]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/c-typeck.c
[multiple changes]
[thirdparty/gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file is part of the C front end.
25 It contains routines to build C expressions given their operands,
26 including computing the types of the result, C-specific error checks,
27 and some optimization. */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48
49 /* Possible cases of implicit bad conversions. Used to select
50 diagnostic messages in convert_for_assignment. */
51 enum impl_conv {
52 ic_argpass,
53 ic_argpass_nonproto,
54 ic_assign,
55 ic_init,
56 ic_return
57 };
58
59 /* The level of nesting inside "__alignof__". */
60 int in_alignof;
61
62 /* The level of nesting inside "sizeof". */
63 int in_sizeof;
64
65 /* The level of nesting inside "typeof". */
66 int in_typeof;
67
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static int convert_arguments (int, tree *, tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256
257 /* Return true iff the given tree T is a variable length array. */
258
259 bool
260 c_vla_type_p (tree t)
261 {
262 if (TREE_CODE (t) == ARRAY_TYPE
263 && C_TYPE_VARIABLE_SIZE (t))
264 return true;
265 return false;
266 }
267 \f
268 /* Return the composite type of two compatible types.
269
270 We assume that comptypes has already been done and returned
271 nonzero; if that isn't so, this may crash. In particular, we
272 assume that qualifiers match. */
273
274 tree
275 composite_type (tree t1, tree t2)
276 {
277 enum tree_code code1;
278 enum tree_code code2;
279 tree attributes;
280
281 /* Save time if the two types are the same. */
282
283 if (t1 == t2) return t1;
284
285 /* If one type is nonsense, use the other. */
286 if (t1 == error_mark_node)
287 return t2;
288 if (t2 == error_mark_node)
289 return t1;
290
291 code1 = TREE_CODE (t1);
292 code2 = TREE_CODE (t2);
293
294 /* Merge the attributes. */
295 attributes = targetm.merge_type_attributes (t1, t2);
296
297 /* If one is an enumerated type and the other is the compatible
298 integer type, the composite type might be either of the two
299 (DR#013 question 3). For consistency, use the enumerated type as
300 the composite type. */
301
302 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303 return t1;
304 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305 return t2;
306
307 gcc_assert (code1 == code2);
308
309 switch (code1)
310 {
311 case POINTER_TYPE:
312 /* For two pointers, do this recursively on the target type. */
313 {
314 tree pointed_to_1 = TREE_TYPE (t1);
315 tree pointed_to_2 = TREE_TYPE (t2);
316 tree target = composite_type (pointed_to_1, pointed_to_2);
317 t1 = build_pointer_type (target);
318 t1 = build_type_attribute_variant (t1, attributes);
319 return qualify_type (t1, t2);
320 }
321
322 case ARRAY_TYPE:
323 {
324 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325 int quals;
326 tree unqual_elt;
327 tree d1 = TYPE_DOMAIN (t1);
328 tree d2 = TYPE_DOMAIN (t2);
329 bool d1_variable, d2_variable;
330 bool d1_zero, d2_zero;
331
332 /* We should not have any type quals on arrays at all. */
333 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338 d1_variable = (!d1_zero
339 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341 d2_variable = (!d2_zero
342 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347 /* Save space: see if the result is identical to one of the args. */
348 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349 && (d2_variable || d2_zero || !d1_variable))
350 return build_type_attribute_variant (t1, attributes);
351 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352 && (d1_variable || d1_zero || !d2_variable))
353 return build_type_attribute_variant (t2, attributes);
354
355 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356 return build_type_attribute_variant (t1, attributes);
357 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358 return build_type_attribute_variant (t2, attributes);
359
360 /* Merge the element types, and have a size if either arg has
361 one. We may have qualifiers on the element types. To set
362 up TYPE_MAIN_VARIANT correctly, we need to form the
363 composite of the unqualified types and add the qualifiers
364 back at the end. */
365 quals = TYPE_QUALS (strip_array_types (elt));
366 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367 t1 = build_array_type (unqual_elt,
368 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369 && (d2_variable
370 || d2_zero
371 || !d1_variable))
372 ? t1
373 : t2));
374 t1 = c_build_qualified_type (t1, quals);
375 return build_type_attribute_variant (t1, attributes);
376 }
377
378 case ENUMERAL_TYPE:
379 case RECORD_TYPE:
380 case UNION_TYPE:
381 if (attributes != NULL)
382 {
383 /* Try harder not to create a new aggregate type. */
384 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385 return t1;
386 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387 return t2;
388 }
389 return build_type_attribute_variant (t1, attributes);
390
391 case FUNCTION_TYPE:
392 /* Function types: prefer the one that specified arg types.
393 If both do, merge the arg types. Also merge the return types. */
394 {
395 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396 tree p1 = TYPE_ARG_TYPES (t1);
397 tree p2 = TYPE_ARG_TYPES (t2);
398 int len;
399 tree newargs, n;
400 int i;
401
402 /* Save space: see if the result is identical to one of the args. */
403 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404 return build_type_attribute_variant (t1, attributes);
405 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406 return build_type_attribute_variant (t2, attributes);
407
408 /* Simple way if one arg fails to specify argument types. */
409 if (TYPE_ARG_TYPES (t1) == 0)
410 {
411 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412 t1 = build_type_attribute_variant (t1, attributes);
413 return qualify_type (t1, t2);
414 }
415 if (TYPE_ARG_TYPES (t2) == 0)
416 {
417 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418 t1 = build_type_attribute_variant (t1, attributes);
419 return qualify_type (t1, t2);
420 }
421
422 /* If both args specify argument types, we must merge the two
423 lists, argument by argument. */
424 /* Tell global_bindings_p to return false so that variable_size
425 doesn't die on VLAs in parameter types. */
426 c_override_global_bindings_to_false = true;
427
428 len = list_length (p1);
429 newargs = 0;
430
431 for (i = 0; i < len; i++)
432 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434 n = newargs;
435
436 for (; p1;
437 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438 {
439 /* A null type means arg type is not specified.
440 Take whatever the other function type has. */
441 if (TREE_VALUE (p1) == 0)
442 {
443 TREE_VALUE (n) = TREE_VALUE (p2);
444 goto parm_done;
445 }
446 if (TREE_VALUE (p2) == 0)
447 {
448 TREE_VALUE (n) = TREE_VALUE (p1);
449 goto parm_done;
450 }
451
452 /* Given wait (union {union wait *u; int *i} *)
453 and wait (union wait *),
454 prefer union wait * as type of parm. */
455 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456 && TREE_VALUE (p1) != TREE_VALUE (p2))
457 {
458 tree memb;
459 tree mv2 = TREE_VALUE (p2);
460 if (mv2 && mv2 != error_mark_node
461 && TREE_CODE (mv2) != ARRAY_TYPE)
462 mv2 = TYPE_MAIN_VARIANT (mv2);
463 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464 memb; memb = TREE_CHAIN (memb))
465 {
466 tree mv3 = TREE_TYPE (memb);
467 if (mv3 && mv3 != error_mark_node
468 && TREE_CODE (mv3) != ARRAY_TYPE)
469 mv3 = TYPE_MAIN_VARIANT (mv3);
470 if (comptypes (mv3, mv2))
471 {
472 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473 TREE_VALUE (p2));
474 if (pedantic)
475 pedwarn ("function types not truly compatible in ISO C");
476 goto parm_done;
477 }
478 }
479 }
480 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481 && TREE_VALUE (p2) != TREE_VALUE (p1))
482 {
483 tree memb;
484 tree mv1 = TREE_VALUE (p1);
485 if (mv1 && mv1 != error_mark_node
486 && TREE_CODE (mv1) != ARRAY_TYPE)
487 mv1 = TYPE_MAIN_VARIANT (mv1);
488 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489 memb; memb = TREE_CHAIN (memb))
490 {
491 tree mv3 = TREE_TYPE (memb);
492 if (mv3 && mv3 != error_mark_node
493 && TREE_CODE (mv3) != ARRAY_TYPE)
494 mv3 = TYPE_MAIN_VARIANT (mv3);
495 if (comptypes (mv3, mv1))
496 {
497 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498 TREE_VALUE (p1));
499 if (pedantic)
500 pedwarn ("function types not truly compatible in ISO C");
501 goto parm_done;
502 }
503 }
504 }
505 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506 parm_done: ;
507 }
508
509 c_override_global_bindings_to_false = false;
510 t1 = build_function_type (valtype, newargs);
511 t1 = qualify_type (t1, t2);
512 /* ... falls through ... */
513 }
514
515 default:
516 return build_type_attribute_variant (t1, attributes);
517 }
518
519 }
520
521 /* Return the type of a conditional expression between pointers to
522 possibly differently qualified versions of compatible types.
523
524 We assume that comp_target_types has already been done and returned
525 nonzero; if that isn't so, this may crash. */
526
527 static tree
528 common_pointer_type (tree t1, tree t2)
529 {
530 tree attributes;
531 tree pointed_to_1, mv1;
532 tree pointed_to_2, mv2;
533 tree target;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561 t1 = build_pointer_type (c_build_qualified_type
562 (target,
563 TYPE_QUALS (pointed_to_1) |
564 TYPE_QUALS (pointed_to_2)));
565 return build_type_attribute_variant (t1, attributes);
566 }
567
568 /* Return the common type for two arithmetic types under the usual
569 arithmetic conversions. The default conversions have already been
570 applied, and enumerated types converted to their compatible integer
571 types. The resulting type is unqualified and has no attributes.
572
573 This is the type for the result of most arithmetic operations
574 if the operands have the given two types. */
575
576 static tree
577 c_common_type (tree t1, tree t2)
578 {
579 enum tree_code code1;
580 enum tree_code code2;
581
582 /* If one type is nonsense, use the other. */
583 if (t1 == error_mark_node)
584 return t2;
585 if (t2 == error_mark_node)
586 return t1;
587
588 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589 t1 = TYPE_MAIN_VARIANT (t1);
590
591 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592 t2 = TYPE_MAIN_VARIANT (t2);
593
594 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595 t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598 t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600 /* Save time if the two types are the same. */
601
602 if (t1 == t2) return t1;
603
604 code1 = TREE_CODE (t1);
605 code2 = TREE_CODE (t2);
606
607 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612 /* When one operand is a decimal float type, the other operand cannot be
613 a generic float type or a complex type. We also disallow vector types
614 here. */
615 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617 {
618 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619 {
620 error ("can%'t mix operands of decimal float and vector types");
621 return error_mark_node;
622 }
623 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624 {
625 error ("can%'t mix operands of decimal float and complex types");
626 return error_mark_node;
627 }
628 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629 {
630 error ("can%'t mix operands of decimal float and other float types");
631 return error_mark_node;
632 }
633 }
634
635 /* If one type is a vector type, return that type. (How the usual
636 arithmetic conversions apply to the vector types extension is not
637 precisely specified.) */
638 if (code1 == VECTOR_TYPE)
639 return t1;
640
641 if (code2 == VECTOR_TYPE)
642 return t2;
643
644 /* If one type is complex, form the common type of the non-complex
645 components, then make that complex. Use T1 or T2 if it is the
646 required type. */
647 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648 {
649 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651 tree subtype = c_common_type (subtype1, subtype2);
652
653 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654 return t1;
655 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656 return t2;
657 else
658 return build_complex_type (subtype);
659 }
660
661 /* If only one is real, use it as the result. */
662
663 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664 return t1;
665
666 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667 return t2;
668
669 /* If both are real and either are decimal floating point types, use
670 the decimal floating point type with the greater precision. */
671
672 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673 {
674 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676 return dfloat128_type_node;
677 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679 return dfloat64_type_node;
680 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682 return dfloat32_type_node;
683 }
684
685 /* Both real or both integers; use the one with greater precision. */
686
687 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688 return t1;
689 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690 return t2;
691
692 /* Same precision. Prefer long longs to longs to ints when the
693 same precision, following the C99 rules on integer type rank
694 (which are equivalent to the C90 rules for C90 types). */
695
696 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698 return long_long_unsigned_type_node;
699
700 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702 {
703 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704 return long_long_unsigned_type_node;
705 else
706 return long_long_integer_type_node;
707 }
708
709 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711 return long_unsigned_type_node;
712
713 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715 {
716 /* But preserve unsignedness from the other type,
717 since long cannot hold all the values of an unsigned int. */
718 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719 return long_unsigned_type_node;
720 else
721 return long_integer_type_node;
722 }
723
724 /* Likewise, prefer long double to double even if same size. */
725 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727 return long_double_type_node;
728
729 /* Otherwise prefer the unsigned one. */
730
731 if (TYPE_UNSIGNED (t1))
732 return t1;
733 else
734 return t2;
735 }
736 \f
737 /* Wrapper around c_common_type that is used by c-common.c and other
738 front end optimizations that remove promotions. ENUMERAL_TYPEs
739 are allowed here and are converted to their compatible integer types.
740 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741 preferably a non-Boolean type as the common type. */
742 tree
743 common_type (tree t1, tree t2)
744 {
745 if (TREE_CODE (t1) == ENUMERAL_TYPE)
746 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747 if (TREE_CODE (t2) == ENUMERAL_TYPE)
748 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
751 if (TREE_CODE (t1) == BOOLEAN_TYPE
752 && TREE_CODE (t2) == BOOLEAN_TYPE)
753 return boolean_type_node;
754
755 /* If either type is BOOLEAN_TYPE, then return the other. */
756 if (TREE_CODE (t1) == BOOLEAN_TYPE)
757 return t2;
758 if (TREE_CODE (t2) == BOOLEAN_TYPE)
759 return t1;
760
761 return c_common_type (t1, t2);
762 }
763
764 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765 or various other operations. Return 2 if they are compatible
766 but a warning may be needed if you use them together. */
767
768 int
769 comptypes (tree type1, tree type2)
770 {
771 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772 int val;
773
774 val = comptypes_internal (type1, type2);
775 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777 return val;
778 }
779 \f
780 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781 or various other operations. Return 2 if they are compatible
782 but a warning may be needed if you use them together. This
783 differs from comptypes, in that we don't free the seen types. */
784
785 static int
786 comptypes_internal (tree type1, tree type2)
787 {
788 tree t1 = type1;
789 tree t2 = type2;
790 int attrval, val;
791
792 /* Suppress errors caused by previously reported errors. */
793
794 if (t1 == t2 || !t1 || !t2
795 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796 return 1;
797
798 /* If either type is the internal version of sizetype, return the
799 language version. */
800 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801 && TYPE_ORIG_SIZE_TYPE (t1))
802 t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805 && TYPE_ORIG_SIZE_TYPE (t2))
806 t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809 /* Enumerated types are compatible with integer types, but this is
810 not transitive: two enumerated types in the same translation unit
811 are compatible with each other only if they are the same type. */
812
813 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818 if (t1 == t2)
819 return 1;
820
821 /* Different classes of types can't be compatible. */
822
823 if (TREE_CODE (t1) != TREE_CODE (t2))
824 return 0;
825
826 /* Qualifiers must match. C99 6.7.3p9 */
827
828 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829 return 0;
830
831 /* Allow for two different type nodes which have essentially the same
832 definition. Note that we already checked for equality of the type
833 qualifiers (just above). */
834
835 if (TREE_CODE (t1) != ARRAY_TYPE
836 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837 return 1;
838
839 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
840 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841 return 0;
842
843 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
844 val = 0;
845
846 switch (TREE_CODE (t1))
847 {
848 case POINTER_TYPE:
849 /* Do not remove mode or aliasing information. */
850 if (TYPE_MODE (t1) != TYPE_MODE (t2)
851 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852 break;
853 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855 break;
856
857 case FUNCTION_TYPE:
858 val = function_types_compatible_p (t1, t2);
859 break;
860
861 case ARRAY_TYPE:
862 {
863 tree d1 = TYPE_DOMAIN (t1);
864 tree d2 = TYPE_DOMAIN (t2);
865 bool d1_variable, d2_variable;
866 bool d1_zero, d2_zero;
867 val = 1;
868
869 /* Target types must match incl. qualifiers. */
870 if (TREE_TYPE (t1) != TREE_TYPE (t2)
871 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872 return 0;
873
874 /* Sizes must match unless one is missing or variable. */
875 if (d1 == 0 || d2 == 0 || d1 == d2)
876 break;
877
878 d1_zero = !TYPE_MAX_VALUE (d1);
879 d2_zero = !TYPE_MAX_VALUE (d2);
880
881 d1_variable = (!d1_zero
882 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884 d2_variable = (!d2_zero
885 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890 if (d1_variable || d2_variable)
891 break;
892 if (d1_zero && d2_zero)
893 break;
894 if (d1_zero || d2_zero
895 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897 val = 0;
898
899 break;
900 }
901
902 case ENUMERAL_TYPE:
903 case RECORD_TYPE:
904 case UNION_TYPE:
905 if (val != 1 && !same_translation_unit_p (t1, t2))
906 {
907 tree a1 = TYPE_ATTRIBUTES (t1);
908 tree a2 = TYPE_ATTRIBUTES (t2);
909
910 if (! attribute_list_contained (a1, a2)
911 && ! attribute_list_contained (a2, a1))
912 break;
913
914 if (attrval != 2)
915 return tagged_types_tu_compatible_p (t1, t2);
916 val = tagged_types_tu_compatible_p (t1, t2);
917 }
918 break;
919
920 case VECTOR_TYPE:
921 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923 break;
924
925 default:
926 break;
927 }
928 return attrval == 2 && val == 1 ? 2 : val;
929 }
930
931 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
932 ignoring their qualifiers. */
933
934 static int
935 comp_target_types (tree ttl, tree ttr)
936 {
937 int val;
938 tree mvl, mvr;
939
940 /* Do not lose qualifiers on element types of array types that are
941 pointer targets by taking their TYPE_MAIN_VARIANT. */
942 mvl = TREE_TYPE (ttl);
943 mvr = TREE_TYPE (ttr);
944 if (TREE_CODE (mvl) != ARRAY_TYPE)
945 mvl = TYPE_MAIN_VARIANT (mvl);
946 if (TREE_CODE (mvr) != ARRAY_TYPE)
947 mvr = TYPE_MAIN_VARIANT (mvr);
948 val = comptypes (mvl, mvr);
949
950 if (val == 2 && pedantic)
951 pedwarn ("types are not quite compatible");
952 return val;
953 }
954 \f
955 /* Subroutines of `comptypes'. */
956
957 /* Determine whether two trees derive from the same translation unit.
958 If the CONTEXT chain ends in a null, that tree's context is still
959 being parsed, so if two trees have context chains ending in null,
960 they're in the same translation unit. */
961 int
962 same_translation_unit_p (tree t1, tree t2)
963 {
964 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966 {
967 case tcc_declaration:
968 t1 = DECL_CONTEXT (t1); break;
969 case tcc_type:
970 t1 = TYPE_CONTEXT (t1); break;
971 case tcc_exceptional:
972 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
973 default: gcc_unreachable ();
974 }
975
976 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978 {
979 case tcc_declaration:
980 t2 = DECL_CONTEXT (t2); break;
981 case tcc_type:
982 t2 = TYPE_CONTEXT (t2); break;
983 case tcc_exceptional:
984 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
985 default: gcc_unreachable ();
986 }
987
988 return t1 == t2;
989 }
990
991 /* Allocate the seen two types, assuming that they are compatible. */
992
993 static struct tagged_tu_seen_cache *
994 alloc_tagged_tu_seen_cache (tree t1, tree t2)
995 {
996 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997 tu->next = tagged_tu_seen_base;
998 tu->t1 = t1;
999 tu->t2 = t2;
1000
1001 tagged_tu_seen_base = tu;
1002
1003 /* The C standard says that two structures in different translation
1004 units are compatible with each other only if the types of their
1005 fields are compatible (among other things). We assume that they
1006 are compatible until proven otherwise when building the cache.
1007 An example where this can occur is:
1008 struct a
1009 {
1010 struct a *next;
1011 };
1012 If we are comparing this against a similar struct in another TU,
1013 and did not assume they were compatible, we end up with an infinite
1014 loop. */
1015 tu->val = 1;
1016 return tu;
1017 }
1018
1019 /* Free the seen types until we get to TU_TIL. */
1020
1021 static void
1022 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023 {
1024 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025 while (tu != tu_til)
1026 {
1027 struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028 tu = tu1->next;
1029 free (tu1);
1030 }
1031 tagged_tu_seen_base = tu_til;
1032 }
1033
1034 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035 compatible. If the two types are not the same (which has been
1036 checked earlier), this can only happen when multiple translation
1037 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1038 rules. */
1039
1040 static int
1041 tagged_types_tu_compatible_p (tree t1, tree t2)
1042 {
1043 tree s1, s2;
1044 bool needs_warning = false;
1045
1046 /* We have to verify that the tags of the types are the same. This
1047 is harder than it looks because this may be a typedef, so we have
1048 to go look at the original type. It may even be a typedef of a
1049 typedef...
1050 In the case of compiler-created builtin structs the TYPE_DECL
1051 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1052 while (TYPE_NAME (t1)
1053 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057 while (TYPE_NAME (t2)
1058 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062 /* C90 didn't have the requirement that the two tags be the same. */
1063 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064 return 0;
1065
1066 /* C90 didn't say what happened if one or both of the types were
1067 incomplete; we choose to follow C99 rules here, which is that they
1068 are compatible. */
1069 if (TYPE_SIZE (t1) == NULL
1070 || TYPE_SIZE (t2) == NULL)
1071 return 1;
1072
1073 {
1074 const struct tagged_tu_seen_cache * tts_i;
1075 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077 return tts_i->val;
1078 }
1079
1080 switch (TREE_CODE (t1))
1081 {
1082 case ENUMERAL_TYPE:
1083 {
1084 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085 /* Speed up the case where the type values are in the same order. */
1086 tree tv1 = TYPE_VALUES (t1);
1087 tree tv2 = TYPE_VALUES (t2);
1088
1089 if (tv1 == tv2)
1090 {
1091 return 1;
1092 }
1093
1094 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095 {
1096 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097 break;
1098 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099 {
1100 tu->val = 0;
1101 return 0;
1102 }
1103 }
1104
1105 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106 {
1107 return 1;
1108 }
1109 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110 {
1111 tu->val = 0;
1112 return 0;
1113 }
1114
1115 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116 {
1117 tu->val = 0;
1118 return 0;
1119 }
1120
1121 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122 {
1123 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124 if (s2 == NULL
1125 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126 {
1127 tu->val = 0;
1128 return 0;
1129 }
1130 }
1131 return 1;
1132 }
1133
1134 case UNION_TYPE:
1135 {
1136 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138 {
1139 tu->val = 0;
1140 return 0;
1141 }
1142
1143 /* Speed up the common case where the fields are in the same order. */
1144 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146 {
1147 int result;
1148
1149
1150 if (DECL_NAME (s1) == NULL
1151 || DECL_NAME (s1) != DECL_NAME (s2))
1152 break;
1153 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154 if (result == 0)
1155 {
1156 tu->val = 0;
1157 return 0;
1158 }
1159 if (result == 2)
1160 needs_warning = true;
1161
1162 if (TREE_CODE (s1) == FIELD_DECL
1163 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165 {
1166 tu->val = 0;
1167 return 0;
1168 }
1169 }
1170 if (!s1 && !s2)
1171 {
1172 tu->val = needs_warning ? 2 : 1;
1173 return tu->val;
1174 }
1175
1176 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177 {
1178 bool ok = false;
1179
1180 if (DECL_NAME (s1) != NULL)
1181 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182 if (DECL_NAME (s1) == DECL_NAME (s2))
1183 {
1184 int result;
1185 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186 if (result == 0)
1187 {
1188 tu->val = 0;
1189 return 0;
1190 }
1191 if (result == 2)
1192 needs_warning = true;
1193
1194 if (TREE_CODE (s1) == FIELD_DECL
1195 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197 break;
1198
1199 ok = true;
1200 break;
1201 }
1202 if (!ok)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207 }
1208 tu->val = needs_warning ? 2 : 10;
1209 return tu->val;
1210 }
1211
1212 case RECORD_TYPE:
1213 {
1214 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217 s1 && s2;
1218 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219 {
1220 int result;
1221 if (TREE_CODE (s1) != TREE_CODE (s2)
1222 || DECL_NAME (s1) != DECL_NAME (s2))
1223 break;
1224 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225 if (result == 0)
1226 break;
1227 if (result == 2)
1228 needs_warning = true;
1229
1230 if (TREE_CODE (s1) == FIELD_DECL
1231 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233 break;
1234 }
1235 if (s1 && s2)
1236 tu->val = 0;
1237 else
1238 tu->val = needs_warning ? 2 : 1;
1239 return tu->val;
1240 }
1241
1242 default:
1243 gcc_unreachable ();
1244 }
1245 }
1246
1247 /* Return 1 if two function types F1 and F2 are compatible.
1248 If either type specifies no argument types,
1249 the other must specify a fixed number of self-promoting arg types.
1250 Otherwise, if one type specifies only the number of arguments,
1251 the other must specify that number of self-promoting arg types.
1252 Otherwise, the argument types must match. */
1253
1254 static int
1255 function_types_compatible_p (tree f1, tree f2)
1256 {
1257 tree args1, args2;
1258 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1259 int val = 1;
1260 int val1;
1261 tree ret1, ret2;
1262
1263 ret1 = TREE_TYPE (f1);
1264 ret2 = TREE_TYPE (f2);
1265
1266 /* 'volatile' qualifiers on a function's return type used to mean
1267 the function is noreturn. */
1268 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269 pedwarn ("function return types not compatible due to %<volatile%>");
1270 if (TYPE_VOLATILE (ret1))
1271 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273 if (TYPE_VOLATILE (ret2))
1274 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276 val = comptypes_internal (ret1, ret2);
1277 if (val == 0)
1278 return 0;
1279
1280 args1 = TYPE_ARG_TYPES (f1);
1281 args2 = TYPE_ARG_TYPES (f2);
1282
1283 /* An unspecified parmlist matches any specified parmlist
1284 whose argument types don't need default promotions. */
1285
1286 if (args1 == 0)
1287 {
1288 if (!self_promoting_args_p (args2))
1289 return 0;
1290 /* If one of these types comes from a non-prototype fn definition,
1291 compare that with the other type's arglist.
1292 If they don't match, ask for a warning (but no error). */
1293 if (TYPE_ACTUAL_ARG_TYPES (f1)
1294 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295 val = 2;
1296 return val;
1297 }
1298 if (args2 == 0)
1299 {
1300 if (!self_promoting_args_p (args1))
1301 return 0;
1302 if (TYPE_ACTUAL_ARG_TYPES (f2)
1303 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304 val = 2;
1305 return val;
1306 }
1307
1308 /* Both types have argument lists: compare them and propagate results. */
1309 val1 = type_lists_compatible_p (args1, args2);
1310 return val1 != 1 ? val1 : val;
1311 }
1312
1313 /* Check two lists of types for compatibility,
1314 returning 0 for incompatible, 1 for compatible,
1315 or 2 for compatible with warning. */
1316
1317 static int
1318 type_lists_compatible_p (tree args1, tree args2)
1319 {
1320 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1321 int val = 1;
1322 int newval = 0;
1323
1324 while (1)
1325 {
1326 tree a1, mv1, a2, mv2;
1327 if (args1 == 0 && args2 == 0)
1328 return val;
1329 /* If one list is shorter than the other,
1330 they fail to match. */
1331 if (args1 == 0 || args2 == 0)
1332 return 0;
1333 mv1 = a1 = TREE_VALUE (args1);
1334 mv2 = a2 = TREE_VALUE (args2);
1335 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336 mv1 = TYPE_MAIN_VARIANT (mv1);
1337 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338 mv2 = TYPE_MAIN_VARIANT (mv2);
1339 /* A null pointer instead of a type
1340 means there is supposed to be an argument
1341 but nothing is specified about what type it has.
1342 So match anything that self-promotes. */
1343 if (a1 == 0)
1344 {
1345 if (c_type_promotes_to (a2) != a2)
1346 return 0;
1347 }
1348 else if (a2 == 0)
1349 {
1350 if (c_type_promotes_to (a1) != a1)
1351 return 0;
1352 }
1353 /* If one of the lists has an error marker, ignore this arg. */
1354 else if (TREE_CODE (a1) == ERROR_MARK
1355 || TREE_CODE (a2) == ERROR_MARK)
1356 ;
1357 else if (!(newval = comptypes_internal (mv1, mv2)))
1358 {
1359 /* Allow wait (union {union wait *u; int *i} *)
1360 and wait (union wait *) to be compatible. */
1361 if (TREE_CODE (a1) == UNION_TYPE
1362 && (TYPE_NAME (a1) == 0
1363 || TYPE_TRANSPARENT_UNION (a1))
1364 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365 && tree_int_cst_equal (TYPE_SIZE (a1),
1366 TYPE_SIZE (a2)))
1367 {
1368 tree memb;
1369 for (memb = TYPE_FIELDS (a1);
1370 memb; memb = TREE_CHAIN (memb))
1371 {
1372 tree mv3 = TREE_TYPE (memb);
1373 if (mv3 && mv3 != error_mark_node
1374 && TREE_CODE (mv3) != ARRAY_TYPE)
1375 mv3 = TYPE_MAIN_VARIANT (mv3);
1376 if (comptypes_internal (mv3, mv2))
1377 break;
1378 }
1379 if (memb == 0)
1380 return 0;
1381 }
1382 else if (TREE_CODE (a2) == UNION_TYPE
1383 && (TYPE_NAME (a2) == 0
1384 || TYPE_TRANSPARENT_UNION (a2))
1385 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386 && tree_int_cst_equal (TYPE_SIZE (a2),
1387 TYPE_SIZE (a1)))
1388 {
1389 tree memb;
1390 for (memb = TYPE_FIELDS (a2);
1391 memb; memb = TREE_CHAIN (memb))
1392 {
1393 tree mv3 = TREE_TYPE (memb);
1394 if (mv3 && mv3 != error_mark_node
1395 && TREE_CODE (mv3) != ARRAY_TYPE)
1396 mv3 = TYPE_MAIN_VARIANT (mv3);
1397 if (comptypes_internal (mv3, mv1))
1398 break;
1399 }
1400 if (memb == 0)
1401 return 0;
1402 }
1403 else
1404 return 0;
1405 }
1406
1407 /* comptypes said ok, but record if it said to warn. */
1408 if (newval > val)
1409 val = newval;
1410
1411 args1 = TREE_CHAIN (args1);
1412 args2 = TREE_CHAIN (args2);
1413 }
1414 }
1415 \f
1416 /* Compute the size to increment a pointer by. */
1417
1418 static tree
1419 c_size_in_bytes (tree type)
1420 {
1421 enum tree_code code = TREE_CODE (type);
1422
1423 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424 return size_one_node;
1425
1426 if (!COMPLETE_OR_VOID_TYPE_P (type))
1427 {
1428 error ("arithmetic on pointer to an incomplete type");
1429 return size_one_node;
1430 }
1431
1432 /* Convert in case a char is more than one unit. */
1433 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434 size_int (TYPE_PRECISION (char_type_node)
1435 / BITS_PER_UNIT));
1436 }
1437 \f
1438 /* Return either DECL or its known constant value (if it has one). */
1439
1440 tree
1441 decl_constant_value (tree decl)
1442 {
1443 if (/* Don't change a variable array bound or initial value to a constant
1444 in a place where a variable is invalid. Note that DECL_INITIAL
1445 isn't valid for a PARM_DECL. */
1446 current_function_decl != 0
1447 && TREE_CODE (decl) != PARM_DECL
1448 && !TREE_THIS_VOLATILE (decl)
1449 && TREE_READONLY (decl)
1450 && DECL_INITIAL (decl) != 0
1451 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452 /* This is invalid if initial value is not constant.
1453 If it has either a function call, a memory reference,
1454 or a variable, then re-evaluating it could give different results. */
1455 && TREE_CONSTANT (DECL_INITIAL (decl))
1456 /* Check for cases where this is sub-optimal, even though valid. */
1457 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458 return DECL_INITIAL (decl);
1459 return decl;
1460 }
1461
1462 /* Return either DECL or its known constant value (if it has one), but
1463 return DECL if pedantic or DECL has mode BLKmode. This is for
1464 bug-compatibility with the old behavior of decl_constant_value
1465 (before GCC 3.0); every use of this function is a bug and it should
1466 be removed before GCC 3.1. It is not appropriate to use pedantic
1467 in a way that affects optimization, and BLKmode is probably not the
1468 right test for avoiding misoptimizations either. */
1469
1470 static tree
1471 decl_constant_value_for_broken_optimization (tree decl)
1472 {
1473 tree ret;
1474
1475 if (pedantic || DECL_MODE (decl) == BLKmode)
1476 return decl;
1477
1478 ret = decl_constant_value (decl);
1479 /* Avoid unwanted tree sharing between the initializer and current
1480 function's body where the tree can be modified e.g. by the
1481 gimplifier. */
1482 if (ret != decl && TREE_STATIC (decl))
1483 ret = unshare_expr (ret);
1484 return ret;
1485 }
1486
1487 /* Convert the array expression EXP to a pointer. */
1488 static tree
1489 array_to_pointer_conversion (tree exp)
1490 {
1491 tree orig_exp = exp;
1492 tree type = TREE_TYPE (exp);
1493 tree adr;
1494 tree restype = TREE_TYPE (type);
1495 tree ptrtype;
1496
1497 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499 STRIP_TYPE_NOPS (exp);
1500
1501 if (TREE_NO_WARNING (orig_exp))
1502 TREE_NO_WARNING (exp) = 1;
1503
1504 ptrtype = build_pointer_type (restype);
1505
1506 if (TREE_CODE (exp) == INDIRECT_REF)
1507 return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509 if (TREE_CODE (exp) == VAR_DECL)
1510 {
1511 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1512 ADDR_EXPR because it's the best way of representing what
1513 happens in C when we take the address of an array and place
1514 it in a pointer to the element type. */
1515 adr = build1 (ADDR_EXPR, ptrtype, exp);
1516 if (!c_mark_addressable (exp))
1517 return error_mark_node;
1518 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1519 return adr;
1520 }
1521
1522 /* This way is better for a COMPONENT_REF since it can
1523 simplify the offset for a component. */
1524 adr = build_unary_op (ADDR_EXPR, exp, 1);
1525 return convert (ptrtype, adr);
1526 }
1527
1528 /* Convert the function expression EXP to a pointer. */
1529 static tree
1530 function_to_pointer_conversion (tree exp)
1531 {
1532 tree orig_exp = exp;
1533
1534 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536 STRIP_TYPE_NOPS (exp);
1537
1538 if (TREE_NO_WARNING (orig_exp))
1539 TREE_NO_WARNING (exp) = 1;
1540
1541 return build_unary_op (ADDR_EXPR, exp, 0);
1542 }
1543
1544 /* Perform the default conversion of arrays and functions to pointers.
1545 Return the result of converting EXP. For any other expression, just
1546 return EXP after removing NOPs. */
1547
1548 struct c_expr
1549 default_function_array_conversion (struct c_expr exp)
1550 {
1551 tree orig_exp = exp.value;
1552 tree type = TREE_TYPE (exp.value);
1553 enum tree_code code = TREE_CODE (type);
1554
1555 switch (code)
1556 {
1557 case ARRAY_TYPE:
1558 {
1559 bool not_lvalue = false;
1560 bool lvalue_array_p;
1561
1562 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563 || TREE_CODE (exp.value) == NOP_EXPR
1564 || TREE_CODE (exp.value) == CONVERT_EXPR)
1565 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566 {
1567 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568 not_lvalue = true;
1569 exp.value = TREE_OPERAND (exp.value, 0);
1570 }
1571
1572 if (TREE_NO_WARNING (orig_exp))
1573 TREE_NO_WARNING (exp.value) = 1;
1574
1575 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576 if (!flag_isoc99 && !lvalue_array_p)
1577 {
1578 /* Before C99, non-lvalue arrays do not decay to pointers.
1579 Normally, using such an array would be invalid; but it can
1580 be used correctly inside sizeof or as a statement expression.
1581 Thus, do not give an error here; an error will result later. */
1582 return exp;
1583 }
1584
1585 exp.value = array_to_pointer_conversion (exp.value);
1586 }
1587 break;
1588 case FUNCTION_TYPE:
1589 exp.value = function_to_pointer_conversion (exp.value);
1590 break;
1591 default:
1592 STRIP_TYPE_NOPS (exp.value);
1593 if (TREE_NO_WARNING (orig_exp))
1594 TREE_NO_WARNING (exp.value) = 1;
1595 break;
1596 }
1597
1598 return exp;
1599 }
1600
1601
1602 /* EXP is an expression of integer type. Apply the integer promotions
1603 to it and return the promoted value. */
1604
1605 tree
1606 perform_integral_promotions (tree exp)
1607 {
1608 tree type = TREE_TYPE (exp);
1609 enum tree_code code = TREE_CODE (type);
1610
1611 gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613 /* Normally convert enums to int,
1614 but convert wide enums to something wider. */
1615 if (code == ENUMERAL_TYPE)
1616 {
1617 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618 TYPE_PRECISION (integer_type_node)),
1619 ((TYPE_PRECISION (type)
1620 >= TYPE_PRECISION (integer_type_node))
1621 && TYPE_UNSIGNED (type)));
1622
1623 return convert (type, exp);
1624 }
1625
1626 /* ??? This should no longer be needed now bit-fields have their
1627 proper types. */
1628 if (TREE_CODE (exp) == COMPONENT_REF
1629 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630 /* If it's thinner than an int, promote it like a
1631 c_promoting_integer_type_p, otherwise leave it alone. */
1632 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633 TYPE_PRECISION (integer_type_node)))
1634 return convert (integer_type_node, exp);
1635
1636 if (c_promoting_integer_type_p (type))
1637 {
1638 /* Preserve unsignedness if not really getting any wider. */
1639 if (TYPE_UNSIGNED (type)
1640 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641 return convert (unsigned_type_node, exp);
1642
1643 return convert (integer_type_node, exp);
1644 }
1645
1646 return exp;
1647 }
1648
1649
1650 /* Perform default promotions for C data used in expressions.
1651 Enumeral types or short or char are converted to int.
1652 In addition, manifest constants symbols are replaced by their values. */
1653
1654 tree
1655 default_conversion (tree exp)
1656 {
1657 tree orig_exp;
1658 tree type = TREE_TYPE (exp);
1659 enum tree_code code = TREE_CODE (type);
1660
1661 /* Functions and arrays have been converted during parsing. */
1662 gcc_assert (code != FUNCTION_TYPE);
1663 if (code == ARRAY_TYPE)
1664 return exp;
1665
1666 /* Constants can be used directly unless they're not loadable. */
1667 if (TREE_CODE (exp) == CONST_DECL)
1668 exp = DECL_INITIAL (exp);
1669
1670 /* Replace a nonvolatile const static variable with its value unless
1671 it is an array, in which case we must be sure that taking the
1672 address of the array produces consistent results. */
1673 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674 {
1675 exp = decl_constant_value_for_broken_optimization (exp);
1676 type = TREE_TYPE (exp);
1677 }
1678
1679 /* Strip no-op conversions. */
1680 orig_exp = exp;
1681 STRIP_TYPE_NOPS (exp);
1682
1683 if (TREE_NO_WARNING (orig_exp))
1684 TREE_NO_WARNING (exp) = 1;
1685
1686 if (INTEGRAL_TYPE_P (type))
1687 return perform_integral_promotions (exp);
1688
1689 if (code == VOID_TYPE)
1690 {
1691 error ("void value not ignored as it ought to be");
1692 return error_mark_node;
1693 }
1694 return exp;
1695 }
1696 \f
1697 /* Look up COMPONENT in a structure or union DECL.
1698
1699 If the component name is not found, returns NULL_TREE. Otherwise,
1700 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701 stepping down the chain to the component, which is in the last
1702 TREE_VALUE of the list. Normally the list is of length one, but if
1703 the component is embedded within (nested) anonymous structures or
1704 unions, the list steps down the chain to the component. */
1705
1706 static tree
1707 lookup_field (tree decl, tree component)
1708 {
1709 tree type = TREE_TYPE (decl);
1710 tree field;
1711
1712 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713 to the field elements. Use a binary search on this array to quickly
1714 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1715 will always be set for structures which have many elements. */
1716
1717 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718 {
1719 int bot, top, half;
1720 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722 field = TYPE_FIELDS (type);
1723 bot = 0;
1724 top = TYPE_LANG_SPECIFIC (type)->s->len;
1725 while (top - bot > 1)
1726 {
1727 half = (top - bot + 1) >> 1;
1728 field = field_array[bot+half];
1729
1730 if (DECL_NAME (field) == NULL_TREE)
1731 {
1732 /* Step through all anon unions in linear fashion. */
1733 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734 {
1735 field = field_array[bot++];
1736 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738 {
1739 tree anon = lookup_field (field, component);
1740
1741 if (anon)
1742 return tree_cons (NULL_TREE, field, anon);
1743 }
1744 }
1745
1746 /* Entire record is only anon unions. */
1747 if (bot > top)
1748 return NULL_TREE;
1749
1750 /* Restart the binary search, with new lower bound. */
1751 continue;
1752 }
1753
1754 if (DECL_NAME (field) == component)
1755 break;
1756 if (DECL_NAME (field) < component)
1757 bot += half;
1758 else
1759 top = bot + half;
1760 }
1761
1762 if (DECL_NAME (field_array[bot]) == component)
1763 field = field_array[bot];
1764 else if (DECL_NAME (field) != component)
1765 return NULL_TREE;
1766 }
1767 else
1768 {
1769 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770 {
1771 if (DECL_NAME (field) == NULL_TREE
1772 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774 {
1775 tree anon = lookup_field (field, component);
1776
1777 if (anon)
1778 return tree_cons (NULL_TREE, field, anon);
1779 }
1780
1781 if (DECL_NAME (field) == component)
1782 break;
1783 }
1784
1785 if (field == NULL_TREE)
1786 return NULL_TREE;
1787 }
1788
1789 return tree_cons (NULL_TREE, field, NULL_TREE);
1790 }
1791
1792 /* Make an expression to refer to the COMPONENT field of
1793 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1794
1795 tree
1796 build_component_ref (tree datum, tree component)
1797 {
1798 tree type = TREE_TYPE (datum);
1799 enum tree_code code = TREE_CODE (type);
1800 tree field = NULL;
1801 tree ref;
1802
1803 if (!objc_is_public (datum, component))
1804 return error_mark_node;
1805
1806 /* See if there is a field or component with name COMPONENT. */
1807
1808 if (code == RECORD_TYPE || code == UNION_TYPE)
1809 {
1810 if (!COMPLETE_TYPE_P (type))
1811 {
1812 c_incomplete_type_error (NULL_TREE, type);
1813 return error_mark_node;
1814 }
1815
1816 field = lookup_field (datum, component);
1817
1818 if (!field)
1819 {
1820 error ("%qT has no member named %qE", type, component);
1821 return error_mark_node;
1822 }
1823
1824 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825 This might be better solved in future the way the C++ front
1826 end does it - by giving the anonymous entities each a
1827 separate name and type, and then have build_component_ref
1828 recursively call itself. We can't do that here. */
1829 do
1830 {
1831 tree subdatum = TREE_VALUE (field);
1832 int quals;
1833 tree subtype;
1834
1835 if (TREE_TYPE (subdatum) == error_mark_node)
1836 return error_mark_node;
1837
1838 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839 quals |= TYPE_QUALS (TREE_TYPE (datum));
1840 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843 NULL_TREE);
1844 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845 TREE_READONLY (ref) = 1;
1846 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847 TREE_THIS_VOLATILE (ref) = 1;
1848
1849 if (TREE_DEPRECATED (subdatum))
1850 warn_deprecated_use (subdatum);
1851
1852 datum = ref;
1853
1854 field = TREE_CHAIN (field);
1855 }
1856 while (field);
1857
1858 return ref;
1859 }
1860 else if (code != ERROR_MARK)
1861 error ("request for member %qE in something not a structure or union",
1862 component);
1863
1864 return error_mark_node;
1865 }
1866 \f
1867 /* Given an expression PTR for a pointer, return an expression
1868 for the value pointed to.
1869 ERRORSTRING is the name of the operator to appear in error messages. */
1870
1871 tree
1872 build_indirect_ref (tree ptr, const char *errorstring)
1873 {
1874 tree pointer = default_conversion (ptr);
1875 tree type = TREE_TYPE (pointer);
1876
1877 if (TREE_CODE (type) == POINTER_TYPE)
1878 {
1879 if (TREE_CODE (pointer) == CONVERT_EXPR
1880 || TREE_CODE (pointer) == NOP_EXPR
1881 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1882 {
1883 /* If a warning is issued, mark it to avoid duplicates from
1884 the backend. This only needs to be done at
1885 warn_strict_aliasing > 2. */
1886 if (warn_strict_aliasing > 2)
1887 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1888 type, TREE_OPERAND (pointer, 0)))
1889 TREE_NO_WARNING (pointer) = 1;
1890 }
1891
1892 if (TREE_CODE (pointer) == ADDR_EXPR
1893 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1894 == TREE_TYPE (type)))
1895 return TREE_OPERAND (pointer, 0);
1896 else
1897 {
1898 tree t = TREE_TYPE (type);
1899 tree ref;
1900
1901 ref = build1 (INDIRECT_REF, t, pointer);
1902
1903 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1904 {
1905 error ("dereferencing pointer to incomplete type");
1906 return error_mark_node;
1907 }
1908 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1909 warning (0, "dereferencing %<void *%> pointer");
1910
1911 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1912 so that we get the proper error message if the result is used
1913 to assign to. Also, &* is supposed to be a no-op.
1914 And ANSI C seems to specify that the type of the result
1915 should be the const type. */
1916 /* A de-reference of a pointer to const is not a const. It is valid
1917 to change it via some other pointer. */
1918 TREE_READONLY (ref) = TYPE_READONLY (t);
1919 TREE_SIDE_EFFECTS (ref)
1920 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1921 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1922 return ref;
1923 }
1924 }
1925 else if (TREE_CODE (pointer) != ERROR_MARK)
1926 error ("invalid type argument of %qs (have %qT)", errorstring, type);
1927 return error_mark_node;
1928 }
1929
1930 /* This handles expressions of the form "a[i]", which denotes
1931 an array reference.
1932
1933 This is logically equivalent in C to *(a+i), but we may do it differently.
1934 If A is a variable or a member, we generate a primitive ARRAY_REF.
1935 This avoids forcing the array out of registers, and can work on
1936 arrays that are not lvalues (for example, members of structures returned
1937 by functions). */
1938
1939 tree
1940 build_array_ref (tree array, tree index)
1941 {
1942 bool swapped = false;
1943 if (TREE_TYPE (array) == error_mark_node
1944 || TREE_TYPE (index) == error_mark_node)
1945 return error_mark_node;
1946
1947 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1948 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1949 {
1950 tree temp;
1951 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1952 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1953 {
1954 error ("subscripted value is neither array nor pointer");
1955 return error_mark_node;
1956 }
1957 temp = array;
1958 array = index;
1959 index = temp;
1960 swapped = true;
1961 }
1962
1963 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1964 {
1965 error ("array subscript is not an integer");
1966 return error_mark_node;
1967 }
1968
1969 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1970 {
1971 error ("subscripted value is pointer to function");
1972 return error_mark_node;
1973 }
1974
1975 /* ??? Existing practice has been to warn only when the char
1976 index is syntactically the index, not for char[array]. */
1977 if (!swapped)
1978 warn_array_subscript_with_type_char (index);
1979
1980 /* Apply default promotions *after* noticing character types. */
1981 index = default_conversion (index);
1982
1983 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1984
1985 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1986 {
1987 tree rval, type;
1988
1989 /* An array that is indexed by a non-constant
1990 cannot be stored in a register; we must be able to do
1991 address arithmetic on its address.
1992 Likewise an array of elements of variable size. */
1993 if (TREE_CODE (index) != INTEGER_CST
1994 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1995 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1996 {
1997 if (!c_mark_addressable (array))
1998 return error_mark_node;
1999 }
2000 /* An array that is indexed by a constant value which is not within
2001 the array bounds cannot be stored in a register either; because we
2002 would get a crash in store_bit_field/extract_bit_field when trying
2003 to access a non-existent part of the register. */
2004 if (TREE_CODE (index) == INTEGER_CST
2005 && TYPE_DOMAIN (TREE_TYPE (array))
2006 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2007 {
2008 if (!c_mark_addressable (array))
2009 return error_mark_node;
2010 }
2011
2012 if (pedantic)
2013 {
2014 tree foo = array;
2015 while (TREE_CODE (foo) == COMPONENT_REF)
2016 foo = TREE_OPERAND (foo, 0);
2017 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2018 pedwarn ("ISO C forbids subscripting %<register%> array");
2019 else if (!flag_isoc99 && !lvalue_p (foo))
2020 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2021 }
2022
2023 type = TREE_TYPE (TREE_TYPE (array));
2024 if (TREE_CODE (type) != ARRAY_TYPE)
2025 type = TYPE_MAIN_VARIANT (type);
2026 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2027 /* Array ref is const/volatile if the array elements are
2028 or if the array is. */
2029 TREE_READONLY (rval)
2030 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2031 | TREE_READONLY (array));
2032 TREE_SIDE_EFFECTS (rval)
2033 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2034 | TREE_SIDE_EFFECTS (array));
2035 TREE_THIS_VOLATILE (rval)
2036 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2037 /* This was added by rms on 16 Nov 91.
2038 It fixes vol struct foo *a; a->elts[1]
2039 in an inline function.
2040 Hope it doesn't break something else. */
2041 | TREE_THIS_VOLATILE (array));
2042 return require_complete_type (fold (rval));
2043 }
2044 else
2045 {
2046 tree ar = default_conversion (array);
2047
2048 if (ar == error_mark_node)
2049 return ar;
2050
2051 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2052 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2053
2054 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2055 "array indexing");
2056 }
2057 }
2058 \f
2059 /* Build an external reference to identifier ID. FUN indicates
2060 whether this will be used for a function call. LOC is the source
2061 location of the identifier. */
2062 tree
2063 build_external_ref (tree id, int fun, location_t loc)
2064 {
2065 tree ref;
2066 tree decl = lookup_name (id);
2067
2068 /* In Objective-C, an instance variable (ivar) may be preferred to
2069 whatever lookup_name() found. */
2070 decl = objc_lookup_ivar (decl, id);
2071
2072 if (decl && decl != error_mark_node)
2073 ref = decl;
2074 else if (fun)
2075 /* Implicit function declaration. */
2076 ref = implicitly_declare (id);
2077 else if (decl == error_mark_node)
2078 /* Don't complain about something that's already been
2079 complained about. */
2080 return error_mark_node;
2081 else
2082 {
2083 undeclared_variable (id, loc);
2084 return error_mark_node;
2085 }
2086
2087 if (TREE_TYPE (ref) == error_mark_node)
2088 return error_mark_node;
2089
2090 if (TREE_DEPRECATED (ref))
2091 warn_deprecated_use (ref);
2092
2093 if (!skip_evaluation)
2094 assemble_external (ref);
2095 TREE_USED (ref) = 1;
2096
2097 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2098 {
2099 if (!in_sizeof && !in_typeof)
2100 C_DECL_USED (ref) = 1;
2101 else if (DECL_INITIAL (ref) == 0
2102 && DECL_EXTERNAL (ref)
2103 && !TREE_PUBLIC (ref))
2104 record_maybe_used_decl (ref);
2105 }
2106
2107 if (TREE_CODE (ref) == CONST_DECL)
2108 {
2109 used_types_insert (TREE_TYPE (ref));
2110 ref = DECL_INITIAL (ref);
2111 TREE_CONSTANT (ref) = 1;
2112 TREE_INVARIANT (ref) = 1;
2113 }
2114 else if (current_function_decl != 0
2115 && !DECL_FILE_SCOPE_P (current_function_decl)
2116 && (TREE_CODE (ref) == VAR_DECL
2117 || TREE_CODE (ref) == PARM_DECL
2118 || TREE_CODE (ref) == FUNCTION_DECL))
2119 {
2120 tree context = decl_function_context (ref);
2121
2122 if (context != 0 && context != current_function_decl)
2123 DECL_NONLOCAL (ref) = 1;
2124 }
2125 /* C99 6.7.4p3: An inline definition of a function with external
2126 linkage ... shall not contain a reference to an identifier with
2127 internal linkage. */
2128 else if (current_function_decl != 0
2129 && DECL_DECLARED_INLINE_P (current_function_decl)
2130 && DECL_EXTERNAL (current_function_decl)
2131 && VAR_OR_FUNCTION_DECL_P (ref)
2132 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2133 && ! TREE_PUBLIC (ref))
2134 pedwarn ("%H%qD is static but used in inline function %qD "
2135 "which is not static", &loc, ref, current_function_decl);
2136
2137 return ref;
2138 }
2139
2140 /* Record details of decls possibly used inside sizeof or typeof. */
2141 struct maybe_used_decl
2142 {
2143 /* The decl. */
2144 tree decl;
2145 /* The level seen at (in_sizeof + in_typeof). */
2146 int level;
2147 /* The next one at this level or above, or NULL. */
2148 struct maybe_used_decl *next;
2149 };
2150
2151 static struct maybe_used_decl *maybe_used_decls;
2152
2153 /* Record that DECL, an undefined static function reference seen
2154 inside sizeof or typeof, might be used if the operand of sizeof is
2155 a VLA type or the operand of typeof is a variably modified
2156 type. */
2157
2158 static void
2159 record_maybe_used_decl (tree decl)
2160 {
2161 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2162 t->decl = decl;
2163 t->level = in_sizeof + in_typeof;
2164 t->next = maybe_used_decls;
2165 maybe_used_decls = t;
2166 }
2167
2168 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2169 USED is false, just discard them. If it is true, mark them used
2170 (if no longer inside sizeof or typeof) or move them to the next
2171 level up (if still inside sizeof or typeof). */
2172
2173 void
2174 pop_maybe_used (bool used)
2175 {
2176 struct maybe_used_decl *p = maybe_used_decls;
2177 int cur_level = in_sizeof + in_typeof;
2178 while (p && p->level > cur_level)
2179 {
2180 if (used)
2181 {
2182 if (cur_level == 0)
2183 C_DECL_USED (p->decl) = 1;
2184 else
2185 p->level = cur_level;
2186 }
2187 p = p->next;
2188 }
2189 if (!used || cur_level == 0)
2190 maybe_used_decls = p;
2191 }
2192
2193 /* Return the result of sizeof applied to EXPR. */
2194
2195 struct c_expr
2196 c_expr_sizeof_expr (struct c_expr expr)
2197 {
2198 struct c_expr ret;
2199 if (expr.value == error_mark_node)
2200 {
2201 ret.value = error_mark_node;
2202 ret.original_code = ERROR_MARK;
2203 pop_maybe_used (false);
2204 }
2205 else
2206 {
2207 ret.value = c_sizeof (TREE_TYPE (expr.value));
2208 ret.original_code = ERROR_MARK;
2209 if (c_vla_type_p (TREE_TYPE (expr.value)))
2210 {
2211 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2212 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2213 }
2214 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2215 }
2216 return ret;
2217 }
2218
2219 /* Return the result of sizeof applied to T, a structure for the type
2220 name passed to sizeof (rather than the type itself). */
2221
2222 struct c_expr
2223 c_expr_sizeof_type (struct c_type_name *t)
2224 {
2225 tree type;
2226 struct c_expr ret;
2227 type = groktypename (t);
2228 ret.value = c_sizeof (type);
2229 ret.original_code = ERROR_MARK;
2230 pop_maybe_used (type != error_mark_node
2231 ? C_TYPE_VARIABLE_SIZE (type) : false);
2232 return ret;
2233 }
2234
2235 /* Build a function call to function FUNCTION with parameters PARAMS.
2236 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2237 TREE_VALUE of each node is a parameter-expression.
2238 FUNCTION's data type may be a function type or a pointer-to-function. */
2239
2240 tree
2241 build_function_call (tree function, tree params)
2242 {
2243 tree fntype, fundecl = 0;
2244 tree name = NULL_TREE, result;
2245 tree tem;
2246 int nargs;
2247 tree *argarray;
2248
2249
2250 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2251 STRIP_TYPE_NOPS (function);
2252
2253 /* Convert anything with function type to a pointer-to-function. */
2254 if (TREE_CODE (function) == FUNCTION_DECL)
2255 {
2256 /* Implement type-directed function overloading for builtins.
2257 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2258 handle all the type checking. The result is a complete expression
2259 that implements this function call. */
2260 tem = resolve_overloaded_builtin (function, params);
2261 if (tem)
2262 return tem;
2263
2264 name = DECL_NAME (function);
2265 fundecl = function;
2266 }
2267 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2268 function = function_to_pointer_conversion (function);
2269
2270 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2271 expressions, like those used for ObjC messenger dispatches. */
2272 function = objc_rewrite_function_call (function, params);
2273
2274 fntype = TREE_TYPE (function);
2275
2276 if (TREE_CODE (fntype) == ERROR_MARK)
2277 return error_mark_node;
2278
2279 if (!(TREE_CODE (fntype) == POINTER_TYPE
2280 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2281 {
2282 error ("called object %qE is not a function", function);
2283 return error_mark_node;
2284 }
2285
2286 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2287 current_function_returns_abnormally = 1;
2288
2289 /* fntype now gets the type of function pointed to. */
2290 fntype = TREE_TYPE (fntype);
2291
2292 /* Check that the function is called through a compatible prototype.
2293 If it is not, replace the call by a trap, wrapped up in a compound
2294 expression if necessary. This has the nice side-effect to prevent
2295 the tree-inliner from generating invalid assignment trees which may
2296 blow up in the RTL expander later. */
2297 if ((TREE_CODE (function) == NOP_EXPR
2298 || TREE_CODE (function) == CONVERT_EXPR)
2299 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2300 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2301 && !comptypes (fntype, TREE_TYPE (tem)))
2302 {
2303 tree return_type = TREE_TYPE (fntype);
2304 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2305 NULL_TREE);
2306
2307 /* This situation leads to run-time undefined behavior. We can't,
2308 therefore, simply error unless we can prove that all possible
2309 executions of the program must execute the code. */
2310 warning (0, "function called through a non-compatible type");
2311
2312 /* We can, however, treat "undefined" any way we please.
2313 Call abort to encourage the user to fix the program. */
2314 inform ("if this code is reached, the program will abort");
2315
2316 if (VOID_TYPE_P (return_type))
2317 return trap;
2318 else
2319 {
2320 tree rhs;
2321
2322 if (AGGREGATE_TYPE_P (return_type))
2323 rhs = build_compound_literal (return_type,
2324 build_constructor (return_type, 0));
2325 else
2326 rhs = fold_convert (return_type, integer_zero_node);
2327
2328 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2329 }
2330 }
2331
2332 /* Convert the parameters to the types declared in the
2333 function prototype, or apply default promotions. */
2334
2335 nargs = list_length (params);
2336 argarray = (tree *) alloca (nargs * sizeof (tree));
2337 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2338 params, function, fundecl);
2339 if (nargs < 0)
2340 return error_mark_node;
2341
2342 /* Check that the arguments to the function are valid. */
2343
2344 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2345 TYPE_ARG_TYPES (fntype));
2346
2347 if (require_constant_value)
2348 {
2349 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2350 function, nargs, argarray);
2351 if (TREE_CONSTANT (result)
2352 && (name == NULL_TREE
2353 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2354 pedwarn_init ("initializer element is not constant");
2355 }
2356 else
2357 result = fold_build_call_array (TREE_TYPE (fntype),
2358 function, nargs, argarray);
2359
2360 if (VOID_TYPE_P (TREE_TYPE (result)))
2361 return result;
2362 return require_complete_type (result);
2363 }
2364 \f
2365 /* Convert the argument expressions in the list VALUES
2366 to the types in the list TYPELIST. The resulting arguments are
2367 stored in the array ARGARRAY which has size NARGS.
2368
2369 If TYPELIST is exhausted, or when an element has NULL as its type,
2370 perform the default conversions.
2371
2372 PARMLIST is the chain of parm decls for the function being called.
2373 It may be 0, if that info is not available.
2374 It is used only for generating error messages.
2375
2376 FUNCTION is a tree for the called function. It is used only for
2377 error messages, where it is formatted with %qE.
2378
2379 This is also where warnings about wrong number of args are generated.
2380
2381 VALUES is a chain of TREE_LIST nodes with the elements of the list
2382 in the TREE_VALUE slots of those nodes.
2383
2384 Returns the actual number of arguments processed (which may be less
2385 than NARGS in some error situations), or -1 on failure. */
2386
2387 static int
2388 convert_arguments (int nargs, tree *argarray,
2389 tree typelist, tree values, tree function, tree fundecl)
2390 {
2391 tree typetail, valtail;
2392 int parmnum;
2393 tree selector;
2394
2395 /* Change pointer to function to the function itself for
2396 diagnostics. */
2397 if (TREE_CODE (function) == ADDR_EXPR
2398 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2399 function = TREE_OPERAND (function, 0);
2400
2401 /* Handle an ObjC selector specially for diagnostics. */
2402 selector = objc_message_selector ();
2403
2404 /* Scan the given expressions and types, producing individual
2405 converted arguments and storing them in ARGARRAY. */
2406
2407 for (valtail = values, typetail = typelist, parmnum = 0;
2408 valtail;
2409 valtail = TREE_CHAIN (valtail), parmnum++)
2410 {
2411 tree type = typetail ? TREE_VALUE (typetail) : 0;
2412 tree val = TREE_VALUE (valtail);
2413 tree rname = function;
2414 int argnum = parmnum + 1;
2415 const char *invalid_func_diag;
2416
2417 if (type == void_type_node)
2418 {
2419 error ("too many arguments to function %qE", function);
2420 return parmnum;
2421 }
2422
2423 if (selector && argnum > 2)
2424 {
2425 rname = selector;
2426 argnum -= 2;
2427 }
2428
2429 STRIP_TYPE_NOPS (val);
2430
2431 val = require_complete_type (val);
2432
2433 if (type != 0)
2434 {
2435 /* Formal parm type is specified by a function prototype. */
2436 tree parmval;
2437
2438 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2439 {
2440 error ("type of formal parameter %d is incomplete", parmnum + 1);
2441 parmval = val;
2442 }
2443 else
2444 {
2445 /* Optionally warn about conversions that
2446 differ from the default conversions. */
2447 if (warn_traditional_conversion || warn_traditional)
2448 {
2449 unsigned int formal_prec = TYPE_PRECISION (type);
2450
2451 if (INTEGRAL_TYPE_P (type)
2452 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2453 warning (0, "passing argument %d of %qE as integer "
2454 "rather than floating due to prototype",
2455 argnum, rname);
2456 if (INTEGRAL_TYPE_P (type)
2457 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2458 warning (0, "passing argument %d of %qE as integer "
2459 "rather than complex due to prototype",
2460 argnum, rname);
2461 else if (TREE_CODE (type) == COMPLEX_TYPE
2462 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2463 warning (0, "passing argument %d of %qE as complex "
2464 "rather than floating due to prototype",
2465 argnum, rname);
2466 else if (TREE_CODE (type) == REAL_TYPE
2467 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2468 warning (0, "passing argument %d of %qE as floating "
2469 "rather than integer due to prototype",
2470 argnum, rname);
2471 else if (TREE_CODE (type) == COMPLEX_TYPE
2472 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2473 warning (0, "passing argument %d of %qE as complex "
2474 "rather than integer due to prototype",
2475 argnum, rname);
2476 else if (TREE_CODE (type) == REAL_TYPE
2477 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2478 warning (0, "passing argument %d of %qE as floating "
2479 "rather than complex due to prototype",
2480 argnum, rname);
2481 /* ??? At some point, messages should be written about
2482 conversions between complex types, but that's too messy
2483 to do now. */
2484 else if (TREE_CODE (type) == REAL_TYPE
2485 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2486 {
2487 /* Warn if any argument is passed as `float',
2488 since without a prototype it would be `double'. */
2489 if (formal_prec == TYPE_PRECISION (float_type_node)
2490 && type != dfloat32_type_node)
2491 warning (0, "passing argument %d of %qE as %<float%> "
2492 "rather than %<double%> due to prototype",
2493 argnum, rname);
2494
2495 /* Warn if mismatch between argument and prototype
2496 for decimal float types. Warn of conversions with
2497 binary float types and of precision narrowing due to
2498 prototype. */
2499 else if (type != TREE_TYPE (val)
2500 && (type == dfloat32_type_node
2501 || type == dfloat64_type_node
2502 || type == dfloat128_type_node
2503 || TREE_TYPE (val) == dfloat32_type_node
2504 || TREE_TYPE (val) == dfloat64_type_node
2505 || TREE_TYPE (val) == dfloat128_type_node)
2506 && (formal_prec
2507 <= TYPE_PRECISION (TREE_TYPE (val))
2508 || (type == dfloat128_type_node
2509 && (TREE_TYPE (val)
2510 != dfloat64_type_node
2511 && (TREE_TYPE (val)
2512 != dfloat32_type_node)))
2513 || (type == dfloat64_type_node
2514 && (TREE_TYPE (val)
2515 != dfloat32_type_node))))
2516 warning (0, "passing argument %d of %qE as %qT "
2517 "rather than %qT due to prototype",
2518 argnum, rname, type, TREE_TYPE (val));
2519
2520 }
2521 /* Detect integer changing in width or signedness.
2522 These warnings are only activated with
2523 -Wtraditional-conversion, not with -Wtraditional. */
2524 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2525 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2526 {
2527 tree would_have_been = default_conversion (val);
2528 tree type1 = TREE_TYPE (would_have_been);
2529
2530 if (TREE_CODE (type) == ENUMERAL_TYPE
2531 && (TYPE_MAIN_VARIANT (type)
2532 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2533 /* No warning if function asks for enum
2534 and the actual arg is that enum type. */
2535 ;
2536 else if (formal_prec != TYPE_PRECISION (type1))
2537 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2538 "with different width due to prototype",
2539 argnum, rname);
2540 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2541 ;
2542 /* Don't complain if the formal parameter type
2543 is an enum, because we can't tell now whether
2544 the value was an enum--even the same enum. */
2545 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2546 ;
2547 else if (TREE_CODE (val) == INTEGER_CST
2548 && int_fits_type_p (val, type))
2549 /* Change in signedness doesn't matter
2550 if a constant value is unaffected. */
2551 ;
2552 /* If the value is extended from a narrower
2553 unsigned type, it doesn't matter whether we
2554 pass it as signed or unsigned; the value
2555 certainly is the same either way. */
2556 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2557 && TYPE_UNSIGNED (TREE_TYPE (val)))
2558 ;
2559 else if (TYPE_UNSIGNED (type))
2560 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2561 "as unsigned due to prototype",
2562 argnum, rname);
2563 else
2564 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2565 "as signed due to prototype", argnum, rname);
2566 }
2567 }
2568
2569 parmval = convert_for_assignment (type, val, ic_argpass,
2570 fundecl, function,
2571 parmnum + 1);
2572
2573 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2574 && INTEGRAL_TYPE_P (type)
2575 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2576 parmval = default_conversion (parmval);
2577 }
2578 argarray[parmnum] = parmval;
2579 }
2580 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2581 && (TYPE_PRECISION (TREE_TYPE (val))
2582 < TYPE_PRECISION (double_type_node))
2583 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2584 /* Convert `float' to `double'. */
2585 argarray[parmnum] = convert (double_type_node, val);
2586 else if ((invalid_func_diag =
2587 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2588 {
2589 error (invalid_func_diag);
2590 return -1;
2591 }
2592 else
2593 /* Convert `short' and `char' to full-size `int'. */
2594 argarray[parmnum] = default_conversion (val);
2595
2596 if (typetail)
2597 typetail = TREE_CHAIN (typetail);
2598 }
2599
2600 gcc_assert (parmnum == nargs);
2601
2602 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2603 {
2604 error ("too few arguments to function %qE", function);
2605 return -1;
2606 }
2607
2608 return parmnum;
2609 }
2610 \f
2611 /* This is the entry point used by the parser to build unary operators
2612 in the input. CODE, a tree_code, specifies the unary operator, and
2613 ARG is the operand. For unary plus, the C parser currently uses
2614 CONVERT_EXPR for code. */
2615
2616 struct c_expr
2617 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2618 {
2619 struct c_expr result;
2620
2621 result.original_code = ERROR_MARK;
2622 result.value = build_unary_op (code, arg.value, 0);
2623
2624 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2625 overflow_warning (result.value);
2626
2627 return result;
2628 }
2629
2630 /* This is the entry point used by the parser to build binary operators
2631 in the input. CODE, a tree_code, specifies the binary operator, and
2632 ARG1 and ARG2 are the operands. In addition to constructing the
2633 expression, we check for operands that were written with other binary
2634 operators in a way that is likely to confuse the user. */
2635
2636 struct c_expr
2637 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2638 struct c_expr arg2)
2639 {
2640 struct c_expr result;
2641
2642 enum tree_code code1 = arg1.original_code;
2643 enum tree_code code2 = arg2.original_code;
2644
2645 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2646 result.original_code = code;
2647
2648 if (TREE_CODE (result.value) == ERROR_MARK)
2649 return result;
2650
2651 /* Check for cases such as x+y<<z which users are likely
2652 to misinterpret. */
2653 if (warn_parentheses)
2654 warn_about_parentheses (code, code1, code2);
2655
2656 if (code1 != tcc_comparison)
2657 warn_logical_operator (code, arg1.value, arg2.value);
2658
2659 /* Warn about comparisons against string literals, with the exception
2660 of testing for equality or inequality of a string literal with NULL. */
2661 if (code == EQ_EXPR || code == NE_EXPR)
2662 {
2663 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2664 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2665 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2666 }
2667 else if (TREE_CODE_CLASS (code) == tcc_comparison
2668 && (code1 == STRING_CST || code2 == STRING_CST))
2669 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2670
2671 if (TREE_OVERFLOW_P (result.value)
2672 && !TREE_OVERFLOW_P (arg1.value)
2673 && !TREE_OVERFLOW_P (arg2.value))
2674 overflow_warning (result.value);
2675
2676 return result;
2677 }
2678 \f
2679 /* Return a tree for the difference of pointers OP0 and OP1.
2680 The resulting tree has type int. */
2681
2682 static tree
2683 pointer_diff (tree op0, tree op1)
2684 {
2685 tree restype = ptrdiff_type_node;
2686
2687 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2688 tree con0, con1, lit0, lit1;
2689 tree orig_op1 = op1;
2690
2691 if (pedantic || warn_pointer_arith)
2692 {
2693 if (TREE_CODE (target_type) == VOID_TYPE)
2694 pedwarn ("pointer of type %<void *%> used in subtraction");
2695 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2696 pedwarn ("pointer to a function used in subtraction");
2697 }
2698
2699 /* If the conversion to ptrdiff_type does anything like widening or
2700 converting a partial to an integral mode, we get a convert_expression
2701 that is in the way to do any simplifications.
2702 (fold-const.c doesn't know that the extra bits won't be needed.
2703 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2704 different mode in place.)
2705 So first try to find a common term here 'by hand'; we want to cover
2706 at least the cases that occur in legal static initializers. */
2707 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2708 && (TYPE_PRECISION (TREE_TYPE (op0))
2709 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2710 con0 = TREE_OPERAND (op0, 0);
2711 else
2712 con0 = op0;
2713 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2714 && (TYPE_PRECISION (TREE_TYPE (op1))
2715 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2716 con1 = TREE_OPERAND (op1, 0);
2717 else
2718 con1 = op1;
2719
2720 if (TREE_CODE (con0) == PLUS_EXPR)
2721 {
2722 lit0 = TREE_OPERAND (con0, 1);
2723 con0 = TREE_OPERAND (con0, 0);
2724 }
2725 else
2726 lit0 = integer_zero_node;
2727
2728 if (TREE_CODE (con1) == PLUS_EXPR)
2729 {
2730 lit1 = TREE_OPERAND (con1, 1);
2731 con1 = TREE_OPERAND (con1, 0);
2732 }
2733 else
2734 lit1 = integer_zero_node;
2735
2736 if (operand_equal_p (con0, con1, 0))
2737 {
2738 op0 = lit0;
2739 op1 = lit1;
2740 }
2741
2742
2743 /* First do the subtraction as integers;
2744 then drop through to build the divide operator.
2745 Do not do default conversions on the minus operator
2746 in case restype is a short type. */
2747
2748 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2749 convert (restype, op1), 0);
2750 /* This generates an error if op1 is pointer to incomplete type. */
2751 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2752 error ("arithmetic on pointer to an incomplete type");
2753
2754 /* This generates an error if op0 is pointer to incomplete type. */
2755 op1 = c_size_in_bytes (target_type);
2756
2757 /* Divide by the size, in easiest possible way. */
2758 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2759 }
2760 \f
2761 /* Construct and perhaps optimize a tree representation
2762 for a unary operation. CODE, a tree_code, specifies the operation
2763 and XARG is the operand.
2764 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2765 the default promotions (such as from short to int).
2766 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2767 allows non-lvalues; this is only used to handle conversion of non-lvalue
2768 arrays to pointers in C99. */
2769
2770 tree
2771 build_unary_op (enum tree_code code, tree xarg, int flag)
2772 {
2773 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2774 tree arg = xarg;
2775 tree argtype = 0;
2776 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2777 tree val;
2778 int noconvert = flag;
2779 const char *invalid_op_diag;
2780
2781 if (typecode == ERROR_MARK)
2782 return error_mark_node;
2783 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2784 typecode = INTEGER_TYPE;
2785
2786 if ((invalid_op_diag
2787 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2788 {
2789 error (invalid_op_diag);
2790 return error_mark_node;
2791 }
2792
2793 switch (code)
2794 {
2795 case CONVERT_EXPR:
2796 /* This is used for unary plus, because a CONVERT_EXPR
2797 is enough to prevent anybody from looking inside for
2798 associativity, but won't generate any code. */
2799 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2800 || typecode == COMPLEX_TYPE
2801 || typecode == VECTOR_TYPE))
2802 {
2803 error ("wrong type argument to unary plus");
2804 return error_mark_node;
2805 }
2806 else if (!noconvert)
2807 arg = default_conversion (arg);
2808 arg = non_lvalue (arg);
2809 break;
2810
2811 case NEGATE_EXPR:
2812 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2813 || typecode == COMPLEX_TYPE
2814 || typecode == VECTOR_TYPE))
2815 {
2816 error ("wrong type argument to unary minus");
2817 return error_mark_node;
2818 }
2819 else if (!noconvert)
2820 arg = default_conversion (arg);
2821 break;
2822
2823 case BIT_NOT_EXPR:
2824 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2825 {
2826 if (!noconvert)
2827 arg = default_conversion (arg);
2828 }
2829 else if (typecode == COMPLEX_TYPE)
2830 {
2831 code = CONJ_EXPR;
2832 if (pedantic)
2833 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2834 if (!noconvert)
2835 arg = default_conversion (arg);
2836 }
2837 else
2838 {
2839 error ("wrong type argument to bit-complement");
2840 return error_mark_node;
2841 }
2842 break;
2843
2844 case ABS_EXPR:
2845 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2846 {
2847 error ("wrong type argument to abs");
2848 return error_mark_node;
2849 }
2850 else if (!noconvert)
2851 arg = default_conversion (arg);
2852 break;
2853
2854 case CONJ_EXPR:
2855 /* Conjugating a real value is a no-op, but allow it anyway. */
2856 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2857 || typecode == COMPLEX_TYPE))
2858 {
2859 error ("wrong type argument to conjugation");
2860 return error_mark_node;
2861 }
2862 else if (!noconvert)
2863 arg = default_conversion (arg);
2864 break;
2865
2866 case TRUTH_NOT_EXPR:
2867 if (typecode != INTEGER_TYPE
2868 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2869 && typecode != COMPLEX_TYPE)
2870 {
2871 error ("wrong type argument to unary exclamation mark");
2872 return error_mark_node;
2873 }
2874 arg = c_objc_common_truthvalue_conversion (arg);
2875 return invert_truthvalue (arg);
2876
2877 case REALPART_EXPR:
2878 if (TREE_CODE (arg) == COMPLEX_CST)
2879 return TREE_REALPART (arg);
2880 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2881 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2882 else
2883 return arg;
2884
2885 case IMAGPART_EXPR:
2886 if (TREE_CODE (arg) == COMPLEX_CST)
2887 return TREE_IMAGPART (arg);
2888 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2889 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2890 else
2891 return convert (TREE_TYPE (arg), integer_zero_node);
2892
2893 case PREINCREMENT_EXPR:
2894 case POSTINCREMENT_EXPR:
2895 case PREDECREMENT_EXPR:
2896 case POSTDECREMENT_EXPR:
2897
2898 /* Increment or decrement the real part of the value,
2899 and don't change the imaginary part. */
2900 if (typecode == COMPLEX_TYPE)
2901 {
2902 tree real, imag;
2903
2904 if (pedantic)
2905 pedwarn ("ISO C does not support %<++%> and %<--%>"
2906 " on complex types");
2907
2908 arg = stabilize_reference (arg);
2909 real = build_unary_op (REALPART_EXPR, arg, 1);
2910 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2911 real = build_unary_op (code, real, 1);
2912 if (real == error_mark_node || imag == error_mark_node)
2913 return error_mark_node;
2914 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2915 real, imag);
2916 }
2917
2918 /* Report invalid types. */
2919
2920 if (typecode != POINTER_TYPE
2921 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2922 {
2923 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2924 error ("wrong type argument to increment");
2925 else
2926 error ("wrong type argument to decrement");
2927
2928 return error_mark_node;
2929 }
2930
2931 {
2932 tree inc;
2933 tree result_type = TREE_TYPE (arg);
2934
2935 arg = get_unwidened (arg, 0);
2936 argtype = TREE_TYPE (arg);
2937
2938 /* Compute the increment. */
2939
2940 if (typecode == POINTER_TYPE)
2941 {
2942 /* If pointer target is an undefined struct,
2943 we just cannot know how to do the arithmetic. */
2944 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2945 {
2946 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2947 error ("increment of pointer to unknown structure");
2948 else
2949 error ("decrement of pointer to unknown structure");
2950 }
2951 else if ((pedantic || warn_pointer_arith)
2952 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2953 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2954 {
2955 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2956 pedwarn ("wrong type argument to increment");
2957 else
2958 pedwarn ("wrong type argument to decrement");
2959 }
2960
2961 inc = c_size_in_bytes (TREE_TYPE (result_type));
2962 inc = fold_convert (sizetype, inc);
2963 }
2964 else
2965 {
2966 inc = integer_one_node;
2967 inc = convert (argtype, inc);
2968 }
2969
2970 /* Complain about anything else that is not a true lvalue. */
2971 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2972 || code == POSTINCREMENT_EXPR)
2973 ? lv_increment
2974 : lv_decrement)))
2975 return error_mark_node;
2976
2977 /* Report a read-only lvalue. */
2978 if (TREE_READONLY (arg))
2979 {
2980 readonly_error (arg,
2981 ((code == PREINCREMENT_EXPR
2982 || code == POSTINCREMENT_EXPR)
2983 ? lv_increment : lv_decrement));
2984 return error_mark_node;
2985 }
2986
2987 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2988 val = boolean_increment (code, arg);
2989 else
2990 val = build2 (code, TREE_TYPE (arg), arg, inc);
2991 TREE_SIDE_EFFECTS (val) = 1;
2992 val = convert (result_type, val);
2993 if (TREE_CODE (val) != code)
2994 TREE_NO_WARNING (val) = 1;
2995 return val;
2996 }
2997
2998 case ADDR_EXPR:
2999 /* Note that this operation never does default_conversion. */
3000
3001 /* Let &* cancel out to simplify resulting code. */
3002 if (TREE_CODE (arg) == INDIRECT_REF)
3003 {
3004 /* Don't let this be an lvalue. */
3005 if (lvalue_p (TREE_OPERAND (arg, 0)))
3006 return non_lvalue (TREE_OPERAND (arg, 0));
3007 return TREE_OPERAND (arg, 0);
3008 }
3009
3010 /* For &x[y], return x+y */
3011 if (TREE_CODE (arg) == ARRAY_REF)
3012 {
3013 tree op0 = TREE_OPERAND (arg, 0);
3014 if (!c_mark_addressable (op0))
3015 return error_mark_node;
3016 return build_binary_op (PLUS_EXPR,
3017 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3018 ? array_to_pointer_conversion (op0)
3019 : op0),
3020 TREE_OPERAND (arg, 1), 1);
3021 }
3022
3023 /* Anything not already handled and not a true memory reference
3024 or a non-lvalue array is an error. */
3025 else if (typecode != FUNCTION_TYPE && !flag
3026 && !lvalue_or_else (arg, lv_addressof))
3027 return error_mark_node;
3028
3029 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3030 argtype = TREE_TYPE (arg);
3031
3032 /* If the lvalue is const or volatile, merge that into the type
3033 to which the address will point. Note that you can't get a
3034 restricted pointer by taking the address of something, so we
3035 only have to deal with `const' and `volatile' here. */
3036 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3037 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3038 argtype = c_build_type_variant (argtype,
3039 TREE_READONLY (arg),
3040 TREE_THIS_VOLATILE (arg));
3041
3042 if (!c_mark_addressable (arg))
3043 return error_mark_node;
3044
3045 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3046 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3047
3048 argtype = build_pointer_type (argtype);
3049
3050 /* ??? Cope with user tricks that amount to offsetof. Delete this
3051 when we have proper support for integer constant expressions. */
3052 val = get_base_address (arg);
3053 if (val && TREE_CODE (val) == INDIRECT_REF
3054 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3055 {
3056 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3057
3058 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3059 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3060 }
3061
3062 val = build1 (ADDR_EXPR, argtype, arg);
3063
3064 return val;
3065
3066 default:
3067 gcc_unreachable ();
3068 }
3069
3070 if (argtype == 0)
3071 argtype = TREE_TYPE (arg);
3072 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3073 : fold_build1 (code, argtype, arg);
3074 }
3075
3076 /* Return nonzero if REF is an lvalue valid for this language.
3077 Lvalues can be assigned, unless their type has TYPE_READONLY.
3078 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3079
3080 static int
3081 lvalue_p (tree ref)
3082 {
3083 enum tree_code code = TREE_CODE (ref);
3084
3085 switch (code)
3086 {
3087 case REALPART_EXPR:
3088 case IMAGPART_EXPR:
3089 case COMPONENT_REF:
3090 return lvalue_p (TREE_OPERAND (ref, 0));
3091
3092 case COMPOUND_LITERAL_EXPR:
3093 case STRING_CST:
3094 return 1;
3095
3096 case INDIRECT_REF:
3097 case ARRAY_REF:
3098 case VAR_DECL:
3099 case PARM_DECL:
3100 case RESULT_DECL:
3101 case ERROR_MARK:
3102 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3103 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3104
3105 case BIND_EXPR:
3106 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3107
3108 default:
3109 return 0;
3110 }
3111 }
3112 \f
3113 /* Give an error for storing in something that is 'const'. */
3114
3115 static void
3116 readonly_error (tree arg, enum lvalue_use use)
3117 {
3118 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3119 || use == lv_asm);
3120 /* Using this macro rather than (for example) arrays of messages
3121 ensures that all the format strings are checked at compile
3122 time. */
3123 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3124 : (use == lv_increment ? (I) \
3125 : (use == lv_decrement ? (D) : (AS))))
3126 if (TREE_CODE (arg) == COMPONENT_REF)
3127 {
3128 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3129 readonly_error (TREE_OPERAND (arg, 0), use);
3130 else
3131 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3132 G_("increment of read-only member %qD"),
3133 G_("decrement of read-only member %qD"),
3134 G_("read-only member %qD used as %<asm%> output")),
3135 TREE_OPERAND (arg, 1));
3136 }
3137 else if (TREE_CODE (arg) == VAR_DECL)
3138 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3139 G_("increment of read-only variable %qD"),
3140 G_("decrement of read-only variable %qD"),
3141 G_("read-only variable %qD used as %<asm%> output")),
3142 arg);
3143 else
3144 error (READONLY_MSG (G_("assignment of read-only location"),
3145 G_("increment of read-only location"),
3146 G_("decrement of read-only location"),
3147 G_("read-only location used as %<asm%> output")));
3148 }
3149
3150
3151 /* Return nonzero if REF is an lvalue valid for this language;
3152 otherwise, print an error message and return zero. USE says
3153 how the lvalue is being used and so selects the error message. */
3154
3155 static int
3156 lvalue_or_else (tree ref, enum lvalue_use use)
3157 {
3158 int win = lvalue_p (ref);
3159
3160 if (!win)
3161 lvalue_error (use);
3162
3163 return win;
3164 }
3165 \f
3166 /* Mark EXP saying that we need to be able to take the
3167 address of it; it should not be allocated in a register.
3168 Returns true if successful. */
3169
3170 bool
3171 c_mark_addressable (tree exp)
3172 {
3173 tree x = exp;
3174
3175 while (1)
3176 switch (TREE_CODE (x))
3177 {
3178 case COMPONENT_REF:
3179 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3180 {
3181 error
3182 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3183 return false;
3184 }
3185
3186 /* ... fall through ... */
3187
3188 case ADDR_EXPR:
3189 case ARRAY_REF:
3190 case REALPART_EXPR:
3191 case IMAGPART_EXPR:
3192 x = TREE_OPERAND (x, 0);
3193 break;
3194
3195 case COMPOUND_LITERAL_EXPR:
3196 case CONSTRUCTOR:
3197 TREE_ADDRESSABLE (x) = 1;
3198 return true;
3199
3200 case VAR_DECL:
3201 case CONST_DECL:
3202 case PARM_DECL:
3203 case RESULT_DECL:
3204 if (C_DECL_REGISTER (x)
3205 && DECL_NONLOCAL (x))
3206 {
3207 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3208 {
3209 error
3210 ("global register variable %qD used in nested function", x);
3211 return false;
3212 }
3213 pedwarn ("register variable %qD used in nested function", x);
3214 }
3215 else if (C_DECL_REGISTER (x))
3216 {
3217 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3218 error ("address of global register variable %qD requested", x);
3219 else
3220 error ("address of register variable %qD requested", x);
3221 return false;
3222 }
3223
3224 /* drops in */
3225 case FUNCTION_DECL:
3226 TREE_ADDRESSABLE (x) = 1;
3227 /* drops out */
3228 default:
3229 return true;
3230 }
3231 }
3232 \f
3233 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3234
3235 tree
3236 build_conditional_expr (tree ifexp, tree op1, tree op2)
3237 {
3238 tree type1;
3239 tree type2;
3240 enum tree_code code1;
3241 enum tree_code code2;
3242 tree result_type = NULL;
3243 tree orig_op1 = op1, orig_op2 = op2;
3244
3245 /* Promote both alternatives. */
3246
3247 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3248 op1 = default_conversion (op1);
3249 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3250 op2 = default_conversion (op2);
3251
3252 if (TREE_CODE (ifexp) == ERROR_MARK
3253 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3254 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3255 return error_mark_node;
3256
3257 type1 = TREE_TYPE (op1);
3258 code1 = TREE_CODE (type1);
3259 type2 = TREE_TYPE (op2);
3260 code2 = TREE_CODE (type2);
3261
3262 /* C90 does not permit non-lvalue arrays in conditional expressions.
3263 In C99 they will be pointers by now. */
3264 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3265 {
3266 error ("non-lvalue array in conditional expression");
3267 return error_mark_node;
3268 }
3269
3270 /* Quickly detect the usual case where op1 and op2 have the same type
3271 after promotion. */
3272 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3273 {
3274 if (type1 == type2)
3275 result_type = type1;
3276 else
3277 result_type = TYPE_MAIN_VARIANT (type1);
3278 }
3279 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3280 || code1 == COMPLEX_TYPE)
3281 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3282 || code2 == COMPLEX_TYPE))
3283 {
3284 result_type = c_common_type (type1, type2);
3285
3286 /* If -Wsign-compare, warn here if type1 and type2 have
3287 different signedness. We'll promote the signed to unsigned
3288 and later code won't know it used to be different.
3289 Do this check on the original types, so that explicit casts
3290 will be considered, but default promotions won't. */
3291 if (warn_sign_compare && !skip_evaluation)
3292 {
3293 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3294 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3295
3296 if (unsigned_op1 ^ unsigned_op2)
3297 {
3298 bool ovf;
3299
3300 /* Do not warn if the result type is signed, since the
3301 signed type will only be chosen if it can represent
3302 all the values of the unsigned type. */
3303 if (!TYPE_UNSIGNED (result_type))
3304 /* OK */;
3305 /* Do not warn if the signed quantity is an unsuffixed
3306 integer literal (or some static constant expression
3307 involving such literals) and it is non-negative. */
3308 else if ((unsigned_op2
3309 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3310 || (unsigned_op1
3311 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3312 /* OK */;
3313 else
3314 warning (0, "signed and unsigned type in conditional expression");
3315 }
3316 }
3317 }
3318 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3319 {
3320 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3321 pedwarn ("ISO C forbids conditional expr with only one void side");
3322 result_type = void_type_node;
3323 }
3324 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3325 {
3326 if (comp_target_types (type1, type2))
3327 result_type = common_pointer_type (type1, type2);
3328 else if (null_pointer_constant_p (orig_op1))
3329 result_type = qualify_type (type2, type1);
3330 else if (null_pointer_constant_p (orig_op2))
3331 result_type = qualify_type (type1, type2);
3332 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3333 {
3334 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3335 pedwarn ("ISO C forbids conditional expr between "
3336 "%<void *%> and function pointer");
3337 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3338 TREE_TYPE (type2)));
3339 }
3340 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3341 {
3342 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3343 pedwarn ("ISO C forbids conditional expr between "
3344 "%<void *%> and function pointer");
3345 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3346 TREE_TYPE (type1)));
3347 }
3348 else
3349 {
3350 pedwarn ("pointer type mismatch in conditional expression");
3351 result_type = build_pointer_type (void_type_node);
3352 }
3353 }
3354 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3355 {
3356 if (!null_pointer_constant_p (orig_op2))
3357 pedwarn ("pointer/integer type mismatch in conditional expression");
3358 else
3359 {
3360 op2 = null_pointer_node;
3361 }
3362 result_type = type1;
3363 }
3364 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3365 {
3366 if (!null_pointer_constant_p (orig_op1))
3367 pedwarn ("pointer/integer type mismatch in conditional expression");
3368 else
3369 {
3370 op1 = null_pointer_node;
3371 }
3372 result_type = type2;
3373 }
3374
3375 if (!result_type)
3376 {
3377 if (flag_cond_mismatch)
3378 result_type = void_type_node;
3379 else
3380 {
3381 error ("type mismatch in conditional expression");
3382 return error_mark_node;
3383 }
3384 }
3385
3386 /* Merge const and volatile flags of the incoming types. */
3387 result_type
3388 = build_type_variant (result_type,
3389 TREE_READONLY (op1) || TREE_READONLY (op2),
3390 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3391
3392 if (result_type != TREE_TYPE (op1))
3393 op1 = convert_and_check (result_type, op1);
3394 if (result_type != TREE_TYPE (op2))
3395 op2 = convert_and_check (result_type, op2);
3396
3397 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3398 }
3399 \f
3400 /* Return a compound expression that performs two expressions and
3401 returns the value of the second of them. */
3402
3403 tree
3404 build_compound_expr (tree expr1, tree expr2)
3405 {
3406 if (!TREE_SIDE_EFFECTS (expr1))
3407 {
3408 /* The left-hand operand of a comma expression is like an expression
3409 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3410 any side-effects, unless it was explicitly cast to (void). */
3411 if (warn_unused_value)
3412 {
3413 if (VOID_TYPE_P (TREE_TYPE (expr1))
3414 && (TREE_CODE (expr1) == NOP_EXPR
3415 || TREE_CODE (expr1) == CONVERT_EXPR))
3416 ; /* (void) a, b */
3417 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3418 && TREE_CODE (expr1) == COMPOUND_EXPR
3419 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3420 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3421 ; /* (void) a, (void) b, c */
3422 else
3423 warning (OPT_Wunused_value,
3424 "left-hand operand of comma expression has no effect");
3425 }
3426 }
3427
3428 /* With -Wunused, we should also warn if the left-hand operand does have
3429 side-effects, but computes a value which is not used. For example, in
3430 `foo() + bar(), baz()' the result of the `+' operator is not used,
3431 so we should issue a warning. */
3432 else if (warn_unused_value)
3433 warn_if_unused_value (expr1, input_location);
3434
3435 if (expr2 == error_mark_node)
3436 return error_mark_node;
3437
3438 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3439 }
3440
3441 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3442
3443 tree
3444 build_c_cast (tree type, tree expr)
3445 {
3446 tree value = expr;
3447
3448 if (type == error_mark_node || expr == error_mark_node)
3449 return error_mark_node;
3450
3451 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3452 only in <protocol> qualifications. But when constructing cast expressions,
3453 the protocols do matter and must be kept around. */
3454 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3455 return build1 (NOP_EXPR, type, expr);
3456
3457 type = TYPE_MAIN_VARIANT (type);
3458
3459 if (TREE_CODE (type) == ARRAY_TYPE)
3460 {
3461 error ("cast specifies array type");
3462 return error_mark_node;
3463 }
3464
3465 if (TREE_CODE (type) == FUNCTION_TYPE)
3466 {
3467 error ("cast specifies function type");
3468 return error_mark_node;
3469 }
3470
3471 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3472 {
3473 if (pedantic)
3474 {
3475 if (TREE_CODE (type) == RECORD_TYPE
3476 || TREE_CODE (type) == UNION_TYPE)
3477 pedwarn ("ISO C forbids casting nonscalar to the same type");
3478 }
3479 }
3480 else if (TREE_CODE (type) == UNION_TYPE)
3481 {
3482 tree field;
3483
3484 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3485 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3486 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3487 break;
3488
3489 if (field)
3490 {
3491 tree t;
3492
3493 if (pedantic)
3494 pedwarn ("ISO C forbids casts to union type");
3495 t = digest_init (type,
3496 build_constructor_single (type, field, value),
3497 true, 0);
3498 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3499 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3500 return t;
3501 }
3502 error ("cast to union type from type not present in union");
3503 return error_mark_node;
3504 }
3505 else
3506 {
3507 tree otype, ovalue;
3508
3509 if (type == void_type_node)
3510 return build1 (CONVERT_EXPR, type, value);
3511
3512 otype = TREE_TYPE (value);
3513
3514 /* Optionally warn about potentially worrisome casts. */
3515
3516 if (warn_cast_qual
3517 && TREE_CODE (type) == POINTER_TYPE
3518 && TREE_CODE (otype) == POINTER_TYPE)
3519 {
3520 tree in_type = type;
3521 tree in_otype = otype;
3522 int added = 0;
3523 int discarded = 0;
3524
3525 /* Check that the qualifiers on IN_TYPE are a superset of
3526 the qualifiers of IN_OTYPE. The outermost level of
3527 POINTER_TYPE nodes is uninteresting and we stop as soon
3528 as we hit a non-POINTER_TYPE node on either type. */
3529 do
3530 {
3531 in_otype = TREE_TYPE (in_otype);
3532 in_type = TREE_TYPE (in_type);
3533
3534 /* GNU C allows cv-qualified function types. 'const'
3535 means the function is very pure, 'volatile' means it
3536 can't return. We need to warn when such qualifiers
3537 are added, not when they're taken away. */
3538 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3539 && TREE_CODE (in_type) == FUNCTION_TYPE)
3540 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3541 else
3542 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3543 }
3544 while (TREE_CODE (in_type) == POINTER_TYPE
3545 && TREE_CODE (in_otype) == POINTER_TYPE);
3546
3547 if (added)
3548 warning (0, "cast adds new qualifiers to function type");
3549
3550 if (discarded)
3551 /* There are qualifiers present in IN_OTYPE that are not
3552 present in IN_TYPE. */
3553 warning (0, "cast discards qualifiers from pointer target type");
3554 }
3555
3556 /* Warn about possible alignment problems. */
3557 if (STRICT_ALIGNMENT
3558 && TREE_CODE (type) == POINTER_TYPE
3559 && TREE_CODE (otype) == POINTER_TYPE
3560 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3561 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3562 /* Don't warn about opaque types, where the actual alignment
3563 restriction is unknown. */
3564 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3565 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3566 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3567 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3568 warning (OPT_Wcast_align,
3569 "cast increases required alignment of target type");
3570
3571 if (TREE_CODE (type) == INTEGER_TYPE
3572 && TREE_CODE (otype) == POINTER_TYPE
3573 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3574 /* Unlike conversion of integers to pointers, where the
3575 warning is disabled for converting constants because
3576 of cases such as SIG_*, warn about converting constant
3577 pointers to integers. In some cases it may cause unwanted
3578 sign extension, and a warning is appropriate. */
3579 warning (OPT_Wpointer_to_int_cast,
3580 "cast from pointer to integer of different size");
3581
3582 if (TREE_CODE (value) == CALL_EXPR
3583 && TREE_CODE (type) != TREE_CODE (otype))
3584 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3585 "to non-matching type %qT", otype, type);
3586
3587 if (TREE_CODE (type) == POINTER_TYPE
3588 && TREE_CODE (otype) == INTEGER_TYPE
3589 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3590 /* Don't warn about converting any constant. */
3591 && !TREE_CONSTANT (value))
3592 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3593 "of different size");
3594
3595 if (warn_strict_aliasing <= 2)
3596 strict_aliasing_warning (otype, type, expr);
3597
3598 /* If pedantic, warn for conversions between function and object
3599 pointer types, except for converting a null pointer constant
3600 to function pointer type. */
3601 if (pedantic
3602 && TREE_CODE (type) == POINTER_TYPE
3603 && TREE_CODE (otype) == POINTER_TYPE
3604 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3605 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3606 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3607
3608 if (pedantic
3609 && TREE_CODE (type) == POINTER_TYPE
3610 && TREE_CODE (otype) == POINTER_TYPE
3611 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3612 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3613 && !null_pointer_constant_p (value))
3614 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3615
3616 ovalue = value;
3617 value = convert (type, value);
3618
3619 /* Ignore any integer overflow caused by the cast. */
3620 if (TREE_CODE (value) == INTEGER_CST)
3621 {
3622 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3623 {
3624 if (!TREE_OVERFLOW (value))
3625 {
3626 /* Avoid clobbering a shared constant. */
3627 value = copy_node (value);
3628 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3629 }
3630 }
3631 else if (TREE_OVERFLOW (value))
3632 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3633 value = build_int_cst_wide (TREE_TYPE (value),
3634 TREE_INT_CST_LOW (value),
3635 TREE_INT_CST_HIGH (value));
3636 }
3637 }
3638
3639 /* Don't let a cast be an lvalue. */
3640 if (value == expr)
3641 value = non_lvalue (value);
3642
3643 return value;
3644 }
3645
3646 /* Interpret a cast of expression EXPR to type TYPE. */
3647 tree
3648 c_cast_expr (struct c_type_name *type_name, tree expr)
3649 {
3650 tree type;
3651 int saved_wsp = warn_strict_prototypes;
3652
3653 /* This avoids warnings about unprototyped casts on
3654 integers. E.g. "#define SIG_DFL (void(*)())0". */
3655 if (TREE_CODE (expr) == INTEGER_CST)
3656 warn_strict_prototypes = 0;
3657 type = groktypename (type_name);
3658 warn_strict_prototypes = saved_wsp;
3659
3660 return build_c_cast (type, expr);
3661 }
3662 \f
3663 /* Build an assignment expression of lvalue LHS from value RHS.
3664 MODIFYCODE is the code for a binary operator that we use
3665 to combine the old value of LHS with RHS to get the new value.
3666 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3667
3668 tree
3669 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3670 {
3671 tree result;
3672 tree newrhs;
3673 tree lhstype = TREE_TYPE (lhs);
3674 tree olhstype = lhstype;
3675
3676 /* Types that aren't fully specified cannot be used in assignments. */
3677 lhs = require_complete_type (lhs);
3678
3679 /* Avoid duplicate error messages from operands that had errors. */
3680 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3681 return error_mark_node;
3682
3683 if (!lvalue_or_else (lhs, lv_assign))
3684 return error_mark_node;
3685
3686 STRIP_TYPE_NOPS (rhs);
3687
3688 newrhs = rhs;
3689
3690 /* If a binary op has been requested, combine the old LHS value with the RHS
3691 producing the value we should actually store into the LHS. */
3692
3693 if (modifycode != NOP_EXPR)
3694 {
3695 lhs = stabilize_reference (lhs);
3696 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3697 }
3698
3699 /* Give an error for storing in something that is 'const'. */
3700
3701 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3702 || ((TREE_CODE (lhstype) == RECORD_TYPE
3703 || TREE_CODE (lhstype) == UNION_TYPE)
3704 && C_TYPE_FIELDS_READONLY (lhstype)))
3705 {
3706 readonly_error (lhs, lv_assign);
3707 return error_mark_node;
3708 }
3709
3710 /* If storing into a structure or union member,
3711 it has probably been given type `int'.
3712 Compute the type that would go with
3713 the actual amount of storage the member occupies. */
3714
3715 if (TREE_CODE (lhs) == COMPONENT_REF
3716 && (TREE_CODE (lhstype) == INTEGER_TYPE
3717 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3718 || TREE_CODE (lhstype) == REAL_TYPE
3719 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3720 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3721
3722 /* If storing in a field that is in actuality a short or narrower than one,
3723 we must store in the field in its actual type. */
3724
3725 if (lhstype != TREE_TYPE (lhs))
3726 {
3727 lhs = copy_node (lhs);
3728 TREE_TYPE (lhs) = lhstype;
3729 }
3730
3731 /* Convert new value to destination type. */
3732
3733 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3734 NULL_TREE, NULL_TREE, 0);
3735 if (TREE_CODE (newrhs) == ERROR_MARK)
3736 return error_mark_node;
3737
3738 /* Emit ObjC write barrier, if necessary. */
3739 if (c_dialect_objc () && flag_objc_gc)
3740 {
3741 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3742 if (result)
3743 return result;
3744 }
3745
3746 /* Scan operands. */
3747
3748 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3749 TREE_SIDE_EFFECTS (result) = 1;
3750
3751 /* If we got the LHS in a different type for storing in,
3752 convert the result back to the nominal type of LHS
3753 so that the value we return always has the same type
3754 as the LHS argument. */
3755
3756 if (olhstype == TREE_TYPE (result))
3757 return result;
3758 return convert_for_assignment (olhstype, result, ic_assign,
3759 NULL_TREE, NULL_TREE, 0);
3760 }
3761 \f
3762 /* Convert value RHS to type TYPE as preparation for an assignment
3763 to an lvalue of type TYPE.
3764 The real work of conversion is done by `convert'.
3765 The purpose of this function is to generate error messages
3766 for assignments that are not allowed in C.
3767 ERRTYPE says whether it is argument passing, assignment,
3768 initialization or return.
3769
3770 FUNCTION is a tree for the function being called.
3771 PARMNUM is the number of the argument, for printing in error messages. */
3772
3773 static tree
3774 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3775 tree fundecl, tree function, int parmnum)
3776 {
3777 enum tree_code codel = TREE_CODE (type);
3778 tree rhstype;
3779 enum tree_code coder;
3780 tree rname = NULL_TREE;
3781 bool objc_ok = false;
3782
3783 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3784 {
3785 tree selector;
3786 /* Change pointer to function to the function itself for
3787 diagnostics. */
3788 if (TREE_CODE (function) == ADDR_EXPR
3789 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3790 function = TREE_OPERAND (function, 0);
3791
3792 /* Handle an ObjC selector specially for diagnostics. */
3793 selector = objc_message_selector ();
3794 rname = function;
3795 if (selector && parmnum > 2)
3796 {
3797 rname = selector;
3798 parmnum -= 2;
3799 }
3800 }
3801
3802 /* This macro is used to emit diagnostics to ensure that all format
3803 strings are complete sentences, visible to gettext and checked at
3804 compile time. */
3805 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3806 do { \
3807 switch (errtype) \
3808 { \
3809 case ic_argpass: \
3810 pedwarn (AR, parmnum, rname); \
3811 break; \
3812 case ic_argpass_nonproto: \
3813 warning (0, AR, parmnum, rname); \
3814 break; \
3815 case ic_assign: \
3816 pedwarn (AS); \
3817 break; \
3818 case ic_init: \
3819 pedwarn (IN); \
3820 break; \
3821 case ic_return: \
3822 pedwarn (RE); \
3823 break; \
3824 default: \
3825 gcc_unreachable (); \
3826 } \
3827 } while (0)
3828
3829 STRIP_TYPE_NOPS (rhs);
3830
3831 if (optimize && TREE_CODE (rhs) == VAR_DECL
3832 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3833 rhs = decl_constant_value_for_broken_optimization (rhs);
3834
3835 rhstype = TREE_TYPE (rhs);
3836 coder = TREE_CODE (rhstype);
3837
3838 if (coder == ERROR_MARK)
3839 return error_mark_node;
3840
3841 if (c_dialect_objc ())
3842 {
3843 int parmno;
3844
3845 switch (errtype)
3846 {
3847 case ic_return:
3848 parmno = 0;
3849 break;
3850
3851 case ic_assign:
3852 parmno = -1;
3853 break;
3854
3855 case ic_init:
3856 parmno = -2;
3857 break;
3858
3859 default:
3860 parmno = parmnum;
3861 break;
3862 }
3863
3864 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3865 }
3866
3867 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3868 return rhs;
3869
3870 if (coder == VOID_TYPE)
3871 {
3872 /* Except for passing an argument to an unprototyped function,
3873 this is a constraint violation. When passing an argument to
3874 an unprototyped function, it is compile-time undefined;
3875 making it a constraint in that case was rejected in
3876 DR#252. */
3877 error ("void value not ignored as it ought to be");
3878 return error_mark_node;
3879 }
3880 /* A type converts to a reference to it.
3881 This code doesn't fully support references, it's just for the
3882 special case of va_start and va_copy. */
3883 if (codel == REFERENCE_TYPE
3884 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3885 {
3886 if (!lvalue_p (rhs))
3887 {
3888 error ("cannot pass rvalue to reference parameter");
3889 return error_mark_node;
3890 }
3891 if (!c_mark_addressable (rhs))
3892 return error_mark_node;
3893 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3894
3895 /* We already know that these two types are compatible, but they
3896 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3897 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3898 likely to be va_list, a typedef to __builtin_va_list, which
3899 is different enough that it will cause problems later. */
3900 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3901 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3902
3903 rhs = build1 (NOP_EXPR, type, rhs);
3904 return rhs;
3905 }
3906 /* Some types can interconvert without explicit casts. */
3907 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3908 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
3909 return convert (type, rhs);
3910 /* Arithmetic types all interconvert, and enum is treated like int. */
3911 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3912 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3913 || codel == BOOLEAN_TYPE)
3914 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3915 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3916 || coder == BOOLEAN_TYPE))
3917 return convert_and_check (type, rhs);
3918
3919 /* Aggregates in different TUs might need conversion. */
3920 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3921 && codel == coder
3922 && comptypes (type, rhstype))
3923 return convert_and_check (type, rhs);
3924
3925 /* Conversion to a transparent union from its member types.
3926 This applies only to function arguments. */
3927 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3928 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3929 {
3930 tree memb, marginal_memb = NULL_TREE;
3931
3932 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3933 {
3934 tree memb_type = TREE_TYPE (memb);
3935
3936 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3937 TYPE_MAIN_VARIANT (rhstype)))
3938 break;
3939
3940 if (TREE_CODE (memb_type) != POINTER_TYPE)
3941 continue;
3942
3943 if (coder == POINTER_TYPE)
3944 {
3945 tree ttl = TREE_TYPE (memb_type);
3946 tree ttr = TREE_TYPE (rhstype);
3947
3948 /* Any non-function converts to a [const][volatile] void *
3949 and vice versa; otherwise, targets must be the same.
3950 Meanwhile, the lhs target must have all the qualifiers of
3951 the rhs. */
3952 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3953 || comp_target_types (memb_type, rhstype))
3954 {
3955 /* If this type won't generate any warnings, use it. */
3956 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3957 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3958 && TREE_CODE (ttl) == FUNCTION_TYPE)
3959 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3960 == TYPE_QUALS (ttr))
3961 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3962 == TYPE_QUALS (ttl))))
3963 break;
3964
3965 /* Keep looking for a better type, but remember this one. */
3966 if (!marginal_memb)
3967 marginal_memb = memb;
3968 }
3969 }
3970
3971 /* Can convert integer zero to any pointer type. */
3972 if (null_pointer_constant_p (rhs))
3973 {
3974 rhs = null_pointer_node;
3975 break;
3976 }
3977 }
3978
3979 if (memb || marginal_memb)
3980 {
3981 if (!memb)
3982 {
3983 /* We have only a marginally acceptable member type;
3984 it needs a warning. */
3985 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3986 tree ttr = TREE_TYPE (rhstype);
3987
3988 /* Const and volatile mean something different for function
3989 types, so the usual warnings are not appropriate. */
3990 if (TREE_CODE (ttr) == FUNCTION_TYPE
3991 && TREE_CODE (ttl) == FUNCTION_TYPE)
3992 {
3993 /* Because const and volatile on functions are
3994 restrictions that say the function will not do
3995 certain things, it is okay to use a const or volatile
3996 function where an ordinary one is wanted, but not
3997 vice-versa. */
3998 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3999 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4000 "makes qualified function "
4001 "pointer from unqualified"),
4002 G_("assignment makes qualified "
4003 "function pointer from "
4004 "unqualified"),
4005 G_("initialization makes qualified "
4006 "function pointer from "
4007 "unqualified"),
4008 G_("return makes qualified function "
4009 "pointer from unqualified"));
4010 }
4011 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4012 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4013 "qualifiers from pointer target type"),
4014 G_("assignment discards qualifiers "
4015 "from pointer target type"),
4016 G_("initialization discards qualifiers "
4017 "from pointer target type"),
4018 G_("return discards qualifiers from "
4019 "pointer target type"));
4020
4021 memb = marginal_memb;
4022 }
4023
4024 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4025 pedwarn ("ISO C prohibits argument conversion to union type");
4026
4027 return build_constructor_single (type, memb, rhs);
4028 }
4029 }
4030
4031 /* Conversions among pointers */
4032 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4033 && (coder == codel))
4034 {
4035 tree ttl = TREE_TYPE (type);
4036 tree ttr = TREE_TYPE (rhstype);
4037 tree mvl = ttl;
4038 tree mvr = ttr;
4039 bool is_opaque_pointer;
4040 int target_cmp = 0; /* Cache comp_target_types () result. */
4041
4042 if (TREE_CODE (mvl) != ARRAY_TYPE)
4043 mvl = TYPE_MAIN_VARIANT (mvl);
4044 if (TREE_CODE (mvr) != ARRAY_TYPE)
4045 mvr = TYPE_MAIN_VARIANT (mvr);
4046 /* Opaque pointers are treated like void pointers. */
4047 is_opaque_pointer = (targetm.vector_opaque_p (type)
4048 || targetm.vector_opaque_p (rhstype))
4049 && TREE_CODE (ttl) == VECTOR_TYPE
4050 && TREE_CODE (ttr) == VECTOR_TYPE;
4051
4052 /* C++ does not allow the implicit conversion void* -> T*. However,
4053 for the purpose of reducing the number of false positives, we
4054 tolerate the special case of
4055
4056 int *p = NULL;
4057
4058 where NULL is typically defined in C to be '(void *) 0'. */
4059 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4060 warning (OPT_Wc___compat, "request for implicit conversion from "
4061 "%qT to %qT not permitted in C++", rhstype, type);
4062
4063 /* Check if the right-hand side has a format attribute but the
4064 left-hand side doesn't. */
4065 if (warn_missing_format_attribute
4066 && check_missing_format_attribute (type, rhstype))
4067 {
4068 switch (errtype)
4069 {
4070 case ic_argpass:
4071 case ic_argpass_nonproto:
4072 warning (OPT_Wmissing_format_attribute,
4073 "argument %d of %qE might be "
4074 "a candidate for a format attribute",
4075 parmnum, rname);
4076 break;
4077 case ic_assign:
4078 warning (OPT_Wmissing_format_attribute,
4079 "assignment left-hand side might be "
4080 "a candidate for a format attribute");
4081 break;
4082 case ic_init:
4083 warning (OPT_Wmissing_format_attribute,
4084 "initialization left-hand side might be "
4085 "a candidate for a format attribute");
4086 break;
4087 case ic_return:
4088 warning (OPT_Wmissing_format_attribute,
4089 "return type might be "
4090 "a candidate for a format attribute");
4091 break;
4092 default:
4093 gcc_unreachable ();
4094 }
4095 }
4096
4097 /* Any non-function converts to a [const][volatile] void *
4098 and vice versa; otherwise, targets must be the same.
4099 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4100 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4101 || (target_cmp = comp_target_types (type, rhstype))
4102 || is_opaque_pointer
4103 || (c_common_unsigned_type (mvl)
4104 == c_common_unsigned_type (mvr)))
4105 {
4106 if (pedantic
4107 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4108 ||
4109 (VOID_TYPE_P (ttr)
4110 && !null_pointer_constant_p (rhs)
4111 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4112 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4113 "%qE between function pointer "
4114 "and %<void *%>"),
4115 G_("ISO C forbids assignment between "
4116 "function pointer and %<void *%>"),
4117 G_("ISO C forbids initialization between "
4118 "function pointer and %<void *%>"),
4119 G_("ISO C forbids return between function "
4120 "pointer and %<void *%>"));
4121 /* Const and volatile mean something different for function types,
4122 so the usual warnings are not appropriate. */
4123 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4124 && TREE_CODE (ttl) != FUNCTION_TYPE)
4125 {
4126 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4127 {
4128 /* Types differing only by the presence of the 'volatile'
4129 qualifier are acceptable if the 'volatile' has been added
4130 in by the Objective-C EH machinery. */
4131 if (!objc_type_quals_match (ttl, ttr))
4132 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4133 "qualifiers from pointer target type"),
4134 G_("assignment discards qualifiers "
4135 "from pointer target type"),
4136 G_("initialization discards qualifiers "
4137 "from pointer target type"),
4138 G_("return discards qualifiers from "
4139 "pointer target type"));
4140 }
4141 /* If this is not a case of ignoring a mismatch in signedness,
4142 no warning. */
4143 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4144 || target_cmp)
4145 ;
4146 /* If there is a mismatch, do warn. */
4147 else if (warn_pointer_sign)
4148 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4149 "%d of %qE differ in signedness"),
4150 G_("pointer targets in assignment "
4151 "differ in signedness"),
4152 G_("pointer targets in initialization "
4153 "differ in signedness"),
4154 G_("pointer targets in return differ "
4155 "in signedness"));
4156 }
4157 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4158 && TREE_CODE (ttr) == FUNCTION_TYPE)
4159 {
4160 /* Because const and volatile on functions are restrictions
4161 that say the function will not do certain things,
4162 it is okay to use a const or volatile function
4163 where an ordinary one is wanted, but not vice-versa. */
4164 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4165 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4166 "qualified function pointer "
4167 "from unqualified"),
4168 G_("assignment makes qualified function "
4169 "pointer from unqualified"),
4170 G_("initialization makes qualified "
4171 "function pointer from unqualified"),
4172 G_("return makes qualified function "
4173 "pointer from unqualified"));
4174 }
4175 }
4176 else
4177 /* Avoid warning about the volatile ObjC EH puts on decls. */
4178 if (!objc_ok)
4179 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4180 "incompatible pointer type"),
4181 G_("assignment from incompatible pointer type"),
4182 G_("initialization from incompatible "
4183 "pointer type"),
4184 G_("return from incompatible pointer type"));
4185
4186 return convert (type, rhs);
4187 }
4188 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4189 {
4190 /* ??? This should not be an error when inlining calls to
4191 unprototyped functions. */
4192 error ("invalid use of non-lvalue array");
4193 return error_mark_node;
4194 }
4195 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4196 {
4197 /* An explicit constant 0 can convert to a pointer,
4198 or one that results from arithmetic, even including
4199 a cast to integer type. */
4200 if (!null_pointer_constant_p (rhs))
4201 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4202 "pointer from integer without a cast"),
4203 G_("assignment makes pointer from integer "
4204 "without a cast"),
4205 G_("initialization makes pointer from "
4206 "integer without a cast"),
4207 G_("return makes pointer from integer "
4208 "without a cast"));
4209
4210 return convert (type, rhs);
4211 }
4212 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4213 {
4214 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4215 "from pointer without a cast"),
4216 G_("assignment makes integer from pointer "
4217 "without a cast"),
4218 G_("initialization makes integer from pointer "
4219 "without a cast"),
4220 G_("return makes integer from pointer "
4221 "without a cast"));
4222 return convert (type, rhs);
4223 }
4224 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4225 return convert (type, rhs);
4226
4227 switch (errtype)
4228 {
4229 case ic_argpass:
4230 case ic_argpass_nonproto:
4231 /* ??? This should not be an error when inlining calls to
4232 unprototyped functions. */
4233 error ("incompatible type for argument %d of %qE", parmnum, rname);
4234 break;
4235 case ic_assign:
4236 error ("incompatible types in assignment");
4237 break;
4238 case ic_init:
4239 error ("incompatible types in initialization");
4240 break;
4241 case ic_return:
4242 error ("incompatible types in return");
4243 break;
4244 default:
4245 gcc_unreachable ();
4246 }
4247
4248 return error_mark_node;
4249 }
4250
4251 /* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
4252 is used for error and warning reporting and indicates which argument
4253 is being processed. */
4254
4255 tree
4256 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4257 {
4258 tree ret, type;
4259
4260 /* If FN was prototyped at the call site, the value has been converted
4261 already in convert_arguments.
4262 However, we might see a prototype now that was not in place when
4263 the function call was seen, so check that the VALUE actually matches
4264 PARM before taking an early exit. */
4265 if (!value
4266 || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4267 && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4268 == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4269 return value;
4270
4271 type = TREE_TYPE (parm);
4272 ret = convert_for_assignment (type, value,
4273 ic_argpass_nonproto, fn,
4274 fn, argnum);
4275 if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4276 && INTEGRAL_TYPE_P (type)
4277 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4278 ret = default_conversion (ret);
4279 return ret;
4280 }
4281 \f
4282 /* If VALUE is a compound expr all of whose expressions are constant, then
4283 return its value. Otherwise, return error_mark_node.
4284
4285 This is for handling COMPOUND_EXPRs as initializer elements
4286 which is allowed with a warning when -pedantic is specified. */
4287
4288 static tree
4289 valid_compound_expr_initializer (tree value, tree endtype)
4290 {
4291 if (TREE_CODE (value) == COMPOUND_EXPR)
4292 {
4293 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4294 == error_mark_node)
4295 return error_mark_node;
4296 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4297 endtype);
4298 }
4299 else if (!initializer_constant_valid_p (value, endtype))
4300 return error_mark_node;
4301 else
4302 return value;
4303 }
4304 \f
4305 /* Perform appropriate conversions on the initial value of a variable,
4306 store it in the declaration DECL,
4307 and print any error messages that are appropriate.
4308 If the init is invalid, store an ERROR_MARK. */
4309
4310 void
4311 store_init_value (tree decl, tree init)
4312 {
4313 tree value, type;
4314
4315 /* If variable's type was invalidly declared, just ignore it. */
4316
4317 type = TREE_TYPE (decl);
4318 if (TREE_CODE (type) == ERROR_MARK)
4319 return;
4320
4321 /* Digest the specified initializer into an expression. */
4322
4323 value = digest_init (type, init, true, TREE_STATIC (decl));
4324
4325 /* Store the expression if valid; else report error. */
4326
4327 if (!in_system_header
4328 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4329 warning (OPT_Wtraditional, "traditional C rejects automatic "
4330 "aggregate initialization");
4331
4332 DECL_INITIAL (decl) = value;
4333
4334 /* ANSI wants warnings about out-of-range constant initializers. */
4335 STRIP_TYPE_NOPS (value);
4336 if (TREE_STATIC (decl))
4337 constant_expression_warning (value);
4338
4339 /* Check if we need to set array size from compound literal size. */
4340 if (TREE_CODE (type) == ARRAY_TYPE
4341 && TYPE_DOMAIN (type) == 0
4342 && value != error_mark_node)
4343 {
4344 tree inside_init = init;
4345
4346 STRIP_TYPE_NOPS (inside_init);
4347 inside_init = fold (inside_init);
4348
4349 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4350 {
4351 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4352
4353 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4354 {
4355 /* For int foo[] = (int [3]){1}; we need to set array size
4356 now since later on array initializer will be just the
4357 brace enclosed list of the compound literal. */
4358 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4359 TREE_TYPE (decl) = type;
4360 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4361 layout_type (type);
4362 layout_decl (cldecl, 0);
4363 }
4364 }
4365 }
4366 }
4367 \f
4368 /* Methods for storing and printing names for error messages. */
4369
4370 /* Implement a spelling stack that allows components of a name to be pushed
4371 and popped. Each element on the stack is this structure. */
4372
4373 struct spelling
4374 {
4375 int kind;
4376 union
4377 {
4378 unsigned HOST_WIDE_INT i;
4379 const char *s;
4380 } u;
4381 };
4382
4383 #define SPELLING_STRING 1
4384 #define SPELLING_MEMBER 2
4385 #define SPELLING_BOUNDS 3
4386
4387 static struct spelling *spelling; /* Next stack element (unused). */
4388 static struct spelling *spelling_base; /* Spelling stack base. */
4389 static int spelling_size; /* Size of the spelling stack. */
4390
4391 /* Macros to save and restore the spelling stack around push_... functions.
4392 Alternative to SAVE_SPELLING_STACK. */
4393
4394 #define SPELLING_DEPTH() (spelling - spelling_base)
4395 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4396
4397 /* Push an element on the spelling stack with type KIND and assign VALUE
4398 to MEMBER. */
4399
4400 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4401 { \
4402 int depth = SPELLING_DEPTH (); \
4403 \
4404 if (depth >= spelling_size) \
4405 { \
4406 spelling_size += 10; \
4407 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4408 spelling_size); \
4409 RESTORE_SPELLING_DEPTH (depth); \
4410 } \
4411 \
4412 spelling->kind = (KIND); \
4413 spelling->MEMBER = (VALUE); \
4414 spelling++; \
4415 }
4416
4417 /* Push STRING on the stack. Printed literally. */
4418
4419 static void
4420 push_string (const char *string)
4421 {
4422 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4423 }
4424
4425 /* Push a member name on the stack. Printed as '.' STRING. */
4426
4427 static void
4428 push_member_name (tree decl)
4429 {
4430 const char *const string
4431 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4432 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4433 }
4434
4435 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4436
4437 static void
4438 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4439 {
4440 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4441 }
4442
4443 /* Compute the maximum size in bytes of the printed spelling. */
4444
4445 static int
4446 spelling_length (void)
4447 {
4448 int size = 0;
4449 struct spelling *p;
4450
4451 for (p = spelling_base; p < spelling; p++)
4452 {
4453 if (p->kind == SPELLING_BOUNDS)
4454 size += 25;
4455 else
4456 size += strlen (p->u.s) + 1;
4457 }
4458
4459 return size;
4460 }
4461
4462 /* Print the spelling to BUFFER and return it. */
4463
4464 static char *
4465 print_spelling (char *buffer)
4466 {
4467 char *d = buffer;
4468 struct spelling *p;
4469
4470 for (p = spelling_base; p < spelling; p++)
4471 if (p->kind == SPELLING_BOUNDS)
4472 {
4473 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4474 d += strlen (d);
4475 }
4476 else
4477 {
4478 const char *s;
4479 if (p->kind == SPELLING_MEMBER)
4480 *d++ = '.';
4481 for (s = p->u.s; (*d = *s++); d++)
4482 ;
4483 }
4484 *d++ = '\0';
4485 return buffer;
4486 }
4487
4488 /* Issue an error message for a bad initializer component.
4489 MSGID identifies the message.
4490 The component name is taken from the spelling stack. */
4491
4492 void
4493 error_init (const char *msgid)
4494 {
4495 char *ofwhat;
4496
4497 error ("%s", _(msgid));
4498 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4499 if (*ofwhat)
4500 error ("(near initialization for %qs)", ofwhat);
4501 }
4502
4503 /* Issue a pedantic warning for a bad initializer component.
4504 MSGID identifies the message.
4505 The component name is taken from the spelling stack. */
4506
4507 void
4508 pedwarn_init (const char *msgid)
4509 {
4510 char *ofwhat;
4511
4512 pedwarn ("%s", _(msgid));
4513 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4514 if (*ofwhat)
4515 pedwarn ("(near initialization for %qs)", ofwhat);
4516 }
4517
4518 /* Issue a warning for a bad initializer component.
4519 MSGID identifies the message.
4520 The component name is taken from the spelling stack. */
4521
4522 static void
4523 warning_init (const char *msgid)
4524 {
4525 char *ofwhat;
4526
4527 warning (0, "%s", _(msgid));
4528 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4529 if (*ofwhat)
4530 warning (0, "(near initialization for %qs)", ofwhat);
4531 }
4532 \f
4533 /* If TYPE is an array type and EXPR is a parenthesized string
4534 constant, warn if pedantic that EXPR is being used to initialize an
4535 object of type TYPE. */
4536
4537 void
4538 maybe_warn_string_init (tree type, struct c_expr expr)
4539 {
4540 if (pedantic
4541 && TREE_CODE (type) == ARRAY_TYPE
4542 && TREE_CODE (expr.value) == STRING_CST
4543 && expr.original_code != STRING_CST)
4544 pedwarn_init ("array initialized from parenthesized string constant");
4545 }
4546
4547 /* Digest the parser output INIT as an initializer for type TYPE.
4548 Return a C expression of type TYPE to represent the initial value.
4549
4550 If INIT is a string constant, STRICT_STRING is true if it is
4551 unparenthesized or we should not warn here for it being parenthesized.
4552 For other types of INIT, STRICT_STRING is not used.
4553
4554 REQUIRE_CONSTANT requests an error if non-constant initializers or
4555 elements are seen. */
4556
4557 static tree
4558 digest_init (tree type, tree init, bool strict_string, int require_constant)
4559 {
4560 enum tree_code code = TREE_CODE (type);
4561 tree inside_init = init;
4562
4563 if (type == error_mark_node
4564 || !init
4565 || init == error_mark_node
4566 || TREE_TYPE (init) == error_mark_node)
4567 return error_mark_node;
4568
4569 STRIP_TYPE_NOPS (inside_init);
4570
4571 inside_init = fold (inside_init);
4572
4573 /* Initialization of an array of chars from a string constant
4574 optionally enclosed in braces. */
4575
4576 if (code == ARRAY_TYPE && inside_init
4577 && TREE_CODE (inside_init) == STRING_CST)
4578 {
4579 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4580 /* Note that an array could be both an array of character type
4581 and an array of wchar_t if wchar_t is signed char or unsigned
4582 char. */
4583 bool char_array = (typ1 == char_type_node
4584 || typ1 == signed_char_type_node
4585 || typ1 == unsigned_char_type_node);
4586 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4587 if (char_array || wchar_array)
4588 {
4589 struct c_expr expr;
4590 bool char_string;
4591 expr.value = inside_init;
4592 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4593 maybe_warn_string_init (type, expr);
4594
4595 char_string
4596 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4597 == char_type_node);
4598
4599 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4600 TYPE_MAIN_VARIANT (type)))
4601 return inside_init;
4602
4603 if (!wchar_array && !char_string)
4604 {
4605 error_init ("char-array initialized from wide string");
4606 return error_mark_node;
4607 }
4608 if (char_string && !char_array)
4609 {
4610 error_init ("wchar_t-array initialized from non-wide string");
4611 return error_mark_node;
4612 }
4613
4614 TREE_TYPE (inside_init) = type;
4615 if (TYPE_DOMAIN (type) != 0
4616 && TYPE_SIZE (type) != 0
4617 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4618 /* Subtract 1 (or sizeof (wchar_t))
4619 because it's ok to ignore the terminating null char
4620 that is counted in the length of the constant. */
4621 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4622 TREE_STRING_LENGTH (inside_init)
4623 - ((TYPE_PRECISION (typ1)
4624 != TYPE_PRECISION (char_type_node))
4625 ? (TYPE_PRECISION (wchar_type_node)
4626 / BITS_PER_UNIT)
4627 : 1)))
4628 pedwarn_init ("initializer-string for array of chars is too long");
4629
4630 return inside_init;
4631 }
4632 else if (INTEGRAL_TYPE_P (typ1))
4633 {
4634 error_init ("array of inappropriate type initialized "
4635 "from string constant");
4636 return error_mark_node;
4637 }
4638 }
4639
4640 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4641 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4642 below and handle as a constructor. */
4643 if (code == VECTOR_TYPE
4644 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4645 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4646 && TREE_CONSTANT (inside_init))
4647 {
4648 if (TREE_CODE (inside_init) == VECTOR_CST
4649 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4650 TYPE_MAIN_VARIANT (type)))
4651 return inside_init;
4652
4653 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4654 {
4655 unsigned HOST_WIDE_INT ix;
4656 tree value;
4657 bool constant_p = true;
4658
4659 /* Iterate through elements and check if all constructor
4660 elements are *_CSTs. */
4661 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4662 if (!CONSTANT_CLASS_P (value))
4663 {
4664 constant_p = false;
4665 break;
4666 }
4667
4668 if (constant_p)
4669 return build_vector_from_ctor (type,
4670 CONSTRUCTOR_ELTS (inside_init));
4671 }
4672 }
4673
4674 /* Any type can be initialized
4675 from an expression of the same type, optionally with braces. */
4676
4677 if (inside_init && TREE_TYPE (inside_init) != 0
4678 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4679 TYPE_MAIN_VARIANT (type))
4680 || (code == ARRAY_TYPE
4681 && comptypes (TREE_TYPE (inside_init), type))
4682 || (code == VECTOR_TYPE
4683 && comptypes (TREE_TYPE (inside_init), type))
4684 || (code == POINTER_TYPE
4685 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4686 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4687 TREE_TYPE (type)))))
4688 {
4689 if (code == POINTER_TYPE)
4690 {
4691 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4692 {
4693 if (TREE_CODE (inside_init) == STRING_CST
4694 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4695 inside_init = array_to_pointer_conversion (inside_init);
4696 else
4697 {
4698 error_init ("invalid use of non-lvalue array");
4699 return error_mark_node;
4700 }
4701 }
4702 }
4703
4704 if (code == VECTOR_TYPE)
4705 /* Although the types are compatible, we may require a
4706 conversion. */
4707 inside_init = convert (type, inside_init);
4708
4709 if (require_constant
4710 && (code == VECTOR_TYPE || !flag_isoc99)
4711 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4712 {
4713 /* As an extension, allow initializing objects with static storage
4714 duration with compound literals (which are then treated just as
4715 the brace enclosed list they contain). Also allow this for
4716 vectors, as we can only assign them with compound literals. */
4717 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4718 inside_init = DECL_INITIAL (decl);
4719 }
4720
4721 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4722 && TREE_CODE (inside_init) != CONSTRUCTOR)
4723 {
4724 error_init ("array initialized from non-constant array expression");
4725 return error_mark_node;
4726 }
4727
4728 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4729 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4730
4731 /* Compound expressions can only occur here if -pedantic or
4732 -pedantic-errors is specified. In the later case, we always want
4733 an error. In the former case, we simply want a warning. */
4734 if (require_constant && pedantic
4735 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4736 {
4737 inside_init
4738 = valid_compound_expr_initializer (inside_init,
4739 TREE_TYPE (inside_init));
4740 if (inside_init == error_mark_node)
4741 error_init ("initializer element is not constant");
4742 else
4743 pedwarn_init ("initializer element is not constant");
4744 if (flag_pedantic_errors)
4745 inside_init = error_mark_node;
4746 }
4747 else if (require_constant
4748 && !initializer_constant_valid_p (inside_init,
4749 TREE_TYPE (inside_init)))
4750 {
4751 error_init ("initializer element is not constant");
4752 inside_init = error_mark_node;
4753 }
4754
4755 /* Added to enable additional -Wmissing-format-attribute warnings. */
4756 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4757 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4758 NULL_TREE, 0);
4759 return inside_init;
4760 }
4761
4762 /* Handle scalar types, including conversions. */
4763
4764 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4765 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4766 || code == VECTOR_TYPE)
4767 {
4768 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4769 && (TREE_CODE (init) == STRING_CST
4770 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4771 init = array_to_pointer_conversion (init);
4772 inside_init
4773 = convert_for_assignment (type, init, ic_init,
4774 NULL_TREE, NULL_TREE, 0);
4775
4776 /* Check to see if we have already given an error message. */
4777 if (inside_init == error_mark_node)
4778 ;
4779 else if (require_constant && !TREE_CONSTANT (inside_init))
4780 {
4781 error_init ("initializer element is not constant");
4782 inside_init = error_mark_node;
4783 }
4784 else if (require_constant
4785 && !initializer_constant_valid_p (inside_init,
4786 TREE_TYPE (inside_init)))
4787 {
4788 error_init ("initializer element is not computable at load time");
4789 inside_init = error_mark_node;
4790 }
4791
4792 return inside_init;
4793 }
4794
4795 /* Come here only for records and arrays. */
4796
4797 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4798 {
4799 error_init ("variable-sized object may not be initialized");
4800 return error_mark_node;
4801 }
4802
4803 error_init ("invalid initializer");
4804 return error_mark_node;
4805 }
4806 \f
4807 /* Handle initializers that use braces. */
4808
4809 /* Type of object we are accumulating a constructor for.
4810 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4811 static tree constructor_type;
4812
4813 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4814 left to fill. */
4815 static tree constructor_fields;
4816
4817 /* For an ARRAY_TYPE, this is the specified index
4818 at which to store the next element we get. */
4819 static tree constructor_index;
4820
4821 /* For an ARRAY_TYPE, this is the maximum index. */
4822 static tree constructor_max_index;
4823
4824 /* For a RECORD_TYPE, this is the first field not yet written out. */
4825 static tree constructor_unfilled_fields;
4826
4827 /* For an ARRAY_TYPE, this is the index of the first element
4828 not yet written out. */
4829 static tree constructor_unfilled_index;
4830
4831 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4832 This is so we can generate gaps between fields, when appropriate. */
4833 static tree constructor_bit_index;
4834
4835 /* If we are saving up the elements rather than allocating them,
4836 this is the list of elements so far (in reverse order,
4837 most recent first). */
4838 static VEC(constructor_elt,gc) *constructor_elements;
4839
4840 /* 1 if constructor should be incrementally stored into a constructor chain,
4841 0 if all the elements should be kept in AVL tree. */
4842 static int constructor_incremental;
4843
4844 /* 1 if so far this constructor's elements are all compile-time constants. */
4845 static int constructor_constant;
4846
4847 /* 1 if so far this constructor's elements are all valid address constants. */
4848 static int constructor_simple;
4849
4850 /* 1 if this constructor is erroneous so far. */
4851 static int constructor_erroneous;
4852
4853 /* Structure for managing pending initializer elements, organized as an
4854 AVL tree. */
4855
4856 struct init_node
4857 {
4858 struct init_node *left, *right;
4859 struct init_node *parent;
4860 int balance;
4861 tree purpose;
4862 tree value;
4863 };
4864
4865 /* Tree of pending elements at this constructor level.
4866 These are elements encountered out of order
4867 which belong at places we haven't reached yet in actually
4868 writing the output.
4869 Will never hold tree nodes across GC runs. */
4870 static struct init_node *constructor_pending_elts;
4871
4872 /* The SPELLING_DEPTH of this constructor. */
4873 static int constructor_depth;
4874
4875 /* DECL node for which an initializer is being read.
4876 0 means we are reading a constructor expression
4877 such as (struct foo) {...}. */
4878 static tree constructor_decl;
4879
4880 /* Nonzero if this is an initializer for a top-level decl. */
4881 static int constructor_top_level;
4882
4883 /* Nonzero if there were any member designators in this initializer. */
4884 static int constructor_designated;
4885
4886 /* Nesting depth of designator list. */
4887 static int designator_depth;
4888
4889 /* Nonzero if there were diagnosed errors in this designator list. */
4890 static int designator_erroneous;
4891
4892 \f
4893 /* This stack has a level for each implicit or explicit level of
4894 structuring in the initializer, including the outermost one. It
4895 saves the values of most of the variables above. */
4896
4897 struct constructor_range_stack;
4898
4899 struct constructor_stack
4900 {
4901 struct constructor_stack *next;
4902 tree type;
4903 tree fields;
4904 tree index;
4905 tree max_index;
4906 tree unfilled_index;
4907 tree unfilled_fields;
4908 tree bit_index;
4909 VEC(constructor_elt,gc) *elements;
4910 struct init_node *pending_elts;
4911 int offset;
4912 int depth;
4913 /* If value nonzero, this value should replace the entire
4914 constructor at this level. */
4915 struct c_expr replacement_value;
4916 struct constructor_range_stack *range_stack;
4917 char constant;
4918 char simple;
4919 char implicit;
4920 char erroneous;
4921 char outer;
4922 char incremental;
4923 char designated;
4924 };
4925
4926 static struct constructor_stack *constructor_stack;
4927
4928 /* This stack represents designators from some range designator up to
4929 the last designator in the list. */
4930
4931 struct constructor_range_stack
4932 {
4933 struct constructor_range_stack *next, *prev;
4934 struct constructor_stack *stack;
4935 tree range_start;
4936 tree index;
4937 tree range_end;
4938 tree fields;
4939 };
4940
4941 static struct constructor_range_stack *constructor_range_stack;
4942
4943 /* This stack records separate initializers that are nested.
4944 Nested initializers can't happen in ANSI C, but GNU C allows them
4945 in cases like { ... (struct foo) { ... } ... }. */
4946
4947 struct initializer_stack
4948 {
4949 struct initializer_stack *next;
4950 tree decl;
4951 struct constructor_stack *constructor_stack;
4952 struct constructor_range_stack *constructor_range_stack;
4953 VEC(constructor_elt,gc) *elements;
4954 struct spelling *spelling;
4955 struct spelling *spelling_base;
4956 int spelling_size;
4957 char top_level;
4958 char require_constant_value;
4959 char require_constant_elements;
4960 };
4961
4962 static struct initializer_stack *initializer_stack;
4963 \f
4964 /* Prepare to parse and output the initializer for variable DECL. */
4965
4966 void
4967 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4968 {
4969 const char *locus;
4970 struct initializer_stack *p = XNEW (struct initializer_stack);
4971
4972 p->decl = constructor_decl;
4973 p->require_constant_value = require_constant_value;
4974 p->require_constant_elements = require_constant_elements;
4975 p->constructor_stack = constructor_stack;
4976 p->constructor_range_stack = constructor_range_stack;
4977 p->elements = constructor_elements;
4978 p->spelling = spelling;
4979 p->spelling_base = spelling_base;
4980 p->spelling_size = spelling_size;
4981 p->top_level = constructor_top_level;
4982 p->next = initializer_stack;
4983 initializer_stack = p;
4984
4985 constructor_decl = decl;
4986 constructor_designated = 0;
4987 constructor_top_level = top_level;
4988
4989 if (decl != 0 && decl != error_mark_node)
4990 {
4991 require_constant_value = TREE_STATIC (decl);
4992 require_constant_elements
4993 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4994 /* For a scalar, you can always use any value to initialize,
4995 even within braces. */
4996 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4997 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4998 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4999 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5000 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5001 }
5002 else
5003 {
5004 require_constant_value = 0;
5005 require_constant_elements = 0;
5006 locus = "(anonymous)";
5007 }
5008
5009 constructor_stack = 0;
5010 constructor_range_stack = 0;
5011
5012 missing_braces_mentioned = 0;
5013
5014 spelling_base = 0;
5015 spelling_size = 0;
5016 RESTORE_SPELLING_DEPTH (0);
5017
5018 if (locus)
5019 push_string (locus);
5020 }
5021
5022 void
5023 finish_init (void)
5024 {
5025 struct initializer_stack *p = initializer_stack;
5026
5027 /* Free the whole constructor stack of this initializer. */
5028 while (constructor_stack)
5029 {
5030 struct constructor_stack *q = constructor_stack;
5031 constructor_stack = q->next;
5032 free (q);
5033 }
5034
5035 gcc_assert (!constructor_range_stack);
5036
5037 /* Pop back to the data of the outer initializer (if any). */
5038 free (spelling_base);
5039
5040 constructor_decl = p->decl;
5041 require_constant_value = p->require_constant_value;
5042 require_constant_elements = p->require_constant_elements;
5043 constructor_stack = p->constructor_stack;
5044 constructor_range_stack = p->constructor_range_stack;
5045 constructor_elements = p->elements;
5046 spelling = p->spelling;
5047 spelling_base = p->spelling_base;
5048 spelling_size = p->spelling_size;
5049 constructor_top_level = p->top_level;
5050 initializer_stack = p->next;
5051 free (p);
5052 }
5053 \f
5054 /* Call here when we see the initializer is surrounded by braces.
5055 This is instead of a call to push_init_level;
5056 it is matched by a call to pop_init_level.
5057
5058 TYPE is the type to initialize, for a constructor expression.
5059 For an initializer for a decl, TYPE is zero. */
5060
5061 void
5062 really_start_incremental_init (tree type)
5063 {
5064 struct constructor_stack *p = XNEW (struct constructor_stack);
5065
5066 if (type == 0)
5067 type = TREE_TYPE (constructor_decl);
5068
5069 if (targetm.vector_opaque_p (type))
5070 error ("opaque vector types cannot be initialized");
5071
5072 p->type = constructor_type;
5073 p->fields = constructor_fields;
5074 p->index = constructor_index;
5075 p->max_index = constructor_max_index;
5076 p->unfilled_index = constructor_unfilled_index;
5077 p->unfilled_fields = constructor_unfilled_fields;
5078 p->bit_index = constructor_bit_index;
5079 p->elements = constructor_elements;
5080 p->constant = constructor_constant;
5081 p->simple = constructor_simple;
5082 p->erroneous = constructor_erroneous;
5083 p->pending_elts = constructor_pending_elts;
5084 p->depth = constructor_depth;
5085 p->replacement_value.value = 0;
5086 p->replacement_value.original_code = ERROR_MARK;
5087 p->implicit = 0;
5088 p->range_stack = 0;
5089 p->outer = 0;
5090 p->incremental = constructor_incremental;
5091 p->designated = constructor_designated;
5092 p->next = 0;
5093 constructor_stack = p;
5094
5095 constructor_constant = 1;
5096 constructor_simple = 1;
5097 constructor_depth = SPELLING_DEPTH ();
5098 constructor_elements = 0;
5099 constructor_pending_elts = 0;
5100 constructor_type = type;
5101 constructor_incremental = 1;
5102 constructor_designated = 0;
5103 designator_depth = 0;
5104 designator_erroneous = 0;
5105
5106 if (TREE_CODE (constructor_type) == RECORD_TYPE
5107 || TREE_CODE (constructor_type) == UNION_TYPE)
5108 {
5109 constructor_fields = TYPE_FIELDS (constructor_type);
5110 /* Skip any nameless bit fields at the beginning. */
5111 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5112 && DECL_NAME (constructor_fields) == 0)
5113 constructor_fields = TREE_CHAIN (constructor_fields);
5114
5115 constructor_unfilled_fields = constructor_fields;
5116 constructor_bit_index = bitsize_zero_node;
5117 }
5118 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5119 {
5120 if (TYPE_DOMAIN (constructor_type))
5121 {
5122 constructor_max_index
5123 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5124
5125 /* Detect non-empty initializations of zero-length arrays. */
5126 if (constructor_max_index == NULL_TREE
5127 && TYPE_SIZE (constructor_type))
5128 constructor_max_index = build_int_cst (NULL_TREE, -1);
5129
5130 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5131 to initialize VLAs will cause a proper error; avoid tree
5132 checking errors as well by setting a safe value. */
5133 if (constructor_max_index
5134 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5135 constructor_max_index = build_int_cst (NULL_TREE, -1);
5136
5137 constructor_index
5138 = convert (bitsizetype,
5139 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5140 }
5141 else
5142 {
5143 constructor_index = bitsize_zero_node;
5144 constructor_max_index = NULL_TREE;
5145 }
5146
5147 constructor_unfilled_index = constructor_index;
5148 }
5149 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5150 {
5151 /* Vectors are like simple fixed-size arrays. */
5152 constructor_max_index =
5153 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5154 constructor_index = bitsize_zero_node;
5155 constructor_unfilled_index = constructor_index;
5156 }
5157 else
5158 {
5159 /* Handle the case of int x = {5}; */
5160 constructor_fields = constructor_type;
5161 constructor_unfilled_fields = constructor_type;
5162 }
5163 }
5164 \f
5165 /* Push down into a subobject, for initialization.
5166 If this is for an explicit set of braces, IMPLICIT is 0.
5167 If it is because the next element belongs at a lower level,
5168 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5169
5170 void
5171 push_init_level (int implicit)
5172 {
5173 struct constructor_stack *p;
5174 tree value = NULL_TREE;
5175
5176 /* If we've exhausted any levels that didn't have braces,
5177 pop them now. If implicit == 1, this will have been done in
5178 process_init_element; do not repeat it here because in the case
5179 of excess initializers for an empty aggregate this leads to an
5180 infinite cycle of popping a level and immediately recreating
5181 it. */
5182 if (implicit != 1)
5183 {
5184 while (constructor_stack->implicit)
5185 {
5186 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5187 || TREE_CODE (constructor_type) == UNION_TYPE)
5188 && constructor_fields == 0)
5189 process_init_element (pop_init_level (1));
5190 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5191 && constructor_max_index
5192 && tree_int_cst_lt (constructor_max_index,
5193 constructor_index))
5194 process_init_element (pop_init_level (1));
5195 else
5196 break;
5197 }
5198 }
5199
5200 /* Unless this is an explicit brace, we need to preserve previous
5201 content if any. */
5202 if (implicit)
5203 {
5204 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5205 || TREE_CODE (constructor_type) == UNION_TYPE)
5206 && constructor_fields)
5207 value = find_init_member (constructor_fields);
5208 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5209 value = find_init_member (constructor_index);
5210 }
5211
5212 p = XNEW (struct constructor_stack);
5213 p->type = constructor_type;
5214 p->fields = constructor_fields;
5215 p->index = constructor_index;
5216 p->max_index = constructor_max_index;
5217 p->unfilled_index = constructor_unfilled_index;
5218 p->unfilled_fields = constructor_unfilled_fields;
5219 p->bit_index = constructor_bit_index;
5220 p->elements = constructor_elements;
5221 p->constant = constructor_constant;
5222 p->simple = constructor_simple;
5223 p->erroneous = constructor_erroneous;
5224 p->pending_elts = constructor_pending_elts;
5225 p->depth = constructor_depth;
5226 p->replacement_value.value = 0;
5227 p->replacement_value.original_code = ERROR_MARK;
5228 p->implicit = implicit;
5229 p->outer = 0;
5230 p->incremental = constructor_incremental;
5231 p->designated = constructor_designated;
5232 p->next = constructor_stack;
5233 p->range_stack = 0;
5234 constructor_stack = p;
5235
5236 constructor_constant = 1;
5237 constructor_simple = 1;
5238 constructor_depth = SPELLING_DEPTH ();
5239 constructor_elements = 0;
5240 constructor_incremental = 1;
5241 constructor_designated = 0;
5242 constructor_pending_elts = 0;
5243 if (!implicit)
5244 {
5245 p->range_stack = constructor_range_stack;
5246 constructor_range_stack = 0;
5247 designator_depth = 0;
5248 designator_erroneous = 0;
5249 }
5250
5251 /* Don't die if an entire brace-pair level is superfluous
5252 in the containing level. */
5253 if (constructor_type == 0)
5254 ;
5255 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5256 || TREE_CODE (constructor_type) == UNION_TYPE)
5257 {
5258 /* Don't die if there are extra init elts at the end. */
5259 if (constructor_fields == 0)
5260 constructor_type = 0;
5261 else
5262 {
5263 constructor_type = TREE_TYPE (constructor_fields);
5264 push_member_name (constructor_fields);
5265 constructor_depth++;
5266 }
5267 }
5268 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5269 {
5270 constructor_type = TREE_TYPE (constructor_type);
5271 push_array_bounds (tree_low_cst (constructor_index, 1));
5272 constructor_depth++;
5273 }
5274
5275 if (constructor_type == 0)
5276 {
5277 error_init ("extra brace group at end of initializer");
5278 constructor_fields = 0;
5279 constructor_unfilled_fields = 0;
5280 return;
5281 }
5282
5283 if (value && TREE_CODE (value) == CONSTRUCTOR)
5284 {
5285 constructor_constant = TREE_CONSTANT (value);
5286 constructor_simple = TREE_STATIC (value);
5287 constructor_elements = CONSTRUCTOR_ELTS (value);
5288 if (!VEC_empty (constructor_elt, constructor_elements)
5289 && (TREE_CODE (constructor_type) == RECORD_TYPE
5290 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5291 set_nonincremental_init ();
5292 }
5293
5294 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5295 {
5296 missing_braces_mentioned = 1;
5297 warning_init ("missing braces around initializer");
5298 }
5299
5300 if (TREE_CODE (constructor_type) == RECORD_TYPE
5301 || TREE_CODE (constructor_type) == UNION_TYPE)
5302 {
5303 constructor_fields = TYPE_FIELDS (constructor_type);
5304 /* Skip any nameless bit fields at the beginning. */
5305 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5306 && DECL_NAME (constructor_fields) == 0)
5307 constructor_fields = TREE_CHAIN (constructor_fields);
5308
5309 constructor_unfilled_fields = constructor_fields;
5310 constructor_bit_index = bitsize_zero_node;
5311 }
5312 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5313 {
5314 /* Vectors are like simple fixed-size arrays. */
5315 constructor_max_index =
5316 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5317 constructor_index = convert (bitsizetype, integer_zero_node);
5318 constructor_unfilled_index = constructor_index;
5319 }
5320 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5321 {
5322 if (TYPE_DOMAIN (constructor_type))
5323 {
5324 constructor_max_index
5325 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5326
5327 /* Detect non-empty initializations of zero-length arrays. */
5328 if (constructor_max_index == NULL_TREE
5329 && TYPE_SIZE (constructor_type))
5330 constructor_max_index = build_int_cst (NULL_TREE, -1);
5331
5332 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5333 to initialize VLAs will cause a proper error; avoid tree
5334 checking errors as well by setting a safe value. */
5335 if (constructor_max_index
5336 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5337 constructor_max_index = build_int_cst (NULL_TREE, -1);
5338
5339 constructor_index
5340 = convert (bitsizetype,
5341 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5342 }
5343 else
5344 constructor_index = bitsize_zero_node;
5345
5346 constructor_unfilled_index = constructor_index;
5347 if (value && TREE_CODE (value) == STRING_CST)
5348 {
5349 /* We need to split the char/wchar array into individual
5350 characters, so that we don't have to special case it
5351 everywhere. */
5352 set_nonincremental_init_from_string (value);
5353 }
5354 }
5355 else
5356 {
5357 if (constructor_type != error_mark_node)
5358 warning_init ("braces around scalar initializer");
5359 constructor_fields = constructor_type;
5360 constructor_unfilled_fields = constructor_type;
5361 }
5362 }
5363
5364 /* At the end of an implicit or explicit brace level,
5365 finish up that level of constructor. If a single expression
5366 with redundant braces initialized that level, return the
5367 c_expr structure for that expression. Otherwise, the original_code
5368 element is set to ERROR_MARK.
5369 If we were outputting the elements as they are read, return 0 as the value
5370 from inner levels (process_init_element ignores that),
5371 but return error_mark_node as the value from the outermost level
5372 (that's what we want to put in DECL_INITIAL).
5373 Otherwise, return a CONSTRUCTOR expression as the value. */
5374
5375 struct c_expr
5376 pop_init_level (int implicit)
5377 {
5378 struct constructor_stack *p;
5379 struct c_expr ret;
5380 ret.value = 0;
5381 ret.original_code = ERROR_MARK;
5382
5383 if (implicit == 0)
5384 {
5385 /* When we come to an explicit close brace,
5386 pop any inner levels that didn't have explicit braces. */
5387 while (constructor_stack->implicit)
5388 process_init_element (pop_init_level (1));
5389
5390 gcc_assert (!constructor_range_stack);
5391 }
5392
5393 /* Now output all pending elements. */
5394 constructor_incremental = 1;
5395 output_pending_init_elements (1);
5396
5397 p = constructor_stack;
5398
5399 /* Error for initializing a flexible array member, or a zero-length
5400 array member in an inappropriate context. */
5401 if (constructor_type && constructor_fields
5402 && TREE_CODE (constructor_type) == ARRAY_TYPE
5403 && TYPE_DOMAIN (constructor_type)
5404 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5405 {
5406 /* Silently discard empty initializations. The parser will
5407 already have pedwarned for empty brackets. */
5408 if (integer_zerop (constructor_unfilled_index))
5409 constructor_type = NULL_TREE;
5410 else
5411 {
5412 gcc_assert (!TYPE_SIZE (constructor_type));
5413
5414 if (constructor_depth > 2)
5415 error_init ("initialization of flexible array member in a nested context");
5416 else if (pedantic)
5417 pedwarn_init ("initialization of a flexible array member");
5418
5419 /* We have already issued an error message for the existence
5420 of a flexible array member not at the end of the structure.
5421 Discard the initializer so that we do not die later. */
5422 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5423 constructor_type = NULL_TREE;
5424 }
5425 }
5426
5427 /* Warn when some struct elements are implicitly initialized to zero. */
5428 if (warn_missing_field_initializers
5429 && constructor_type
5430 && TREE_CODE (constructor_type) == RECORD_TYPE
5431 && constructor_unfilled_fields)
5432 {
5433 /* Do not warn for flexible array members or zero-length arrays. */
5434 while (constructor_unfilled_fields
5435 && (!DECL_SIZE (constructor_unfilled_fields)
5436 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5437 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5438
5439 /* Do not warn if this level of the initializer uses member
5440 designators; it is likely to be deliberate. */
5441 if (constructor_unfilled_fields && !constructor_designated)
5442 {
5443 push_member_name (constructor_unfilled_fields);
5444 warning_init ("missing initializer");
5445 RESTORE_SPELLING_DEPTH (constructor_depth);
5446 }
5447 }
5448
5449 /* Pad out the end of the structure. */
5450 if (p->replacement_value.value)
5451 /* If this closes a superfluous brace pair,
5452 just pass out the element between them. */
5453 ret = p->replacement_value;
5454 else if (constructor_type == 0)
5455 ;
5456 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5457 && TREE_CODE (constructor_type) != UNION_TYPE
5458 && TREE_CODE (constructor_type) != ARRAY_TYPE
5459 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5460 {
5461 /* A nonincremental scalar initializer--just return
5462 the element, after verifying there is just one. */
5463 if (VEC_empty (constructor_elt,constructor_elements))
5464 {
5465 if (!constructor_erroneous)
5466 error_init ("empty scalar initializer");
5467 ret.value = error_mark_node;
5468 }
5469 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5470 {
5471 error_init ("extra elements in scalar initializer");
5472 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5473 }
5474 else
5475 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5476 }
5477 else
5478 {
5479 if (constructor_erroneous)
5480 ret.value = error_mark_node;
5481 else
5482 {
5483 ret.value = build_constructor (constructor_type,
5484 constructor_elements);
5485 if (constructor_constant)
5486 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5487 if (constructor_constant && constructor_simple)
5488 TREE_STATIC (ret.value) = 1;
5489 }
5490 }
5491
5492 constructor_type = p->type;
5493 constructor_fields = p->fields;
5494 constructor_index = p->index;
5495 constructor_max_index = p->max_index;
5496 constructor_unfilled_index = p->unfilled_index;
5497 constructor_unfilled_fields = p->unfilled_fields;
5498 constructor_bit_index = p->bit_index;
5499 constructor_elements = p->elements;
5500 constructor_constant = p->constant;
5501 constructor_simple = p->simple;
5502 constructor_erroneous = p->erroneous;
5503 constructor_incremental = p->incremental;
5504 constructor_designated = p->designated;
5505 constructor_pending_elts = p->pending_elts;
5506 constructor_depth = p->depth;
5507 if (!p->implicit)
5508 constructor_range_stack = p->range_stack;
5509 RESTORE_SPELLING_DEPTH (constructor_depth);
5510
5511 constructor_stack = p->next;
5512 free (p);
5513
5514 if (ret.value == 0 && constructor_stack == 0)
5515 ret.value = error_mark_node;
5516 return ret;
5517 }
5518
5519 /* Common handling for both array range and field name designators.
5520 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5521
5522 static int
5523 set_designator (int array)
5524 {
5525 tree subtype;
5526 enum tree_code subcode;
5527
5528 /* Don't die if an entire brace-pair level is superfluous
5529 in the containing level. */
5530 if (constructor_type == 0)
5531 return 1;
5532
5533 /* If there were errors in this designator list already, bail out
5534 silently. */
5535 if (designator_erroneous)
5536 return 1;
5537
5538 if (!designator_depth)
5539 {
5540 gcc_assert (!constructor_range_stack);
5541
5542 /* Designator list starts at the level of closest explicit
5543 braces. */
5544 while (constructor_stack->implicit)
5545 process_init_element (pop_init_level (1));
5546 constructor_designated = 1;
5547 return 0;
5548 }
5549
5550 switch (TREE_CODE (constructor_type))
5551 {
5552 case RECORD_TYPE:
5553 case UNION_TYPE:
5554 subtype = TREE_TYPE (constructor_fields);
5555 if (subtype != error_mark_node)
5556 subtype = TYPE_MAIN_VARIANT (subtype);
5557 break;
5558 case ARRAY_TYPE:
5559 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5560 break;
5561 default:
5562 gcc_unreachable ();
5563 }
5564
5565 subcode = TREE_CODE (subtype);
5566 if (array && subcode != ARRAY_TYPE)
5567 {
5568 error_init ("array index in non-array initializer");
5569 return 1;
5570 }
5571 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5572 {
5573 error_init ("field name not in record or union initializer");
5574 return 1;
5575 }
5576
5577 constructor_designated = 1;
5578 push_init_level (2);
5579 return 0;
5580 }
5581
5582 /* If there are range designators in designator list, push a new designator
5583 to constructor_range_stack. RANGE_END is end of such stack range or
5584 NULL_TREE if there is no range designator at this level. */
5585
5586 static void
5587 push_range_stack (tree range_end)
5588 {
5589 struct constructor_range_stack *p;
5590
5591 p = GGC_NEW (struct constructor_range_stack);
5592 p->prev = constructor_range_stack;
5593 p->next = 0;
5594 p->fields = constructor_fields;
5595 p->range_start = constructor_index;
5596 p->index = constructor_index;
5597 p->stack = constructor_stack;
5598 p->range_end = range_end;
5599 if (constructor_range_stack)
5600 constructor_range_stack->next = p;
5601 constructor_range_stack = p;
5602 }
5603
5604 /* Within an array initializer, specify the next index to be initialized.
5605 FIRST is that index. If LAST is nonzero, then initialize a range
5606 of indices, running from FIRST through LAST. */
5607
5608 void
5609 set_init_index (tree first, tree last)
5610 {
5611 if (set_designator (1))
5612 return;
5613
5614 designator_erroneous = 1;
5615
5616 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5617 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5618 {
5619 error_init ("array index in initializer not of integer type");
5620 return;
5621 }
5622
5623 if (TREE_CODE (first) != INTEGER_CST)
5624 error_init ("nonconstant array index in initializer");
5625 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5626 error_init ("nonconstant array index in initializer");
5627 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5628 error_init ("array index in non-array initializer");
5629 else if (tree_int_cst_sgn (first) == -1)
5630 error_init ("array index in initializer exceeds array bounds");
5631 else if (constructor_max_index
5632 && tree_int_cst_lt (constructor_max_index, first))
5633 error_init ("array index in initializer exceeds array bounds");
5634 else
5635 {
5636 constructor_index = convert (bitsizetype, first);
5637
5638 if (last)
5639 {
5640 if (tree_int_cst_equal (first, last))
5641 last = 0;
5642 else if (tree_int_cst_lt (last, first))
5643 {
5644 error_init ("empty index range in initializer");
5645 last = 0;
5646 }
5647 else
5648 {
5649 last = convert (bitsizetype, last);
5650 if (constructor_max_index != 0
5651 && tree_int_cst_lt (constructor_max_index, last))
5652 {
5653 error_init ("array index range in initializer exceeds array bounds");
5654 last = 0;
5655 }
5656 }
5657 }
5658
5659 designator_depth++;
5660 designator_erroneous = 0;
5661 if (constructor_range_stack || last)
5662 push_range_stack (last);
5663 }
5664 }
5665
5666 /* Within a struct initializer, specify the next field to be initialized. */
5667
5668 void
5669 set_init_label (tree fieldname)
5670 {
5671 tree tail;
5672
5673 if (set_designator (0))
5674 return;
5675
5676 designator_erroneous = 1;
5677
5678 if (TREE_CODE (constructor_type) != RECORD_TYPE
5679 && TREE_CODE (constructor_type) != UNION_TYPE)
5680 {
5681 error_init ("field name not in record or union initializer");
5682 return;
5683 }
5684
5685 for (tail = TYPE_FIELDS (constructor_type); tail;
5686 tail = TREE_CHAIN (tail))
5687 {
5688 if (DECL_NAME (tail) == fieldname)
5689 break;
5690 }
5691
5692 if (tail == 0)
5693 error ("unknown field %qE specified in initializer", fieldname);
5694 else
5695 {
5696 constructor_fields = tail;
5697 designator_depth++;
5698 designator_erroneous = 0;
5699 if (constructor_range_stack)
5700 push_range_stack (NULL_TREE);
5701 }
5702 }
5703 \f
5704 /* Add a new initializer to the tree of pending initializers. PURPOSE
5705 identifies the initializer, either array index or field in a structure.
5706 VALUE is the value of that index or field. */
5707
5708 static void
5709 add_pending_init (tree purpose, tree value)
5710 {
5711 struct init_node *p, **q, *r;
5712
5713 q = &constructor_pending_elts;
5714 p = 0;
5715
5716 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5717 {
5718 while (*q != 0)
5719 {
5720 p = *q;
5721 if (tree_int_cst_lt (purpose, p->purpose))
5722 q = &p->left;
5723 else if (tree_int_cst_lt (p->purpose, purpose))
5724 q = &p->right;
5725 else
5726 {
5727 if (TREE_SIDE_EFFECTS (p->value))
5728 warning_init ("initialized field with side-effects overwritten");
5729 else if (warn_override_init)
5730 warning_init ("initialized field overwritten");
5731 p->value = value;
5732 return;
5733 }
5734 }
5735 }
5736 else
5737 {
5738 tree bitpos;
5739
5740 bitpos = bit_position (purpose);
5741 while (*q != NULL)
5742 {
5743 p = *q;
5744 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5745 q = &p->left;
5746 else if (p->purpose != purpose)
5747 q = &p->right;
5748 else
5749 {
5750 if (TREE_SIDE_EFFECTS (p->value))
5751 warning_init ("initialized field with side-effects overwritten");
5752 else if (warn_override_init)
5753 warning_init ("initialized field overwritten");
5754 p->value = value;
5755 return;
5756 }
5757 }
5758 }
5759
5760 r = GGC_NEW (struct init_node);
5761 r->purpose = purpose;
5762 r->value = value;
5763
5764 *q = r;
5765 r->parent = p;
5766 r->left = 0;
5767 r->right = 0;
5768 r->balance = 0;
5769
5770 while (p)
5771 {
5772 struct init_node *s;
5773
5774 if (r == p->left)
5775 {
5776 if (p->balance == 0)
5777 p->balance = -1;
5778 else if (p->balance < 0)
5779 {
5780 if (r->balance < 0)
5781 {
5782 /* L rotation. */
5783 p->left = r->right;
5784 if (p->left)
5785 p->left->parent = p;
5786 r->right = p;
5787
5788 p->balance = 0;
5789 r->balance = 0;
5790
5791 s = p->parent;
5792 p->parent = r;
5793 r->parent = s;
5794 if (s)
5795 {
5796 if (s->left == p)
5797 s->left = r;
5798 else
5799 s->right = r;
5800 }
5801 else
5802 constructor_pending_elts = r;
5803 }
5804 else
5805 {
5806 /* LR rotation. */
5807 struct init_node *t = r->right;
5808
5809 r->right = t->left;
5810 if (r->right)
5811 r->right->parent = r;
5812 t->left = r;
5813
5814 p->left = t->right;
5815 if (p->left)
5816 p->left->parent = p;
5817 t->right = p;
5818
5819 p->balance = t->balance < 0;
5820 r->balance = -(t->balance > 0);
5821 t->balance = 0;
5822
5823 s = p->parent;
5824 p->parent = t;
5825 r->parent = t;
5826 t->parent = s;
5827 if (s)
5828 {
5829 if (s->left == p)
5830 s->left = t;
5831 else
5832 s->right = t;
5833 }
5834 else
5835 constructor_pending_elts = t;
5836 }
5837 break;
5838 }
5839 else
5840 {
5841 /* p->balance == +1; growth of left side balances the node. */
5842 p->balance = 0;
5843 break;
5844 }
5845 }
5846 else /* r == p->right */
5847 {
5848 if (p->balance == 0)
5849 /* Growth propagation from right side. */
5850 p->balance++;
5851 else if (p->balance > 0)
5852 {
5853 if (r->balance > 0)
5854 {
5855 /* R rotation. */
5856 p->right = r->left;
5857 if (p->right)
5858 p->right->parent = p;
5859 r->left = p;
5860
5861 p->balance = 0;
5862 r->balance = 0;
5863
5864 s = p->parent;
5865 p->parent = r;
5866 r->parent = s;
5867 if (s)
5868 {
5869 if (s->left == p)
5870 s->left = r;
5871 else
5872 s->right = r;
5873 }
5874 else
5875 constructor_pending_elts = r;
5876 }
5877 else /* r->balance == -1 */
5878 {
5879 /* RL rotation */
5880 struct init_node *t = r->left;
5881
5882 r->left = t->right;
5883 if (r->left)
5884 r->left->parent = r;
5885 t->right = r;
5886
5887 p->right = t->left;
5888 if (p->right)
5889 p->right->parent = p;
5890 t->left = p;
5891
5892 r->balance = (t->balance < 0);
5893 p->balance = -(t->balance > 0);
5894 t->balance = 0;
5895
5896 s = p->parent;
5897 p->parent = t;
5898 r->parent = t;
5899 t->parent = s;
5900 if (s)
5901 {
5902 if (s->left == p)
5903 s->left = t;
5904 else
5905 s->right = t;
5906 }
5907 else
5908 constructor_pending_elts = t;
5909 }
5910 break;
5911 }
5912 else
5913 {
5914 /* p->balance == -1; growth of right side balances the node. */
5915 p->balance = 0;
5916 break;
5917 }
5918 }
5919
5920 r = p;
5921 p = p->parent;
5922 }
5923 }
5924
5925 /* Build AVL tree from a sorted chain. */
5926
5927 static void
5928 set_nonincremental_init (void)
5929 {
5930 unsigned HOST_WIDE_INT ix;
5931 tree index, value;
5932
5933 if (TREE_CODE (constructor_type) != RECORD_TYPE
5934 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5935 return;
5936
5937 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5938 add_pending_init (index, value);
5939 constructor_elements = 0;
5940 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5941 {
5942 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5943 /* Skip any nameless bit fields at the beginning. */
5944 while (constructor_unfilled_fields != 0
5945 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5946 && DECL_NAME (constructor_unfilled_fields) == 0)
5947 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5948
5949 }
5950 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5951 {
5952 if (TYPE_DOMAIN (constructor_type))
5953 constructor_unfilled_index
5954 = convert (bitsizetype,
5955 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5956 else
5957 constructor_unfilled_index = bitsize_zero_node;
5958 }
5959 constructor_incremental = 0;
5960 }
5961
5962 /* Build AVL tree from a string constant. */
5963
5964 static void
5965 set_nonincremental_init_from_string (tree str)
5966 {
5967 tree value, purpose, type;
5968 HOST_WIDE_INT val[2];
5969 const char *p, *end;
5970 int byte, wchar_bytes, charwidth, bitpos;
5971
5972 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5973
5974 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5975 == TYPE_PRECISION (char_type_node))
5976 wchar_bytes = 1;
5977 else
5978 {
5979 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5980 == TYPE_PRECISION (wchar_type_node));
5981 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5982 }
5983 charwidth = TYPE_PRECISION (char_type_node);
5984 type = TREE_TYPE (constructor_type);
5985 p = TREE_STRING_POINTER (str);
5986 end = p + TREE_STRING_LENGTH (str);
5987
5988 for (purpose = bitsize_zero_node;
5989 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5990 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5991 {
5992 if (wchar_bytes == 1)
5993 {
5994 val[1] = (unsigned char) *p++;
5995 val[0] = 0;
5996 }
5997 else
5998 {
5999 val[0] = 0;
6000 val[1] = 0;
6001 for (byte = 0; byte < wchar_bytes; byte++)
6002 {
6003 if (BYTES_BIG_ENDIAN)
6004 bitpos = (wchar_bytes - byte - 1) * charwidth;
6005 else
6006 bitpos = byte * charwidth;
6007 val[bitpos < HOST_BITS_PER_WIDE_INT]
6008 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6009 << (bitpos % HOST_BITS_PER_WIDE_INT);
6010 }
6011 }
6012
6013 if (!TYPE_UNSIGNED (type))
6014 {
6015 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6016 if (bitpos < HOST_BITS_PER_WIDE_INT)
6017 {
6018 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6019 {
6020 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6021 val[0] = -1;
6022 }
6023 }
6024 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6025 {
6026 if (val[1] < 0)
6027 val[0] = -1;
6028 }
6029 else if (val[0] & (((HOST_WIDE_INT) 1)
6030 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6031 val[0] |= ((HOST_WIDE_INT) -1)
6032 << (bitpos - HOST_BITS_PER_WIDE_INT);
6033 }
6034
6035 value = build_int_cst_wide (type, val[1], val[0]);
6036 add_pending_init (purpose, value);
6037 }
6038
6039 constructor_incremental = 0;
6040 }
6041
6042 /* Return value of FIELD in pending initializer or zero if the field was
6043 not initialized yet. */
6044
6045 static tree
6046 find_init_member (tree field)
6047 {
6048 struct init_node *p;
6049
6050 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6051 {
6052 if (constructor_incremental
6053 && tree_int_cst_lt (field, constructor_unfilled_index))
6054 set_nonincremental_init ();
6055
6056 p = constructor_pending_elts;
6057 while (p)
6058 {
6059 if (tree_int_cst_lt (field, p->purpose))
6060 p = p->left;
6061 else if (tree_int_cst_lt (p->purpose, field))
6062 p = p->right;
6063 else
6064 return p->value;
6065 }
6066 }
6067 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6068 {
6069 tree bitpos = bit_position (field);
6070
6071 if (constructor_incremental
6072 && (!constructor_unfilled_fields
6073 || tree_int_cst_lt (bitpos,
6074 bit_position (constructor_unfilled_fields))))
6075 set_nonincremental_init ();
6076
6077 p = constructor_pending_elts;
6078 while (p)
6079 {
6080 if (field == p->purpose)
6081 return p->value;
6082 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6083 p = p->left;
6084 else
6085 p = p->right;
6086 }
6087 }
6088 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6089 {
6090 if (!VEC_empty (constructor_elt, constructor_elements)
6091 && (VEC_last (constructor_elt, constructor_elements)->index
6092 == field))
6093 return VEC_last (constructor_elt, constructor_elements)->value;
6094 }
6095 return 0;
6096 }
6097
6098 /* "Output" the next constructor element.
6099 At top level, really output it to assembler code now.
6100 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6101 TYPE is the data type that the containing data type wants here.
6102 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6103 If VALUE is a string constant, STRICT_STRING is true if it is
6104 unparenthesized or we should not warn here for it being parenthesized.
6105 For other types of VALUE, STRICT_STRING is not used.
6106
6107 PENDING if non-nil means output pending elements that belong
6108 right after this element. (PENDING is normally 1;
6109 it is 0 while outputting pending elements, to avoid recursion.) */
6110
6111 static void
6112 output_init_element (tree value, bool strict_string, tree type, tree field,
6113 int pending)
6114 {
6115 constructor_elt *celt;
6116
6117 if (type == error_mark_node || value == error_mark_node)
6118 {
6119 constructor_erroneous = 1;
6120 return;
6121 }
6122 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6123 && (TREE_CODE (value) == STRING_CST
6124 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6125 && !(TREE_CODE (value) == STRING_CST
6126 && TREE_CODE (type) == ARRAY_TYPE
6127 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6128 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6129 TYPE_MAIN_VARIANT (type)))
6130 value = array_to_pointer_conversion (value);
6131
6132 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6133 && require_constant_value && !flag_isoc99 && pending)
6134 {
6135 /* As an extension, allow initializing objects with static storage
6136 duration with compound literals (which are then treated just as
6137 the brace enclosed list they contain). */
6138 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6139 value = DECL_INITIAL (decl);
6140 }
6141
6142 if (value == error_mark_node)
6143 constructor_erroneous = 1;
6144 else if (!TREE_CONSTANT (value))
6145 constructor_constant = 0;
6146 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6147 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6148 || TREE_CODE (constructor_type) == UNION_TYPE)
6149 && DECL_C_BIT_FIELD (field)
6150 && TREE_CODE (value) != INTEGER_CST))
6151 constructor_simple = 0;
6152
6153 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6154 {
6155 if (require_constant_value)
6156 {
6157 error_init ("initializer element is not constant");
6158 value = error_mark_node;
6159 }
6160 else if (require_constant_elements)
6161 pedwarn ("initializer element is not computable at load time");
6162 }
6163
6164 /* If this field is empty (and not at the end of structure),
6165 don't do anything other than checking the initializer. */
6166 if (field
6167 && (TREE_TYPE (field) == error_mark_node
6168 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6169 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6170 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6171 || TREE_CHAIN (field)))))
6172 return;
6173
6174 value = digest_init (type, value, strict_string, require_constant_value);
6175 if (value == error_mark_node)
6176 {
6177 constructor_erroneous = 1;
6178 return;
6179 }
6180
6181 /* If this element doesn't come next in sequence,
6182 put it on constructor_pending_elts. */
6183 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6184 && (!constructor_incremental
6185 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6186 {
6187 if (constructor_incremental
6188 && tree_int_cst_lt (field, constructor_unfilled_index))
6189 set_nonincremental_init ();
6190
6191 add_pending_init (field, value);
6192 return;
6193 }
6194 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6195 && (!constructor_incremental
6196 || field != constructor_unfilled_fields))
6197 {
6198 /* We do this for records but not for unions. In a union,
6199 no matter which field is specified, it can be initialized
6200 right away since it starts at the beginning of the union. */
6201 if (constructor_incremental)
6202 {
6203 if (!constructor_unfilled_fields)
6204 set_nonincremental_init ();
6205 else
6206 {
6207 tree bitpos, unfillpos;
6208
6209 bitpos = bit_position (field);
6210 unfillpos = bit_position (constructor_unfilled_fields);
6211
6212 if (tree_int_cst_lt (bitpos, unfillpos))
6213 set_nonincremental_init ();
6214 }
6215 }
6216
6217 add_pending_init (field, value);
6218 return;
6219 }
6220 else if (TREE_CODE (constructor_type) == UNION_TYPE
6221 && !VEC_empty (constructor_elt, constructor_elements))
6222 {
6223 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6224 constructor_elements)->value))
6225 warning_init ("initialized field with side-effects overwritten");
6226 else if (warn_override_init)
6227 warning_init ("initialized field overwritten");
6228
6229 /* We can have just one union field set. */
6230 constructor_elements = 0;
6231 }
6232
6233 /* Otherwise, output this element either to
6234 constructor_elements or to the assembler file. */
6235
6236 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6237 celt->index = field;
6238 celt->value = value;
6239
6240 /* Advance the variable that indicates sequential elements output. */
6241 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6242 constructor_unfilled_index
6243 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6244 bitsize_one_node);
6245 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6246 {
6247 constructor_unfilled_fields
6248 = TREE_CHAIN (constructor_unfilled_fields);
6249
6250 /* Skip any nameless bit fields. */
6251 while (constructor_unfilled_fields != 0
6252 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6253 && DECL_NAME (constructor_unfilled_fields) == 0)
6254 constructor_unfilled_fields =
6255 TREE_CHAIN (constructor_unfilled_fields);
6256 }
6257 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6258 constructor_unfilled_fields = 0;
6259
6260 /* Now output any pending elements which have become next. */
6261 if (pending)
6262 output_pending_init_elements (0);
6263 }
6264
6265 /* Output any pending elements which have become next.
6266 As we output elements, constructor_unfilled_{fields,index}
6267 advances, which may cause other elements to become next;
6268 if so, they too are output.
6269
6270 If ALL is 0, we return when there are
6271 no more pending elements to output now.
6272
6273 If ALL is 1, we output space as necessary so that
6274 we can output all the pending elements. */
6275
6276 static void
6277 output_pending_init_elements (int all)
6278 {
6279 struct init_node *elt = constructor_pending_elts;
6280 tree next;
6281
6282 retry:
6283
6284 /* Look through the whole pending tree.
6285 If we find an element that should be output now,
6286 output it. Otherwise, set NEXT to the element
6287 that comes first among those still pending. */
6288
6289 next = 0;
6290 while (elt)
6291 {
6292 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6293 {
6294 if (tree_int_cst_equal (elt->purpose,
6295 constructor_unfilled_index))
6296 output_init_element (elt->value, true,
6297 TREE_TYPE (constructor_type),
6298 constructor_unfilled_index, 0);
6299 else if (tree_int_cst_lt (constructor_unfilled_index,
6300 elt->purpose))
6301 {
6302 /* Advance to the next smaller node. */
6303 if (elt->left)
6304 elt = elt->left;
6305 else
6306 {
6307 /* We have reached the smallest node bigger than the
6308 current unfilled index. Fill the space first. */
6309 next = elt->purpose;
6310 break;
6311 }
6312 }
6313 else
6314 {
6315 /* Advance to the next bigger node. */
6316 if (elt->right)
6317 elt = elt->right;
6318 else
6319 {
6320 /* We have reached the biggest node in a subtree. Find
6321 the parent of it, which is the next bigger node. */
6322 while (elt->parent && elt->parent->right == elt)
6323 elt = elt->parent;
6324 elt = elt->parent;
6325 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6326 elt->purpose))
6327 {
6328 next = elt->purpose;
6329 break;
6330 }
6331 }
6332 }
6333 }
6334 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6335 || TREE_CODE (constructor_type) == UNION_TYPE)
6336 {
6337 tree ctor_unfilled_bitpos, elt_bitpos;
6338
6339 /* If the current record is complete we are done. */
6340 if (constructor_unfilled_fields == 0)
6341 break;
6342
6343 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6344 elt_bitpos = bit_position (elt->purpose);
6345 /* We can't compare fields here because there might be empty
6346 fields in between. */
6347 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6348 {
6349 constructor_unfilled_fields = elt->purpose;
6350 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6351 elt->purpose, 0);
6352 }
6353 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6354 {
6355 /* Advance to the next smaller node. */
6356 if (elt->left)
6357 elt = elt->left;
6358 else
6359 {
6360 /* We have reached the smallest node bigger than the
6361 current unfilled field. Fill the space first. */
6362 next = elt->purpose;
6363 break;
6364 }
6365 }
6366 else
6367 {
6368 /* Advance to the next bigger node. */
6369 if (elt->right)
6370 elt = elt->right;
6371 else
6372 {
6373 /* We have reached the biggest node in a subtree. Find
6374 the parent of it, which is the next bigger node. */
6375 while (elt->parent && elt->parent->right == elt)
6376 elt = elt->parent;
6377 elt = elt->parent;
6378 if (elt
6379 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6380 bit_position (elt->purpose))))
6381 {
6382 next = elt->purpose;
6383 break;
6384 }
6385 }
6386 }
6387 }
6388 }
6389
6390 /* Ordinarily return, but not if we want to output all
6391 and there are elements left. */
6392 if (!(all && next != 0))
6393 return;
6394
6395 /* If it's not incremental, just skip over the gap, so that after
6396 jumping to retry we will output the next successive element. */
6397 if (TREE_CODE (constructor_type) == RECORD_TYPE
6398 || TREE_CODE (constructor_type) == UNION_TYPE)
6399 constructor_unfilled_fields = next;
6400 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6401 constructor_unfilled_index = next;
6402
6403 /* ELT now points to the node in the pending tree with the next
6404 initializer to output. */
6405 goto retry;
6406 }
6407 \f
6408 /* Add one non-braced element to the current constructor level.
6409 This adjusts the current position within the constructor's type.
6410 This may also start or terminate implicit levels
6411 to handle a partly-braced initializer.
6412
6413 Once this has found the correct level for the new element,
6414 it calls output_init_element. */
6415
6416 void
6417 process_init_element (struct c_expr value)
6418 {
6419 tree orig_value = value.value;
6420 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6421 bool strict_string = value.original_code == STRING_CST;
6422
6423 designator_depth = 0;
6424 designator_erroneous = 0;
6425
6426 /* Handle superfluous braces around string cst as in
6427 char x[] = {"foo"}; */
6428 if (string_flag
6429 && constructor_type
6430 && TREE_CODE (constructor_type) == ARRAY_TYPE
6431 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6432 && integer_zerop (constructor_unfilled_index))
6433 {
6434 if (constructor_stack->replacement_value.value)
6435 error_init ("excess elements in char array initializer");
6436 constructor_stack->replacement_value = value;
6437 return;
6438 }
6439
6440 if (constructor_stack->replacement_value.value != 0)
6441 {
6442 error_init ("excess elements in struct initializer");
6443 return;
6444 }
6445
6446 /* Ignore elements of a brace group if it is entirely superfluous
6447 and has already been diagnosed. */
6448 if (constructor_type == 0)
6449 return;
6450
6451 /* If we've exhausted any levels that didn't have braces,
6452 pop them now. */
6453 while (constructor_stack->implicit)
6454 {
6455 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6456 || TREE_CODE (constructor_type) == UNION_TYPE)
6457 && constructor_fields == 0)
6458 process_init_element (pop_init_level (1));
6459 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6460 && (constructor_max_index == 0
6461 || tree_int_cst_lt (constructor_max_index,
6462 constructor_index)))
6463 process_init_element (pop_init_level (1));
6464 else
6465 break;
6466 }
6467
6468 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6469 if (constructor_range_stack)
6470 {
6471 /* If value is a compound literal and we'll be just using its
6472 content, don't put it into a SAVE_EXPR. */
6473 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6474 || !require_constant_value
6475 || flag_isoc99)
6476 value.value = save_expr (value.value);
6477 }
6478
6479 while (1)
6480 {
6481 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6482 {
6483 tree fieldtype;
6484 enum tree_code fieldcode;
6485
6486 if (constructor_fields == 0)
6487 {
6488 pedwarn_init ("excess elements in struct initializer");
6489 break;
6490 }
6491
6492 fieldtype = TREE_TYPE (constructor_fields);
6493 if (fieldtype != error_mark_node)
6494 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6495 fieldcode = TREE_CODE (fieldtype);
6496
6497 /* Error for non-static initialization of a flexible array member. */
6498 if (fieldcode == ARRAY_TYPE
6499 && !require_constant_value
6500 && TYPE_SIZE (fieldtype) == NULL_TREE
6501 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6502 {
6503 error_init ("non-static initialization of a flexible array member");
6504 break;
6505 }
6506
6507 /* Accept a string constant to initialize a subarray. */
6508 if (value.value != 0
6509 && fieldcode == ARRAY_TYPE
6510 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6511 && string_flag)
6512 value.value = orig_value;
6513 /* Otherwise, if we have come to a subaggregate,
6514 and we don't have an element of its type, push into it. */
6515 else if (value.value != 0
6516 && value.value != error_mark_node
6517 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6518 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6519 || fieldcode == UNION_TYPE))
6520 {
6521 push_init_level (1);
6522 continue;
6523 }
6524
6525 if (value.value)
6526 {
6527 push_member_name (constructor_fields);
6528 output_init_element (value.value, strict_string,
6529 fieldtype, constructor_fields, 1);
6530 RESTORE_SPELLING_DEPTH (constructor_depth);
6531 }
6532 else
6533 /* Do the bookkeeping for an element that was
6534 directly output as a constructor. */
6535 {
6536 /* For a record, keep track of end position of last field. */
6537 if (DECL_SIZE (constructor_fields))
6538 constructor_bit_index
6539 = size_binop (PLUS_EXPR,
6540 bit_position (constructor_fields),
6541 DECL_SIZE (constructor_fields));
6542
6543 /* If the current field was the first one not yet written out,
6544 it isn't now, so update. */
6545 if (constructor_unfilled_fields == constructor_fields)
6546 {
6547 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6548 /* Skip any nameless bit fields. */
6549 while (constructor_unfilled_fields != 0
6550 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6551 && DECL_NAME (constructor_unfilled_fields) == 0)
6552 constructor_unfilled_fields =
6553 TREE_CHAIN (constructor_unfilled_fields);
6554 }
6555 }
6556
6557 constructor_fields = TREE_CHAIN (constructor_fields);
6558 /* Skip any nameless bit fields at the beginning. */
6559 while (constructor_fields != 0
6560 && DECL_C_BIT_FIELD (constructor_fields)
6561 && DECL_NAME (constructor_fields) == 0)
6562 constructor_fields = TREE_CHAIN (constructor_fields);
6563 }
6564 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6565 {
6566 tree fieldtype;
6567 enum tree_code fieldcode;
6568
6569 if (constructor_fields == 0)
6570 {
6571 pedwarn_init ("excess elements in union initializer");
6572 break;
6573 }
6574
6575 fieldtype = TREE_TYPE (constructor_fields);
6576 if (fieldtype != error_mark_node)
6577 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6578 fieldcode = TREE_CODE (fieldtype);
6579
6580 /* Warn that traditional C rejects initialization of unions.
6581 We skip the warning if the value is zero. This is done
6582 under the assumption that the zero initializer in user
6583 code appears conditioned on e.g. __STDC__ to avoid
6584 "missing initializer" warnings and relies on default
6585 initialization to zero in the traditional C case.
6586 We also skip the warning if the initializer is designated,
6587 again on the assumption that this must be conditional on
6588 __STDC__ anyway (and we've already complained about the
6589 member-designator already). */
6590 if (!in_system_header && !constructor_designated
6591 && !(value.value && (integer_zerop (value.value)
6592 || real_zerop (value.value))))
6593 warning (OPT_Wtraditional, "traditional C rejects initialization "
6594 "of unions");
6595
6596 /* Accept a string constant to initialize a subarray. */
6597 if (value.value != 0
6598 && fieldcode == ARRAY_TYPE
6599 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6600 && string_flag)
6601 value.value = orig_value;
6602 /* Otherwise, if we have come to a subaggregate,
6603 and we don't have an element of its type, push into it. */
6604 else if (value.value != 0
6605 && value.value != error_mark_node
6606 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6607 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6608 || fieldcode == UNION_TYPE))
6609 {
6610 push_init_level (1);
6611 continue;
6612 }
6613
6614 if (value.value)
6615 {
6616 push_member_name (constructor_fields);
6617 output_init_element (value.value, strict_string,
6618 fieldtype, constructor_fields, 1);
6619 RESTORE_SPELLING_DEPTH (constructor_depth);
6620 }
6621 else
6622 /* Do the bookkeeping for an element that was
6623 directly output as a constructor. */
6624 {
6625 constructor_bit_index = DECL_SIZE (constructor_fields);
6626 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6627 }
6628
6629 constructor_fields = 0;
6630 }
6631 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6632 {
6633 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6634 enum tree_code eltcode = TREE_CODE (elttype);
6635
6636 /* Accept a string constant to initialize a subarray. */
6637 if (value.value != 0
6638 && eltcode == ARRAY_TYPE
6639 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6640 && string_flag)
6641 value.value = orig_value;
6642 /* Otherwise, if we have come to a subaggregate,
6643 and we don't have an element of its type, push into it. */
6644 else if (value.value != 0
6645 && value.value != error_mark_node
6646 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6647 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6648 || eltcode == UNION_TYPE))
6649 {
6650 push_init_level (1);
6651 continue;
6652 }
6653
6654 if (constructor_max_index != 0
6655 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6656 || integer_all_onesp (constructor_max_index)))
6657 {
6658 pedwarn_init ("excess elements in array initializer");
6659 break;
6660 }
6661
6662 /* Now output the actual element. */
6663 if (value.value)
6664 {
6665 push_array_bounds (tree_low_cst (constructor_index, 1));
6666 output_init_element (value.value, strict_string,
6667 elttype, constructor_index, 1);
6668 RESTORE_SPELLING_DEPTH (constructor_depth);
6669 }
6670
6671 constructor_index
6672 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6673
6674 if (!value.value)
6675 /* If we are doing the bookkeeping for an element that was
6676 directly output as a constructor, we must update
6677 constructor_unfilled_index. */
6678 constructor_unfilled_index = constructor_index;
6679 }
6680 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6681 {
6682 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6683
6684 /* Do a basic check of initializer size. Note that vectors
6685 always have a fixed size derived from their type. */
6686 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6687 {
6688 pedwarn_init ("excess elements in vector initializer");
6689 break;
6690 }
6691
6692 /* Now output the actual element. */
6693 if (value.value)
6694 output_init_element (value.value, strict_string,
6695 elttype, constructor_index, 1);
6696
6697 constructor_index
6698 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6699
6700 if (!value.value)
6701 /* If we are doing the bookkeeping for an element that was
6702 directly output as a constructor, we must update
6703 constructor_unfilled_index. */
6704 constructor_unfilled_index = constructor_index;
6705 }
6706
6707 /* Handle the sole element allowed in a braced initializer
6708 for a scalar variable. */
6709 else if (constructor_type != error_mark_node
6710 && constructor_fields == 0)
6711 {
6712 pedwarn_init ("excess elements in scalar initializer");
6713 break;
6714 }
6715 else
6716 {
6717 if (value.value)
6718 output_init_element (value.value, strict_string,
6719 constructor_type, NULL_TREE, 1);
6720 constructor_fields = 0;
6721 }
6722
6723 /* Handle range initializers either at this level or anywhere higher
6724 in the designator stack. */
6725 if (constructor_range_stack)
6726 {
6727 struct constructor_range_stack *p, *range_stack;
6728 int finish = 0;
6729
6730 range_stack = constructor_range_stack;
6731 constructor_range_stack = 0;
6732 while (constructor_stack != range_stack->stack)
6733 {
6734 gcc_assert (constructor_stack->implicit);
6735 process_init_element (pop_init_level (1));
6736 }
6737 for (p = range_stack;
6738 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6739 p = p->prev)
6740 {
6741 gcc_assert (constructor_stack->implicit);
6742 process_init_element (pop_init_level (1));
6743 }
6744
6745 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6746 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6747 finish = 1;
6748
6749 while (1)
6750 {
6751 constructor_index = p->index;
6752 constructor_fields = p->fields;
6753 if (finish && p->range_end && p->index == p->range_start)
6754 {
6755 finish = 0;
6756 p->prev = 0;
6757 }
6758 p = p->next;
6759 if (!p)
6760 break;
6761 push_init_level (2);
6762 p->stack = constructor_stack;
6763 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6764 p->index = p->range_start;
6765 }
6766
6767 if (!finish)
6768 constructor_range_stack = range_stack;
6769 continue;
6770 }
6771
6772 break;
6773 }
6774
6775 constructor_range_stack = 0;
6776 }
6777 \f
6778 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6779 (guaranteed to be 'volatile' or null) and ARGS (represented using
6780 an ASM_EXPR node). */
6781 tree
6782 build_asm_stmt (tree cv_qualifier, tree args)
6783 {
6784 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6785 ASM_VOLATILE_P (args) = 1;
6786 return add_stmt (args);
6787 }
6788
6789 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6790 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6791 SIMPLE indicates whether there was anything at all after the
6792 string in the asm expression -- asm("blah") and asm("blah" : )
6793 are subtly different. We use a ASM_EXPR node to represent this. */
6794 tree
6795 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6796 bool simple)
6797 {
6798 tree tail;
6799 tree args;
6800 int i;
6801 const char *constraint;
6802 const char **oconstraints;
6803 bool allows_mem, allows_reg, is_inout;
6804 int ninputs, noutputs;
6805
6806 ninputs = list_length (inputs);
6807 noutputs = list_length (outputs);
6808 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6809
6810 string = resolve_asm_operand_names (string, outputs, inputs);
6811
6812 /* Remove output conversions that change the type but not the mode. */
6813 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6814 {
6815 tree output = TREE_VALUE (tail);
6816
6817 /* ??? Really, this should not be here. Users should be using a
6818 proper lvalue, dammit. But there's a long history of using casts
6819 in the output operands. In cases like longlong.h, this becomes a
6820 primitive form of typechecking -- if the cast can be removed, then
6821 the output operand had a type of the proper width; otherwise we'll
6822 get an error. Gross, but ... */
6823 STRIP_NOPS (output);
6824
6825 if (!lvalue_or_else (output, lv_asm))
6826 output = error_mark_node;
6827
6828 if (output != error_mark_node
6829 && (TREE_READONLY (output)
6830 || TYPE_READONLY (TREE_TYPE (output))
6831 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6832 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6833 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6834 readonly_error (output, lv_asm);
6835
6836 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6837 oconstraints[i] = constraint;
6838
6839 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6840 &allows_mem, &allows_reg, &is_inout))
6841 {
6842 /* If the operand is going to end up in memory,
6843 mark it addressable. */
6844 if (!allows_reg && !c_mark_addressable (output))
6845 output = error_mark_node;
6846 }
6847 else
6848 output = error_mark_node;
6849
6850 TREE_VALUE (tail) = output;
6851 }
6852
6853 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6854 {
6855 tree input;
6856
6857 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6858 input = TREE_VALUE (tail);
6859
6860 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6861 oconstraints, &allows_mem, &allows_reg))
6862 {
6863 /* If the operand is going to end up in memory,
6864 mark it addressable. */
6865 if (!allows_reg && allows_mem)
6866 {
6867 /* Strip the nops as we allow this case. FIXME, this really
6868 should be rejected or made deprecated. */
6869 STRIP_NOPS (input);
6870 if (!c_mark_addressable (input))
6871 input = error_mark_node;
6872 }
6873 }
6874 else
6875 input = error_mark_node;
6876
6877 TREE_VALUE (tail) = input;
6878 }
6879
6880 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6881
6882 /* asm statements without outputs, including simple ones, are treated
6883 as volatile. */
6884 ASM_INPUT_P (args) = simple;
6885 ASM_VOLATILE_P (args) = (noutputs == 0);
6886
6887 return args;
6888 }
6889 \f
6890 /* Generate a goto statement to LABEL. */
6891
6892 tree
6893 c_finish_goto_label (tree label)
6894 {
6895 tree decl = lookup_label (label);
6896 if (!decl)
6897 return NULL_TREE;
6898
6899 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6900 {
6901 error ("jump into statement expression");
6902 return NULL_TREE;
6903 }
6904
6905 if (C_DECL_UNJUMPABLE_VM (decl))
6906 {
6907 error ("jump into scope of identifier with variably modified type");
6908 return NULL_TREE;
6909 }
6910
6911 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6912 {
6913 /* No jump from outside this statement expression context, so
6914 record that there is a jump from within this context. */
6915 struct c_label_list *nlist;
6916 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6917 nlist->next = label_context_stack_se->labels_used;
6918 nlist->label = decl;
6919 label_context_stack_se->labels_used = nlist;
6920 }
6921
6922 if (!C_DECL_UNDEFINABLE_VM (decl))
6923 {
6924 /* No jump from outside this context context of identifiers with
6925 variably modified type, so record that there is a jump from
6926 within this context. */
6927 struct c_label_list *nlist;
6928 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6929 nlist->next = label_context_stack_vm->labels_used;
6930 nlist->label = decl;
6931 label_context_stack_vm->labels_used = nlist;
6932 }
6933
6934 TREE_USED (decl) = 1;
6935 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6936 }
6937
6938 /* Generate a computed goto statement to EXPR. */
6939
6940 tree
6941 c_finish_goto_ptr (tree expr)
6942 {
6943 if (pedantic)
6944 pedwarn ("ISO C forbids %<goto *expr;%>");
6945 expr = convert (ptr_type_node, expr);
6946 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6947 }
6948
6949 /* Generate a C `return' statement. RETVAL is the expression for what
6950 to return, or a null pointer for `return;' with no value. */
6951
6952 tree
6953 c_finish_return (tree retval)
6954 {
6955 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6956 bool no_warning = false;
6957
6958 if (TREE_THIS_VOLATILE (current_function_decl))
6959 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6960
6961 if (!retval)
6962 {
6963 current_function_returns_null = 1;
6964 if ((warn_return_type || flag_isoc99)
6965 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6966 {
6967 pedwarn_c99 ("%<return%> with no value, in "
6968 "function returning non-void");
6969 no_warning = true;
6970 }
6971 }
6972 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6973 {
6974 current_function_returns_null = 1;
6975 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6976 pedwarn ("%<return%> with a value, in function returning void");
6977 else if (pedantic)
6978 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
6979 }
6980 else
6981 {
6982 tree t = convert_for_assignment (valtype, retval, ic_return,
6983 NULL_TREE, NULL_TREE, 0);
6984 tree res = DECL_RESULT (current_function_decl);
6985 tree inner;
6986
6987 current_function_returns_value = 1;
6988 if (t == error_mark_node)
6989 return NULL_TREE;
6990
6991 inner = t = convert (TREE_TYPE (res), t);
6992
6993 /* Strip any conversions, additions, and subtractions, and see if
6994 we are returning the address of a local variable. Warn if so. */
6995 while (1)
6996 {
6997 switch (TREE_CODE (inner))
6998 {
6999 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
7000 case PLUS_EXPR:
7001 inner = TREE_OPERAND (inner, 0);
7002 continue;
7003
7004 case MINUS_EXPR:
7005 /* If the second operand of the MINUS_EXPR has a pointer
7006 type (or is converted from it), this may be valid, so
7007 don't give a warning. */
7008 {
7009 tree op1 = TREE_OPERAND (inner, 1);
7010
7011 while (!POINTER_TYPE_P (TREE_TYPE (op1))
7012 && (TREE_CODE (op1) == NOP_EXPR
7013 || TREE_CODE (op1) == NON_LVALUE_EXPR
7014 || TREE_CODE (op1) == CONVERT_EXPR))
7015 op1 = TREE_OPERAND (op1, 0);
7016
7017 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7018 break;
7019
7020 inner = TREE_OPERAND (inner, 0);
7021 continue;
7022 }
7023
7024 case ADDR_EXPR:
7025 inner = TREE_OPERAND (inner, 0);
7026
7027 while (REFERENCE_CLASS_P (inner)
7028 && TREE_CODE (inner) != INDIRECT_REF)
7029 inner = TREE_OPERAND (inner, 0);
7030
7031 if (DECL_P (inner)
7032 && !DECL_EXTERNAL (inner)
7033 && !TREE_STATIC (inner)
7034 && DECL_CONTEXT (inner) == current_function_decl)
7035 warning (0, "function returns address of local variable");
7036 break;
7037
7038 default:
7039 break;
7040 }
7041
7042 break;
7043 }
7044
7045 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7046 }
7047
7048 ret_stmt = build_stmt (RETURN_EXPR, retval);
7049 TREE_NO_WARNING (ret_stmt) |= no_warning;
7050 return add_stmt (ret_stmt);
7051 }
7052 \f
7053 struct c_switch {
7054 /* The SWITCH_EXPR being built. */
7055 tree switch_expr;
7056
7057 /* The original type of the testing expression, i.e. before the
7058 default conversion is applied. */
7059 tree orig_type;
7060
7061 /* A splay-tree mapping the low element of a case range to the high
7062 element, or NULL_TREE if there is no high element. Used to
7063 determine whether or not a new case label duplicates an old case
7064 label. We need a tree, rather than simply a hash table, because
7065 of the GNU case range extension. */
7066 splay_tree cases;
7067
7068 /* Number of nested statement expressions within this switch
7069 statement; if nonzero, case and default labels may not
7070 appear. */
7071 unsigned int blocked_stmt_expr;
7072
7073 /* Scope of outermost declarations of identifiers with variably
7074 modified type within this switch statement; if nonzero, case and
7075 default labels may not appear. */
7076 unsigned int blocked_vm;
7077
7078 /* The next node on the stack. */
7079 struct c_switch *next;
7080 };
7081
7082 /* A stack of the currently active switch statements. The innermost
7083 switch statement is on the top of the stack. There is no need to
7084 mark the stack for garbage collection because it is only active
7085 during the processing of the body of a function, and we never
7086 collect at that point. */
7087
7088 struct c_switch *c_switch_stack;
7089
7090 /* Start a C switch statement, testing expression EXP. Return the new
7091 SWITCH_EXPR. */
7092
7093 tree
7094 c_start_case (tree exp)
7095 {
7096 tree orig_type = error_mark_node;
7097 struct c_switch *cs;
7098
7099 if (exp != error_mark_node)
7100 {
7101 orig_type = TREE_TYPE (exp);
7102
7103 if (!INTEGRAL_TYPE_P (orig_type))
7104 {
7105 if (orig_type != error_mark_node)
7106 {
7107 error ("switch quantity not an integer");
7108 orig_type = error_mark_node;
7109 }
7110 exp = integer_zero_node;
7111 }
7112 else
7113 {
7114 tree type = TYPE_MAIN_VARIANT (orig_type);
7115
7116 if (!in_system_header
7117 && (type == long_integer_type_node
7118 || type == long_unsigned_type_node))
7119 warning (OPT_Wtraditional, "%<long%> switch expression not "
7120 "converted to %<int%> in ISO C");
7121
7122 exp = default_conversion (exp);
7123 }
7124 }
7125
7126 /* Add this new SWITCH_EXPR to the stack. */
7127 cs = XNEW (struct c_switch);
7128 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7129 cs->orig_type = orig_type;
7130 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7131 cs->blocked_stmt_expr = 0;
7132 cs->blocked_vm = 0;
7133 cs->next = c_switch_stack;
7134 c_switch_stack = cs;
7135
7136 return add_stmt (cs->switch_expr);
7137 }
7138
7139 /* Process a case label. */
7140
7141 tree
7142 do_case (tree low_value, tree high_value)
7143 {
7144 tree label = NULL_TREE;
7145
7146 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7147 && !c_switch_stack->blocked_vm)
7148 {
7149 label = c_add_case_label (c_switch_stack->cases,
7150 SWITCH_COND (c_switch_stack->switch_expr),
7151 c_switch_stack->orig_type,
7152 low_value, high_value);
7153 if (label == error_mark_node)
7154 label = NULL_TREE;
7155 }
7156 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7157 {
7158 if (low_value)
7159 error ("case label in statement expression not containing "
7160 "enclosing switch statement");
7161 else
7162 error ("%<default%> label in statement expression not containing "
7163 "enclosing switch statement");
7164 }
7165 else if (c_switch_stack && c_switch_stack->blocked_vm)
7166 {
7167 if (low_value)
7168 error ("case label in scope of identifier with variably modified "
7169 "type not containing enclosing switch statement");
7170 else
7171 error ("%<default%> label in scope of identifier with variably "
7172 "modified type not containing enclosing switch statement");
7173 }
7174 else if (low_value)
7175 error ("case label not within a switch statement");
7176 else
7177 error ("%<default%> label not within a switch statement");
7178
7179 return label;
7180 }
7181
7182 /* Finish the switch statement. */
7183
7184 void
7185 c_finish_case (tree body)
7186 {
7187 struct c_switch *cs = c_switch_stack;
7188 location_t switch_location;
7189
7190 SWITCH_BODY (cs->switch_expr) = body;
7191
7192 /* We must not be within a statement expression nested in the switch
7193 at this point; we might, however, be within the scope of an
7194 identifier with variably modified type nested in the switch. */
7195 gcc_assert (!cs->blocked_stmt_expr);
7196
7197 /* Emit warnings as needed. */
7198 if (EXPR_HAS_LOCATION (cs->switch_expr))
7199 switch_location = EXPR_LOCATION (cs->switch_expr);
7200 else
7201 switch_location = input_location;
7202 c_do_switch_warnings (cs->cases, switch_location,
7203 TREE_TYPE (cs->switch_expr),
7204 SWITCH_COND (cs->switch_expr));
7205
7206 /* Pop the stack. */
7207 c_switch_stack = cs->next;
7208 splay_tree_delete (cs->cases);
7209 XDELETE (cs);
7210 }
7211 \f
7212 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7213 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7214 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7215 statement, and was not surrounded with parenthesis. */
7216
7217 void
7218 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7219 tree else_block, bool nested_if)
7220 {
7221 tree stmt;
7222
7223 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7224 if (warn_parentheses && nested_if && else_block == NULL)
7225 {
7226 tree inner_if = then_block;
7227
7228 /* We know from the grammar productions that there is an IF nested
7229 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7230 it might not be exactly THEN_BLOCK, but should be the last
7231 non-container statement within. */
7232 while (1)
7233 switch (TREE_CODE (inner_if))
7234 {
7235 case COND_EXPR:
7236 goto found;
7237 case BIND_EXPR:
7238 inner_if = BIND_EXPR_BODY (inner_if);
7239 break;
7240 case STATEMENT_LIST:
7241 inner_if = expr_last (then_block);
7242 break;
7243 case TRY_FINALLY_EXPR:
7244 case TRY_CATCH_EXPR:
7245 inner_if = TREE_OPERAND (inner_if, 0);
7246 break;
7247 default:
7248 gcc_unreachable ();
7249 }
7250 found:
7251
7252 if (COND_EXPR_ELSE (inner_if))
7253 warning (OPT_Wparentheses,
7254 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7255 &if_locus);
7256 }
7257
7258 empty_if_body_warning (then_block, else_block);
7259
7260 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7261 SET_EXPR_LOCATION (stmt, if_locus);
7262 add_stmt (stmt);
7263 }
7264
7265 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7266 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7267 is false for DO loops. INCR is the FOR increment expression. BODY is
7268 the statement controlled by the loop. BLAB is the break label. CLAB is
7269 the continue label. Everything is allowed to be NULL. */
7270
7271 void
7272 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7273 tree blab, tree clab, bool cond_is_first)
7274 {
7275 tree entry = NULL, exit = NULL, t;
7276
7277 /* If the condition is zero don't generate a loop construct. */
7278 if (cond && integer_zerop (cond))
7279 {
7280 if (cond_is_first)
7281 {
7282 t = build_and_jump (&blab);
7283 SET_EXPR_LOCATION (t, start_locus);
7284 add_stmt (t);
7285 }
7286 }
7287 else
7288 {
7289 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7290
7291 /* If we have an exit condition, then we build an IF with gotos either
7292 out of the loop, or to the top of it. If there's no exit condition,
7293 then we just build a jump back to the top. */
7294 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7295
7296 if (cond && !integer_nonzerop (cond))
7297 {
7298 /* Canonicalize the loop condition to the end. This means
7299 generating a branch to the loop condition. Reuse the
7300 continue label, if possible. */
7301 if (cond_is_first)
7302 {
7303 if (incr || !clab)
7304 {
7305 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7306 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7307 }
7308 else
7309 t = build1 (GOTO_EXPR, void_type_node, clab);
7310 SET_EXPR_LOCATION (t, start_locus);
7311 add_stmt (t);
7312 }
7313
7314 t = build_and_jump (&blab);
7315 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7316 if (cond_is_first)
7317 SET_EXPR_LOCATION (exit, start_locus);
7318 else
7319 SET_EXPR_LOCATION (exit, input_location);
7320 }
7321
7322 add_stmt (top);
7323 }
7324
7325 if (body)
7326 add_stmt (body);
7327 if (clab)
7328 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7329 if (incr)
7330 add_stmt (incr);
7331 if (entry)
7332 add_stmt (entry);
7333 if (exit)
7334 add_stmt (exit);
7335 if (blab)
7336 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7337 }
7338
7339 tree
7340 c_finish_bc_stmt (tree *label_p, bool is_break)
7341 {
7342 bool skip;
7343 tree label = *label_p;
7344
7345 /* In switch statements break is sometimes stylistically used after
7346 a return statement. This can lead to spurious warnings about
7347 control reaching the end of a non-void function when it is
7348 inlined. Note that we are calling block_may_fallthru with
7349 language specific tree nodes; this works because
7350 block_may_fallthru returns true when given something it does not
7351 understand. */
7352 skip = !block_may_fallthru (cur_stmt_list);
7353
7354 if (!label)
7355 {
7356 if (!skip)
7357 *label_p = label = create_artificial_label ();
7358 }
7359 else if (TREE_CODE (label) == LABEL_DECL)
7360 ;
7361 else switch (TREE_INT_CST_LOW (label))
7362 {
7363 case 0:
7364 if (is_break)
7365 error ("break statement not within loop or switch");
7366 else
7367 error ("continue statement not within a loop");
7368 return NULL_TREE;
7369
7370 case 1:
7371 gcc_assert (is_break);
7372 error ("break statement used with OpenMP for loop");
7373 return NULL_TREE;
7374
7375 default:
7376 gcc_unreachable ();
7377 }
7378
7379 if (skip)
7380 return NULL_TREE;
7381
7382 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7383 }
7384
7385 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7386
7387 static void
7388 emit_side_effect_warnings (tree expr)
7389 {
7390 if (expr == error_mark_node)
7391 ;
7392 else if (!TREE_SIDE_EFFECTS (expr))
7393 {
7394 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7395 warning (OPT_Wunused_value, "%Hstatement with no effect",
7396 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7397 }
7398 else
7399 warn_if_unused_value (expr, input_location);
7400 }
7401
7402 /* Process an expression as if it were a complete statement. Emit
7403 diagnostics, but do not call ADD_STMT. */
7404
7405 tree
7406 c_process_expr_stmt (tree expr)
7407 {
7408 if (!expr)
7409 return NULL_TREE;
7410
7411 if (warn_sequence_point)
7412 verify_sequence_points (expr);
7413
7414 if (TREE_TYPE (expr) != error_mark_node
7415 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7416 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7417 error ("expression statement has incomplete type");
7418
7419 /* If we're not processing a statement expression, warn about unused values.
7420 Warnings for statement expressions will be emitted later, once we figure
7421 out which is the result. */
7422 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7423 && warn_unused_value)
7424 emit_side_effect_warnings (expr);
7425
7426 /* If the expression is not of a type to which we cannot assign a line
7427 number, wrap the thing in a no-op NOP_EXPR. */
7428 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7429 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7430
7431 if (CAN_HAVE_LOCATION_P (expr))
7432 SET_EXPR_LOCATION (expr, input_location);
7433
7434 return expr;
7435 }
7436
7437 /* Emit an expression as a statement. */
7438
7439 tree
7440 c_finish_expr_stmt (tree expr)
7441 {
7442 if (expr)
7443 return add_stmt (c_process_expr_stmt (expr));
7444 else
7445 return NULL;
7446 }
7447
7448 /* Do the opposite and emit a statement as an expression. To begin,
7449 create a new binding level and return it. */
7450
7451 tree
7452 c_begin_stmt_expr (void)
7453 {
7454 tree ret;
7455 struct c_label_context_se *nstack;
7456 struct c_label_list *glist;
7457
7458 /* We must force a BLOCK for this level so that, if it is not expanded
7459 later, there is a way to turn off the entire subtree of blocks that
7460 are contained in it. */
7461 keep_next_level ();
7462 ret = c_begin_compound_stmt (true);
7463 if (c_switch_stack)
7464 {
7465 c_switch_stack->blocked_stmt_expr++;
7466 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7467 }
7468 for (glist = label_context_stack_se->labels_used;
7469 glist != NULL;
7470 glist = glist->next)
7471 {
7472 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7473 }
7474 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7475 nstack->labels_def = NULL;
7476 nstack->labels_used = NULL;
7477 nstack->next = label_context_stack_se;
7478 label_context_stack_se = nstack;
7479
7480 /* Mark the current statement list as belonging to a statement list. */
7481 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7482
7483 return ret;
7484 }
7485
7486 tree
7487 c_finish_stmt_expr (tree body)
7488 {
7489 tree last, type, tmp, val;
7490 tree *last_p;
7491 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7492
7493 body = c_end_compound_stmt (body, true);
7494 if (c_switch_stack)
7495 {
7496 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7497 c_switch_stack->blocked_stmt_expr--;
7498 }
7499 /* It is no longer possible to jump to labels defined within this
7500 statement expression. */
7501 for (dlist = label_context_stack_se->labels_def;
7502 dlist != NULL;
7503 dlist = dlist->next)
7504 {
7505 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7506 }
7507 /* It is again possible to define labels with a goto just outside
7508 this statement expression. */
7509 for (glist = label_context_stack_se->next->labels_used;
7510 glist != NULL;
7511 glist = glist->next)
7512 {
7513 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7514 glist_prev = glist;
7515 }
7516 if (glist_prev != NULL)
7517 glist_prev->next = label_context_stack_se->labels_used;
7518 else
7519 label_context_stack_se->next->labels_used
7520 = label_context_stack_se->labels_used;
7521 label_context_stack_se = label_context_stack_se->next;
7522
7523 /* Locate the last statement in BODY. See c_end_compound_stmt
7524 about always returning a BIND_EXPR. */
7525 last_p = &BIND_EXPR_BODY (body);
7526 last = BIND_EXPR_BODY (body);
7527
7528 continue_searching:
7529 if (TREE_CODE (last) == STATEMENT_LIST)
7530 {
7531 tree_stmt_iterator i;
7532
7533 /* This can happen with degenerate cases like ({ }). No value. */
7534 if (!TREE_SIDE_EFFECTS (last))
7535 return body;
7536
7537 /* If we're supposed to generate side effects warnings, process
7538 all of the statements except the last. */
7539 if (warn_unused_value)
7540 {
7541 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7542 emit_side_effect_warnings (tsi_stmt (i));
7543 }
7544 else
7545 i = tsi_last (last);
7546 last_p = tsi_stmt_ptr (i);
7547 last = *last_p;
7548 }
7549
7550 /* If the end of the list is exception related, then the list was split
7551 by a call to push_cleanup. Continue searching. */
7552 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7553 || TREE_CODE (last) == TRY_CATCH_EXPR)
7554 {
7555 last_p = &TREE_OPERAND (last, 0);
7556 last = *last_p;
7557 goto continue_searching;
7558 }
7559
7560 /* In the case that the BIND_EXPR is not necessary, return the
7561 expression out from inside it. */
7562 if (last == error_mark_node
7563 || (last == BIND_EXPR_BODY (body)
7564 && BIND_EXPR_VARS (body) == NULL))
7565 {
7566 /* Do not warn if the return value of a statement expression is
7567 unused. */
7568 if (CAN_HAVE_LOCATION_P (last))
7569 TREE_NO_WARNING (last) = 1;
7570 return last;
7571 }
7572
7573 /* Extract the type of said expression. */
7574 type = TREE_TYPE (last);
7575
7576 /* If we're not returning a value at all, then the BIND_EXPR that
7577 we already have is a fine expression to return. */
7578 if (!type || VOID_TYPE_P (type))
7579 return body;
7580
7581 /* Now that we've located the expression containing the value, it seems
7582 silly to make voidify_wrapper_expr repeat the process. Create a
7583 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7584 tmp = create_tmp_var_raw (type, NULL);
7585
7586 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7587 tree_expr_nonnegative_p giving up immediately. */
7588 val = last;
7589 if (TREE_CODE (val) == NOP_EXPR
7590 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7591 val = TREE_OPERAND (val, 0);
7592
7593 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7594 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7595
7596 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7597 }
7598
7599 /* Begin the scope of an identifier of variably modified type, scope
7600 number SCOPE. Jumping from outside this scope to inside it is not
7601 permitted. */
7602
7603 void
7604 c_begin_vm_scope (unsigned int scope)
7605 {
7606 struct c_label_context_vm *nstack;
7607 struct c_label_list *glist;
7608
7609 gcc_assert (scope > 0);
7610
7611 /* At file_scope, we don't have to do any processing. */
7612 if (label_context_stack_vm == NULL)
7613 return;
7614
7615 if (c_switch_stack && !c_switch_stack->blocked_vm)
7616 c_switch_stack->blocked_vm = scope;
7617 for (glist = label_context_stack_vm->labels_used;
7618 glist != NULL;
7619 glist = glist->next)
7620 {
7621 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7622 }
7623 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7624 nstack->labels_def = NULL;
7625 nstack->labels_used = NULL;
7626 nstack->scope = scope;
7627 nstack->next = label_context_stack_vm;
7628 label_context_stack_vm = nstack;
7629 }
7630
7631 /* End a scope which may contain identifiers of variably modified
7632 type, scope number SCOPE. */
7633
7634 void
7635 c_end_vm_scope (unsigned int scope)
7636 {
7637 if (label_context_stack_vm == NULL)
7638 return;
7639 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7640 c_switch_stack->blocked_vm = 0;
7641 /* We may have a number of nested scopes of identifiers with
7642 variably modified type, all at this depth. Pop each in turn. */
7643 while (label_context_stack_vm->scope == scope)
7644 {
7645 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7646
7647 /* It is no longer possible to jump to labels defined within this
7648 scope. */
7649 for (dlist = label_context_stack_vm->labels_def;
7650 dlist != NULL;
7651 dlist = dlist->next)
7652 {
7653 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7654 }
7655 /* It is again possible to define labels with a goto just outside
7656 this scope. */
7657 for (glist = label_context_stack_vm->next->labels_used;
7658 glist != NULL;
7659 glist = glist->next)
7660 {
7661 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7662 glist_prev = glist;
7663 }
7664 if (glist_prev != NULL)
7665 glist_prev->next = label_context_stack_vm->labels_used;
7666 else
7667 label_context_stack_vm->next->labels_used
7668 = label_context_stack_vm->labels_used;
7669 label_context_stack_vm = label_context_stack_vm->next;
7670 }
7671 }
7672 \f
7673 /* Begin and end compound statements. This is as simple as pushing
7674 and popping new statement lists from the tree. */
7675
7676 tree
7677 c_begin_compound_stmt (bool do_scope)
7678 {
7679 tree stmt = push_stmt_list ();
7680 if (do_scope)
7681 push_scope ();
7682 return stmt;
7683 }
7684
7685 tree
7686 c_end_compound_stmt (tree stmt, bool do_scope)
7687 {
7688 tree block = NULL;
7689
7690 if (do_scope)
7691 {
7692 if (c_dialect_objc ())
7693 objc_clear_super_receiver ();
7694 block = pop_scope ();
7695 }
7696
7697 stmt = pop_stmt_list (stmt);
7698 stmt = c_build_bind_expr (block, stmt);
7699
7700 /* If this compound statement is nested immediately inside a statement
7701 expression, then force a BIND_EXPR to be created. Otherwise we'll
7702 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7703 STATEMENT_LISTs merge, and thus we can lose track of what statement
7704 was really last. */
7705 if (cur_stmt_list
7706 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7707 && TREE_CODE (stmt) != BIND_EXPR)
7708 {
7709 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7710 TREE_SIDE_EFFECTS (stmt) = 1;
7711 }
7712
7713 return stmt;
7714 }
7715
7716 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7717 when the current scope is exited. EH_ONLY is true when this is not
7718 meant to apply to normal control flow transfer. */
7719
7720 void
7721 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7722 {
7723 enum tree_code code;
7724 tree stmt, list;
7725 bool stmt_expr;
7726
7727 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7728 stmt = build_stmt (code, NULL, cleanup);
7729 add_stmt (stmt);
7730 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7731 list = push_stmt_list ();
7732 TREE_OPERAND (stmt, 0) = list;
7733 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7734 }
7735 \f
7736 /* Build a binary-operation expression without default conversions.
7737 CODE is the kind of expression to build.
7738 This function differs from `build' in several ways:
7739 the data type of the result is computed and recorded in it,
7740 warnings are generated if arg data types are invalid,
7741 special handling for addition and subtraction of pointers is known,
7742 and some optimization is done (operations on narrow ints
7743 are done in the narrower type when that gives the same result).
7744 Constant folding is also done before the result is returned.
7745
7746 Note that the operands will never have enumeral types, or function
7747 or array types, because either they will have the default conversions
7748 performed or they have both just been converted to some other type in which
7749 the arithmetic is to be done. */
7750
7751 tree
7752 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7753 int convert_p)
7754 {
7755 tree type0, type1;
7756 enum tree_code code0, code1;
7757 tree op0, op1;
7758 const char *invalid_op_diag;
7759
7760 /* Expression code to give to the expression when it is built.
7761 Normally this is CODE, which is what the caller asked for,
7762 but in some special cases we change it. */
7763 enum tree_code resultcode = code;
7764
7765 /* Data type in which the computation is to be performed.
7766 In the simplest cases this is the common type of the arguments. */
7767 tree result_type = NULL;
7768
7769 /* Nonzero means operands have already been type-converted
7770 in whatever way is necessary.
7771 Zero means they need to be converted to RESULT_TYPE. */
7772 int converted = 0;
7773
7774 /* Nonzero means create the expression with this type, rather than
7775 RESULT_TYPE. */
7776 tree build_type = 0;
7777
7778 /* Nonzero means after finally constructing the expression
7779 convert it to this type. */
7780 tree final_type = 0;
7781
7782 /* Nonzero if this is an operation like MIN or MAX which can
7783 safely be computed in short if both args are promoted shorts.
7784 Also implies COMMON.
7785 -1 indicates a bitwise operation; this makes a difference
7786 in the exact conditions for when it is safe to do the operation
7787 in a narrower mode. */
7788 int shorten = 0;
7789
7790 /* Nonzero if this is a comparison operation;
7791 if both args are promoted shorts, compare the original shorts.
7792 Also implies COMMON. */
7793 int short_compare = 0;
7794
7795 /* Nonzero if this is a right-shift operation, which can be computed on the
7796 original short and then promoted if the operand is a promoted short. */
7797 int short_shift = 0;
7798
7799 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7800 int common = 0;
7801
7802 /* True means types are compatible as far as ObjC is concerned. */
7803 bool objc_ok;
7804
7805 if (convert_p)
7806 {
7807 op0 = default_conversion (orig_op0);
7808 op1 = default_conversion (orig_op1);
7809 }
7810 else
7811 {
7812 op0 = orig_op0;
7813 op1 = orig_op1;
7814 }
7815
7816 type0 = TREE_TYPE (op0);
7817 type1 = TREE_TYPE (op1);
7818
7819 /* The expression codes of the data types of the arguments tell us
7820 whether the arguments are integers, floating, pointers, etc. */
7821 code0 = TREE_CODE (type0);
7822 code1 = TREE_CODE (type1);
7823
7824 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7825 STRIP_TYPE_NOPS (op0);
7826 STRIP_TYPE_NOPS (op1);
7827
7828 /* If an error was already reported for one of the arguments,
7829 avoid reporting another error. */
7830
7831 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7832 return error_mark_node;
7833
7834 if ((invalid_op_diag
7835 = targetm.invalid_binary_op (code, type0, type1)))
7836 {
7837 error (invalid_op_diag);
7838 return error_mark_node;
7839 }
7840
7841 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7842
7843 switch (code)
7844 {
7845 case PLUS_EXPR:
7846 /* Handle the pointer + int case. */
7847 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7848 return pointer_int_sum (PLUS_EXPR, op0, op1);
7849 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7850 return pointer_int_sum (PLUS_EXPR, op1, op0);
7851 else
7852 common = 1;
7853 break;
7854
7855 case MINUS_EXPR:
7856 /* Subtraction of two similar pointers.
7857 We must subtract them as integers, then divide by object size. */
7858 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7859 && comp_target_types (type0, type1))
7860 return pointer_diff (op0, op1);
7861 /* Handle pointer minus int. Just like pointer plus int. */
7862 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7863 return pointer_int_sum (MINUS_EXPR, op0, op1);
7864 else
7865 common = 1;
7866 break;
7867
7868 case MULT_EXPR:
7869 common = 1;
7870 break;
7871
7872 case TRUNC_DIV_EXPR:
7873 case CEIL_DIV_EXPR:
7874 case FLOOR_DIV_EXPR:
7875 case ROUND_DIV_EXPR:
7876 case EXACT_DIV_EXPR:
7877 warn_for_div_by_zero (op1);
7878
7879 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7880 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7881 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7882 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7883 {
7884 enum tree_code tcode0 = code0, tcode1 = code1;
7885
7886 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7887 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7888 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7889 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7890
7891 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7892 resultcode = RDIV_EXPR;
7893 else
7894 /* Although it would be tempting to shorten always here, that
7895 loses on some targets, since the modulo instruction is
7896 undefined if the quotient can't be represented in the
7897 computation mode. We shorten only if unsigned or if
7898 dividing by something we know != -1. */
7899 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7900 || (TREE_CODE (op1) == INTEGER_CST
7901 && !integer_all_onesp (op1)));
7902 common = 1;
7903 }
7904 break;
7905
7906 case BIT_AND_EXPR:
7907 case BIT_IOR_EXPR:
7908 case BIT_XOR_EXPR:
7909 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7910 shorten = -1;
7911 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7912 common = 1;
7913 break;
7914
7915 case TRUNC_MOD_EXPR:
7916 case FLOOR_MOD_EXPR:
7917 warn_for_div_by_zero (op1);
7918
7919 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7920 {
7921 /* Although it would be tempting to shorten always here, that loses
7922 on some targets, since the modulo instruction is undefined if the
7923 quotient can't be represented in the computation mode. We shorten
7924 only if unsigned or if dividing by something we know != -1. */
7925 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7926 || (TREE_CODE (op1) == INTEGER_CST
7927 && !integer_all_onesp (op1)));
7928 common = 1;
7929 }
7930 break;
7931
7932 case TRUTH_ANDIF_EXPR:
7933 case TRUTH_ORIF_EXPR:
7934 case TRUTH_AND_EXPR:
7935 case TRUTH_OR_EXPR:
7936 case TRUTH_XOR_EXPR:
7937 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7938 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7939 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7940 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7941 {
7942 /* Result of these operations is always an int,
7943 but that does not mean the operands should be
7944 converted to ints! */
7945 result_type = integer_type_node;
7946 op0 = c_common_truthvalue_conversion (op0);
7947 op1 = c_common_truthvalue_conversion (op1);
7948 converted = 1;
7949 }
7950 break;
7951
7952 /* Shift operations: result has same type as first operand;
7953 always convert second operand to int.
7954 Also set SHORT_SHIFT if shifting rightward. */
7955
7956 case RSHIFT_EXPR:
7957 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7958 {
7959 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7960 {
7961 if (tree_int_cst_sgn (op1) < 0)
7962 warning (0, "right shift count is negative");
7963 else
7964 {
7965 if (!integer_zerop (op1))
7966 short_shift = 1;
7967
7968 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7969 warning (0, "right shift count >= width of type");
7970 }
7971 }
7972
7973 /* Use the type of the value to be shifted. */
7974 result_type = type0;
7975 /* Convert the shift-count to an integer, regardless of size
7976 of value being shifted. */
7977 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7978 op1 = convert (integer_type_node, op1);
7979 /* Avoid converting op1 to result_type later. */
7980 converted = 1;
7981 }
7982 break;
7983
7984 case LSHIFT_EXPR:
7985 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7986 {
7987 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7988 {
7989 if (tree_int_cst_sgn (op1) < 0)
7990 warning (0, "left shift count is negative");
7991
7992 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7993 warning (0, "left shift count >= width of type");
7994 }
7995
7996 /* Use the type of the value to be shifted. */
7997 result_type = type0;
7998 /* Convert the shift-count to an integer, regardless of size
7999 of value being shifted. */
8000 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8001 op1 = convert (integer_type_node, op1);
8002 /* Avoid converting op1 to result_type later. */
8003 converted = 1;
8004 }
8005 break;
8006
8007 case EQ_EXPR:
8008 case NE_EXPR:
8009 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8010 warning (OPT_Wfloat_equal,
8011 "comparing floating point with == or != is unsafe");
8012 /* Result of comparison is always int,
8013 but don't convert the args to int! */
8014 build_type = integer_type_node;
8015 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8016 || code0 == COMPLEX_TYPE)
8017 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8018 || code1 == COMPLEX_TYPE))
8019 short_compare = 1;
8020 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8021 {
8022 tree tt0 = TREE_TYPE (type0);
8023 tree tt1 = TREE_TYPE (type1);
8024 /* Anything compares with void *. void * compares with anything.
8025 Otherwise, the targets must be compatible
8026 and both must be object or both incomplete. */
8027 if (comp_target_types (type0, type1))
8028 result_type = common_pointer_type (type0, type1);
8029 else if (VOID_TYPE_P (tt0))
8030 {
8031 /* op0 != orig_op0 detects the case of something
8032 whose value is 0 but which isn't a valid null ptr const. */
8033 if (pedantic && !null_pointer_constant_p (orig_op0)
8034 && TREE_CODE (tt1) == FUNCTION_TYPE)
8035 pedwarn ("ISO C forbids comparison of %<void *%>"
8036 " with function pointer");
8037 }
8038 else if (VOID_TYPE_P (tt1))
8039 {
8040 if (pedantic && !null_pointer_constant_p (orig_op1)
8041 && TREE_CODE (tt0) == FUNCTION_TYPE)
8042 pedwarn ("ISO C forbids comparison of %<void *%>"
8043 " with function pointer");
8044 }
8045 else
8046 /* Avoid warning about the volatile ObjC EH puts on decls. */
8047 if (!objc_ok)
8048 pedwarn ("comparison of distinct pointer types lacks a cast");
8049
8050 if (result_type == NULL_TREE)
8051 result_type = ptr_type_node;
8052 }
8053 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8054 {
8055 if (TREE_CODE (op0) == ADDR_EXPR
8056 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8057 warning (OPT_Waddress, "the address of %qD will never be NULL",
8058 TREE_OPERAND (op0, 0));
8059 result_type = type0;
8060 }
8061 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8062 {
8063 if (TREE_CODE (op1) == ADDR_EXPR
8064 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8065 warning (OPT_Waddress, "the address of %qD will never be NULL",
8066 TREE_OPERAND (op1, 0));
8067 result_type = type1;
8068 }
8069 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8070 {
8071 result_type = type0;
8072 pedwarn ("comparison between pointer and integer");
8073 }
8074 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8075 {
8076 result_type = type1;
8077 pedwarn ("comparison between pointer and integer");
8078 }
8079 break;
8080
8081 case LE_EXPR:
8082 case GE_EXPR:
8083 case LT_EXPR:
8084 case GT_EXPR:
8085 build_type = integer_type_node;
8086 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8087 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8088 short_compare = 1;
8089 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8090 {
8091 if (comp_target_types (type0, type1))
8092 {
8093 result_type = common_pointer_type (type0, type1);
8094 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8095 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8096 pedwarn ("comparison of complete and incomplete pointers");
8097 else if (pedantic
8098 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8099 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8100 }
8101 else
8102 {
8103 result_type = ptr_type_node;
8104 pedwarn ("comparison of distinct pointer types lacks a cast");
8105 }
8106 }
8107 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8108 {
8109 result_type = type0;
8110 if (pedantic || extra_warnings)
8111 pedwarn ("ordered comparison of pointer with integer zero");
8112 }
8113 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8114 {
8115 result_type = type1;
8116 if (pedantic)
8117 pedwarn ("ordered comparison of pointer with integer zero");
8118 }
8119 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8120 {
8121 result_type = type0;
8122 pedwarn ("comparison between pointer and integer");
8123 }
8124 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8125 {
8126 result_type = type1;
8127 pedwarn ("comparison between pointer and integer");
8128 }
8129 break;
8130
8131 default:
8132 gcc_unreachable ();
8133 }
8134
8135 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8136 return error_mark_node;
8137
8138 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8139 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8140 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8141 TREE_TYPE (type1))))
8142 {
8143 binary_op_error (code, type0, type1);
8144 return error_mark_node;
8145 }
8146
8147 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8148 || code0 == VECTOR_TYPE)
8149 &&
8150 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8151 || code1 == VECTOR_TYPE))
8152 {
8153 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8154
8155 if (shorten || common || short_compare)
8156 {
8157 result_type = c_common_type (type0, type1);
8158 if (result_type == error_mark_node)
8159 return error_mark_node;
8160 }
8161
8162 /* For certain operations (which identify themselves by shorten != 0)
8163 if both args were extended from the same smaller type,
8164 do the arithmetic in that type and then extend.
8165
8166 shorten !=0 and !=1 indicates a bitwise operation.
8167 For them, this optimization is safe only if
8168 both args are zero-extended or both are sign-extended.
8169 Otherwise, we might change the result.
8170 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8171 but calculated in (unsigned short) it would be (unsigned short)-1. */
8172
8173 if (shorten && none_complex)
8174 {
8175 int unsigned0, unsigned1;
8176 tree arg0, arg1;
8177 int uns;
8178 tree type;
8179
8180 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8181 excessive narrowing when we call get_narrower below. For
8182 example, suppose that OP0 is of unsigned int extended
8183 from signed char and that RESULT_TYPE is long long int.
8184 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8185 like
8186
8187 (long long int) (unsigned int) signed_char
8188
8189 which get_narrower would narrow down to
8190
8191 (unsigned int) signed char
8192
8193 If we do not cast OP0 first, get_narrower would return
8194 signed_char, which is inconsistent with the case of the
8195 explicit cast. */
8196 op0 = convert (result_type, op0);
8197 op1 = convert (result_type, op1);
8198
8199 arg0 = get_narrower (op0, &unsigned0);
8200 arg1 = get_narrower (op1, &unsigned1);
8201
8202 /* UNS is 1 if the operation to be done is an unsigned one. */
8203 uns = TYPE_UNSIGNED (result_type);
8204
8205 final_type = result_type;
8206
8207 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8208 but it *requires* conversion to FINAL_TYPE. */
8209
8210 if ((TYPE_PRECISION (TREE_TYPE (op0))
8211 == TYPE_PRECISION (TREE_TYPE (arg0)))
8212 && TREE_TYPE (op0) != final_type)
8213 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8214 if ((TYPE_PRECISION (TREE_TYPE (op1))
8215 == TYPE_PRECISION (TREE_TYPE (arg1)))
8216 && TREE_TYPE (op1) != final_type)
8217 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8218
8219 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8220
8221 /* For bitwise operations, signedness of nominal type
8222 does not matter. Consider only how operands were extended. */
8223 if (shorten == -1)
8224 uns = unsigned0;
8225
8226 /* Note that in all three cases below we refrain from optimizing
8227 an unsigned operation on sign-extended args.
8228 That would not be valid. */
8229
8230 /* Both args variable: if both extended in same way
8231 from same width, do it in that width.
8232 Do it unsigned if args were zero-extended. */
8233 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8234 < TYPE_PRECISION (result_type))
8235 && (TYPE_PRECISION (TREE_TYPE (arg1))
8236 == TYPE_PRECISION (TREE_TYPE (arg0)))
8237 && unsigned0 == unsigned1
8238 && (unsigned0 || !uns))
8239 result_type
8240 = c_common_signed_or_unsigned_type
8241 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8242 else if (TREE_CODE (arg0) == INTEGER_CST
8243 && (unsigned1 || !uns)
8244 && (TYPE_PRECISION (TREE_TYPE (arg1))
8245 < TYPE_PRECISION (result_type))
8246 && (type
8247 = c_common_signed_or_unsigned_type (unsigned1,
8248 TREE_TYPE (arg1)),
8249 int_fits_type_p (arg0, type)))
8250 result_type = type;
8251 else if (TREE_CODE (arg1) == INTEGER_CST
8252 && (unsigned0 || !uns)
8253 && (TYPE_PRECISION (TREE_TYPE (arg0))
8254 < TYPE_PRECISION (result_type))
8255 && (type
8256 = c_common_signed_or_unsigned_type (unsigned0,
8257 TREE_TYPE (arg0)),
8258 int_fits_type_p (arg1, type)))
8259 result_type = type;
8260 }
8261
8262 /* Shifts can be shortened if shifting right. */
8263
8264 if (short_shift)
8265 {
8266 int unsigned_arg;
8267 tree arg0 = get_narrower (op0, &unsigned_arg);
8268
8269 final_type = result_type;
8270
8271 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8272 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8273
8274 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8275 /* We can shorten only if the shift count is less than the
8276 number of bits in the smaller type size. */
8277 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8278 /* We cannot drop an unsigned shift after sign-extension. */
8279 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8280 {
8281 /* Do an unsigned shift if the operand was zero-extended. */
8282 result_type
8283 = c_common_signed_or_unsigned_type (unsigned_arg,
8284 TREE_TYPE (arg0));
8285 /* Convert value-to-be-shifted to that type. */
8286 if (TREE_TYPE (op0) != result_type)
8287 op0 = convert (result_type, op0);
8288 converted = 1;
8289 }
8290 }
8291
8292 /* Comparison operations are shortened too but differently.
8293 They identify themselves by setting short_compare = 1. */
8294
8295 if (short_compare)
8296 {
8297 /* Don't write &op0, etc., because that would prevent op0
8298 from being kept in a register.
8299 Instead, make copies of the our local variables and
8300 pass the copies by reference, then copy them back afterward. */
8301 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8302 enum tree_code xresultcode = resultcode;
8303 tree val
8304 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8305
8306 if (val != 0)
8307 return val;
8308
8309 op0 = xop0, op1 = xop1;
8310 converted = 1;
8311 resultcode = xresultcode;
8312
8313 if (warn_sign_compare && skip_evaluation == 0)
8314 {
8315 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8316 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8317 int unsignedp0, unsignedp1;
8318 tree primop0 = get_narrower (op0, &unsignedp0);
8319 tree primop1 = get_narrower (op1, &unsignedp1);
8320
8321 xop0 = orig_op0;
8322 xop1 = orig_op1;
8323 STRIP_TYPE_NOPS (xop0);
8324 STRIP_TYPE_NOPS (xop1);
8325
8326 /* Give warnings for comparisons between signed and unsigned
8327 quantities that may fail.
8328
8329 Do the checking based on the original operand trees, so that
8330 casts will be considered, but default promotions won't be.
8331
8332 Do not warn if the comparison is being done in a signed type,
8333 since the signed type will only be chosen if it can represent
8334 all the values of the unsigned type. */
8335 if (!TYPE_UNSIGNED (result_type))
8336 /* OK */;
8337 /* Do not warn if both operands are the same signedness. */
8338 else if (op0_signed == op1_signed)
8339 /* OK */;
8340 else
8341 {
8342 tree sop, uop;
8343 bool ovf;
8344
8345 if (op0_signed)
8346 sop = xop0, uop = xop1;
8347 else
8348 sop = xop1, uop = xop0;
8349
8350 /* Do not warn if the signed quantity is an
8351 unsuffixed integer literal (or some static
8352 constant expression involving such literals or a
8353 conditional expression involving such literals)
8354 and it is non-negative. */
8355 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8356 /* OK */;
8357 /* Do not warn if the comparison is an equality operation,
8358 the unsigned quantity is an integral constant, and it
8359 would fit in the result if the result were signed. */
8360 else if (TREE_CODE (uop) == INTEGER_CST
8361 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8362 && int_fits_type_p
8363 (uop, c_common_signed_type (result_type)))
8364 /* OK */;
8365 /* Do not warn if the unsigned quantity is an enumeration
8366 constant and its maximum value would fit in the result
8367 if the result were signed. */
8368 else if (TREE_CODE (uop) == INTEGER_CST
8369 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8370 && int_fits_type_p
8371 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8372 c_common_signed_type (result_type)))
8373 /* OK */;
8374 else
8375 warning (0, "comparison between signed and unsigned");
8376 }
8377
8378 /* Warn if two unsigned values are being compared in a size
8379 larger than their original size, and one (and only one) is the
8380 result of a `~' operator. This comparison will always fail.
8381
8382 Also warn if one operand is a constant, and the constant
8383 does not have all bits set that are set in the ~ operand
8384 when it is extended. */
8385
8386 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8387 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8388 {
8389 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8390 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8391 &unsignedp0);
8392 else
8393 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8394 &unsignedp1);
8395
8396 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8397 {
8398 tree primop;
8399 HOST_WIDE_INT constant, mask;
8400 int unsignedp, bits;
8401
8402 if (host_integerp (primop0, 0))
8403 {
8404 primop = primop1;
8405 unsignedp = unsignedp1;
8406 constant = tree_low_cst (primop0, 0);
8407 }
8408 else
8409 {
8410 primop = primop0;
8411 unsignedp = unsignedp0;
8412 constant = tree_low_cst (primop1, 0);
8413 }
8414
8415 bits = TYPE_PRECISION (TREE_TYPE (primop));
8416 if (bits < TYPE_PRECISION (result_type)
8417 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8418 {
8419 mask = (~(HOST_WIDE_INT) 0) << bits;
8420 if ((mask & constant) != mask)
8421 warning (0, "comparison of promoted ~unsigned with constant");
8422 }
8423 }
8424 else if (unsignedp0 && unsignedp1
8425 && (TYPE_PRECISION (TREE_TYPE (primop0))
8426 < TYPE_PRECISION (result_type))
8427 && (TYPE_PRECISION (TREE_TYPE (primop1))
8428 < TYPE_PRECISION (result_type)))
8429 warning (0, "comparison of promoted ~unsigned with unsigned");
8430 }
8431 }
8432 }
8433 }
8434
8435 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8436 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8437 Then the expression will be built.
8438 It will be given type FINAL_TYPE if that is nonzero;
8439 otherwise, it will be given type RESULT_TYPE. */
8440
8441 if (!result_type)
8442 {
8443 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8444 return error_mark_node;
8445 }
8446
8447 if (!converted)
8448 {
8449 if (TREE_TYPE (op0) != result_type)
8450 op0 = convert_and_check (result_type, op0);
8451 if (TREE_TYPE (op1) != result_type)
8452 op1 = convert_and_check (result_type, op1);
8453
8454 /* This can happen if one operand has a vector type, and the other
8455 has a different type. */
8456 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8457 return error_mark_node;
8458 }
8459
8460 if (build_type == NULL_TREE)
8461 build_type = result_type;
8462
8463 {
8464 /* Treat expressions in initializers specially as they can't trap. */
8465 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8466 build_type,
8467 op0, op1)
8468 : fold_build2 (resultcode, build_type,
8469 op0, op1);
8470
8471 if (final_type != 0)
8472 result = convert (final_type, result);
8473 return result;
8474 }
8475 }
8476
8477
8478 /* Convert EXPR to be a truth-value, validating its type for this
8479 purpose. */
8480
8481 tree
8482 c_objc_common_truthvalue_conversion (tree expr)
8483 {
8484 switch (TREE_CODE (TREE_TYPE (expr)))
8485 {
8486 case ARRAY_TYPE:
8487 error ("used array that cannot be converted to pointer where scalar is required");
8488 return error_mark_node;
8489
8490 case RECORD_TYPE:
8491 error ("used struct type value where scalar is required");
8492 return error_mark_node;
8493
8494 case UNION_TYPE:
8495 error ("used union type value where scalar is required");
8496 return error_mark_node;
8497
8498 case FUNCTION_TYPE:
8499 gcc_unreachable ();
8500
8501 default:
8502 break;
8503 }
8504
8505 /* ??? Should we also give an error for void and vectors rather than
8506 leaving those to give errors later? */
8507 return c_common_truthvalue_conversion (expr);
8508 }
8509 \f
8510
8511 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8512 required. */
8513
8514 tree
8515 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8516 bool *ti ATTRIBUTE_UNUSED, bool *se)
8517 {
8518 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8519 {
8520 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8521 /* Executing a compound literal inside a function reinitializes
8522 it. */
8523 if (!TREE_STATIC (decl))
8524 *se = true;
8525 return decl;
8526 }
8527 else
8528 return expr;
8529 }
8530 \f
8531 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8532
8533 tree
8534 c_begin_omp_parallel (void)
8535 {
8536 tree block;
8537
8538 keep_next_level ();
8539 block = c_begin_compound_stmt (true);
8540
8541 return block;
8542 }
8543
8544 tree
8545 c_finish_omp_parallel (tree clauses, tree block)
8546 {
8547 tree stmt;
8548
8549 block = c_end_compound_stmt (block, true);
8550
8551 stmt = make_node (OMP_PARALLEL);
8552 TREE_TYPE (stmt) = void_type_node;
8553 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8554 OMP_PARALLEL_BODY (stmt) = block;
8555
8556 return add_stmt (stmt);
8557 }
8558
8559 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8560 Remove any elements from the list that are invalid. */
8561
8562 tree
8563 c_finish_omp_clauses (tree clauses)
8564 {
8565 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8566 tree c, t, *pc = &clauses;
8567 const char *name;
8568
8569 bitmap_obstack_initialize (NULL);
8570 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8571 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8572 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8573
8574 for (pc = &clauses, c = clauses; c ; c = *pc)
8575 {
8576 bool remove = false;
8577 bool need_complete = false;
8578 bool need_implicitly_determined = false;
8579
8580 switch (OMP_CLAUSE_CODE (c))
8581 {
8582 case OMP_CLAUSE_SHARED:
8583 name = "shared";
8584 need_implicitly_determined = true;
8585 goto check_dup_generic;
8586
8587 case OMP_CLAUSE_PRIVATE:
8588 name = "private";
8589 need_complete = true;
8590 need_implicitly_determined = true;
8591 goto check_dup_generic;
8592
8593 case OMP_CLAUSE_REDUCTION:
8594 name = "reduction";
8595 need_implicitly_determined = true;
8596 t = OMP_CLAUSE_DECL (c);
8597 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8598 || POINTER_TYPE_P (TREE_TYPE (t)))
8599 {
8600 error ("%qE has invalid type for %<reduction%>", t);
8601 remove = true;
8602 }
8603 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8604 {
8605 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8606 const char *r_name = NULL;
8607
8608 switch (r_code)
8609 {
8610 case PLUS_EXPR:
8611 case MULT_EXPR:
8612 case MINUS_EXPR:
8613 break;
8614 case BIT_AND_EXPR:
8615 r_name = "&";
8616 break;
8617 case BIT_XOR_EXPR:
8618 r_name = "^";
8619 break;
8620 case BIT_IOR_EXPR:
8621 r_name = "|";
8622 break;
8623 case TRUTH_ANDIF_EXPR:
8624 r_name = "&&";
8625 break;
8626 case TRUTH_ORIF_EXPR:
8627 r_name = "||";
8628 break;
8629 default:
8630 gcc_unreachable ();
8631 }
8632 if (r_name)
8633 {
8634 error ("%qE has invalid type for %<reduction(%s)%>",
8635 t, r_name);
8636 remove = true;
8637 }
8638 }
8639 goto check_dup_generic;
8640
8641 case OMP_CLAUSE_COPYPRIVATE:
8642 name = "copyprivate";
8643 goto check_dup_generic;
8644
8645 case OMP_CLAUSE_COPYIN:
8646 name = "copyin";
8647 t = OMP_CLAUSE_DECL (c);
8648 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8649 {
8650 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8651 remove = true;
8652 }
8653 goto check_dup_generic;
8654
8655 check_dup_generic:
8656 t = OMP_CLAUSE_DECL (c);
8657 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8658 {
8659 error ("%qE is not a variable in clause %qs", t, name);
8660 remove = true;
8661 }
8662 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8663 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8664 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8665 {
8666 error ("%qE appears more than once in data clauses", t);
8667 remove = true;
8668 }
8669 else
8670 bitmap_set_bit (&generic_head, DECL_UID (t));
8671 break;
8672
8673 case OMP_CLAUSE_FIRSTPRIVATE:
8674 name = "firstprivate";
8675 t = OMP_CLAUSE_DECL (c);
8676 need_complete = true;
8677 need_implicitly_determined = true;
8678 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8679 {
8680 error ("%qE is not a variable in clause %<firstprivate%>", t);
8681 remove = true;
8682 }
8683 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8684 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8685 {
8686 error ("%qE appears more than once in data clauses", t);
8687 remove = true;
8688 }
8689 else
8690 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8691 break;
8692
8693 case OMP_CLAUSE_LASTPRIVATE:
8694 name = "lastprivate";
8695 t = OMP_CLAUSE_DECL (c);
8696 need_complete = true;
8697 need_implicitly_determined = true;
8698 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8699 {
8700 error ("%qE is not a variable in clause %<lastprivate%>", t);
8701 remove = true;
8702 }
8703 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8704 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8705 {
8706 error ("%qE appears more than once in data clauses", t);
8707 remove = true;
8708 }
8709 else
8710 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8711 break;
8712
8713 case OMP_CLAUSE_IF:
8714 case OMP_CLAUSE_NUM_THREADS:
8715 case OMP_CLAUSE_SCHEDULE:
8716 case OMP_CLAUSE_NOWAIT:
8717 case OMP_CLAUSE_ORDERED:
8718 case OMP_CLAUSE_DEFAULT:
8719 pc = &OMP_CLAUSE_CHAIN (c);
8720 continue;
8721
8722 default:
8723 gcc_unreachable ();
8724 }
8725
8726 if (!remove)
8727 {
8728 t = OMP_CLAUSE_DECL (c);
8729
8730 if (need_complete)
8731 {
8732 t = require_complete_type (t);
8733 if (t == error_mark_node)
8734 remove = true;
8735 }
8736
8737 if (need_implicitly_determined)
8738 {
8739 const char *share_name = NULL;
8740
8741 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8742 share_name = "threadprivate";
8743 else switch (c_omp_predetermined_sharing (t))
8744 {
8745 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8746 break;
8747 case OMP_CLAUSE_DEFAULT_SHARED:
8748 share_name = "shared";
8749 break;
8750 case OMP_CLAUSE_DEFAULT_PRIVATE:
8751 share_name = "private";
8752 break;
8753 default:
8754 gcc_unreachable ();
8755 }
8756 if (share_name)
8757 {
8758 error ("%qE is predetermined %qs for %qs",
8759 t, share_name, name);
8760 remove = true;
8761 }
8762 }
8763 }
8764
8765 if (remove)
8766 *pc = OMP_CLAUSE_CHAIN (c);
8767 else
8768 pc = &OMP_CLAUSE_CHAIN (c);
8769 }
8770
8771 bitmap_obstack_release (NULL);
8772 return clauses;
8773 }