]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
Remove trailing white spaces.
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "debug.h"
43 #include "cgraph.h"
44 #include "except.h"
45 #include "dbgcnt.h"
46 #include "tree-flow.h"
47
48 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
49 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
50
51 /* Data structure and subroutines used within expand_call. */
52
53 struct arg_data
54 {
55 /* Tree node for this argument. */
56 tree tree_value;
57 /* Mode for value; TYPE_MODE unless promoted. */
58 enum machine_mode mode;
59 /* Current RTL value for argument, or 0 if it isn't precomputed. */
60 rtx value;
61 /* Initially-compute RTL value for argument; only for const functions. */
62 rtx initial_value;
63 /* Register to pass this argument in, 0 if passed on stack, or an
64 PARALLEL if the arg is to be copied into multiple non-contiguous
65 registers. */
66 rtx reg;
67 /* Register to pass this argument in when generating tail call sequence.
68 This is not the same register as for normal calls on machines with
69 register windows. */
70 rtx tail_call_reg;
71 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
72 form for emit_group_move. */
73 rtx parallel_value;
74 /* If REG was promoted from the actual mode of the argument expression,
75 indicates whether the promotion is sign- or zero-extended. */
76 int unsignedp;
77 /* Number of bytes to put in registers. 0 means put the whole arg
78 in registers. Also 0 if not passed in registers. */
79 int partial;
80 /* Nonzero if argument must be passed on stack.
81 Note that some arguments may be passed on the stack
82 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
83 pass_on_stack identifies arguments that *cannot* go in registers. */
84 int pass_on_stack;
85 /* Some fields packaged up for locate_and_pad_parm. */
86 struct locate_and_pad_arg_data locate;
87 /* Location on the stack at which parameter should be stored. The store
88 has already been done if STACK == VALUE. */
89 rtx stack;
90 /* Location on the stack of the start of this argument slot. This can
91 differ from STACK if this arg pads downward. This location is known
92 to be aligned to FUNCTION_ARG_BOUNDARY. */
93 rtx stack_slot;
94 /* Place that this stack area has been saved, if needed. */
95 rtx save_area;
96 /* If an argument's alignment does not permit direct copying into registers,
97 copy in smaller-sized pieces into pseudos. These are stored in a
98 block pointed to by this field. The next field says how many
99 word-sized pseudos we made. */
100 rtx *aligned_regs;
101 int n_aligned_regs;
102 };
103
104 /* A vector of one char per byte of stack space. A byte if nonzero if
105 the corresponding stack location has been used.
106 This vector is used to prevent a function call within an argument from
107 clobbering any stack already set up. */
108 static char *stack_usage_map;
109
110 /* Size of STACK_USAGE_MAP. */
111 static int highest_outgoing_arg_in_use;
112
113 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
114 stack location's tail call argument has been already stored into the stack.
115 This bitmap is used to prevent sibling call optimization if function tries
116 to use parent's incoming argument slots when they have been already
117 overwritten with tail call arguments. */
118 static sbitmap stored_args_map;
119
120 /* stack_arg_under_construction is nonzero when an argument may be
121 initialized with a constructor call (including a C function that
122 returns a BLKmode struct) and expand_call must take special action
123 to make sure the object being constructed does not overlap the
124 argument list for the constructor call. */
125 static int stack_arg_under_construction;
126
127 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
128 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
129 CUMULATIVE_ARGS *);
130 static void precompute_register_parameters (int, struct arg_data *, int *);
131 static int store_one_arg (struct arg_data *, rtx, int, int, int);
132 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
133 static int finalize_must_preallocate (int, int, struct arg_data *,
134 struct args_size *);
135 static void precompute_arguments (int, struct arg_data *);
136 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
137 static void initialize_argument_information (int, struct arg_data *,
138 struct args_size *, int,
139 tree, tree,
140 tree, tree, CUMULATIVE_ARGS *, int,
141 rtx *, int *, int *, int *,
142 bool *, bool);
143 static void compute_argument_addresses (struct arg_data *, rtx, int);
144 static rtx rtx_for_function_call (tree, tree);
145 static void load_register_parameters (struct arg_data *, int, rtx *, int,
146 int, int *);
147 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
148 enum machine_mode, int, va_list);
149 static int special_function_p (const_tree, int);
150 static int check_sibcall_argument_overlap_1 (rtx);
151 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
152
153 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
154 unsigned int);
155 static tree split_complex_types (tree);
156
157 #ifdef REG_PARM_STACK_SPACE
158 static rtx save_fixed_argument_area (int, rtx, int *, int *);
159 static void restore_fixed_argument_area (rtx, rtx, int, int);
160 #endif
161 \f
162 /* Force FUNEXP into a form suitable for the address of a CALL,
163 and return that as an rtx. Also load the static chain register
164 if FNDECL is a nested function.
165
166 CALL_FUSAGE points to a variable holding the prospective
167 CALL_INSN_FUNCTION_USAGE information. */
168
169 rtx
170 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
171 rtx *call_fusage, int reg_parm_seen, int sibcallp)
172 {
173 /* Make a valid memory address and copy constants through pseudo-regs,
174 but not for a constant address if -fno-function-cse. */
175 if (GET_CODE (funexp) != SYMBOL_REF)
176 /* If we are using registers for parameters, force the
177 function address into a register now. */
178 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
179 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 : memory_address (FUNCTION_MODE, funexp));
181 else if (! sibcallp)
182 {
183 #ifndef NO_FUNCTION_CSE
184 if (optimize && ! flag_no_function_cse)
185 funexp = force_reg (Pmode, funexp);
186 #endif
187 }
188
189 if (static_chain_value != 0)
190 {
191 rtx chain;
192
193 gcc_assert (fndecl);
194 chain = targetm.calls.static_chain (fndecl, false);
195 static_chain_value = convert_memory_address (Pmode, static_chain_value);
196
197 emit_move_insn (chain, static_chain_value);
198 if (REG_P (chain))
199 use_reg (call_fusage, chain);
200 }
201
202 return funexp;
203 }
204
205 /* Generate instructions to call function FUNEXP,
206 and optionally pop the results.
207 The CALL_INSN is the first insn generated.
208
209 FNDECL is the declaration node of the function. This is given to the
210 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
211
212 FUNTYPE is the data type of the function. This is given to the macro
213 RETURN_POPS_ARGS to determine whether this function pops its own args.
214 We used to allow an identifier for library functions, but that doesn't
215 work when the return type is an aggregate type and the calling convention
216 says that the pointer to this aggregate is to be popped by the callee.
217
218 STACK_SIZE is the number of bytes of arguments on the stack,
219 ROUNDED_STACK_SIZE is that number rounded up to
220 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
221 both to put into the call insn and to generate explicit popping
222 code if necessary.
223
224 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
225 It is zero if this call doesn't want a structure value.
226
227 NEXT_ARG_REG is the rtx that results from executing
228 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
229 just after all the args have had their registers assigned.
230 This could be whatever you like, but normally it is the first
231 arg-register beyond those used for args in this call,
232 or 0 if all the arg-registers are used in this call.
233 It is passed on to `gen_call' so you can put this info in the call insn.
234
235 VALREG is a hard register in which a value is returned,
236 or 0 if the call does not return a value.
237
238 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
239 the args to this call were processed.
240 We restore `inhibit_defer_pop' to that value.
241
242 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
243 denote registers used by the called function. */
244
245 static void
246 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
247 tree funtype ATTRIBUTE_UNUSED,
248 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT rounded_stack_size,
250 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
251 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
252 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
253 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
254 {
255 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
256 rtx call_insn;
257 int already_popped = 0;
258 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
259 #if defined (HAVE_call) && defined (HAVE_call_value)
260 rtx struct_value_size_rtx;
261 struct_value_size_rtx = GEN_INT (struct_value_size);
262 #endif
263
264 #ifdef CALL_POPS_ARGS
265 n_popped += CALL_POPS_ARGS (* args_so_far);
266 #endif
267
268 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
269 and we don't want to load it into a register as an optimization,
270 because prepare_call_address already did it if it should be done. */
271 if (GET_CODE (funexp) != SYMBOL_REF)
272 funexp = memory_address (FUNCTION_MODE, funexp);
273
274 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
275 if ((ecf_flags & ECF_SIBCALL)
276 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
277 && (n_popped > 0 || stack_size == 0))
278 {
279 rtx n_pop = GEN_INT (n_popped);
280 rtx pat;
281
282 /* If this subroutine pops its own args, record that in the call insn
283 if possible, for the sake of frame pointer elimination. */
284
285 if (valreg)
286 pat = GEN_SIBCALL_VALUE_POP (valreg,
287 gen_rtx_MEM (FUNCTION_MODE, funexp),
288 rounded_stack_size_rtx, next_arg_reg,
289 n_pop);
290 else
291 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
292 rounded_stack_size_rtx, next_arg_reg, n_pop);
293
294 emit_call_insn (pat);
295 already_popped = 1;
296 }
297 else
298 #endif
299
300 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
301 /* If the target has "call" or "call_value" insns, then prefer them
302 if no arguments are actually popped. If the target does not have
303 "call" or "call_value" insns, then we must use the popping versions
304 even if the call has no arguments to pop. */
305 #if defined (HAVE_call) && defined (HAVE_call_value)
306 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
307 && n_popped > 0)
308 #else
309 if (HAVE_call_pop && HAVE_call_value_pop)
310 #endif
311 {
312 rtx n_pop = GEN_INT (n_popped);
313 rtx pat;
314
315 /* If this subroutine pops its own args, record that in the call insn
316 if possible, for the sake of frame pointer elimination. */
317
318 if (valreg)
319 pat = GEN_CALL_VALUE_POP (valreg,
320 gen_rtx_MEM (FUNCTION_MODE, funexp),
321 rounded_stack_size_rtx, next_arg_reg, n_pop);
322 else
323 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
324 rounded_stack_size_rtx, next_arg_reg, n_pop);
325
326 emit_call_insn (pat);
327 already_popped = 1;
328 }
329 else
330 #endif
331
332 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
333 if ((ecf_flags & ECF_SIBCALL)
334 && HAVE_sibcall && HAVE_sibcall_value)
335 {
336 if (valreg)
337 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
338 gen_rtx_MEM (FUNCTION_MODE, funexp),
339 rounded_stack_size_rtx,
340 next_arg_reg, NULL_RTX));
341 else
342 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
343 rounded_stack_size_rtx, next_arg_reg,
344 struct_value_size_rtx));
345 }
346 else
347 #endif
348
349 #if defined (HAVE_call) && defined (HAVE_call_value)
350 if (HAVE_call && HAVE_call_value)
351 {
352 if (valreg)
353 emit_call_insn (GEN_CALL_VALUE (valreg,
354 gen_rtx_MEM (FUNCTION_MODE, funexp),
355 rounded_stack_size_rtx, next_arg_reg,
356 NULL_RTX));
357 else
358 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
359 rounded_stack_size_rtx, next_arg_reg,
360 struct_value_size_rtx));
361 }
362 else
363 #endif
364 gcc_unreachable ();
365
366 /* Find the call we just emitted. */
367 call_insn = last_call_insn ();
368
369 /* Put the register usage information there. */
370 add_function_usage_to (call_insn, call_fusage);
371
372 /* If this is a const call, then set the insn's unchanging bit. */
373 if (ecf_flags & ECF_CONST)
374 RTL_CONST_CALL_P (call_insn) = 1;
375
376 /* If this is a pure call, then set the insn's unchanging bit. */
377 if (ecf_flags & ECF_PURE)
378 RTL_PURE_CALL_P (call_insn) = 1;
379
380 /* If this is a const call, then set the insn's unchanging bit. */
381 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
382 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
383
384 /* Create a nothrow REG_EH_REGION note, if needed. */
385 make_reg_eh_region_note (call_insn, ecf_flags, 0);
386
387 if (ecf_flags & ECF_NORETURN)
388 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
389
390 if (ecf_flags & ECF_RETURNS_TWICE)
391 {
392 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
393 cfun->calls_setjmp = 1;
394 }
395
396 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
397
398 /* Record debug information for virtual calls. */
399 if (flag_enable_icf_debug && fndecl == NULL)
400 (*debug_hooks->virtual_call_token) (CALL_EXPR_FN (fntree),
401 INSN_UID (call_insn));
402
403 /* Restore this now, so that we do defer pops for this call's args
404 if the context of the call as a whole permits. */
405 inhibit_defer_pop = old_inhibit_defer_pop;
406
407 if (n_popped > 0)
408 {
409 if (!already_popped)
410 CALL_INSN_FUNCTION_USAGE (call_insn)
411 = gen_rtx_EXPR_LIST (VOIDmode,
412 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
413 CALL_INSN_FUNCTION_USAGE (call_insn));
414 rounded_stack_size -= n_popped;
415 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
416 stack_pointer_delta -= n_popped;
417
418 /* If popup is needed, stack realign must use DRAP */
419 if (SUPPORTS_STACK_ALIGNMENT)
420 crtl->need_drap = true;
421 }
422
423 if (!ACCUMULATE_OUTGOING_ARGS)
424 {
425 /* If returning from the subroutine does not automatically pop the args,
426 we need an instruction to pop them sooner or later.
427 Perhaps do it now; perhaps just record how much space to pop later.
428
429 If returning from the subroutine does pop the args, indicate that the
430 stack pointer will be changed. */
431
432 if (rounded_stack_size != 0)
433 {
434 if (ecf_flags & ECF_NORETURN)
435 /* Just pretend we did the pop. */
436 stack_pointer_delta -= rounded_stack_size;
437 else if (flag_defer_pop && inhibit_defer_pop == 0
438 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
439 pending_stack_adjust += rounded_stack_size;
440 else
441 adjust_stack (rounded_stack_size_rtx);
442 }
443 }
444 /* When we accumulate outgoing args, we must avoid any stack manipulations.
445 Restore the stack pointer to its original value now. Usually
446 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
447 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
448 popping variants of functions exist as well.
449
450 ??? We may optimize similar to defer_pop above, but it is
451 probably not worthwhile.
452
453 ??? It will be worthwhile to enable combine_stack_adjustments even for
454 such machines. */
455 else if (n_popped)
456 anti_adjust_stack (GEN_INT (n_popped));
457 }
458
459 /* Determine if the function identified by NAME and FNDECL is one with
460 special properties we wish to know about.
461
462 For example, if the function might return more than one time (setjmp), then
463 set RETURNS_TWICE to a nonzero value.
464
465 Similarly set NORETURN if the function is in the longjmp family.
466
467 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
468 space from the stack such as alloca. */
469
470 static int
471 special_function_p (const_tree fndecl, int flags)
472 {
473 if (fndecl && DECL_NAME (fndecl)
474 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
475 /* Exclude functions not at the file scope, or not `extern',
476 since they are not the magic functions we would otherwise
477 think they are.
478 FIXME: this should be handled with attributes, not with this
479 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
480 because you can declare fork() inside a function if you
481 wish. */
482 && (DECL_CONTEXT (fndecl) == NULL_TREE
483 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
484 && TREE_PUBLIC (fndecl))
485 {
486 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
487 const char *tname = name;
488
489 /* We assume that alloca will always be called by name. It
490 makes no sense to pass it as a pointer-to-function to
491 anything that does not understand its behavior. */
492 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
493 && name[0] == 'a'
494 && ! strcmp (name, "alloca"))
495 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
496 && name[0] == '_'
497 && ! strcmp (name, "__builtin_alloca"))))
498 flags |= ECF_MAY_BE_ALLOCA;
499
500 /* Disregard prefix _, __, __x or __builtin_. */
501 if (name[0] == '_')
502 {
503 if (name[1] == '_'
504 && name[2] == 'b'
505 && !strncmp (name + 3, "uiltin_", 7))
506 tname += 10;
507 else if (name[1] == '_' && name[2] == 'x')
508 tname += 3;
509 else if (name[1] == '_')
510 tname += 2;
511 else
512 tname += 1;
513 }
514
515 if (tname[0] == 's')
516 {
517 if ((tname[1] == 'e'
518 && (! strcmp (tname, "setjmp")
519 || ! strcmp (tname, "setjmp_syscall")))
520 || (tname[1] == 'i'
521 && ! strcmp (tname, "sigsetjmp"))
522 || (tname[1] == 'a'
523 && ! strcmp (tname, "savectx")))
524 flags |= ECF_RETURNS_TWICE;
525
526 if (tname[1] == 'i'
527 && ! strcmp (tname, "siglongjmp"))
528 flags |= ECF_NORETURN;
529 }
530 else if ((tname[0] == 'q' && tname[1] == 's'
531 && ! strcmp (tname, "qsetjmp"))
532 || (tname[0] == 'v' && tname[1] == 'f'
533 && ! strcmp (tname, "vfork"))
534 || (tname[0] == 'g' && tname[1] == 'e'
535 && !strcmp (tname, "getcontext")))
536 flags |= ECF_RETURNS_TWICE;
537
538 else if (tname[0] == 'l' && tname[1] == 'o'
539 && ! strcmp (tname, "longjmp"))
540 flags |= ECF_NORETURN;
541 }
542
543 return flags;
544 }
545
546 /* Return nonzero when FNDECL represents a call to setjmp. */
547
548 int
549 setjmp_call_p (const_tree fndecl)
550 {
551 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
552 }
553
554
555 /* Return true if STMT is an alloca call. */
556
557 bool
558 gimple_alloca_call_p (const_gimple stmt)
559 {
560 tree fndecl;
561
562 if (!is_gimple_call (stmt))
563 return false;
564
565 fndecl = gimple_call_fndecl (stmt);
566 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
567 return true;
568
569 return false;
570 }
571
572 /* Return true when exp contains alloca call. */
573
574 bool
575 alloca_call_p (const_tree exp)
576 {
577 if (TREE_CODE (exp) == CALL_EXPR
578 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
579 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
580 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
581 & ECF_MAY_BE_ALLOCA))
582 return true;
583 return false;
584 }
585
586 /* Detect flags (function attributes) from the function decl or type node. */
587
588 int
589 flags_from_decl_or_type (const_tree exp)
590 {
591 int flags = 0;
592
593 if (DECL_P (exp))
594 {
595 /* The function exp may have the `malloc' attribute. */
596 if (DECL_IS_MALLOC (exp))
597 flags |= ECF_MALLOC;
598
599 /* The function exp may have the `returns_twice' attribute. */
600 if (DECL_IS_RETURNS_TWICE (exp))
601 flags |= ECF_RETURNS_TWICE;
602
603 /* Process the pure and const attributes. */
604 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
605 flags |= ECF_CONST;
606 if (DECL_PURE_P (exp))
607 flags |= ECF_PURE;
608 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
609 flags |= ECF_LOOPING_CONST_OR_PURE;
610
611 if (DECL_IS_NOVOPS (exp))
612 flags |= ECF_NOVOPS;
613
614 if (TREE_NOTHROW (exp))
615 flags |= ECF_NOTHROW;
616
617 flags = special_function_p (exp, flags);
618 }
619 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
620 flags |= ECF_CONST;
621
622 if (TREE_THIS_VOLATILE (exp))
623 flags |= ECF_NORETURN;
624
625 return flags;
626 }
627
628 /* Detect flags from a CALL_EXPR. */
629
630 int
631 call_expr_flags (const_tree t)
632 {
633 int flags;
634 tree decl = get_callee_fndecl (t);
635
636 if (decl)
637 flags = flags_from_decl_or_type (decl);
638 else
639 {
640 t = TREE_TYPE (CALL_EXPR_FN (t));
641 if (t && TREE_CODE (t) == POINTER_TYPE)
642 flags = flags_from_decl_or_type (TREE_TYPE (t));
643 else
644 flags = 0;
645 }
646
647 return flags;
648 }
649
650 /* Precompute all register parameters as described by ARGS, storing values
651 into fields within the ARGS array.
652
653 NUM_ACTUALS indicates the total number elements in the ARGS array.
654
655 Set REG_PARM_SEEN if we encounter a register parameter. */
656
657 static void
658 precompute_register_parameters (int num_actuals, struct arg_data *args,
659 int *reg_parm_seen)
660 {
661 int i;
662
663 *reg_parm_seen = 0;
664
665 for (i = 0; i < num_actuals; i++)
666 if (args[i].reg != 0 && ! args[i].pass_on_stack)
667 {
668 *reg_parm_seen = 1;
669
670 if (args[i].value == 0)
671 {
672 push_temp_slots ();
673 args[i].value = expand_normal (args[i].tree_value);
674 preserve_temp_slots (args[i].value);
675 pop_temp_slots ();
676 }
677
678 /* If the value is a non-legitimate constant, force it into a
679 pseudo now. TLS symbols sometimes need a call to resolve. */
680 if (CONSTANT_P (args[i].value)
681 && !LEGITIMATE_CONSTANT_P (args[i].value))
682 args[i].value = force_reg (args[i].mode, args[i].value);
683
684 /* If we are to promote the function arg to a wider mode,
685 do it now. */
686
687 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
688 args[i].value
689 = convert_modes (args[i].mode,
690 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
691 args[i].value, args[i].unsignedp);
692
693 /* If we're going to have to load the value by parts, pull the
694 parts into pseudos. The part extraction process can involve
695 non-trivial computation. */
696 if (GET_CODE (args[i].reg) == PARALLEL)
697 {
698 tree type = TREE_TYPE (args[i].tree_value);
699 args[i].parallel_value
700 = emit_group_load_into_temps (args[i].reg, args[i].value,
701 type, int_size_in_bytes (type));
702 }
703
704 /* If the value is expensive, and we are inside an appropriately
705 short loop, put the value into a pseudo and then put the pseudo
706 into the hard reg.
707
708 For small register classes, also do this if this call uses
709 register parameters. This is to avoid reload conflicts while
710 loading the parameters registers. */
711
712 else if ((! (REG_P (args[i].value)
713 || (GET_CODE (args[i].value) == SUBREG
714 && REG_P (SUBREG_REG (args[i].value)))))
715 && args[i].mode != BLKmode
716 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
717 > COSTS_N_INSNS (1)
718 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
719 || optimize))
720 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
721 }
722 }
723
724 #ifdef REG_PARM_STACK_SPACE
725
726 /* The argument list is the property of the called routine and it
727 may clobber it. If the fixed area has been used for previous
728 parameters, we must save and restore it. */
729
730 static rtx
731 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
732 {
733 int low;
734 int high;
735
736 /* Compute the boundary of the area that needs to be saved, if any. */
737 high = reg_parm_stack_space;
738 #ifdef ARGS_GROW_DOWNWARD
739 high += 1;
740 #endif
741 if (high > highest_outgoing_arg_in_use)
742 high = highest_outgoing_arg_in_use;
743
744 for (low = 0; low < high; low++)
745 if (stack_usage_map[low] != 0)
746 {
747 int num_to_save;
748 enum machine_mode save_mode;
749 int delta;
750 rtx stack_area;
751 rtx save_area;
752
753 while (stack_usage_map[--high] == 0)
754 ;
755
756 *low_to_save = low;
757 *high_to_save = high;
758
759 num_to_save = high - low + 1;
760 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
761
762 /* If we don't have the required alignment, must do this
763 in BLKmode. */
764 if ((low & (MIN (GET_MODE_SIZE (save_mode),
765 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
766 save_mode = BLKmode;
767
768 #ifdef ARGS_GROW_DOWNWARD
769 delta = -high;
770 #else
771 delta = low;
772 #endif
773 stack_area = gen_rtx_MEM (save_mode,
774 memory_address (save_mode,
775 plus_constant (argblock,
776 delta)));
777
778 set_mem_align (stack_area, PARM_BOUNDARY);
779 if (save_mode == BLKmode)
780 {
781 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
782 emit_block_move (validize_mem (save_area), stack_area,
783 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
784 }
785 else
786 {
787 save_area = gen_reg_rtx (save_mode);
788 emit_move_insn (save_area, stack_area);
789 }
790
791 return save_area;
792 }
793
794 return NULL_RTX;
795 }
796
797 static void
798 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
799 {
800 enum machine_mode save_mode = GET_MODE (save_area);
801 int delta;
802 rtx stack_area;
803
804 #ifdef ARGS_GROW_DOWNWARD
805 delta = -high_to_save;
806 #else
807 delta = low_to_save;
808 #endif
809 stack_area = gen_rtx_MEM (save_mode,
810 memory_address (save_mode,
811 plus_constant (argblock, delta)));
812 set_mem_align (stack_area, PARM_BOUNDARY);
813
814 if (save_mode != BLKmode)
815 emit_move_insn (stack_area, save_area);
816 else
817 emit_block_move (stack_area, validize_mem (save_area),
818 GEN_INT (high_to_save - low_to_save + 1),
819 BLOCK_OP_CALL_PARM);
820 }
821 #endif /* REG_PARM_STACK_SPACE */
822
823 /* If any elements in ARGS refer to parameters that are to be passed in
824 registers, but not in memory, and whose alignment does not permit a
825 direct copy into registers. Copy the values into a group of pseudos
826 which we will later copy into the appropriate hard registers.
827
828 Pseudos for each unaligned argument will be stored into the array
829 args[argnum].aligned_regs. The caller is responsible for deallocating
830 the aligned_regs array if it is nonzero. */
831
832 static void
833 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
834 {
835 int i, j;
836
837 for (i = 0; i < num_actuals; i++)
838 if (args[i].reg != 0 && ! args[i].pass_on_stack
839 && args[i].mode == BLKmode
840 && MEM_P (args[i].value)
841 && (MEM_ALIGN (args[i].value)
842 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
843 {
844 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
845 int endian_correction = 0;
846
847 if (args[i].partial)
848 {
849 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
850 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
851 }
852 else
853 {
854 args[i].n_aligned_regs
855 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
856 }
857
858 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
859
860 /* Structures smaller than a word are normally aligned to the
861 least significant byte. On a BYTES_BIG_ENDIAN machine,
862 this means we must skip the empty high order bytes when
863 calculating the bit offset. */
864 if (bytes < UNITS_PER_WORD
865 #ifdef BLOCK_REG_PADDING
866 && (BLOCK_REG_PADDING (args[i].mode,
867 TREE_TYPE (args[i].tree_value), 1)
868 == downward)
869 #else
870 && BYTES_BIG_ENDIAN
871 #endif
872 )
873 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
874
875 for (j = 0; j < args[i].n_aligned_regs; j++)
876 {
877 rtx reg = gen_reg_rtx (word_mode);
878 rtx word = operand_subword_force (args[i].value, j, BLKmode);
879 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
880
881 args[i].aligned_regs[j] = reg;
882 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
883 word_mode, word_mode);
884
885 /* There is no need to restrict this code to loading items
886 in TYPE_ALIGN sized hunks. The bitfield instructions can
887 load up entire word sized registers efficiently.
888
889 ??? This may not be needed anymore.
890 We use to emit a clobber here but that doesn't let later
891 passes optimize the instructions we emit. By storing 0 into
892 the register later passes know the first AND to zero out the
893 bitfield being set in the register is unnecessary. The store
894 of 0 will be deleted as will at least the first AND. */
895
896 emit_move_insn (reg, const0_rtx);
897
898 bytes -= bitsize / BITS_PER_UNIT;
899 store_bit_field (reg, bitsize, endian_correction, word_mode,
900 word);
901 }
902 }
903 }
904
905 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
906 CALL_EXPR EXP.
907
908 NUM_ACTUALS is the total number of parameters.
909
910 N_NAMED_ARGS is the total number of named arguments.
911
912 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
913 value, or null.
914
915 FNDECL is the tree code for the target of this call (if known)
916
917 ARGS_SO_FAR holds state needed by the target to know where to place
918 the next argument.
919
920 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
921 for arguments which are passed in registers.
922
923 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
924 and may be modified by this routine.
925
926 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
927 flags which may may be modified by this routine.
928
929 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
930 that requires allocation of stack space.
931
932 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
933 the thunked-to function. */
934
935 static void
936 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
937 struct arg_data *args,
938 struct args_size *args_size,
939 int n_named_args ATTRIBUTE_UNUSED,
940 tree exp, tree struct_value_addr_value,
941 tree fndecl, tree fntype,
942 CUMULATIVE_ARGS *args_so_far,
943 int reg_parm_stack_space,
944 rtx *old_stack_level, int *old_pending_adj,
945 int *must_preallocate, int *ecf_flags,
946 bool *may_tailcall, bool call_from_thunk_p)
947 {
948 location_t loc = EXPR_LOCATION (exp);
949 /* 1 if scanning parms front to back, -1 if scanning back to front. */
950 int inc;
951
952 /* Count arg position in order args appear. */
953 int argpos;
954
955 int i;
956
957 args_size->constant = 0;
958 args_size->var = 0;
959
960 /* In this loop, we consider args in the order they are written.
961 We fill up ARGS from the front or from the back if necessary
962 so that in any case the first arg to be pushed ends up at the front. */
963
964 if (PUSH_ARGS_REVERSED)
965 {
966 i = num_actuals - 1, inc = -1;
967 /* In this case, must reverse order of args
968 so that we compute and push the last arg first. */
969 }
970 else
971 {
972 i = 0, inc = 1;
973 }
974
975 /* First fill in the actual arguments in the ARGS array, splitting
976 complex arguments if necessary. */
977 {
978 int j = i;
979 call_expr_arg_iterator iter;
980 tree arg;
981
982 if (struct_value_addr_value)
983 {
984 args[j].tree_value = struct_value_addr_value;
985 j += inc;
986 }
987 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
988 {
989 tree argtype = TREE_TYPE (arg);
990 if (targetm.calls.split_complex_arg
991 && argtype
992 && TREE_CODE (argtype) == COMPLEX_TYPE
993 && targetm.calls.split_complex_arg (argtype))
994 {
995 tree subtype = TREE_TYPE (argtype);
996 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
997 j += inc;
998 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
999 }
1000 else
1001 args[j].tree_value = arg;
1002 j += inc;
1003 }
1004 }
1005
1006 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1007 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1008 {
1009 tree type = TREE_TYPE (args[i].tree_value);
1010 int unsignedp;
1011 enum machine_mode mode;
1012
1013 /* Replace erroneous argument with constant zero. */
1014 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1015 args[i].tree_value = integer_zero_node, type = integer_type_node;
1016
1017 /* If TYPE is a transparent union, pass things the way we would
1018 pass the first field of the union. We have already verified that
1019 the modes are the same. */
1020 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
1021 type = TREE_TYPE (TYPE_FIELDS (type));
1022
1023 /* Decide where to pass this arg.
1024
1025 args[i].reg is nonzero if all or part is passed in registers.
1026
1027 args[i].partial is nonzero if part but not all is passed in registers,
1028 and the exact value says how many bytes are passed in registers.
1029
1030 args[i].pass_on_stack is nonzero if the argument must at least be
1031 computed on the stack. It may then be loaded back into registers
1032 if args[i].reg is nonzero.
1033
1034 These decisions are driven by the FUNCTION_... macros and must agree
1035 with those made by function.c. */
1036
1037 /* See if this argument should be passed by invisible reference. */
1038 if (pass_by_reference (args_so_far, TYPE_MODE (type),
1039 type, argpos < n_named_args))
1040 {
1041 bool callee_copies;
1042 tree base;
1043
1044 callee_copies
1045 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1046 type, argpos < n_named_args);
1047
1048 /* If we're compiling a thunk, pass through invisible references
1049 instead of making a copy. */
1050 if (call_from_thunk_p
1051 || (callee_copies
1052 && !TREE_ADDRESSABLE (type)
1053 && (base = get_base_address (args[i].tree_value))
1054 && TREE_CODE (base) != SSA_NAME
1055 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1056 {
1057 /* We can't use sibcalls if a callee-copied argument is
1058 stored in the current function's frame. */
1059 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1060 *may_tailcall = false;
1061
1062 args[i].tree_value = build_fold_addr_expr_loc (loc,
1063 args[i].tree_value);
1064 type = TREE_TYPE (args[i].tree_value);
1065
1066 if (*ecf_flags & ECF_CONST)
1067 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1068 }
1069 else
1070 {
1071 /* We make a copy of the object and pass the address to the
1072 function being called. */
1073 rtx copy;
1074
1075 if (!COMPLETE_TYPE_P (type)
1076 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1077 || (flag_stack_check == GENERIC_STACK_CHECK
1078 && compare_tree_int (TYPE_SIZE_UNIT (type),
1079 STACK_CHECK_MAX_VAR_SIZE) > 0))
1080 {
1081 /* This is a variable-sized object. Make space on the stack
1082 for it. */
1083 rtx size_rtx = expr_size (args[i].tree_value);
1084
1085 if (*old_stack_level == 0)
1086 {
1087 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1088 *old_pending_adj = pending_stack_adjust;
1089 pending_stack_adjust = 0;
1090 }
1091
1092 copy = gen_rtx_MEM (BLKmode,
1093 allocate_dynamic_stack_space
1094 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1095 set_mem_attributes (copy, type, 1);
1096 }
1097 else
1098 copy = assign_temp (type, 0, 1, 0);
1099
1100 store_expr (args[i].tree_value, copy, 0, false);
1101
1102 /* Just change the const function to pure and then let
1103 the next test clear the pure based on
1104 callee_copies. */
1105 if (*ecf_flags & ECF_CONST)
1106 {
1107 *ecf_flags &= ~ECF_CONST;
1108 *ecf_flags |= ECF_PURE;
1109 }
1110
1111 if (!callee_copies && *ecf_flags & ECF_PURE)
1112 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1113
1114 args[i].tree_value
1115 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1116 type = TREE_TYPE (args[i].tree_value);
1117 *may_tailcall = false;
1118 }
1119 }
1120
1121 unsignedp = TYPE_UNSIGNED (type);
1122 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1123 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1124
1125 args[i].unsignedp = unsignedp;
1126 args[i].mode = mode;
1127
1128 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1129 argpos < n_named_args);
1130 #ifdef FUNCTION_INCOMING_ARG
1131 /* If this is a sibling call and the machine has register windows, the
1132 register window has to be unwinded before calling the routine, so
1133 arguments have to go into the incoming registers. */
1134 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1135 argpos < n_named_args);
1136 #else
1137 args[i].tail_call_reg = args[i].reg;
1138 #endif
1139
1140 if (args[i].reg)
1141 args[i].partial
1142 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1143 argpos < n_named_args);
1144
1145 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1146
1147 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1148 it means that we are to pass this arg in the register(s) designated
1149 by the PARALLEL, but also to pass it in the stack. */
1150 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1151 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1152 args[i].pass_on_stack = 1;
1153
1154 /* If this is an addressable type, we must preallocate the stack
1155 since we must evaluate the object into its final location.
1156
1157 If this is to be passed in both registers and the stack, it is simpler
1158 to preallocate. */
1159 if (TREE_ADDRESSABLE (type)
1160 || (args[i].pass_on_stack && args[i].reg != 0))
1161 *must_preallocate = 1;
1162
1163 /* Compute the stack-size of this argument. */
1164 if (args[i].reg == 0 || args[i].partial != 0
1165 || reg_parm_stack_space > 0
1166 || args[i].pass_on_stack)
1167 locate_and_pad_parm (mode, type,
1168 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1169 1,
1170 #else
1171 args[i].reg != 0,
1172 #endif
1173 args[i].pass_on_stack ? 0 : args[i].partial,
1174 fndecl, args_size, &args[i].locate);
1175 #ifdef BLOCK_REG_PADDING
1176 else
1177 /* The argument is passed entirely in registers. See at which
1178 end it should be padded. */
1179 args[i].locate.where_pad =
1180 BLOCK_REG_PADDING (mode, type,
1181 int_size_in_bytes (type) <= UNITS_PER_WORD);
1182 #endif
1183
1184 /* Update ARGS_SIZE, the total stack space for args so far. */
1185
1186 args_size->constant += args[i].locate.size.constant;
1187 if (args[i].locate.size.var)
1188 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1189
1190 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1191 have been used, etc. */
1192
1193 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1194 argpos < n_named_args);
1195 }
1196 }
1197
1198 /* Update ARGS_SIZE to contain the total size for the argument block.
1199 Return the original constant component of the argument block's size.
1200
1201 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1202 for arguments passed in registers. */
1203
1204 static int
1205 compute_argument_block_size (int reg_parm_stack_space,
1206 struct args_size *args_size,
1207 tree fndecl ATTRIBUTE_UNUSED,
1208 tree fntype ATTRIBUTE_UNUSED,
1209 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1210 {
1211 int unadjusted_args_size = args_size->constant;
1212
1213 /* For accumulate outgoing args mode we don't need to align, since the frame
1214 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1215 backends from generating misaligned frame sizes. */
1216 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1217 preferred_stack_boundary = STACK_BOUNDARY;
1218
1219 /* Compute the actual size of the argument block required. The variable
1220 and constant sizes must be combined, the size may have to be rounded,
1221 and there may be a minimum required size. */
1222
1223 if (args_size->var)
1224 {
1225 args_size->var = ARGS_SIZE_TREE (*args_size);
1226 args_size->constant = 0;
1227
1228 preferred_stack_boundary /= BITS_PER_UNIT;
1229 if (preferred_stack_boundary > 1)
1230 {
1231 /* We don't handle this case yet. To handle it correctly we have
1232 to add the delta, round and subtract the delta.
1233 Currently no machine description requires this support. */
1234 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1235 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1236 }
1237
1238 if (reg_parm_stack_space > 0)
1239 {
1240 args_size->var
1241 = size_binop (MAX_EXPR, args_size->var,
1242 ssize_int (reg_parm_stack_space));
1243
1244 /* The area corresponding to register parameters is not to count in
1245 the size of the block we need. So make the adjustment. */
1246 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1247 args_size->var
1248 = size_binop (MINUS_EXPR, args_size->var,
1249 ssize_int (reg_parm_stack_space));
1250 }
1251 }
1252 else
1253 {
1254 preferred_stack_boundary /= BITS_PER_UNIT;
1255 if (preferred_stack_boundary < 1)
1256 preferred_stack_boundary = 1;
1257 args_size->constant = (((args_size->constant
1258 + stack_pointer_delta
1259 + preferred_stack_boundary - 1)
1260 / preferred_stack_boundary
1261 * preferred_stack_boundary)
1262 - stack_pointer_delta);
1263
1264 args_size->constant = MAX (args_size->constant,
1265 reg_parm_stack_space);
1266
1267 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1268 args_size->constant -= reg_parm_stack_space;
1269 }
1270 return unadjusted_args_size;
1271 }
1272
1273 /* Precompute parameters as needed for a function call.
1274
1275 FLAGS is mask of ECF_* constants.
1276
1277 NUM_ACTUALS is the number of arguments.
1278
1279 ARGS is an array containing information for each argument; this
1280 routine fills in the INITIAL_VALUE and VALUE fields for each
1281 precomputed argument. */
1282
1283 static void
1284 precompute_arguments (int num_actuals, struct arg_data *args)
1285 {
1286 int i;
1287
1288 /* If this is a libcall, then precompute all arguments so that we do not
1289 get extraneous instructions emitted as part of the libcall sequence. */
1290
1291 /* If we preallocated the stack space, and some arguments must be passed
1292 on the stack, then we must precompute any parameter which contains a
1293 function call which will store arguments on the stack.
1294 Otherwise, evaluating the parameter may clobber previous parameters
1295 which have already been stored into the stack. (we have code to avoid
1296 such case by saving the outgoing stack arguments, but it results in
1297 worse code) */
1298 if (!ACCUMULATE_OUTGOING_ARGS)
1299 return;
1300
1301 for (i = 0; i < num_actuals; i++)
1302 {
1303 tree type;
1304 enum machine_mode mode;
1305
1306 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1307 continue;
1308
1309 /* If this is an addressable type, we cannot pre-evaluate it. */
1310 type = TREE_TYPE (args[i].tree_value);
1311 gcc_assert (!TREE_ADDRESSABLE (type));
1312
1313 args[i].initial_value = args[i].value
1314 = expand_normal (args[i].tree_value);
1315
1316 mode = TYPE_MODE (type);
1317 if (mode != args[i].mode)
1318 {
1319 int unsignedp = args[i].unsignedp;
1320 args[i].value
1321 = convert_modes (args[i].mode, mode,
1322 args[i].value, args[i].unsignedp);
1323
1324 /* CSE will replace this only if it contains args[i].value
1325 pseudo, so convert it down to the declared mode using
1326 a SUBREG. */
1327 if (REG_P (args[i].value)
1328 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1329 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1330 {
1331 args[i].initial_value
1332 = gen_lowpart_SUBREG (mode, args[i].value);
1333 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1334 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1335 args[i].unsignedp);
1336 }
1337 }
1338 }
1339 }
1340
1341 /* Given the current state of MUST_PREALLOCATE and information about
1342 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1343 compute and return the final value for MUST_PREALLOCATE. */
1344
1345 static int
1346 finalize_must_preallocate (int must_preallocate, int num_actuals,
1347 struct arg_data *args, struct args_size *args_size)
1348 {
1349 /* See if we have or want to preallocate stack space.
1350
1351 If we would have to push a partially-in-regs parm
1352 before other stack parms, preallocate stack space instead.
1353
1354 If the size of some parm is not a multiple of the required stack
1355 alignment, we must preallocate.
1356
1357 If the total size of arguments that would otherwise create a copy in
1358 a temporary (such as a CALL) is more than half the total argument list
1359 size, preallocation is faster.
1360
1361 Another reason to preallocate is if we have a machine (like the m88k)
1362 where stack alignment is required to be maintained between every
1363 pair of insns, not just when the call is made. However, we assume here
1364 that such machines either do not have push insns (and hence preallocation
1365 would occur anyway) or the problem is taken care of with
1366 PUSH_ROUNDING. */
1367
1368 if (! must_preallocate)
1369 {
1370 int partial_seen = 0;
1371 int copy_to_evaluate_size = 0;
1372 int i;
1373
1374 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1375 {
1376 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1377 partial_seen = 1;
1378 else if (partial_seen && args[i].reg == 0)
1379 must_preallocate = 1;
1380
1381 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1382 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1383 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1384 || TREE_CODE (args[i].tree_value) == COND_EXPR
1385 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1386 copy_to_evaluate_size
1387 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1388 }
1389
1390 if (copy_to_evaluate_size * 2 >= args_size->constant
1391 && args_size->constant > 0)
1392 must_preallocate = 1;
1393 }
1394 return must_preallocate;
1395 }
1396
1397 /* If we preallocated stack space, compute the address of each argument
1398 and store it into the ARGS array.
1399
1400 We need not ensure it is a valid memory address here; it will be
1401 validized when it is used.
1402
1403 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1404
1405 static void
1406 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1407 {
1408 if (argblock)
1409 {
1410 rtx arg_reg = argblock;
1411 int i, arg_offset = 0;
1412
1413 if (GET_CODE (argblock) == PLUS)
1414 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1415
1416 for (i = 0; i < num_actuals; i++)
1417 {
1418 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1419 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1420 rtx addr;
1421 unsigned int align, boundary;
1422 unsigned int units_on_stack = 0;
1423 enum machine_mode partial_mode = VOIDmode;
1424
1425 /* Skip this parm if it will not be passed on the stack. */
1426 if (! args[i].pass_on_stack
1427 && args[i].reg != 0
1428 && args[i].partial == 0)
1429 continue;
1430
1431 if (CONST_INT_P (offset))
1432 addr = plus_constant (arg_reg, INTVAL (offset));
1433 else
1434 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1435
1436 addr = plus_constant (addr, arg_offset);
1437
1438 if (args[i].partial != 0)
1439 {
1440 /* Only part of the parameter is being passed on the stack.
1441 Generate a simple memory reference of the correct size. */
1442 units_on_stack = args[i].locate.size.constant;
1443 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1444 MODE_INT, 1);
1445 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1446 set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1447 }
1448 else
1449 {
1450 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1451 set_mem_attributes (args[i].stack,
1452 TREE_TYPE (args[i].tree_value), 1);
1453 }
1454 align = BITS_PER_UNIT;
1455 boundary = args[i].locate.boundary;
1456 if (args[i].locate.where_pad != downward)
1457 align = boundary;
1458 else if (CONST_INT_P (offset))
1459 {
1460 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1461 align = align & -align;
1462 }
1463 set_mem_align (args[i].stack, align);
1464
1465 if (CONST_INT_P (slot_offset))
1466 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1467 else
1468 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1469
1470 addr = plus_constant (addr, arg_offset);
1471
1472 if (args[i].partial != 0)
1473 {
1474 /* Only part of the parameter is being passed on the stack.
1475 Generate a simple memory reference of the correct size.
1476 */
1477 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1478 set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1479 }
1480 else
1481 {
1482 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1483 set_mem_attributes (args[i].stack_slot,
1484 TREE_TYPE (args[i].tree_value), 1);
1485 }
1486 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1487
1488 /* Function incoming arguments may overlap with sibling call
1489 outgoing arguments and we cannot allow reordering of reads
1490 from function arguments with stores to outgoing arguments
1491 of sibling calls. */
1492 set_mem_alias_set (args[i].stack, 0);
1493 set_mem_alias_set (args[i].stack_slot, 0);
1494 }
1495 }
1496 }
1497
1498 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1499 in a call instruction.
1500
1501 FNDECL is the tree node for the target function. For an indirect call
1502 FNDECL will be NULL_TREE.
1503
1504 ADDR is the operand 0 of CALL_EXPR for this call. */
1505
1506 static rtx
1507 rtx_for_function_call (tree fndecl, tree addr)
1508 {
1509 rtx funexp;
1510
1511 /* Get the function to call, in the form of RTL. */
1512 if (fndecl)
1513 {
1514 /* If this is the first use of the function, see if we need to
1515 make an external definition for it. */
1516 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1517 {
1518 assemble_external (fndecl);
1519 TREE_USED (fndecl) = 1;
1520 }
1521
1522 /* Get a SYMBOL_REF rtx for the function address. */
1523 funexp = XEXP (DECL_RTL (fndecl), 0);
1524 }
1525 else
1526 /* Generate an rtx (probably a pseudo-register) for the address. */
1527 {
1528 push_temp_slots ();
1529 funexp = expand_normal (addr);
1530 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1531 }
1532 return funexp;
1533 }
1534
1535 /* Return true if and only if SIZE storage units (usually bytes)
1536 starting from address ADDR overlap with already clobbered argument
1537 area. This function is used to determine if we should give up a
1538 sibcall. */
1539
1540 static bool
1541 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1542 {
1543 HOST_WIDE_INT i;
1544
1545 if (addr == crtl->args.internal_arg_pointer)
1546 i = 0;
1547 else if (GET_CODE (addr) == PLUS
1548 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1549 && CONST_INT_P (XEXP (addr, 1)))
1550 i = INTVAL (XEXP (addr, 1));
1551 /* Return true for arg pointer based indexed addressing. */
1552 else if (GET_CODE (addr) == PLUS
1553 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1554 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1555 return true;
1556 else
1557 return false;
1558
1559 #ifdef ARGS_GROW_DOWNWARD
1560 i = -i - size;
1561 #endif
1562 if (size > 0)
1563 {
1564 unsigned HOST_WIDE_INT k;
1565
1566 for (k = 0; k < size; k++)
1567 if (i + k < stored_args_map->n_bits
1568 && TEST_BIT (stored_args_map, i + k))
1569 return true;
1570 }
1571
1572 return false;
1573 }
1574
1575 /* Do the register loads required for any wholly-register parms or any
1576 parms which are passed both on the stack and in a register. Their
1577 expressions were already evaluated.
1578
1579 Mark all register-parms as living through the call, putting these USE
1580 insns in the CALL_INSN_FUNCTION_USAGE field.
1581
1582 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1583 checking, setting *SIBCALL_FAILURE if appropriate. */
1584
1585 static void
1586 load_register_parameters (struct arg_data *args, int num_actuals,
1587 rtx *call_fusage, int flags, int is_sibcall,
1588 int *sibcall_failure)
1589 {
1590 int i, j;
1591
1592 for (i = 0; i < num_actuals; i++)
1593 {
1594 rtx reg = ((flags & ECF_SIBCALL)
1595 ? args[i].tail_call_reg : args[i].reg);
1596 if (reg)
1597 {
1598 int partial = args[i].partial;
1599 int nregs;
1600 int size = 0;
1601 rtx before_arg = get_last_insn ();
1602 /* Set non-negative if we must move a word at a time, even if
1603 just one word (e.g, partial == 4 && mode == DFmode). Set
1604 to -1 if we just use a normal move insn. This value can be
1605 zero if the argument is a zero size structure. */
1606 nregs = -1;
1607 if (GET_CODE (reg) == PARALLEL)
1608 ;
1609 else if (partial)
1610 {
1611 gcc_assert (partial % UNITS_PER_WORD == 0);
1612 nregs = partial / UNITS_PER_WORD;
1613 }
1614 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1615 {
1616 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1617 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1618 }
1619 else
1620 size = GET_MODE_SIZE (args[i].mode);
1621
1622 /* Handle calls that pass values in multiple non-contiguous
1623 locations. The Irix 6 ABI has examples of this. */
1624
1625 if (GET_CODE (reg) == PARALLEL)
1626 emit_group_move (reg, args[i].parallel_value);
1627
1628 /* If simple case, just do move. If normal partial, store_one_arg
1629 has already loaded the register for us. In all other cases,
1630 load the register(s) from memory. */
1631
1632 else if (nregs == -1)
1633 {
1634 emit_move_insn (reg, args[i].value);
1635 #ifdef BLOCK_REG_PADDING
1636 /* Handle case where we have a value that needs shifting
1637 up to the msb. eg. a QImode value and we're padding
1638 upward on a BYTES_BIG_ENDIAN machine. */
1639 if (size < UNITS_PER_WORD
1640 && (args[i].locate.where_pad
1641 == (BYTES_BIG_ENDIAN ? upward : downward)))
1642 {
1643 rtx x;
1644 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1645
1646 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1647 report the whole reg as used. Strictly speaking, the
1648 call only uses SIZE bytes at the msb end, but it doesn't
1649 seem worth generating rtl to say that. */
1650 reg = gen_rtx_REG (word_mode, REGNO (reg));
1651 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1652 build_int_cst (NULL_TREE, shift),
1653 reg, 1);
1654 if (x != reg)
1655 emit_move_insn (reg, x);
1656 }
1657 #endif
1658 }
1659
1660 /* If we have pre-computed the values to put in the registers in
1661 the case of non-aligned structures, copy them in now. */
1662
1663 else if (args[i].n_aligned_regs != 0)
1664 for (j = 0; j < args[i].n_aligned_regs; j++)
1665 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1666 args[i].aligned_regs[j]);
1667
1668 else if (partial == 0 || args[i].pass_on_stack)
1669 {
1670 rtx mem = validize_mem (args[i].value);
1671
1672 /* Check for overlap with already clobbered argument area. */
1673 if (is_sibcall
1674 && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1675 size))
1676 *sibcall_failure = 1;
1677
1678 /* Handle a BLKmode that needs shifting. */
1679 if (nregs == 1 && size < UNITS_PER_WORD
1680 #ifdef BLOCK_REG_PADDING
1681 && args[i].locate.where_pad == downward
1682 #else
1683 && BYTES_BIG_ENDIAN
1684 #endif
1685 )
1686 {
1687 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1688 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1689 rtx x = gen_reg_rtx (word_mode);
1690 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1691 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1692 : LSHIFT_EXPR;
1693
1694 emit_move_insn (x, tem);
1695 x = expand_shift (dir, word_mode, x,
1696 build_int_cst (NULL_TREE, shift),
1697 ri, 1);
1698 if (x != ri)
1699 emit_move_insn (ri, x);
1700 }
1701 else
1702 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1703 }
1704
1705 /* When a parameter is a block, and perhaps in other cases, it is
1706 possible that it did a load from an argument slot that was
1707 already clobbered. */
1708 if (is_sibcall
1709 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1710 *sibcall_failure = 1;
1711
1712 /* Handle calls that pass values in multiple non-contiguous
1713 locations. The Irix 6 ABI has examples of this. */
1714 if (GET_CODE (reg) == PARALLEL)
1715 use_group_regs (call_fusage, reg);
1716 else if (nregs == -1)
1717 use_reg (call_fusage, reg);
1718 else if (nregs > 0)
1719 use_regs (call_fusage, REGNO (reg), nregs);
1720 }
1721 }
1722 }
1723
1724 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1725 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1726 bytes, then we would need to push some additional bytes to pad the
1727 arguments. So, we compute an adjust to the stack pointer for an
1728 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1729 bytes. Then, when the arguments are pushed the stack will be perfectly
1730 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1731 be popped after the call. Returns the adjustment. */
1732
1733 static int
1734 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1735 struct args_size *args_size,
1736 unsigned int preferred_unit_stack_boundary)
1737 {
1738 /* The number of bytes to pop so that the stack will be
1739 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1740 HOST_WIDE_INT adjustment;
1741 /* The alignment of the stack after the arguments are pushed, if we
1742 just pushed the arguments without adjust the stack here. */
1743 unsigned HOST_WIDE_INT unadjusted_alignment;
1744
1745 unadjusted_alignment
1746 = ((stack_pointer_delta + unadjusted_args_size)
1747 % preferred_unit_stack_boundary);
1748
1749 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1750 as possible -- leaving just enough left to cancel out the
1751 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1752 PENDING_STACK_ADJUST is non-negative, and congruent to
1753 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1754
1755 /* Begin by trying to pop all the bytes. */
1756 unadjusted_alignment
1757 = (unadjusted_alignment
1758 - (pending_stack_adjust % preferred_unit_stack_boundary));
1759 adjustment = pending_stack_adjust;
1760 /* Push enough additional bytes that the stack will be aligned
1761 after the arguments are pushed. */
1762 if (preferred_unit_stack_boundary > 1)
1763 {
1764 if (unadjusted_alignment > 0)
1765 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1766 else
1767 adjustment += unadjusted_alignment;
1768 }
1769
1770 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1771 bytes after the call. The right number is the entire
1772 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1773 by the arguments in the first place. */
1774 args_size->constant
1775 = pending_stack_adjust - adjustment + unadjusted_args_size;
1776
1777 return adjustment;
1778 }
1779
1780 /* Scan X expression if it does not dereference any argument slots
1781 we already clobbered by tail call arguments (as noted in stored_args_map
1782 bitmap).
1783 Return nonzero if X expression dereferences such argument slots,
1784 zero otherwise. */
1785
1786 static int
1787 check_sibcall_argument_overlap_1 (rtx x)
1788 {
1789 RTX_CODE code;
1790 int i, j;
1791 const char *fmt;
1792
1793 if (x == NULL_RTX)
1794 return 0;
1795
1796 code = GET_CODE (x);
1797
1798 if (code == MEM)
1799 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1800 GET_MODE_SIZE (GET_MODE (x)));
1801
1802 /* Scan all subexpressions. */
1803 fmt = GET_RTX_FORMAT (code);
1804 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1805 {
1806 if (*fmt == 'e')
1807 {
1808 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1809 return 1;
1810 }
1811 else if (*fmt == 'E')
1812 {
1813 for (j = 0; j < XVECLEN (x, i); j++)
1814 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1815 return 1;
1816 }
1817 }
1818 return 0;
1819 }
1820
1821 /* Scan sequence after INSN if it does not dereference any argument slots
1822 we already clobbered by tail call arguments (as noted in stored_args_map
1823 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1824 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1825 should be 0). Return nonzero if sequence after INSN dereferences such argument
1826 slots, zero otherwise. */
1827
1828 static int
1829 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1830 {
1831 int low, high;
1832
1833 if (insn == NULL_RTX)
1834 insn = get_insns ();
1835 else
1836 insn = NEXT_INSN (insn);
1837
1838 for (; insn; insn = NEXT_INSN (insn))
1839 if (INSN_P (insn)
1840 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1841 break;
1842
1843 if (mark_stored_args_map)
1844 {
1845 #ifdef ARGS_GROW_DOWNWARD
1846 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1847 #else
1848 low = arg->locate.slot_offset.constant;
1849 #endif
1850
1851 for (high = low + arg->locate.size.constant; low < high; low++)
1852 SET_BIT (stored_args_map, low);
1853 }
1854 return insn != NULL_RTX;
1855 }
1856
1857 /* Given that a function returns a value of mode MODE at the most
1858 significant end of hard register VALUE, shift VALUE left or right
1859 as specified by LEFT_P. Return true if some action was needed. */
1860
1861 bool
1862 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1863 {
1864 HOST_WIDE_INT shift;
1865
1866 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1867 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1868 if (shift == 0)
1869 return false;
1870
1871 /* Use ashr rather than lshr for right shifts. This is for the benefit
1872 of the MIPS port, which requires SImode values to be sign-extended
1873 when stored in 64-bit registers. */
1874 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1875 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1876 gcc_unreachable ();
1877 return true;
1878 }
1879
1880 /* If X is a likely-spilled register value, copy it to a pseudo
1881 register and return that register. Return X otherwise. */
1882
1883 static rtx
1884 avoid_likely_spilled_reg (rtx x)
1885 {
1886 rtx new_rtx;
1887
1888 if (REG_P (x)
1889 && HARD_REGISTER_P (x)
1890 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
1891 {
1892 /* Make sure that we generate a REG rather than a CONCAT.
1893 Moves into CONCATs can need nontrivial instructions,
1894 and the whole point of this function is to avoid
1895 using the hard register directly in such a situation. */
1896 generating_concat_p = 0;
1897 new_rtx = gen_reg_rtx (GET_MODE (x));
1898 generating_concat_p = 1;
1899 emit_move_insn (new_rtx, x);
1900 return new_rtx;
1901 }
1902 return x;
1903 }
1904
1905 /* Generate all the code for a CALL_EXPR exp
1906 and return an rtx for its value.
1907 Store the value in TARGET (specified as an rtx) if convenient.
1908 If the value is stored in TARGET then TARGET is returned.
1909 If IGNORE is nonzero, then we ignore the value of the function call. */
1910
1911 rtx
1912 expand_call (tree exp, rtx target, int ignore)
1913 {
1914 /* Nonzero if we are currently expanding a call. */
1915 static int currently_expanding_call = 0;
1916
1917 /* RTX for the function to be called. */
1918 rtx funexp;
1919 /* Sequence of insns to perform a normal "call". */
1920 rtx normal_call_insns = NULL_RTX;
1921 /* Sequence of insns to perform a tail "call". */
1922 rtx tail_call_insns = NULL_RTX;
1923 /* Data type of the function. */
1924 tree funtype;
1925 tree type_arg_types;
1926 tree rettype;
1927 /* Declaration of the function being called,
1928 or 0 if the function is computed (not known by name). */
1929 tree fndecl = 0;
1930 /* The type of the function being called. */
1931 tree fntype;
1932 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1933 int pass;
1934
1935 /* Register in which non-BLKmode value will be returned,
1936 or 0 if no value or if value is BLKmode. */
1937 rtx valreg;
1938 /* Address where we should return a BLKmode value;
1939 0 if value not BLKmode. */
1940 rtx structure_value_addr = 0;
1941 /* Nonzero if that address is being passed by treating it as
1942 an extra, implicit first parameter. Otherwise,
1943 it is passed by being copied directly into struct_value_rtx. */
1944 int structure_value_addr_parm = 0;
1945 /* Holds the value of implicit argument for the struct value. */
1946 tree structure_value_addr_value = NULL_TREE;
1947 /* Size of aggregate value wanted, or zero if none wanted
1948 or if we are using the non-reentrant PCC calling convention
1949 or expecting the value in registers. */
1950 HOST_WIDE_INT struct_value_size = 0;
1951 /* Nonzero if called function returns an aggregate in memory PCC style,
1952 by returning the address of where to find it. */
1953 int pcc_struct_value = 0;
1954 rtx struct_value = 0;
1955
1956 /* Number of actual parameters in this call, including struct value addr. */
1957 int num_actuals;
1958 /* Number of named args. Args after this are anonymous ones
1959 and they must all go on the stack. */
1960 int n_named_args;
1961 /* Number of complex actual arguments that need to be split. */
1962 int num_complex_actuals = 0;
1963
1964 /* Vector of information about each argument.
1965 Arguments are numbered in the order they will be pushed,
1966 not the order they are written. */
1967 struct arg_data *args;
1968
1969 /* Total size in bytes of all the stack-parms scanned so far. */
1970 struct args_size args_size;
1971 struct args_size adjusted_args_size;
1972 /* Size of arguments before any adjustments (such as rounding). */
1973 int unadjusted_args_size;
1974 /* Data on reg parms scanned so far. */
1975 CUMULATIVE_ARGS args_so_far;
1976 /* Nonzero if a reg parm has been scanned. */
1977 int reg_parm_seen;
1978 /* Nonzero if this is an indirect function call. */
1979
1980 /* Nonzero if we must avoid push-insns in the args for this call.
1981 If stack space is allocated for register parameters, but not by the
1982 caller, then it is preallocated in the fixed part of the stack frame.
1983 So the entire argument block must then be preallocated (i.e., we
1984 ignore PUSH_ROUNDING in that case). */
1985
1986 int must_preallocate = !PUSH_ARGS;
1987
1988 /* Size of the stack reserved for parameter registers. */
1989 int reg_parm_stack_space = 0;
1990
1991 /* Address of space preallocated for stack parms
1992 (on machines that lack push insns), or 0 if space not preallocated. */
1993 rtx argblock = 0;
1994
1995 /* Mask of ECF_ flags. */
1996 int flags = 0;
1997 #ifdef REG_PARM_STACK_SPACE
1998 /* Define the boundary of the register parm stack space that needs to be
1999 saved, if any. */
2000 int low_to_save, high_to_save;
2001 rtx save_area = 0; /* Place that it is saved */
2002 #endif
2003
2004 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2005 char *initial_stack_usage_map = stack_usage_map;
2006 char *stack_usage_map_buf = NULL;
2007
2008 int old_stack_allocated;
2009
2010 /* State variables to track stack modifications. */
2011 rtx old_stack_level = 0;
2012 int old_stack_arg_under_construction = 0;
2013 int old_pending_adj = 0;
2014 int old_inhibit_defer_pop = inhibit_defer_pop;
2015
2016 /* Some stack pointer alterations we make are performed via
2017 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2018 which we then also need to save/restore along the way. */
2019 int old_stack_pointer_delta = 0;
2020
2021 rtx call_fusage;
2022 tree addr = CALL_EXPR_FN (exp);
2023 int i;
2024 /* The alignment of the stack, in bits. */
2025 unsigned HOST_WIDE_INT preferred_stack_boundary;
2026 /* The alignment of the stack, in bytes. */
2027 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2028 /* The static chain value to use for this call. */
2029 rtx static_chain_value;
2030 /* See if this is "nothrow" function call. */
2031 if (TREE_NOTHROW (exp))
2032 flags |= ECF_NOTHROW;
2033
2034 /* See if we can find a DECL-node for the actual function, and get the
2035 function attributes (flags) from the function decl or type node. */
2036 fndecl = get_callee_fndecl (exp);
2037 if (fndecl)
2038 {
2039 fntype = TREE_TYPE (fndecl);
2040 flags |= flags_from_decl_or_type (fndecl);
2041 }
2042 else
2043 {
2044 fntype = TREE_TYPE (TREE_TYPE (addr));
2045 flags |= flags_from_decl_or_type (fntype);
2046 }
2047 rettype = TREE_TYPE (exp);
2048
2049 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2050
2051 /* Warn if this value is an aggregate type,
2052 regardless of which calling convention we are using for it. */
2053 if (AGGREGATE_TYPE_P (rettype))
2054 warning (OPT_Waggregate_return, "function call has aggregate value");
2055
2056 /* If the result of a non looping pure or const function call is
2057 ignored (or void), and none of its arguments are volatile, we can
2058 avoid expanding the call and just evaluate the arguments for
2059 side-effects. */
2060 if ((flags & (ECF_CONST | ECF_PURE))
2061 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2062 && (ignore || target == const0_rtx
2063 || TYPE_MODE (rettype) == VOIDmode))
2064 {
2065 bool volatilep = false;
2066 tree arg;
2067 call_expr_arg_iterator iter;
2068
2069 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2070 if (TREE_THIS_VOLATILE (arg))
2071 {
2072 volatilep = true;
2073 break;
2074 }
2075
2076 if (! volatilep)
2077 {
2078 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2079 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2080 return const0_rtx;
2081 }
2082 }
2083
2084 #ifdef REG_PARM_STACK_SPACE
2085 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2086 #endif
2087
2088 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2089 && reg_parm_stack_space > 0 && PUSH_ARGS)
2090 must_preallocate = 1;
2091
2092 /* Set up a place to return a structure. */
2093
2094 /* Cater to broken compilers. */
2095 if (aggregate_value_p (exp, (!fndecl ? fntype : fndecl)))
2096 {
2097 /* This call returns a big structure. */
2098 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2099
2100 #ifdef PCC_STATIC_STRUCT_RETURN
2101 {
2102 pcc_struct_value = 1;
2103 }
2104 #else /* not PCC_STATIC_STRUCT_RETURN */
2105 {
2106 struct_value_size = int_size_in_bytes (rettype);
2107
2108 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2109 structure_value_addr = XEXP (target, 0);
2110 else
2111 {
2112 /* For variable-sized objects, we must be called with a target
2113 specified. If we were to allocate space on the stack here,
2114 we would have no way of knowing when to free it. */
2115 rtx d = assign_temp (rettype, 0, 1, 1);
2116
2117 mark_temp_addr_taken (d);
2118 structure_value_addr = XEXP (d, 0);
2119 target = 0;
2120 }
2121 }
2122 #endif /* not PCC_STATIC_STRUCT_RETURN */
2123 }
2124
2125 /* Figure out the amount to which the stack should be aligned. */
2126 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2127 if (fndecl)
2128 {
2129 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2130 /* Without automatic stack alignment, we can't increase preferred
2131 stack boundary. With automatic stack alignment, it is
2132 unnecessary since unless we can guarantee that all callers will
2133 align the outgoing stack properly, callee has to align its
2134 stack anyway. */
2135 if (i
2136 && i->preferred_incoming_stack_boundary
2137 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2138 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2139 }
2140
2141 /* Operand 0 is a pointer-to-function; get the type of the function. */
2142 funtype = TREE_TYPE (addr);
2143 gcc_assert (POINTER_TYPE_P (funtype));
2144 funtype = TREE_TYPE (funtype);
2145
2146 /* Count whether there are actual complex arguments that need to be split
2147 into their real and imaginary parts. Munge the type_arg_types
2148 appropriately here as well. */
2149 if (targetm.calls.split_complex_arg)
2150 {
2151 call_expr_arg_iterator iter;
2152 tree arg;
2153 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2154 {
2155 tree type = TREE_TYPE (arg);
2156 if (type && TREE_CODE (type) == COMPLEX_TYPE
2157 && targetm.calls.split_complex_arg (type))
2158 num_complex_actuals++;
2159 }
2160 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2161 }
2162 else
2163 type_arg_types = TYPE_ARG_TYPES (funtype);
2164
2165 if (flags & ECF_MAY_BE_ALLOCA)
2166 cfun->calls_alloca = 1;
2167
2168 /* If struct_value_rtx is 0, it means pass the address
2169 as if it were an extra parameter. Put the argument expression
2170 in structure_value_addr_value. */
2171 if (structure_value_addr && struct_value == 0)
2172 {
2173 /* If structure_value_addr is a REG other than
2174 virtual_outgoing_args_rtx, we can use always use it. If it
2175 is not a REG, we must always copy it into a register.
2176 If it is virtual_outgoing_args_rtx, we must copy it to another
2177 register in some cases. */
2178 rtx temp = (!REG_P (structure_value_addr)
2179 || (ACCUMULATE_OUTGOING_ARGS
2180 && stack_arg_under_construction
2181 && structure_value_addr == virtual_outgoing_args_rtx)
2182 ? copy_addr_to_reg (convert_memory_address
2183 (Pmode, structure_value_addr))
2184 : structure_value_addr);
2185
2186 structure_value_addr_value =
2187 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2188 structure_value_addr_parm = 1;
2189 }
2190
2191 /* Count the arguments and set NUM_ACTUALS. */
2192 num_actuals =
2193 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2194
2195 /* Compute number of named args.
2196 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2197
2198 if (type_arg_types != 0)
2199 n_named_args
2200 = (list_length (type_arg_types)
2201 /* Count the struct value address, if it is passed as a parm. */
2202 + structure_value_addr_parm);
2203 else
2204 /* If we know nothing, treat all args as named. */
2205 n_named_args = num_actuals;
2206
2207 /* Start updating where the next arg would go.
2208
2209 On some machines (such as the PA) indirect calls have a different
2210 calling convention than normal calls. The fourth argument in
2211 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2212 or not. */
2213 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2214
2215 /* Now possibly adjust the number of named args.
2216 Normally, don't include the last named arg if anonymous args follow.
2217 We do include the last named arg if
2218 targetm.calls.strict_argument_naming() returns nonzero.
2219 (If no anonymous args follow, the result of list_length is actually
2220 one too large. This is harmless.)
2221
2222 If targetm.calls.pretend_outgoing_varargs_named() returns
2223 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2224 this machine will be able to place unnamed args that were passed
2225 in registers into the stack. So treat all args as named. This
2226 allows the insns emitting for a specific argument list to be
2227 independent of the function declaration.
2228
2229 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2230 we do not have any reliable way to pass unnamed args in
2231 registers, so we must force them into memory. */
2232
2233 if (type_arg_types != 0
2234 && targetm.calls.strict_argument_naming (&args_so_far))
2235 ;
2236 else if (type_arg_types != 0
2237 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2238 /* Don't include the last named arg. */
2239 --n_named_args;
2240 else
2241 /* Treat all args as named. */
2242 n_named_args = num_actuals;
2243
2244 /* Make a vector to hold all the information about each arg. */
2245 args = XALLOCAVEC (struct arg_data, num_actuals);
2246 memset (args, 0, num_actuals * sizeof (struct arg_data));
2247
2248 /* Build up entries in the ARGS array, compute the size of the
2249 arguments into ARGS_SIZE, etc. */
2250 initialize_argument_information (num_actuals, args, &args_size,
2251 n_named_args, exp,
2252 structure_value_addr_value, fndecl, fntype,
2253 &args_so_far, reg_parm_stack_space,
2254 &old_stack_level, &old_pending_adj,
2255 &must_preallocate, &flags,
2256 &try_tail_call, CALL_FROM_THUNK_P (exp));
2257
2258 if (args_size.var)
2259 must_preallocate = 1;
2260
2261 /* Now make final decision about preallocating stack space. */
2262 must_preallocate = finalize_must_preallocate (must_preallocate,
2263 num_actuals, args,
2264 &args_size);
2265
2266 /* If the structure value address will reference the stack pointer, we
2267 must stabilize it. We don't need to do this if we know that we are
2268 not going to adjust the stack pointer in processing this call. */
2269
2270 if (structure_value_addr
2271 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2272 || reg_mentioned_p (virtual_outgoing_args_rtx,
2273 structure_value_addr))
2274 && (args_size.var
2275 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2276 structure_value_addr = copy_to_reg (structure_value_addr);
2277
2278 /* Tail calls can make things harder to debug, and we've traditionally
2279 pushed these optimizations into -O2. Don't try if we're already
2280 expanding a call, as that means we're an argument. Don't try if
2281 there's cleanups, as we know there's code to follow the call. */
2282
2283 if (currently_expanding_call++ != 0
2284 || !flag_optimize_sibling_calls
2285 || args_size.var
2286 || dbg_cnt (tail_call) == false)
2287 try_tail_call = 0;
2288
2289 /* Rest of purposes for tail call optimizations to fail. */
2290 if (
2291 #ifdef HAVE_sibcall_epilogue
2292 !HAVE_sibcall_epilogue
2293 #else
2294 1
2295 #endif
2296 || !try_tail_call
2297 /* Doing sibling call optimization needs some work, since
2298 structure_value_addr can be allocated on the stack.
2299 It does not seem worth the effort since few optimizable
2300 sibling calls will return a structure. */
2301 || structure_value_addr != NULL_RTX
2302 #ifdef REG_PARM_STACK_SPACE
2303 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2304 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2305 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2306 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2307 #endif
2308 /* Check whether the target is able to optimize the call
2309 into a sibcall. */
2310 || !targetm.function_ok_for_sibcall (fndecl, exp)
2311 /* Functions that do not return exactly once may not be sibcall
2312 optimized. */
2313 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2314 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2315 /* If the called function is nested in the current one, it might access
2316 some of the caller's arguments, but could clobber them beforehand if
2317 the argument areas are shared. */
2318 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2319 /* If this function requires more stack slots than the current
2320 function, we cannot change it into a sibling call.
2321 crtl->args.pretend_args_size is not part of the
2322 stack allocated by our caller. */
2323 || args_size.constant > (crtl->args.size
2324 - crtl->args.pretend_args_size)
2325 /* If the callee pops its own arguments, then it must pop exactly
2326 the same number of arguments as the current function. */
2327 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2328 != RETURN_POPS_ARGS (current_function_decl,
2329 TREE_TYPE (current_function_decl),
2330 crtl->args.size))
2331 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2332 try_tail_call = 0;
2333
2334 /* Check if caller and callee disagree in promotion of function
2335 return value. */
2336 if (try_tail_call)
2337 {
2338 enum machine_mode caller_mode, caller_promoted_mode;
2339 enum machine_mode callee_mode, callee_promoted_mode;
2340 int caller_unsignedp, callee_unsignedp;
2341 tree caller_res = DECL_RESULT (current_function_decl);
2342
2343 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2344 caller_mode = DECL_MODE (caller_res);
2345 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2346 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2347 caller_promoted_mode
2348 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2349 &caller_unsignedp,
2350 TREE_TYPE (current_function_decl), 1);
2351 callee_promoted_mode
2352 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2353 &callee_unsignedp,
2354 funtype, 1);
2355 if (caller_mode != VOIDmode
2356 && (caller_promoted_mode != callee_promoted_mode
2357 || ((caller_mode != caller_promoted_mode
2358 || callee_mode != callee_promoted_mode)
2359 && (caller_unsignedp != callee_unsignedp
2360 || GET_MODE_BITSIZE (caller_mode)
2361 < GET_MODE_BITSIZE (callee_mode)))))
2362 try_tail_call = 0;
2363 }
2364
2365 /* Ensure current function's preferred stack boundary is at least
2366 what we need. Stack alignment may also increase preferred stack
2367 boundary. */
2368 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2369 crtl->preferred_stack_boundary = preferred_stack_boundary;
2370 else
2371 preferred_stack_boundary = crtl->preferred_stack_boundary;
2372
2373 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2374
2375 /* We want to make two insn chains; one for a sibling call, the other
2376 for a normal call. We will select one of the two chains after
2377 initial RTL generation is complete. */
2378 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2379 {
2380 int sibcall_failure = 0;
2381 /* We want to emit any pending stack adjustments before the tail
2382 recursion "call". That way we know any adjustment after the tail
2383 recursion call can be ignored if we indeed use the tail
2384 call expansion. */
2385 int save_pending_stack_adjust = 0;
2386 int save_stack_pointer_delta = 0;
2387 rtx insns;
2388 rtx before_call, next_arg_reg, after_args;
2389
2390 if (pass == 0)
2391 {
2392 /* State variables we need to save and restore between
2393 iterations. */
2394 save_pending_stack_adjust = pending_stack_adjust;
2395 save_stack_pointer_delta = stack_pointer_delta;
2396 }
2397 if (pass)
2398 flags &= ~ECF_SIBCALL;
2399 else
2400 flags |= ECF_SIBCALL;
2401
2402 /* Other state variables that we must reinitialize each time
2403 through the loop (that are not initialized by the loop itself). */
2404 argblock = 0;
2405 call_fusage = 0;
2406
2407 /* Start a new sequence for the normal call case.
2408
2409 From this point on, if the sibling call fails, we want to set
2410 sibcall_failure instead of continuing the loop. */
2411 start_sequence ();
2412
2413 /* Don't let pending stack adjusts add up to too much.
2414 Also, do all pending adjustments now if there is any chance
2415 this might be a call to alloca or if we are expanding a sibling
2416 call sequence.
2417 Also do the adjustments before a throwing call, otherwise
2418 exception handling can fail; PR 19225. */
2419 if (pending_stack_adjust >= 32
2420 || (pending_stack_adjust > 0
2421 && (flags & ECF_MAY_BE_ALLOCA))
2422 || (pending_stack_adjust > 0
2423 && flag_exceptions && !(flags & ECF_NOTHROW))
2424 || pass == 0)
2425 do_pending_stack_adjust ();
2426
2427 /* Precompute any arguments as needed. */
2428 if (pass)
2429 precompute_arguments (num_actuals, args);
2430
2431 /* Now we are about to start emitting insns that can be deleted
2432 if a libcall is deleted. */
2433 if (pass && (flags & ECF_MALLOC))
2434 start_sequence ();
2435
2436 if (pass == 0 && crtl->stack_protect_guard)
2437 stack_protect_epilogue ();
2438
2439 adjusted_args_size = args_size;
2440 /* Compute the actual size of the argument block required. The variable
2441 and constant sizes must be combined, the size may have to be rounded,
2442 and there may be a minimum required size. When generating a sibcall
2443 pattern, do not round up, since we'll be re-using whatever space our
2444 caller provided. */
2445 unadjusted_args_size
2446 = compute_argument_block_size (reg_parm_stack_space,
2447 &adjusted_args_size,
2448 fndecl, fntype,
2449 (pass == 0 ? 0
2450 : preferred_stack_boundary));
2451
2452 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2453
2454 /* The argument block when performing a sibling call is the
2455 incoming argument block. */
2456 if (pass == 0)
2457 {
2458 argblock = crtl->args.internal_arg_pointer;
2459 argblock
2460 #ifdef STACK_GROWS_DOWNWARD
2461 = plus_constant (argblock, crtl->args.pretend_args_size);
2462 #else
2463 = plus_constant (argblock, -crtl->args.pretend_args_size);
2464 #endif
2465 stored_args_map = sbitmap_alloc (args_size.constant);
2466 sbitmap_zero (stored_args_map);
2467 }
2468
2469 /* If we have no actual push instructions, or shouldn't use them,
2470 make space for all args right now. */
2471 else if (adjusted_args_size.var != 0)
2472 {
2473 if (old_stack_level == 0)
2474 {
2475 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2476 old_stack_pointer_delta = stack_pointer_delta;
2477 old_pending_adj = pending_stack_adjust;
2478 pending_stack_adjust = 0;
2479 /* stack_arg_under_construction says whether a stack arg is
2480 being constructed at the old stack level. Pushing the stack
2481 gets a clean outgoing argument block. */
2482 old_stack_arg_under_construction = stack_arg_under_construction;
2483 stack_arg_under_construction = 0;
2484 }
2485 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2486 }
2487 else
2488 {
2489 /* Note that we must go through the motions of allocating an argument
2490 block even if the size is zero because we may be storing args
2491 in the area reserved for register arguments, which may be part of
2492 the stack frame. */
2493
2494 int needed = adjusted_args_size.constant;
2495
2496 /* Store the maximum argument space used. It will be pushed by
2497 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2498 checking). */
2499
2500 if (needed > crtl->outgoing_args_size)
2501 crtl->outgoing_args_size = needed;
2502
2503 if (must_preallocate)
2504 {
2505 if (ACCUMULATE_OUTGOING_ARGS)
2506 {
2507 /* Since the stack pointer will never be pushed, it is
2508 possible for the evaluation of a parm to clobber
2509 something we have already written to the stack.
2510 Since most function calls on RISC machines do not use
2511 the stack, this is uncommon, but must work correctly.
2512
2513 Therefore, we save any area of the stack that was already
2514 written and that we are using. Here we set up to do this
2515 by making a new stack usage map from the old one. The
2516 actual save will be done by store_one_arg.
2517
2518 Another approach might be to try to reorder the argument
2519 evaluations to avoid this conflicting stack usage. */
2520
2521 /* Since we will be writing into the entire argument area,
2522 the map must be allocated for its entire size, not just
2523 the part that is the responsibility of the caller. */
2524 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2525 needed += reg_parm_stack_space;
2526
2527 #ifdef ARGS_GROW_DOWNWARD
2528 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2529 needed + 1);
2530 #else
2531 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2532 needed);
2533 #endif
2534 if (stack_usage_map_buf)
2535 free (stack_usage_map_buf);
2536 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2537 stack_usage_map = stack_usage_map_buf;
2538
2539 if (initial_highest_arg_in_use)
2540 memcpy (stack_usage_map, initial_stack_usage_map,
2541 initial_highest_arg_in_use);
2542
2543 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2544 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2545 (highest_outgoing_arg_in_use
2546 - initial_highest_arg_in_use));
2547 needed = 0;
2548
2549 /* The address of the outgoing argument list must not be
2550 copied to a register here, because argblock would be left
2551 pointing to the wrong place after the call to
2552 allocate_dynamic_stack_space below. */
2553
2554 argblock = virtual_outgoing_args_rtx;
2555 }
2556 else
2557 {
2558 if (inhibit_defer_pop == 0)
2559 {
2560 /* Try to reuse some or all of the pending_stack_adjust
2561 to get this space. */
2562 needed
2563 = (combine_pending_stack_adjustment_and_call
2564 (unadjusted_args_size,
2565 &adjusted_args_size,
2566 preferred_unit_stack_boundary));
2567
2568 /* combine_pending_stack_adjustment_and_call computes
2569 an adjustment before the arguments are allocated.
2570 Account for them and see whether or not the stack
2571 needs to go up or down. */
2572 needed = unadjusted_args_size - needed;
2573
2574 if (needed < 0)
2575 {
2576 /* We're releasing stack space. */
2577 /* ??? We can avoid any adjustment at all if we're
2578 already aligned. FIXME. */
2579 pending_stack_adjust = -needed;
2580 do_pending_stack_adjust ();
2581 needed = 0;
2582 }
2583 else
2584 /* We need to allocate space. We'll do that in
2585 push_block below. */
2586 pending_stack_adjust = 0;
2587 }
2588
2589 /* Special case this because overhead of `push_block' in
2590 this case is non-trivial. */
2591 if (needed == 0)
2592 argblock = virtual_outgoing_args_rtx;
2593 else
2594 {
2595 argblock = push_block (GEN_INT (needed), 0, 0);
2596 #ifdef ARGS_GROW_DOWNWARD
2597 argblock = plus_constant (argblock, needed);
2598 #endif
2599 }
2600
2601 /* We only really need to call `copy_to_reg' in the case
2602 where push insns are going to be used to pass ARGBLOCK
2603 to a function call in ARGS. In that case, the stack
2604 pointer changes value from the allocation point to the
2605 call point, and hence the value of
2606 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2607 as well always do it. */
2608 argblock = copy_to_reg (argblock);
2609 }
2610 }
2611 }
2612
2613 if (ACCUMULATE_OUTGOING_ARGS)
2614 {
2615 /* The save/restore code in store_one_arg handles all
2616 cases except one: a constructor call (including a C
2617 function returning a BLKmode struct) to initialize
2618 an argument. */
2619 if (stack_arg_under_construction)
2620 {
2621 rtx push_size
2622 = GEN_INT (adjusted_args_size.constant
2623 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2624 : TREE_TYPE (fndecl))) ? 0
2625 : reg_parm_stack_space));
2626 if (old_stack_level == 0)
2627 {
2628 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2629 NULL_RTX);
2630 old_stack_pointer_delta = stack_pointer_delta;
2631 old_pending_adj = pending_stack_adjust;
2632 pending_stack_adjust = 0;
2633 /* stack_arg_under_construction says whether a stack
2634 arg is being constructed at the old stack level.
2635 Pushing the stack gets a clean outgoing argument
2636 block. */
2637 old_stack_arg_under_construction
2638 = stack_arg_under_construction;
2639 stack_arg_under_construction = 0;
2640 /* Make a new map for the new argument list. */
2641 if (stack_usage_map_buf)
2642 free (stack_usage_map_buf);
2643 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2644 stack_usage_map = stack_usage_map_buf;
2645 highest_outgoing_arg_in_use = 0;
2646 }
2647 allocate_dynamic_stack_space (push_size, NULL_RTX,
2648 BITS_PER_UNIT);
2649 }
2650
2651 /* If argument evaluation might modify the stack pointer,
2652 copy the address of the argument list to a register. */
2653 for (i = 0; i < num_actuals; i++)
2654 if (args[i].pass_on_stack)
2655 {
2656 argblock = copy_addr_to_reg (argblock);
2657 break;
2658 }
2659 }
2660
2661 compute_argument_addresses (args, argblock, num_actuals);
2662
2663 /* If we push args individually in reverse order, perform stack alignment
2664 before the first push (the last arg). */
2665 if (PUSH_ARGS_REVERSED && argblock == 0
2666 && adjusted_args_size.constant != unadjusted_args_size)
2667 {
2668 /* When the stack adjustment is pending, we get better code
2669 by combining the adjustments. */
2670 if (pending_stack_adjust
2671 && ! inhibit_defer_pop)
2672 {
2673 pending_stack_adjust
2674 = (combine_pending_stack_adjustment_and_call
2675 (unadjusted_args_size,
2676 &adjusted_args_size,
2677 preferred_unit_stack_boundary));
2678 do_pending_stack_adjust ();
2679 }
2680 else if (argblock == 0)
2681 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2682 - unadjusted_args_size));
2683 }
2684 /* Now that the stack is properly aligned, pops can't safely
2685 be deferred during the evaluation of the arguments. */
2686 NO_DEFER_POP;
2687
2688 funexp = rtx_for_function_call (fndecl, addr);
2689
2690 /* Figure out the register where the value, if any, will come back. */
2691 valreg = 0;
2692 if (TYPE_MODE (rettype) != VOIDmode
2693 && ! structure_value_addr)
2694 {
2695 if (pcc_struct_value)
2696 valreg = hard_function_value (build_pointer_type (rettype),
2697 fndecl, NULL, (pass == 0));
2698 else
2699 valreg = hard_function_value (rettype, fndecl, fntype,
2700 (pass == 0));
2701
2702 /* If VALREG is a PARALLEL whose first member has a zero
2703 offset, use that. This is for targets such as m68k that
2704 return the same value in multiple places. */
2705 if (GET_CODE (valreg) == PARALLEL)
2706 {
2707 rtx elem = XVECEXP (valreg, 0, 0);
2708 rtx where = XEXP (elem, 0);
2709 rtx offset = XEXP (elem, 1);
2710 if (offset == const0_rtx
2711 && GET_MODE (where) == GET_MODE (valreg))
2712 valreg = where;
2713 }
2714 }
2715
2716 /* Precompute all register parameters. It isn't safe to compute anything
2717 once we have started filling any specific hard regs. */
2718 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2719
2720 if (CALL_EXPR_STATIC_CHAIN (exp))
2721 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2722 else
2723 static_chain_value = 0;
2724
2725 #ifdef REG_PARM_STACK_SPACE
2726 /* Save the fixed argument area if it's part of the caller's frame and
2727 is clobbered by argument setup for this call. */
2728 if (ACCUMULATE_OUTGOING_ARGS && pass)
2729 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2730 &low_to_save, &high_to_save);
2731 #endif
2732
2733 /* Now store (and compute if necessary) all non-register parms.
2734 These come before register parms, since they can require block-moves,
2735 which could clobber the registers used for register parms.
2736 Parms which have partial registers are not stored here,
2737 but we do preallocate space here if they want that. */
2738
2739 for (i = 0; i < num_actuals; i++)
2740 {
2741 if (args[i].reg == 0 || args[i].pass_on_stack)
2742 {
2743 rtx before_arg = get_last_insn ();
2744
2745 if (store_one_arg (&args[i], argblock, flags,
2746 adjusted_args_size.var != 0,
2747 reg_parm_stack_space)
2748 || (pass == 0
2749 && check_sibcall_argument_overlap (before_arg,
2750 &args[i], 1)))
2751 sibcall_failure = 1;
2752 }
2753
2754 if (((flags & ECF_CONST)
2755 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
2756 && args[i].stack)
2757 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2758 gen_rtx_USE (VOIDmode,
2759 args[i].stack),
2760 call_fusage);
2761 }
2762
2763 /* If we have a parm that is passed in registers but not in memory
2764 and whose alignment does not permit a direct copy into registers,
2765 make a group of pseudos that correspond to each register that we
2766 will later fill. */
2767 if (STRICT_ALIGNMENT)
2768 store_unaligned_arguments_into_pseudos (args, num_actuals);
2769
2770 /* Now store any partially-in-registers parm.
2771 This is the last place a block-move can happen. */
2772 if (reg_parm_seen)
2773 for (i = 0; i < num_actuals; i++)
2774 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2775 {
2776 rtx before_arg = get_last_insn ();
2777
2778 if (store_one_arg (&args[i], argblock, flags,
2779 adjusted_args_size.var != 0,
2780 reg_parm_stack_space)
2781 || (pass == 0
2782 && check_sibcall_argument_overlap (before_arg,
2783 &args[i], 1)))
2784 sibcall_failure = 1;
2785 }
2786
2787 /* If we pushed args in forward order, perform stack alignment
2788 after pushing the last arg. */
2789 if (!PUSH_ARGS_REVERSED && argblock == 0)
2790 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2791 - unadjusted_args_size));
2792
2793 /* If register arguments require space on the stack and stack space
2794 was not preallocated, allocate stack space here for arguments
2795 passed in registers. */
2796 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2797 && !ACCUMULATE_OUTGOING_ARGS
2798 && must_preallocate == 0 && reg_parm_stack_space > 0)
2799 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2800
2801 /* Pass the function the address in which to return a
2802 structure value. */
2803 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2804 {
2805 structure_value_addr
2806 = convert_memory_address (Pmode, structure_value_addr);
2807 emit_move_insn (struct_value,
2808 force_reg (Pmode,
2809 force_operand (structure_value_addr,
2810 NULL_RTX)));
2811
2812 if (REG_P (struct_value))
2813 use_reg (&call_fusage, struct_value);
2814 }
2815
2816 after_args = get_last_insn ();
2817 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2818 &call_fusage, reg_parm_seen, pass == 0);
2819
2820 load_register_parameters (args, num_actuals, &call_fusage, flags,
2821 pass == 0, &sibcall_failure);
2822
2823 /* Save a pointer to the last insn before the call, so that we can
2824 later safely search backwards to find the CALL_INSN. */
2825 before_call = get_last_insn ();
2826
2827 /* Set up next argument register. For sibling calls on machines
2828 with register windows this should be the incoming register. */
2829 #ifdef FUNCTION_INCOMING_ARG
2830 if (pass == 0)
2831 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2832 void_type_node, 1);
2833 else
2834 #endif
2835 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2836 void_type_node, 1);
2837
2838 /* All arguments and registers used for the call must be set up by
2839 now! */
2840
2841 /* Stack must be properly aligned now. */
2842 gcc_assert (!pass
2843 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2844
2845 /* Generate the actual call instruction. */
2846 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2847 adjusted_args_size.constant, struct_value_size,
2848 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2849 flags, & args_so_far);
2850
2851 /* If the call setup or the call itself overlaps with anything
2852 of the argument setup we probably clobbered our call address.
2853 In that case we can't do sibcalls. */
2854 if (pass == 0
2855 && check_sibcall_argument_overlap (after_args, 0, 0))
2856 sibcall_failure = 1;
2857
2858 /* If a non-BLKmode value is returned at the most significant end
2859 of a register, shift the register right by the appropriate amount
2860 and update VALREG accordingly. BLKmode values are handled by the
2861 group load/store machinery below. */
2862 if (!structure_value_addr
2863 && !pcc_struct_value
2864 && TYPE_MODE (rettype) != BLKmode
2865 && targetm.calls.return_in_msb (rettype))
2866 {
2867 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
2868 sibcall_failure = 1;
2869 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
2870 }
2871
2872 if (pass && (flags & ECF_MALLOC))
2873 {
2874 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2875 rtx last, insns;
2876
2877 /* The return value from a malloc-like function is a pointer. */
2878 if (TREE_CODE (rettype) == POINTER_TYPE)
2879 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2880
2881 emit_move_insn (temp, valreg);
2882
2883 /* The return value from a malloc-like function can not alias
2884 anything else. */
2885 last = get_last_insn ();
2886 add_reg_note (last, REG_NOALIAS, temp);
2887
2888 /* Write out the sequence. */
2889 insns = get_insns ();
2890 end_sequence ();
2891 emit_insn (insns);
2892 valreg = temp;
2893 }
2894
2895 /* For calls to `setjmp', etc., inform
2896 function.c:setjmp_warnings that it should complain if
2897 nonvolatile values are live. For functions that cannot
2898 return, inform flow that control does not fall through. */
2899
2900 if ((flags & ECF_NORETURN) || pass == 0)
2901 {
2902 /* The barrier must be emitted
2903 immediately after the CALL_INSN. Some ports emit more
2904 than just a CALL_INSN above, so we must search for it here. */
2905
2906 rtx last = get_last_insn ();
2907 while (!CALL_P (last))
2908 {
2909 last = PREV_INSN (last);
2910 /* There was no CALL_INSN? */
2911 gcc_assert (last != before_call);
2912 }
2913
2914 emit_barrier_after (last);
2915
2916 /* Stack adjustments after a noreturn call are dead code.
2917 However when NO_DEFER_POP is in effect, we must preserve
2918 stack_pointer_delta. */
2919 if (inhibit_defer_pop == 0)
2920 {
2921 stack_pointer_delta = old_stack_allocated;
2922 pending_stack_adjust = 0;
2923 }
2924 }
2925
2926 /* If value type not void, return an rtx for the value. */
2927
2928 if (TYPE_MODE (rettype) == VOIDmode
2929 || ignore)
2930 target = const0_rtx;
2931 else if (structure_value_addr)
2932 {
2933 if (target == 0 || !MEM_P (target))
2934 {
2935 target
2936 = gen_rtx_MEM (TYPE_MODE (rettype),
2937 memory_address (TYPE_MODE (rettype),
2938 structure_value_addr));
2939 set_mem_attributes (target, rettype, 1);
2940 }
2941 }
2942 else if (pcc_struct_value)
2943 {
2944 /* This is the special C++ case where we need to
2945 know what the true target was. We take care to
2946 never use this value more than once in one expression. */
2947 target = gen_rtx_MEM (TYPE_MODE (rettype),
2948 copy_to_reg (valreg));
2949 set_mem_attributes (target, rettype, 1);
2950 }
2951 /* Handle calls that return values in multiple non-contiguous locations.
2952 The Irix 6 ABI has examples of this. */
2953 else if (GET_CODE (valreg) == PARALLEL)
2954 {
2955 if (target == 0)
2956 {
2957 /* This will only be assigned once, so it can be readonly. */
2958 tree nt = build_qualified_type (rettype,
2959 (TYPE_QUALS (rettype)
2960 | TYPE_QUAL_CONST));
2961
2962 target = assign_temp (nt, 0, 1, 1);
2963 }
2964
2965 if (! rtx_equal_p (target, valreg))
2966 emit_group_store (target, valreg, rettype,
2967 int_size_in_bytes (rettype));
2968
2969 /* We can not support sibling calls for this case. */
2970 sibcall_failure = 1;
2971 }
2972 else if (target
2973 && GET_MODE (target) == TYPE_MODE (rettype)
2974 && GET_MODE (target) == GET_MODE (valreg))
2975 {
2976 bool may_overlap = false;
2977
2978 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
2979 reg to a plain register. */
2980 if (!REG_P (target) || HARD_REGISTER_P (target))
2981 valreg = avoid_likely_spilled_reg (valreg);
2982
2983 /* If TARGET is a MEM in the argument area, and we have
2984 saved part of the argument area, then we can't store
2985 directly into TARGET as it may get overwritten when we
2986 restore the argument save area below. Don't work too
2987 hard though and simply force TARGET to a register if it
2988 is a MEM; the optimizer is quite likely to sort it out. */
2989 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
2990 for (i = 0; i < num_actuals; i++)
2991 if (args[i].save_area)
2992 {
2993 may_overlap = true;
2994 break;
2995 }
2996
2997 if (may_overlap)
2998 target = copy_to_reg (valreg);
2999 else
3000 {
3001 /* TARGET and VALREG cannot be equal at this point
3002 because the latter would not have
3003 REG_FUNCTION_VALUE_P true, while the former would if
3004 it were referring to the same register.
3005
3006 If they refer to the same register, this move will be
3007 a no-op, except when function inlining is being
3008 done. */
3009 emit_move_insn (target, valreg);
3010
3011 /* If we are setting a MEM, this code must be executed.
3012 Since it is emitted after the call insn, sibcall
3013 optimization cannot be performed in that case. */
3014 if (MEM_P (target))
3015 sibcall_failure = 1;
3016 }
3017 }
3018 else if (TYPE_MODE (rettype) == BLKmode)
3019 {
3020 rtx val = valreg;
3021 if (GET_MODE (val) != BLKmode)
3022 val = avoid_likely_spilled_reg (val);
3023 target = copy_blkmode_from_reg (target, val, rettype);
3024
3025 /* We can not support sibling calls for this case. */
3026 sibcall_failure = 1;
3027 }
3028 else
3029 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3030
3031 /* If we promoted this return value, make the proper SUBREG.
3032 TARGET might be const0_rtx here, so be careful. */
3033 if (REG_P (target)
3034 && TYPE_MODE (rettype) != BLKmode
3035 && GET_MODE (target) != TYPE_MODE (rettype))
3036 {
3037 tree type = rettype;
3038 int unsignedp = TYPE_UNSIGNED (type);
3039 int offset = 0;
3040 enum machine_mode pmode;
3041
3042 /* Ensure we promote as expected, and get the new unsignedness. */
3043 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3044 funtype, 1);
3045 gcc_assert (GET_MODE (target) == pmode);
3046
3047 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3048 && (GET_MODE_SIZE (GET_MODE (target))
3049 > GET_MODE_SIZE (TYPE_MODE (type))))
3050 {
3051 offset = GET_MODE_SIZE (GET_MODE (target))
3052 - GET_MODE_SIZE (TYPE_MODE (type));
3053 if (! BYTES_BIG_ENDIAN)
3054 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3055 else if (! WORDS_BIG_ENDIAN)
3056 offset %= UNITS_PER_WORD;
3057 }
3058
3059 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3060 SUBREG_PROMOTED_VAR_P (target) = 1;
3061 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3062 }
3063
3064 /* If size of args is variable or this was a constructor call for a stack
3065 argument, restore saved stack-pointer value. */
3066
3067 if (old_stack_level)
3068 {
3069 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
3070 stack_pointer_delta = old_stack_pointer_delta;
3071 pending_stack_adjust = old_pending_adj;
3072 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3073 stack_arg_under_construction = old_stack_arg_under_construction;
3074 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3075 stack_usage_map = initial_stack_usage_map;
3076 sibcall_failure = 1;
3077 }
3078 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3079 {
3080 #ifdef REG_PARM_STACK_SPACE
3081 if (save_area)
3082 restore_fixed_argument_area (save_area, argblock,
3083 high_to_save, low_to_save);
3084 #endif
3085
3086 /* If we saved any argument areas, restore them. */
3087 for (i = 0; i < num_actuals; i++)
3088 if (args[i].save_area)
3089 {
3090 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3091 rtx stack_area
3092 = gen_rtx_MEM (save_mode,
3093 memory_address (save_mode,
3094 XEXP (args[i].stack_slot, 0)));
3095
3096 if (save_mode != BLKmode)
3097 emit_move_insn (stack_area, args[i].save_area);
3098 else
3099 emit_block_move (stack_area, args[i].save_area,
3100 GEN_INT (args[i].locate.size.constant),
3101 BLOCK_OP_CALL_PARM);
3102 }
3103
3104 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3105 stack_usage_map = initial_stack_usage_map;
3106 }
3107
3108 /* If this was alloca, record the new stack level for nonlocal gotos.
3109 Check for the handler slots since we might not have a save area
3110 for non-local gotos. */
3111
3112 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3113 update_nonlocal_goto_save_area ();
3114
3115 /* Free up storage we no longer need. */
3116 for (i = 0; i < num_actuals; ++i)
3117 if (args[i].aligned_regs)
3118 free (args[i].aligned_regs);
3119
3120 insns = get_insns ();
3121 end_sequence ();
3122
3123 if (pass == 0)
3124 {
3125 tail_call_insns = insns;
3126
3127 /* Restore the pending stack adjustment now that we have
3128 finished generating the sibling call sequence. */
3129
3130 pending_stack_adjust = save_pending_stack_adjust;
3131 stack_pointer_delta = save_stack_pointer_delta;
3132
3133 /* Prepare arg structure for next iteration. */
3134 for (i = 0; i < num_actuals; i++)
3135 {
3136 args[i].value = 0;
3137 args[i].aligned_regs = 0;
3138 args[i].stack = 0;
3139 }
3140
3141 sbitmap_free (stored_args_map);
3142 }
3143 else
3144 {
3145 normal_call_insns = insns;
3146
3147 /* Verify that we've deallocated all the stack we used. */
3148 gcc_assert ((flags & ECF_NORETURN)
3149 || (old_stack_allocated
3150 == stack_pointer_delta - pending_stack_adjust));
3151 }
3152
3153 /* If something prevents making this a sibling call,
3154 zero out the sequence. */
3155 if (sibcall_failure)
3156 tail_call_insns = NULL_RTX;
3157 else
3158 break;
3159 }
3160
3161 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3162 arguments too, as argument area is now clobbered by the call. */
3163 if (tail_call_insns)
3164 {
3165 emit_insn (tail_call_insns);
3166 crtl->tail_call_emit = true;
3167 }
3168 else
3169 emit_insn (normal_call_insns);
3170
3171 currently_expanding_call--;
3172
3173 if (stack_usage_map_buf)
3174 free (stack_usage_map_buf);
3175
3176 return target;
3177 }
3178
3179 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3180 this function's incoming arguments.
3181
3182 At the start of RTL generation we know the only REG_EQUIV notes
3183 in the rtl chain are those for incoming arguments, so we can look
3184 for REG_EQUIV notes between the start of the function and the
3185 NOTE_INSN_FUNCTION_BEG.
3186
3187 This is (slight) overkill. We could keep track of the highest
3188 argument we clobber and be more selective in removing notes, but it
3189 does not seem to be worth the effort. */
3190
3191 void
3192 fixup_tail_calls (void)
3193 {
3194 rtx insn;
3195
3196 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3197 {
3198 rtx note;
3199
3200 /* There are never REG_EQUIV notes for the incoming arguments
3201 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3202 if (NOTE_P (insn)
3203 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3204 break;
3205
3206 note = find_reg_note (insn, REG_EQUIV, 0);
3207 if (note)
3208 remove_note (insn, note);
3209 note = find_reg_note (insn, REG_EQUIV, 0);
3210 gcc_assert (!note);
3211 }
3212 }
3213
3214 /* Traverse a list of TYPES and expand all complex types into their
3215 components. */
3216 static tree
3217 split_complex_types (tree types)
3218 {
3219 tree p;
3220
3221 /* Before allocating memory, check for the common case of no complex. */
3222 for (p = types; p; p = TREE_CHAIN (p))
3223 {
3224 tree type = TREE_VALUE (p);
3225 if (TREE_CODE (type) == COMPLEX_TYPE
3226 && targetm.calls.split_complex_arg (type))
3227 goto found;
3228 }
3229 return types;
3230
3231 found:
3232 types = copy_list (types);
3233
3234 for (p = types; p; p = TREE_CHAIN (p))
3235 {
3236 tree complex_type = TREE_VALUE (p);
3237
3238 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3239 && targetm.calls.split_complex_arg (complex_type))
3240 {
3241 tree next, imag;
3242
3243 /* Rewrite complex type with component type. */
3244 TREE_VALUE (p) = TREE_TYPE (complex_type);
3245 next = TREE_CHAIN (p);
3246
3247 /* Add another component type for the imaginary part. */
3248 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3249 TREE_CHAIN (p) = imag;
3250 TREE_CHAIN (imag) = next;
3251
3252 /* Skip the newly created node. */
3253 p = TREE_CHAIN (p);
3254 }
3255 }
3256
3257 return types;
3258 }
3259 \f
3260 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3261 The RETVAL parameter specifies whether return value needs to be saved, other
3262 parameters are documented in the emit_library_call function below. */
3263
3264 static rtx
3265 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3266 enum libcall_type fn_type,
3267 enum machine_mode outmode, int nargs, va_list p)
3268 {
3269 /* Total size in bytes of all the stack-parms scanned so far. */
3270 struct args_size args_size;
3271 /* Size of arguments before any adjustments (such as rounding). */
3272 struct args_size original_args_size;
3273 int argnum;
3274 rtx fun;
3275 /* Todo, choose the correct decl type of orgfun. Sadly this information
3276 isn't present here, so we default to native calling abi here. */
3277 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3278 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3279 int inc;
3280 int count;
3281 rtx argblock = 0;
3282 CUMULATIVE_ARGS args_so_far;
3283 struct arg
3284 {
3285 rtx value;
3286 enum machine_mode mode;
3287 rtx reg;
3288 int partial;
3289 struct locate_and_pad_arg_data locate;
3290 rtx save_area;
3291 };
3292 struct arg *argvec;
3293 int old_inhibit_defer_pop = inhibit_defer_pop;
3294 rtx call_fusage = 0;
3295 rtx mem_value = 0;
3296 rtx valreg;
3297 int pcc_struct_value = 0;
3298 int struct_value_size = 0;
3299 int flags;
3300 int reg_parm_stack_space = 0;
3301 int needed;
3302 rtx before_call;
3303 tree tfom; /* type_for_mode (outmode, 0) */
3304
3305 #ifdef REG_PARM_STACK_SPACE
3306 /* Define the boundary of the register parm stack space that needs to be
3307 save, if any. */
3308 int low_to_save = 0, high_to_save = 0;
3309 rtx save_area = 0; /* Place that it is saved. */
3310 #endif
3311
3312 /* Size of the stack reserved for parameter registers. */
3313 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3314 char *initial_stack_usage_map = stack_usage_map;
3315 char *stack_usage_map_buf = NULL;
3316
3317 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3318
3319 #ifdef REG_PARM_STACK_SPACE
3320 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3321 #endif
3322
3323 /* By default, library functions can not throw. */
3324 flags = ECF_NOTHROW;
3325
3326 switch (fn_type)
3327 {
3328 case LCT_NORMAL:
3329 break;
3330 case LCT_CONST:
3331 flags |= ECF_CONST;
3332 break;
3333 case LCT_PURE:
3334 flags |= ECF_PURE;
3335 break;
3336 case LCT_NORETURN:
3337 flags |= ECF_NORETURN;
3338 break;
3339 case LCT_THROW:
3340 flags = ECF_NORETURN;
3341 break;
3342 case LCT_RETURNS_TWICE:
3343 flags = ECF_RETURNS_TWICE;
3344 break;
3345 }
3346 fun = orgfun;
3347
3348 /* Ensure current function's preferred stack boundary is at least
3349 what we need. */
3350 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3351 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3352
3353 /* If this kind of value comes back in memory,
3354 decide where in memory it should come back. */
3355 if (outmode != VOIDmode)
3356 {
3357 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3358 if (aggregate_value_p (tfom, 0))
3359 {
3360 #ifdef PCC_STATIC_STRUCT_RETURN
3361 rtx pointer_reg
3362 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3363 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3364 pcc_struct_value = 1;
3365 if (value == 0)
3366 value = gen_reg_rtx (outmode);
3367 #else /* not PCC_STATIC_STRUCT_RETURN */
3368 struct_value_size = GET_MODE_SIZE (outmode);
3369 if (value != 0 && MEM_P (value))
3370 mem_value = value;
3371 else
3372 mem_value = assign_temp (tfom, 0, 1, 1);
3373 #endif
3374 /* This call returns a big structure. */
3375 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3376 }
3377 }
3378 else
3379 tfom = void_type_node;
3380
3381 /* ??? Unfinished: must pass the memory address as an argument. */
3382
3383 /* Copy all the libcall-arguments out of the varargs data
3384 and into a vector ARGVEC.
3385
3386 Compute how to pass each argument. We only support a very small subset
3387 of the full argument passing conventions to limit complexity here since
3388 library functions shouldn't have many args. */
3389
3390 argvec = XALLOCAVEC (struct arg, nargs + 1);
3391 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3392
3393 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3394 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3395 #else
3396 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3397 #endif
3398
3399 args_size.constant = 0;
3400 args_size.var = 0;
3401
3402 count = 0;
3403
3404 push_temp_slots ();
3405
3406 /* If there's a structure value address to be passed,
3407 either pass it in the special place, or pass it as an extra argument. */
3408 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3409 {
3410 rtx addr = XEXP (mem_value, 0);
3411
3412 nargs++;
3413
3414 /* Make sure it is a reasonable operand for a move or push insn. */
3415 if (!REG_P (addr) && !MEM_P (addr)
3416 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3417 addr = force_operand (addr, NULL_RTX);
3418
3419 argvec[count].value = addr;
3420 argvec[count].mode = Pmode;
3421 argvec[count].partial = 0;
3422
3423 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3424 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3425 NULL_TREE, 1) == 0);
3426
3427 locate_and_pad_parm (Pmode, NULL_TREE,
3428 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3429 1,
3430 #else
3431 argvec[count].reg != 0,
3432 #endif
3433 0, NULL_TREE, &args_size, &argvec[count].locate);
3434
3435 if (argvec[count].reg == 0 || argvec[count].partial != 0
3436 || reg_parm_stack_space > 0)
3437 args_size.constant += argvec[count].locate.size.constant;
3438
3439 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3440
3441 count++;
3442 }
3443
3444 for (; count < nargs; count++)
3445 {
3446 rtx val = va_arg (p, rtx);
3447 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3448
3449 /* We cannot convert the arg value to the mode the library wants here;
3450 must do it earlier where we know the signedness of the arg. */
3451 gcc_assert (mode != BLKmode
3452 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3453
3454 /* Make sure it is a reasonable operand for a move or push insn. */
3455 if (!REG_P (val) && !MEM_P (val)
3456 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3457 val = force_operand (val, NULL_RTX);
3458
3459 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3460 {
3461 rtx slot;
3462 int must_copy
3463 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3464
3465 /* If this was a CONST function, it is now PURE since it now
3466 reads memory. */
3467 if (flags & ECF_CONST)
3468 {
3469 flags &= ~ECF_CONST;
3470 flags |= ECF_PURE;
3471 }
3472
3473 if (MEM_P (val) && !must_copy)
3474 slot = val;
3475 else
3476 {
3477 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3478 0, 1, 1);
3479 emit_move_insn (slot, val);
3480 }
3481
3482 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3483 gen_rtx_USE (VOIDmode, slot),
3484 call_fusage);
3485 if (must_copy)
3486 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3487 gen_rtx_CLOBBER (VOIDmode,
3488 slot),
3489 call_fusage);
3490
3491 mode = Pmode;
3492 val = force_operand (XEXP (slot, 0), NULL_RTX);
3493 }
3494
3495 argvec[count].value = val;
3496 argvec[count].mode = mode;
3497
3498 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3499
3500 argvec[count].partial
3501 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3502
3503 locate_and_pad_parm (mode, NULL_TREE,
3504 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3505 1,
3506 #else
3507 argvec[count].reg != 0,
3508 #endif
3509 argvec[count].partial,
3510 NULL_TREE, &args_size, &argvec[count].locate);
3511
3512 gcc_assert (!argvec[count].locate.size.var);
3513
3514 if (argvec[count].reg == 0 || argvec[count].partial != 0
3515 || reg_parm_stack_space > 0)
3516 args_size.constant += argvec[count].locate.size.constant;
3517
3518 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3519 }
3520
3521 /* If this machine requires an external definition for library
3522 functions, write one out. */
3523 assemble_external_libcall (fun);
3524
3525 original_args_size = args_size;
3526 args_size.constant = (((args_size.constant
3527 + stack_pointer_delta
3528 + STACK_BYTES - 1)
3529 / STACK_BYTES
3530 * STACK_BYTES)
3531 - stack_pointer_delta);
3532
3533 args_size.constant = MAX (args_size.constant,
3534 reg_parm_stack_space);
3535
3536 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3537 args_size.constant -= reg_parm_stack_space;
3538
3539 if (args_size.constant > crtl->outgoing_args_size)
3540 crtl->outgoing_args_size = args_size.constant;
3541
3542 if (ACCUMULATE_OUTGOING_ARGS)
3543 {
3544 /* Since the stack pointer will never be pushed, it is possible for
3545 the evaluation of a parm to clobber something we have already
3546 written to the stack. Since most function calls on RISC machines
3547 do not use the stack, this is uncommon, but must work correctly.
3548
3549 Therefore, we save any area of the stack that was already written
3550 and that we are using. Here we set up to do this by making a new
3551 stack usage map from the old one.
3552
3553 Another approach might be to try to reorder the argument
3554 evaluations to avoid this conflicting stack usage. */
3555
3556 needed = args_size.constant;
3557
3558 /* Since we will be writing into the entire argument area, the
3559 map must be allocated for its entire size, not just the part that
3560 is the responsibility of the caller. */
3561 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3562 needed += reg_parm_stack_space;
3563
3564 #ifdef ARGS_GROW_DOWNWARD
3565 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3566 needed + 1);
3567 #else
3568 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3569 needed);
3570 #endif
3571 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3572 stack_usage_map = stack_usage_map_buf;
3573
3574 if (initial_highest_arg_in_use)
3575 memcpy (stack_usage_map, initial_stack_usage_map,
3576 initial_highest_arg_in_use);
3577
3578 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3579 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3580 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3581 needed = 0;
3582
3583 /* We must be careful to use virtual regs before they're instantiated,
3584 and real regs afterwards. Loop optimization, for example, can create
3585 new libcalls after we've instantiated the virtual regs, and if we
3586 use virtuals anyway, they won't match the rtl patterns. */
3587
3588 if (virtuals_instantiated)
3589 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3590 else
3591 argblock = virtual_outgoing_args_rtx;
3592 }
3593 else
3594 {
3595 if (!PUSH_ARGS)
3596 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3597 }
3598
3599 /* If we push args individually in reverse order, perform stack alignment
3600 before the first push (the last arg). */
3601 if (argblock == 0 && PUSH_ARGS_REVERSED)
3602 anti_adjust_stack (GEN_INT (args_size.constant
3603 - original_args_size.constant));
3604
3605 if (PUSH_ARGS_REVERSED)
3606 {
3607 inc = -1;
3608 argnum = nargs - 1;
3609 }
3610 else
3611 {
3612 inc = 1;
3613 argnum = 0;
3614 }
3615
3616 #ifdef REG_PARM_STACK_SPACE
3617 if (ACCUMULATE_OUTGOING_ARGS)
3618 {
3619 /* The argument list is the property of the called routine and it
3620 may clobber it. If the fixed area has been used for previous
3621 parameters, we must save and restore it. */
3622 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3623 &low_to_save, &high_to_save);
3624 }
3625 #endif
3626
3627 /* Push the args that need to be pushed. */
3628
3629 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3630 are to be pushed. */
3631 for (count = 0; count < nargs; count++, argnum += inc)
3632 {
3633 enum machine_mode mode = argvec[argnum].mode;
3634 rtx val = argvec[argnum].value;
3635 rtx reg = argvec[argnum].reg;
3636 int partial = argvec[argnum].partial;
3637 unsigned int parm_align = argvec[argnum].locate.boundary;
3638 int lower_bound = 0, upper_bound = 0, i;
3639
3640 if (! (reg != 0 && partial == 0))
3641 {
3642 if (ACCUMULATE_OUTGOING_ARGS)
3643 {
3644 /* If this is being stored into a pre-allocated, fixed-size,
3645 stack area, save any previous data at that location. */
3646
3647 #ifdef ARGS_GROW_DOWNWARD
3648 /* stack_slot is negative, but we want to index stack_usage_map
3649 with positive values. */
3650 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3651 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3652 #else
3653 lower_bound = argvec[argnum].locate.slot_offset.constant;
3654 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3655 #endif
3656
3657 i = lower_bound;
3658 /* Don't worry about things in the fixed argument area;
3659 it has already been saved. */
3660 if (i < reg_parm_stack_space)
3661 i = reg_parm_stack_space;
3662 while (i < upper_bound && stack_usage_map[i] == 0)
3663 i++;
3664
3665 if (i < upper_bound)
3666 {
3667 /* We need to make a save area. */
3668 unsigned int size
3669 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3670 enum machine_mode save_mode
3671 = mode_for_size (size, MODE_INT, 1);
3672 rtx adr
3673 = plus_constant (argblock,
3674 argvec[argnum].locate.offset.constant);
3675 rtx stack_area
3676 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3677
3678 if (save_mode == BLKmode)
3679 {
3680 argvec[argnum].save_area
3681 = assign_stack_temp (BLKmode,
3682 argvec[argnum].locate.size.constant,
3683 0);
3684
3685 emit_block_move (validize_mem (argvec[argnum].save_area),
3686 stack_area,
3687 GEN_INT (argvec[argnum].locate.size.constant),
3688 BLOCK_OP_CALL_PARM);
3689 }
3690 else
3691 {
3692 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3693
3694 emit_move_insn (argvec[argnum].save_area, stack_area);
3695 }
3696 }
3697 }
3698
3699 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3700 partial, reg, 0, argblock,
3701 GEN_INT (argvec[argnum].locate.offset.constant),
3702 reg_parm_stack_space,
3703 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3704
3705 /* Now mark the segment we just used. */
3706 if (ACCUMULATE_OUTGOING_ARGS)
3707 for (i = lower_bound; i < upper_bound; i++)
3708 stack_usage_map[i] = 1;
3709
3710 NO_DEFER_POP;
3711
3712 if ((flags & ECF_CONST)
3713 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
3714 {
3715 rtx use;
3716
3717 /* Indicate argument access so that alias.c knows that these
3718 values are live. */
3719 if (argblock)
3720 use = plus_constant (argblock,
3721 argvec[argnum].locate.offset.constant);
3722 else
3723 /* When arguments are pushed, trying to tell alias.c where
3724 exactly this argument is won't work, because the
3725 auto-increment causes confusion. So we merely indicate
3726 that we access something with a known mode somewhere on
3727 the stack. */
3728 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3729 gen_rtx_SCRATCH (Pmode));
3730 use = gen_rtx_MEM (argvec[argnum].mode, use);
3731 use = gen_rtx_USE (VOIDmode, use);
3732 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3733 }
3734 }
3735 }
3736
3737 /* If we pushed args in forward order, perform stack alignment
3738 after pushing the last arg. */
3739 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3740 anti_adjust_stack (GEN_INT (args_size.constant
3741 - original_args_size.constant));
3742
3743 if (PUSH_ARGS_REVERSED)
3744 argnum = nargs - 1;
3745 else
3746 argnum = 0;
3747
3748 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3749
3750 /* Now load any reg parms into their regs. */
3751
3752 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3753 are to be pushed. */
3754 for (count = 0; count < nargs; count++, argnum += inc)
3755 {
3756 enum machine_mode mode = argvec[argnum].mode;
3757 rtx val = argvec[argnum].value;
3758 rtx reg = argvec[argnum].reg;
3759 int partial = argvec[argnum].partial;
3760
3761 /* Handle calls that pass values in multiple non-contiguous
3762 locations. The PA64 has examples of this for library calls. */
3763 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3764 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3765 else if (reg != 0 && partial == 0)
3766 emit_move_insn (reg, val);
3767
3768 NO_DEFER_POP;
3769 }
3770
3771 /* Any regs containing parms remain in use through the call. */
3772 for (count = 0; count < nargs; count++)
3773 {
3774 rtx reg = argvec[count].reg;
3775 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3776 use_group_regs (&call_fusage, reg);
3777 else if (reg != 0)
3778 {
3779 int partial = argvec[count].partial;
3780 if (partial)
3781 {
3782 int nregs;
3783 gcc_assert (partial % UNITS_PER_WORD == 0);
3784 nregs = partial / UNITS_PER_WORD;
3785 use_regs (&call_fusage, REGNO (reg), nregs);
3786 }
3787 else
3788 use_reg (&call_fusage, reg);
3789 }
3790 }
3791
3792 /* Pass the function the address in which to return a structure value. */
3793 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3794 {
3795 emit_move_insn (struct_value,
3796 force_reg (Pmode,
3797 force_operand (XEXP (mem_value, 0),
3798 NULL_RTX)));
3799 if (REG_P (struct_value))
3800 use_reg (&call_fusage, struct_value);
3801 }
3802
3803 /* Don't allow popping to be deferred, since then
3804 cse'ing of library calls could delete a call and leave the pop. */
3805 NO_DEFER_POP;
3806 valreg = (mem_value == 0 && outmode != VOIDmode
3807 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3808
3809 /* Stack must be properly aligned now. */
3810 gcc_assert (!(stack_pointer_delta
3811 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3812
3813 before_call = get_last_insn ();
3814
3815 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3816 will set inhibit_defer_pop to that value. */
3817 /* The return type is needed to decide how many bytes the function pops.
3818 Signedness plays no role in that, so for simplicity, we pretend it's
3819 always signed. We also assume that the list of arguments passed has
3820 no impact, so we pretend it is unknown. */
3821
3822 emit_call_1 (fun, NULL,
3823 get_identifier (XSTR (orgfun, 0)),
3824 build_function_type (tfom, NULL_TREE),
3825 original_args_size.constant, args_size.constant,
3826 struct_value_size,
3827 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3828 valreg,
3829 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3830
3831 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3832 that it should complain if nonvolatile values are live. For
3833 functions that cannot return, inform flow that control does not
3834 fall through. */
3835
3836 if (flags & ECF_NORETURN)
3837 {
3838 /* The barrier note must be emitted
3839 immediately after the CALL_INSN. Some ports emit more than
3840 just a CALL_INSN above, so we must search for it here. */
3841
3842 rtx last = get_last_insn ();
3843 while (!CALL_P (last))
3844 {
3845 last = PREV_INSN (last);
3846 /* There was no CALL_INSN? */
3847 gcc_assert (last != before_call);
3848 }
3849
3850 emit_barrier_after (last);
3851 }
3852
3853 /* Now restore inhibit_defer_pop to its actual original value. */
3854 OK_DEFER_POP;
3855
3856 pop_temp_slots ();
3857
3858 /* Copy the value to the right place. */
3859 if (outmode != VOIDmode && retval)
3860 {
3861 if (mem_value)
3862 {
3863 if (value == 0)
3864 value = mem_value;
3865 if (value != mem_value)
3866 emit_move_insn (value, mem_value);
3867 }
3868 else if (GET_CODE (valreg) == PARALLEL)
3869 {
3870 if (value == 0)
3871 value = gen_reg_rtx (outmode);
3872 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3873 }
3874 else
3875 {
3876 /* Convert to the proper mode if a promotion has been active. */
3877 if (GET_MODE (valreg) != outmode)
3878 {
3879 int unsignedp = TYPE_UNSIGNED (tfom);
3880
3881 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
3882 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
3883 == GET_MODE (valreg));
3884 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
3885 }
3886
3887 if (value != 0)
3888 emit_move_insn (value, valreg);
3889 else
3890 value = valreg;
3891 }
3892 }
3893
3894 if (ACCUMULATE_OUTGOING_ARGS)
3895 {
3896 #ifdef REG_PARM_STACK_SPACE
3897 if (save_area)
3898 restore_fixed_argument_area (save_area, argblock,
3899 high_to_save, low_to_save);
3900 #endif
3901
3902 /* If we saved any argument areas, restore them. */
3903 for (count = 0; count < nargs; count++)
3904 if (argvec[count].save_area)
3905 {
3906 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3907 rtx adr = plus_constant (argblock,
3908 argvec[count].locate.offset.constant);
3909 rtx stack_area = gen_rtx_MEM (save_mode,
3910 memory_address (save_mode, adr));
3911
3912 if (save_mode == BLKmode)
3913 emit_block_move (stack_area,
3914 validize_mem (argvec[count].save_area),
3915 GEN_INT (argvec[count].locate.size.constant),
3916 BLOCK_OP_CALL_PARM);
3917 else
3918 emit_move_insn (stack_area, argvec[count].save_area);
3919 }
3920
3921 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3922 stack_usage_map = initial_stack_usage_map;
3923 }
3924
3925 if (stack_usage_map_buf)
3926 free (stack_usage_map_buf);
3927
3928 return value;
3929
3930 }
3931 \f
3932 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3933 (emitting the queue unless NO_QUEUE is nonzero),
3934 for a value of mode OUTMODE,
3935 with NARGS different arguments, passed as alternating rtx values
3936 and machine_modes to convert them to.
3937
3938 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
3939 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
3940 other types of library calls. */
3941
3942 void
3943 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3944 enum machine_mode outmode, int nargs, ...)
3945 {
3946 va_list p;
3947
3948 va_start (p, nargs);
3949 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3950 va_end (p);
3951 }
3952 \f
3953 /* Like emit_library_call except that an extra argument, VALUE,
3954 comes second and says where to store the result.
3955 (If VALUE is zero, this function chooses a convenient way
3956 to return the value.
3957
3958 This function returns an rtx for where the value is to be found.
3959 If VALUE is nonzero, VALUE is returned. */
3960
3961 rtx
3962 emit_library_call_value (rtx orgfun, rtx value,
3963 enum libcall_type fn_type,
3964 enum machine_mode outmode, int nargs, ...)
3965 {
3966 rtx result;
3967 va_list p;
3968
3969 va_start (p, nargs);
3970 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3971 nargs, p);
3972 va_end (p);
3973
3974 return result;
3975 }
3976 \f
3977 /* Store a single argument for a function call
3978 into the register or memory area where it must be passed.
3979 *ARG describes the argument value and where to pass it.
3980
3981 ARGBLOCK is the address of the stack-block for all the arguments,
3982 or 0 on a machine where arguments are pushed individually.
3983
3984 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3985 so must be careful about how the stack is used.
3986
3987 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3988 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3989 that we need not worry about saving and restoring the stack.
3990
3991 FNDECL is the declaration of the function we are calling.
3992
3993 Return nonzero if this arg should cause sibcall failure,
3994 zero otherwise. */
3995
3996 static int
3997 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3998 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3999 {
4000 tree pval = arg->tree_value;
4001 rtx reg = 0;
4002 int partial = 0;
4003 int used = 0;
4004 int i, lower_bound = 0, upper_bound = 0;
4005 int sibcall_failure = 0;
4006
4007 if (TREE_CODE (pval) == ERROR_MARK)
4008 return 1;
4009
4010 /* Push a new temporary level for any temporaries we make for
4011 this argument. */
4012 push_temp_slots ();
4013
4014 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4015 {
4016 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4017 save any previous data at that location. */
4018 if (argblock && ! variable_size && arg->stack)
4019 {
4020 #ifdef ARGS_GROW_DOWNWARD
4021 /* stack_slot is negative, but we want to index stack_usage_map
4022 with positive values. */
4023 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4024 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4025 else
4026 upper_bound = 0;
4027
4028 lower_bound = upper_bound - arg->locate.size.constant;
4029 #else
4030 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4031 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4032 else
4033 lower_bound = 0;
4034
4035 upper_bound = lower_bound + arg->locate.size.constant;
4036 #endif
4037
4038 i = lower_bound;
4039 /* Don't worry about things in the fixed argument area;
4040 it has already been saved. */
4041 if (i < reg_parm_stack_space)
4042 i = reg_parm_stack_space;
4043 while (i < upper_bound && stack_usage_map[i] == 0)
4044 i++;
4045
4046 if (i < upper_bound)
4047 {
4048 /* We need to make a save area. */
4049 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4050 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4051 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4052 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4053
4054 if (save_mode == BLKmode)
4055 {
4056 tree ot = TREE_TYPE (arg->tree_value);
4057 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4058 | TYPE_QUAL_CONST));
4059
4060 arg->save_area = assign_temp (nt, 0, 1, 1);
4061 preserve_temp_slots (arg->save_area);
4062 emit_block_move (validize_mem (arg->save_area), stack_area,
4063 GEN_INT (arg->locate.size.constant),
4064 BLOCK_OP_CALL_PARM);
4065 }
4066 else
4067 {
4068 arg->save_area = gen_reg_rtx (save_mode);
4069 emit_move_insn (arg->save_area, stack_area);
4070 }
4071 }
4072 }
4073 }
4074
4075 /* If this isn't going to be placed on both the stack and in registers,
4076 set up the register and number of words. */
4077 if (! arg->pass_on_stack)
4078 {
4079 if (flags & ECF_SIBCALL)
4080 reg = arg->tail_call_reg;
4081 else
4082 reg = arg->reg;
4083 partial = arg->partial;
4084 }
4085
4086 /* Being passed entirely in a register. We shouldn't be called in
4087 this case. */
4088 gcc_assert (reg == 0 || partial != 0);
4089
4090 /* If this arg needs special alignment, don't load the registers
4091 here. */
4092 if (arg->n_aligned_regs != 0)
4093 reg = 0;
4094
4095 /* If this is being passed partially in a register, we can't evaluate
4096 it directly into its stack slot. Otherwise, we can. */
4097 if (arg->value == 0)
4098 {
4099 /* stack_arg_under_construction is nonzero if a function argument is
4100 being evaluated directly into the outgoing argument list and
4101 expand_call must take special action to preserve the argument list
4102 if it is called recursively.
4103
4104 For scalar function arguments stack_usage_map is sufficient to
4105 determine which stack slots must be saved and restored. Scalar
4106 arguments in general have pass_on_stack == 0.
4107
4108 If this argument is initialized by a function which takes the
4109 address of the argument (a C++ constructor or a C function
4110 returning a BLKmode structure), then stack_usage_map is
4111 insufficient and expand_call must push the stack around the
4112 function call. Such arguments have pass_on_stack == 1.
4113
4114 Note that it is always safe to set stack_arg_under_construction,
4115 but this generates suboptimal code if set when not needed. */
4116
4117 if (arg->pass_on_stack)
4118 stack_arg_under_construction++;
4119
4120 arg->value = expand_expr (pval,
4121 (partial
4122 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4123 ? NULL_RTX : arg->stack,
4124 VOIDmode, EXPAND_STACK_PARM);
4125
4126 /* If we are promoting object (or for any other reason) the mode
4127 doesn't agree, convert the mode. */
4128
4129 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4130 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4131 arg->value, arg->unsignedp);
4132
4133 if (arg->pass_on_stack)
4134 stack_arg_under_construction--;
4135 }
4136
4137 /* Check for overlap with already clobbered argument area. */
4138 if ((flags & ECF_SIBCALL)
4139 && MEM_P (arg->value)
4140 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4141 arg->locate.size.constant))
4142 sibcall_failure = 1;
4143
4144 /* Don't allow anything left on stack from computation
4145 of argument to alloca. */
4146 if (flags & ECF_MAY_BE_ALLOCA)
4147 do_pending_stack_adjust ();
4148
4149 if (arg->value == arg->stack)
4150 /* If the value is already in the stack slot, we are done. */
4151 ;
4152 else if (arg->mode != BLKmode)
4153 {
4154 int size;
4155 unsigned int parm_align;
4156
4157 /* Argument is a scalar, not entirely passed in registers.
4158 (If part is passed in registers, arg->partial says how much
4159 and emit_push_insn will take care of putting it there.)
4160
4161 Push it, and if its size is less than the
4162 amount of space allocated to it,
4163 also bump stack pointer by the additional space.
4164 Note that in C the default argument promotions
4165 will prevent such mismatches. */
4166
4167 size = GET_MODE_SIZE (arg->mode);
4168 /* Compute how much space the push instruction will push.
4169 On many machines, pushing a byte will advance the stack
4170 pointer by a halfword. */
4171 #ifdef PUSH_ROUNDING
4172 size = PUSH_ROUNDING (size);
4173 #endif
4174 used = size;
4175
4176 /* Compute how much space the argument should get:
4177 round up to a multiple of the alignment for arguments. */
4178 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4179 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4180 / (PARM_BOUNDARY / BITS_PER_UNIT))
4181 * (PARM_BOUNDARY / BITS_PER_UNIT));
4182
4183 /* Compute the alignment of the pushed argument. */
4184 parm_align = arg->locate.boundary;
4185 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4186 {
4187 int pad = used - size;
4188 if (pad)
4189 {
4190 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4191 parm_align = MIN (parm_align, pad_align);
4192 }
4193 }
4194
4195 /* This isn't already where we want it on the stack, so put it there.
4196 This can either be done with push or copy insns. */
4197 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4198 parm_align, partial, reg, used - size, argblock,
4199 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4200 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4201
4202 /* Unless this is a partially-in-register argument, the argument is now
4203 in the stack. */
4204 if (partial == 0)
4205 arg->value = arg->stack;
4206 }
4207 else
4208 {
4209 /* BLKmode, at least partly to be pushed. */
4210
4211 unsigned int parm_align;
4212 int excess;
4213 rtx size_rtx;
4214
4215 /* Pushing a nonscalar.
4216 If part is passed in registers, PARTIAL says how much
4217 and emit_push_insn will take care of putting it there. */
4218
4219 /* Round its size up to a multiple
4220 of the allocation unit for arguments. */
4221
4222 if (arg->locate.size.var != 0)
4223 {
4224 excess = 0;
4225 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4226 }
4227 else
4228 {
4229 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4230 for BLKmode is careful to avoid it. */
4231 excess = (arg->locate.size.constant
4232 - int_size_in_bytes (TREE_TYPE (pval))
4233 + partial);
4234 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4235 NULL_RTX, TYPE_MODE (sizetype),
4236 EXPAND_NORMAL);
4237 }
4238
4239 parm_align = arg->locate.boundary;
4240
4241 /* When an argument is padded down, the block is aligned to
4242 PARM_BOUNDARY, but the actual argument isn't. */
4243 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4244 {
4245 if (arg->locate.size.var)
4246 parm_align = BITS_PER_UNIT;
4247 else if (excess)
4248 {
4249 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4250 parm_align = MIN (parm_align, excess_align);
4251 }
4252 }
4253
4254 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4255 {
4256 /* emit_push_insn might not work properly if arg->value and
4257 argblock + arg->locate.offset areas overlap. */
4258 rtx x = arg->value;
4259 int i = 0;
4260
4261 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4262 || (GET_CODE (XEXP (x, 0)) == PLUS
4263 && XEXP (XEXP (x, 0), 0) ==
4264 crtl->args.internal_arg_pointer
4265 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4266 {
4267 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4268 i = INTVAL (XEXP (XEXP (x, 0), 1));
4269
4270 /* expand_call should ensure this. */
4271 gcc_assert (!arg->locate.offset.var
4272 && arg->locate.size.var == 0
4273 && CONST_INT_P (size_rtx));
4274
4275 if (arg->locate.offset.constant > i)
4276 {
4277 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4278 sibcall_failure = 1;
4279 }
4280 else if (arg->locate.offset.constant < i)
4281 {
4282 /* Use arg->locate.size.constant instead of size_rtx
4283 because we only care about the part of the argument
4284 on the stack. */
4285 if (i < (arg->locate.offset.constant
4286 + arg->locate.size.constant))
4287 sibcall_failure = 1;
4288 }
4289 else
4290 {
4291 /* Even though they appear to be at the same location,
4292 if part of the outgoing argument is in registers,
4293 they aren't really at the same location. Check for
4294 this by making sure that the incoming size is the
4295 same as the outgoing size. */
4296 if (arg->locate.size.constant != INTVAL (size_rtx))
4297 sibcall_failure = 1;
4298 }
4299 }
4300 }
4301
4302 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4303 parm_align, partial, reg, excess, argblock,
4304 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4305 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4306
4307 /* Unless this is a partially-in-register argument, the argument is now
4308 in the stack.
4309
4310 ??? Unlike the case above, in which we want the actual
4311 address of the data, so that we can load it directly into a
4312 register, here we want the address of the stack slot, so that
4313 it's properly aligned for word-by-word copying or something
4314 like that. It's not clear that this is always correct. */
4315 if (partial == 0)
4316 arg->value = arg->stack_slot;
4317 }
4318
4319 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4320 {
4321 tree type = TREE_TYPE (arg->tree_value);
4322 arg->parallel_value
4323 = emit_group_load_into_temps (arg->reg, arg->value, type,
4324 int_size_in_bytes (type));
4325 }
4326
4327 /* Mark all slots this store used. */
4328 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4329 && argblock && ! variable_size && arg->stack)
4330 for (i = lower_bound; i < upper_bound; i++)
4331 stack_usage_map[i] = 1;
4332
4333 /* Once we have pushed something, pops can't safely
4334 be deferred during the rest of the arguments. */
4335 NO_DEFER_POP;
4336
4337 /* Free any temporary slots made in processing this argument. Show
4338 that we might have taken the address of something and pushed that
4339 as an operand. */
4340 preserve_temp_slots (NULL_RTX);
4341 free_temp_slots ();
4342 pop_temp_slots ();
4343
4344 return sibcall_failure;
4345 }
4346
4347 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4348
4349 bool
4350 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4351 const_tree type)
4352 {
4353 if (!type)
4354 return false;
4355
4356 /* If the type has variable size... */
4357 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4358 return true;
4359
4360 /* If the type is marked as addressable (it is required
4361 to be constructed into the stack)... */
4362 if (TREE_ADDRESSABLE (type))
4363 return true;
4364
4365 return false;
4366 }
4367
4368 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4369 takes trailing padding of a structure into account. */
4370 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4371
4372 bool
4373 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4374 {
4375 if (!type)
4376 return false;
4377
4378 /* If the type has variable size... */
4379 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4380 return true;
4381
4382 /* If the type is marked as addressable (it is required
4383 to be constructed into the stack)... */
4384 if (TREE_ADDRESSABLE (type))
4385 return true;
4386
4387 /* If the padding and mode of the type is such that a copy into
4388 a register would put it into the wrong part of the register. */
4389 if (mode == BLKmode
4390 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4391 && (FUNCTION_ARG_PADDING (mode, type)
4392 == (BYTES_BIG_ENDIAN ? upward : downward)))
4393 return true;
4394
4395 return false;
4396 }