7118
7119 exp = default_conversion (exp);
7120 type = TREE_TYPE (exp);
7121 }
7122 }
7123
7124 /* Add this new SWITCH_STMT to the stack. */
7125 cs = (struct c_switch *) xmalloc (sizeof (*cs));
7126 cs->switch_stmt = build_stmt (SWITCH_STMT, exp, NULL_TREE, orig_type);
7127 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7128 cs->next = switch_stack;
7129 switch_stack = cs;
7130
7131 return add_stmt (switch_stack->switch_stmt);
7132 }
7133
7134 /* Process a case label. */
7135
7136 tree
7137 do_case (low_value, high_value)
7138 tree low_value;
7139 tree high_value;
7140 {
7141 tree label = NULL_TREE;
7142
7143 if (switch_stack)
7144 {
7145 label = c_add_case_label (switch_stack->cases,
7146 SWITCH_COND (switch_stack->switch_stmt),
7147 low_value, high_value);
7148 if (label == error_mark_node)
7149 label = NULL_TREE;
7150 }
7151 else if (low_value)
7152 error ("case label not within a switch statement");
7153 else
7154 error ("`default' label not within a switch statement");
7155
7156 return label;
7157 }
7158
7159 /* Finish the switch statement. */
7160
7161 void
7162 c_finish_case ()
7163 {
7164 struct c_switch *cs = switch_stack;
7165
7166 RECHAIN_STMTS (cs->switch_stmt, SWITCH_BODY (cs->switch_stmt));
7167
7168 /* Pop the stack. */
7169 switch_stack = switch_stack->next;
7170 splay_tree_delete (cs->cases);
7171 free (cs);
7172 }