]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-vrp.h"
51 #include "tree-ssanames.h"
52 #include "tree-ssa-strlen.h"
53 #include "intl.h"
54 #include "stringpool.h"
55 #include "hash-map.h"
56 #include "hash-traits.h"
57 #include "attribs.h"
58 #include "builtins.h"
59 #include "gimple-fold.h"
60
61 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
62 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
63
64 /* Data structure and subroutines used within expand_call. */
65
66 struct arg_data
67 {
68 /* Tree node for this argument. */
69 tree tree_value;
70 /* Mode for value; TYPE_MODE unless promoted. */
71 machine_mode mode;
72 /* Current RTL value for argument, or 0 if it isn't precomputed. */
73 rtx value;
74 /* Initially-compute RTL value for argument; only for const functions. */
75 rtx initial_value;
76 /* Register to pass this argument in, 0 if passed on stack, or an
77 PARALLEL if the arg is to be copied into multiple non-contiguous
78 registers. */
79 rtx reg;
80 /* Register to pass this argument in when generating tail call sequence.
81 This is not the same register as for normal calls on machines with
82 register windows. */
83 rtx tail_call_reg;
84 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
85 form for emit_group_move. */
86 rtx parallel_value;
87 /* If REG was promoted from the actual mode of the argument expression,
88 indicates whether the promotion is sign- or zero-extended. */
89 int unsignedp;
90 /* Number of bytes to put in registers. 0 means put the whole arg
91 in registers. Also 0 if not passed in registers. */
92 int partial;
93 /* Nonzero if argument must be passed on stack.
94 Note that some arguments may be passed on the stack
95 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
96 pass_on_stack identifies arguments that *cannot* go in registers. */
97 int pass_on_stack;
98 /* Some fields packaged up for locate_and_pad_parm. */
99 struct locate_and_pad_arg_data locate;
100 /* Location on the stack at which parameter should be stored. The store
101 has already been done if STACK == VALUE. */
102 rtx stack;
103 /* Location on the stack of the start of this argument slot. This can
104 differ from STACK if this arg pads downward. This location is known
105 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
106 rtx stack_slot;
107 /* Place that this stack area has been saved, if needed. */
108 rtx save_area;
109 /* If an argument's alignment does not permit direct copying into registers,
110 copy in smaller-sized pieces into pseudos. These are stored in a
111 block pointed to by this field. The next field says how many
112 word-sized pseudos we made. */
113 rtx *aligned_regs;
114 int n_aligned_regs;
115 };
116
117 /* A vector of one char per byte of stack space. A byte if nonzero if
118 the corresponding stack location has been used.
119 This vector is used to prevent a function call within an argument from
120 clobbering any stack already set up. */
121 static char *stack_usage_map;
122
123 /* Size of STACK_USAGE_MAP. */
124 static unsigned int highest_outgoing_arg_in_use;
125
126 /* Assume that any stack location at this byte index is used,
127 without checking the contents of stack_usage_map. */
128 static unsigned HOST_WIDE_INT stack_usage_watermark = HOST_WIDE_INT_M1U;
129
130 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
131 stack location's tail call argument has been already stored into the stack.
132 This bitmap is used to prevent sibling call optimization if function tries
133 to use parent's incoming argument slots when they have been already
134 overwritten with tail call arguments. */
135 static sbitmap stored_args_map;
136
137 /* Assume that any virtual-incoming location at this byte index has been
138 stored, without checking the contents of stored_args_map. */
139 static unsigned HOST_WIDE_INT stored_args_watermark;
140
141 /* stack_arg_under_construction is nonzero when an argument may be
142 initialized with a constructor call (including a C function that
143 returns a BLKmode struct) and expand_call must take special action
144 to make sure the object being constructed does not overlap the
145 argument list for the constructor call. */
146 static int stack_arg_under_construction;
147
148 static void precompute_register_parameters (int, struct arg_data *, int *);
149 static int store_one_arg (struct arg_data *, rtx, int, int, int);
150 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
151 static int finalize_must_preallocate (int, int, struct arg_data *,
152 struct args_size *);
153 static void precompute_arguments (int, struct arg_data *);
154 static void compute_argument_addresses (struct arg_data *, rtx, int);
155 static rtx rtx_for_function_call (tree, tree);
156 static void load_register_parameters (struct arg_data *, int, rtx *, int,
157 int, int *);
158 static int special_function_p (const_tree, int);
159 static int check_sibcall_argument_overlap_1 (rtx);
160 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
161
162 static tree split_complex_types (tree);
163
164 #ifdef REG_PARM_STACK_SPACE
165 static rtx save_fixed_argument_area (int, rtx, int *, int *);
166 static void restore_fixed_argument_area (rtx, rtx, int, int);
167 #endif
168 \f
169 /* Return true if bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
170 stack region might already be in use. */
171
172 static bool
173 stack_region_maybe_used_p (poly_uint64 lower_bound, poly_uint64 upper_bound,
174 unsigned int reg_parm_stack_space)
175 {
176 unsigned HOST_WIDE_INT const_lower, const_upper;
177 const_lower = constant_lower_bound (lower_bound);
178 if (!upper_bound.is_constant (&const_upper))
179 const_upper = HOST_WIDE_INT_M1U;
180
181 if (const_upper > stack_usage_watermark)
182 return true;
183
184 /* Don't worry about things in the fixed argument area;
185 it has already been saved. */
186 const_lower = MAX (const_lower, reg_parm_stack_space);
187 const_upper = MIN (const_upper, highest_outgoing_arg_in_use);
188 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
189 if (stack_usage_map[i])
190 return true;
191 return false;
192 }
193
194 /* Record that bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
195 stack region are now in use. */
196
197 static void
198 mark_stack_region_used (poly_uint64 lower_bound, poly_uint64 upper_bound)
199 {
200 unsigned HOST_WIDE_INT const_lower, const_upper;
201 const_lower = constant_lower_bound (lower_bound);
202 if (upper_bound.is_constant (&const_upper))
203 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
204 stack_usage_map[i] = 1;
205 else
206 stack_usage_watermark = MIN (stack_usage_watermark, const_lower);
207 }
208
209 /* Force FUNEXP into a form suitable for the address of a CALL,
210 and return that as an rtx. Also load the static chain register
211 if FNDECL is a nested function.
212
213 CALL_FUSAGE points to a variable holding the prospective
214 CALL_INSN_FUNCTION_USAGE information. */
215
216 rtx
217 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
218 rtx *call_fusage, int reg_parm_seen, int flags)
219 {
220 /* Make a valid memory address and copy constants through pseudo-regs,
221 but not for a constant address if -fno-function-cse. */
222 if (GET_CODE (funexp) != SYMBOL_REF)
223 {
224 /* If it's an indirect call by descriptor, generate code to perform
225 runtime identification of the pointer and load the descriptor. */
226 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
227 {
228 const int bit_val = targetm.calls.custom_function_descriptors;
229 rtx call_lab = gen_label_rtx ();
230
231 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
232 fndecl_or_type
233 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
234 fndecl_or_type);
235 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
236 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
237
238 if (GET_MODE (funexp) != Pmode)
239 funexp = convert_memory_address (Pmode, funexp);
240
241 /* Avoid long live ranges around function calls. */
242 funexp = copy_to_mode_reg (Pmode, funexp);
243
244 if (REG_P (chain))
245 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
246
247 /* Emit the runtime identification pattern. */
248 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
249 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
250 call_lab);
251
252 /* Statically predict the branch to very likely taken. */
253 rtx_insn *insn = get_last_insn ();
254 if (JUMP_P (insn))
255 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
256
257 /* Load the descriptor. */
258 rtx mem = gen_rtx_MEM (ptr_mode,
259 plus_constant (Pmode, funexp, - bit_val));
260 MEM_NOTRAP_P (mem) = 1;
261 mem = convert_memory_address (Pmode, mem);
262 emit_move_insn (chain, mem);
263
264 mem = gen_rtx_MEM (ptr_mode,
265 plus_constant (Pmode, funexp,
266 POINTER_SIZE / BITS_PER_UNIT
267 - bit_val));
268 MEM_NOTRAP_P (mem) = 1;
269 mem = convert_memory_address (Pmode, mem);
270 emit_move_insn (funexp, mem);
271
272 emit_label (call_lab);
273
274 if (REG_P (chain))
275 {
276 use_reg (call_fusage, chain);
277 STATIC_CHAIN_REG_P (chain) = 1;
278 }
279
280 /* Make sure we're not going to be overwritten below. */
281 gcc_assert (!static_chain_value);
282 }
283
284 /* If we are using registers for parameters, force the
285 function address into a register now. */
286 funexp = ((reg_parm_seen
287 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
288 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
289 : memory_address (FUNCTION_MODE, funexp));
290 }
291 else
292 {
293 /* funexp could be a SYMBOL_REF represents a function pointer which is
294 of ptr_mode. In this case, it should be converted into address mode
295 to be a valid address for memory rtx pattern. See PR 64971. */
296 if (GET_MODE (funexp) != Pmode)
297 funexp = convert_memory_address (Pmode, funexp);
298
299 if (!(flags & ECF_SIBCALL))
300 {
301 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
302 funexp = force_reg (Pmode, funexp);
303 }
304 }
305
306 if (static_chain_value != 0
307 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
308 || DECL_STATIC_CHAIN (fndecl_or_type)))
309 {
310 rtx chain;
311
312 chain = targetm.calls.static_chain (fndecl_or_type, false);
313 static_chain_value = convert_memory_address (Pmode, static_chain_value);
314
315 emit_move_insn (chain, static_chain_value);
316 if (REG_P (chain))
317 {
318 use_reg (call_fusage, chain);
319 STATIC_CHAIN_REG_P (chain) = 1;
320 }
321 }
322
323 return funexp;
324 }
325
326 /* Generate instructions to call function FUNEXP,
327 and optionally pop the results.
328 The CALL_INSN is the first insn generated.
329
330 FNDECL is the declaration node of the function. This is given to the
331 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
332 its own args.
333
334 FUNTYPE is the data type of the function. This is given to the hook
335 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
336 own args. We used to allow an identifier for library functions, but
337 that doesn't work when the return type is an aggregate type and the
338 calling convention says that the pointer to this aggregate is to be
339 popped by the callee.
340
341 STACK_SIZE is the number of bytes of arguments on the stack,
342 ROUNDED_STACK_SIZE is that number rounded up to
343 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
344 both to put into the call insn and to generate explicit popping
345 code if necessary.
346
347 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
348 It is zero if this call doesn't want a structure value.
349
350 NEXT_ARG_REG is the rtx that results from executing
351 targetm.calls.function_arg (&args_so_far,
352 function_arg_info::end_marker ());
353 just after all the args have had their registers assigned.
354 This could be whatever you like, but normally it is the first
355 arg-register beyond those used for args in this call,
356 or 0 if all the arg-registers are used in this call.
357 It is passed on to `gen_call' so you can put this info in the call insn.
358
359 VALREG is a hard register in which a value is returned,
360 or 0 if the call does not return a value.
361
362 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
363 the args to this call were processed.
364 We restore `inhibit_defer_pop' to that value.
365
366 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
367 denote registers used by the called function. */
368
369 static void
370 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
371 tree funtype ATTRIBUTE_UNUSED,
372 poly_int64 stack_size ATTRIBUTE_UNUSED,
373 poly_int64 rounded_stack_size,
374 poly_int64 struct_value_size ATTRIBUTE_UNUSED,
375 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
376 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
377 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
378 {
379 rtx rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
380 rtx call, funmem, pat;
381 int already_popped = 0;
382 poly_int64 n_popped = 0;
383
384 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
385 patterns exist). Any popping that the callee does on return will
386 be from our caller's frame rather than ours. */
387 if (!(ecf_flags & ECF_SIBCALL))
388 {
389 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
390
391 #ifdef CALL_POPS_ARGS
392 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
393 #endif
394 }
395
396 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
397 and we don't want to load it into a register as an optimization,
398 because prepare_call_address already did it if it should be done. */
399 if (GET_CODE (funexp) != SYMBOL_REF)
400 funexp = memory_address (FUNCTION_MODE, funexp);
401
402 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
403 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
404 {
405 tree t = fndecl;
406
407 /* Although a built-in FUNCTION_DECL and its non-__builtin
408 counterpart compare equal and get a shared mem_attrs, they
409 produce different dump output in compare-debug compilations,
410 if an entry gets garbage collected in one compilation, then
411 adds a different (but equivalent) entry, while the other
412 doesn't run the garbage collector at the same spot and then
413 shares the mem_attr with the equivalent entry. */
414 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
415 {
416 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
417 if (t2)
418 t = t2;
419 }
420
421 set_mem_expr (funmem, t);
422 }
423 else if (fntree)
424 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
425
426 if (ecf_flags & ECF_SIBCALL)
427 {
428 if (valreg)
429 pat = targetm.gen_sibcall_value (valreg, funmem,
430 rounded_stack_size_rtx,
431 next_arg_reg, NULL_RTX);
432 else
433 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
434 next_arg_reg,
435 gen_int_mode (struct_value_size, Pmode));
436 }
437 /* If the target has "call" or "call_value" insns, then prefer them
438 if no arguments are actually popped. If the target does not have
439 "call" or "call_value" insns, then we must use the popping versions
440 even if the call has no arguments to pop. */
441 else if (maybe_ne (n_popped, 0)
442 || !(valreg
443 ? targetm.have_call_value ()
444 : targetm.have_call ()))
445 {
446 rtx n_pop = gen_int_mode (n_popped, Pmode);
447
448 /* If this subroutine pops its own args, record that in the call insn
449 if possible, for the sake of frame pointer elimination. */
450
451 if (valreg)
452 pat = targetm.gen_call_value_pop (valreg, funmem,
453 rounded_stack_size_rtx,
454 next_arg_reg, n_pop);
455 else
456 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
457 next_arg_reg, n_pop);
458
459 already_popped = 1;
460 }
461 else
462 {
463 if (valreg)
464 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
465 next_arg_reg, NULL_RTX);
466 else
467 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
468 gen_int_mode (struct_value_size, Pmode));
469 }
470 emit_insn (pat);
471
472 /* Find the call we just emitted. */
473 rtx_call_insn *call_insn = last_call_insn ();
474
475 /* Some target create a fresh MEM instead of reusing the one provided
476 above. Set its MEM_EXPR. */
477 call = get_call_rtx_from (call_insn);
478 if (call
479 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
480 && MEM_EXPR (funmem) != NULL_TREE)
481 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
482
483 /* Put the register usage information there. */
484 add_function_usage_to (call_insn, call_fusage);
485
486 /* If this is a const call, then set the insn's unchanging bit. */
487 if (ecf_flags & ECF_CONST)
488 RTL_CONST_CALL_P (call_insn) = 1;
489
490 /* If this is a pure call, then set the insn's unchanging bit. */
491 if (ecf_flags & ECF_PURE)
492 RTL_PURE_CALL_P (call_insn) = 1;
493
494 /* If this is a const call, then set the insn's unchanging bit. */
495 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
496 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
497
498 /* Create a nothrow REG_EH_REGION note, if needed. */
499 make_reg_eh_region_note (call_insn, ecf_flags, 0);
500
501 if (ecf_flags & ECF_NORETURN)
502 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
503
504 if (ecf_flags & ECF_RETURNS_TWICE)
505 {
506 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
507 cfun->calls_setjmp = 1;
508 }
509
510 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
511
512 /* Restore this now, so that we do defer pops for this call's args
513 if the context of the call as a whole permits. */
514 inhibit_defer_pop = old_inhibit_defer_pop;
515
516 if (maybe_ne (n_popped, 0))
517 {
518 if (!already_popped)
519 CALL_INSN_FUNCTION_USAGE (call_insn)
520 = gen_rtx_EXPR_LIST (VOIDmode,
521 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
522 CALL_INSN_FUNCTION_USAGE (call_insn));
523 rounded_stack_size -= n_popped;
524 rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
525 stack_pointer_delta -= n_popped;
526
527 add_args_size_note (call_insn, stack_pointer_delta);
528
529 /* If popup is needed, stack realign must use DRAP */
530 if (SUPPORTS_STACK_ALIGNMENT)
531 crtl->need_drap = true;
532 }
533 /* For noreturn calls when not accumulating outgoing args force
534 REG_ARGS_SIZE note to prevent crossjumping of calls with different
535 args sizes. */
536 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
537 add_args_size_note (call_insn, stack_pointer_delta);
538
539 if (!ACCUMULATE_OUTGOING_ARGS)
540 {
541 /* If returning from the subroutine does not automatically pop the args,
542 we need an instruction to pop them sooner or later.
543 Perhaps do it now; perhaps just record how much space to pop later.
544
545 If returning from the subroutine does pop the args, indicate that the
546 stack pointer will be changed. */
547
548 if (maybe_ne (rounded_stack_size, 0))
549 {
550 if (ecf_flags & ECF_NORETURN)
551 /* Just pretend we did the pop. */
552 stack_pointer_delta -= rounded_stack_size;
553 else if (flag_defer_pop && inhibit_defer_pop == 0
554 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
555 pending_stack_adjust += rounded_stack_size;
556 else
557 adjust_stack (rounded_stack_size_rtx);
558 }
559 }
560 /* When we accumulate outgoing args, we must avoid any stack manipulations.
561 Restore the stack pointer to its original value now. Usually
562 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
563 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
564 popping variants of functions exist as well.
565
566 ??? We may optimize similar to defer_pop above, but it is
567 probably not worthwhile.
568
569 ??? It will be worthwhile to enable combine_stack_adjustments even for
570 such machines. */
571 else if (maybe_ne (n_popped, 0))
572 anti_adjust_stack (gen_int_mode (n_popped, Pmode));
573 }
574
575 /* Determine if the function identified by FNDECL is one with
576 special properties we wish to know about. Modify FLAGS accordingly.
577
578 For example, if the function might return more than one time (setjmp), then
579 set ECF_RETURNS_TWICE.
580
581 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
582 space from the stack such as alloca. */
583
584 static int
585 special_function_p (const_tree fndecl, int flags)
586 {
587 tree name_decl = DECL_NAME (fndecl);
588
589 if (maybe_special_function_p (fndecl)
590 && IDENTIFIER_LENGTH (name_decl) <= 11)
591 {
592 const char *name = IDENTIFIER_POINTER (name_decl);
593 const char *tname = name;
594
595 /* We assume that alloca will always be called by name. It
596 makes no sense to pass it as a pointer-to-function to
597 anything that does not understand its behavior. */
598 if (IDENTIFIER_LENGTH (name_decl) == 6
599 && name[0] == 'a'
600 && ! strcmp (name, "alloca"))
601 flags |= ECF_MAY_BE_ALLOCA;
602
603 /* Disregard prefix _ or __. */
604 if (name[0] == '_')
605 {
606 if (name[1] == '_')
607 tname += 2;
608 else
609 tname += 1;
610 }
611
612 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
613 if (! strcmp (tname, "setjmp")
614 || ! strcmp (tname, "sigsetjmp")
615 || ! strcmp (name, "savectx")
616 || ! strcmp (name, "vfork")
617 || ! strcmp (name, "getcontext"))
618 flags |= ECF_RETURNS_TWICE;
619 }
620
621 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
622 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
623 flags |= ECF_MAY_BE_ALLOCA;
624
625 return flags;
626 }
627
628 /* Similar to special_function_p; return a set of ERF_ flags for the
629 function FNDECL. */
630 static int
631 decl_return_flags (tree fndecl)
632 {
633 tree attr;
634 tree type = TREE_TYPE (fndecl);
635 if (!type)
636 return 0;
637
638 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
639 if (!attr)
640 return 0;
641
642 attr = TREE_VALUE (TREE_VALUE (attr));
643 if (!attr || TREE_STRING_LENGTH (attr) < 1)
644 return 0;
645
646 switch (TREE_STRING_POINTER (attr)[0])
647 {
648 case '1':
649 case '2':
650 case '3':
651 case '4':
652 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
653
654 case 'm':
655 return ERF_NOALIAS;
656
657 case '.':
658 default:
659 return 0;
660 }
661 }
662
663 /* Return nonzero when FNDECL represents a call to setjmp. */
664
665 int
666 setjmp_call_p (const_tree fndecl)
667 {
668 if (DECL_IS_RETURNS_TWICE (fndecl))
669 return ECF_RETURNS_TWICE;
670 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
671 }
672
673
674 /* Return true if STMT may be an alloca call. */
675
676 bool
677 gimple_maybe_alloca_call_p (const gimple *stmt)
678 {
679 tree fndecl;
680
681 if (!is_gimple_call (stmt))
682 return false;
683
684 fndecl = gimple_call_fndecl (stmt);
685 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
686 return true;
687
688 return false;
689 }
690
691 /* Return true if STMT is a builtin alloca call. */
692
693 bool
694 gimple_alloca_call_p (const gimple *stmt)
695 {
696 tree fndecl;
697
698 if (!is_gimple_call (stmt))
699 return false;
700
701 fndecl = gimple_call_fndecl (stmt);
702 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
703 switch (DECL_FUNCTION_CODE (fndecl))
704 {
705 CASE_BUILT_IN_ALLOCA:
706 return gimple_call_num_args (stmt) > 0;
707 default:
708 break;
709 }
710
711 return false;
712 }
713
714 /* Return true when exp contains a builtin alloca call. */
715
716 bool
717 alloca_call_p (const_tree exp)
718 {
719 tree fndecl;
720 if (TREE_CODE (exp) == CALL_EXPR
721 && (fndecl = get_callee_fndecl (exp))
722 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
723 switch (DECL_FUNCTION_CODE (fndecl))
724 {
725 CASE_BUILT_IN_ALLOCA:
726 return true;
727 default:
728 break;
729 }
730
731 return false;
732 }
733
734 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
735 function. Return FALSE otherwise. */
736
737 static bool
738 is_tm_builtin (const_tree fndecl)
739 {
740 if (fndecl == NULL)
741 return false;
742
743 if (decl_is_tm_clone (fndecl))
744 return true;
745
746 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
747 {
748 switch (DECL_FUNCTION_CODE (fndecl))
749 {
750 case BUILT_IN_TM_COMMIT:
751 case BUILT_IN_TM_COMMIT_EH:
752 case BUILT_IN_TM_ABORT:
753 case BUILT_IN_TM_IRREVOCABLE:
754 case BUILT_IN_TM_GETTMCLONE_IRR:
755 case BUILT_IN_TM_MEMCPY:
756 case BUILT_IN_TM_MEMMOVE:
757 case BUILT_IN_TM_MEMSET:
758 CASE_BUILT_IN_TM_STORE (1):
759 CASE_BUILT_IN_TM_STORE (2):
760 CASE_BUILT_IN_TM_STORE (4):
761 CASE_BUILT_IN_TM_STORE (8):
762 CASE_BUILT_IN_TM_STORE (FLOAT):
763 CASE_BUILT_IN_TM_STORE (DOUBLE):
764 CASE_BUILT_IN_TM_STORE (LDOUBLE):
765 CASE_BUILT_IN_TM_STORE (M64):
766 CASE_BUILT_IN_TM_STORE (M128):
767 CASE_BUILT_IN_TM_STORE (M256):
768 CASE_BUILT_IN_TM_LOAD (1):
769 CASE_BUILT_IN_TM_LOAD (2):
770 CASE_BUILT_IN_TM_LOAD (4):
771 CASE_BUILT_IN_TM_LOAD (8):
772 CASE_BUILT_IN_TM_LOAD (FLOAT):
773 CASE_BUILT_IN_TM_LOAD (DOUBLE):
774 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
775 CASE_BUILT_IN_TM_LOAD (M64):
776 CASE_BUILT_IN_TM_LOAD (M128):
777 CASE_BUILT_IN_TM_LOAD (M256):
778 case BUILT_IN_TM_LOG:
779 case BUILT_IN_TM_LOG_1:
780 case BUILT_IN_TM_LOG_2:
781 case BUILT_IN_TM_LOG_4:
782 case BUILT_IN_TM_LOG_8:
783 case BUILT_IN_TM_LOG_FLOAT:
784 case BUILT_IN_TM_LOG_DOUBLE:
785 case BUILT_IN_TM_LOG_LDOUBLE:
786 case BUILT_IN_TM_LOG_M64:
787 case BUILT_IN_TM_LOG_M128:
788 case BUILT_IN_TM_LOG_M256:
789 return true;
790 default:
791 break;
792 }
793 }
794 return false;
795 }
796
797 /* Detect flags (function attributes) from the function decl or type node. */
798
799 int
800 flags_from_decl_or_type (const_tree exp)
801 {
802 int flags = 0;
803
804 if (DECL_P (exp))
805 {
806 /* The function exp may have the `malloc' attribute. */
807 if (DECL_IS_MALLOC (exp))
808 flags |= ECF_MALLOC;
809
810 /* The function exp may have the `returns_twice' attribute. */
811 if (DECL_IS_RETURNS_TWICE (exp))
812 flags |= ECF_RETURNS_TWICE;
813
814 /* Process the pure and const attributes. */
815 if (TREE_READONLY (exp))
816 flags |= ECF_CONST;
817 if (DECL_PURE_P (exp))
818 flags |= ECF_PURE;
819 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
820 flags |= ECF_LOOPING_CONST_OR_PURE;
821
822 if (DECL_IS_NOVOPS (exp))
823 flags |= ECF_NOVOPS;
824 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
825 flags |= ECF_LEAF;
826 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
827 flags |= ECF_COLD;
828
829 if (TREE_NOTHROW (exp))
830 flags |= ECF_NOTHROW;
831
832 if (flag_tm)
833 {
834 if (is_tm_builtin (exp))
835 flags |= ECF_TM_BUILTIN;
836 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
837 || lookup_attribute ("transaction_pure",
838 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
839 flags |= ECF_TM_PURE;
840 }
841
842 flags = special_function_p (exp, flags);
843 }
844 else if (TYPE_P (exp))
845 {
846 if (TYPE_READONLY (exp))
847 flags |= ECF_CONST;
848
849 if (flag_tm
850 && ((flags & ECF_CONST) != 0
851 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
852 flags |= ECF_TM_PURE;
853 }
854 else
855 gcc_unreachable ();
856
857 if (TREE_THIS_VOLATILE (exp))
858 {
859 flags |= ECF_NORETURN;
860 if (flags & (ECF_CONST|ECF_PURE))
861 flags |= ECF_LOOPING_CONST_OR_PURE;
862 }
863
864 return flags;
865 }
866
867 /* Detect flags from a CALL_EXPR. */
868
869 int
870 call_expr_flags (const_tree t)
871 {
872 int flags;
873 tree decl = get_callee_fndecl (t);
874
875 if (decl)
876 flags = flags_from_decl_or_type (decl);
877 else if (CALL_EXPR_FN (t) == NULL_TREE)
878 flags = internal_fn_flags (CALL_EXPR_IFN (t));
879 else
880 {
881 tree type = TREE_TYPE (CALL_EXPR_FN (t));
882 if (type && TREE_CODE (type) == POINTER_TYPE)
883 flags = flags_from_decl_or_type (TREE_TYPE (type));
884 else
885 flags = 0;
886 if (CALL_EXPR_BY_DESCRIPTOR (t))
887 flags |= ECF_BY_DESCRIPTOR;
888 }
889
890 return flags;
891 }
892
893 /* Return true if ARG should be passed by invisible reference. */
894
895 bool
896 pass_by_reference (CUMULATIVE_ARGS *ca, function_arg_info arg)
897 {
898 if (tree type = arg.type)
899 {
900 /* If this type contains non-trivial constructors, then it is
901 forbidden for the middle-end to create any new copies. */
902 if (TREE_ADDRESSABLE (type))
903 return true;
904
905 /* GCC post 3.4 passes *all* variable sized types by reference. */
906 if (!TYPE_SIZE (type) || !poly_int_tree_p (TYPE_SIZE (type)))
907 return true;
908
909 /* If a record type should be passed the same as its first (and only)
910 member, use the type and mode of that member. */
911 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
912 {
913 arg.type = TREE_TYPE (first_field (type));
914 arg.mode = TYPE_MODE (arg.type);
915 }
916 }
917
918 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), arg);
919 }
920
921 /* Return true if TYPE should be passed by reference when passed to
922 the "..." arguments of a function. */
923
924 bool
925 pass_va_arg_by_reference (tree type)
926 {
927 return pass_by_reference (NULL, function_arg_info (type, /*named=*/false));
928 }
929
930 /* Decide whether ARG, which occurs in the state described by CA,
931 should be passed by reference. Return true if so and update
932 ARG accordingly. */
933
934 bool
935 apply_pass_by_reference_rules (CUMULATIVE_ARGS *ca, function_arg_info &arg)
936 {
937 if (pass_by_reference (ca, arg))
938 {
939 arg.type = build_pointer_type (arg.type);
940 arg.mode = TYPE_MODE (arg.type);
941 arg.pass_by_reference = true;
942 return true;
943 }
944 return false;
945 }
946
947 /* Return true if ARG, which is passed by reference, should be callee
948 copied instead of caller copied. */
949
950 bool
951 reference_callee_copied (CUMULATIVE_ARGS *ca, const function_arg_info &arg)
952 {
953 if (arg.type && TREE_ADDRESSABLE (arg.type))
954 return false;
955 return targetm.calls.callee_copies (pack_cumulative_args (ca), arg);
956 }
957
958
959 /* Precompute all register parameters as described by ARGS, storing values
960 into fields within the ARGS array.
961
962 NUM_ACTUALS indicates the total number elements in the ARGS array.
963
964 Set REG_PARM_SEEN if we encounter a register parameter. */
965
966 static void
967 precompute_register_parameters (int num_actuals, struct arg_data *args,
968 int *reg_parm_seen)
969 {
970 int i;
971
972 *reg_parm_seen = 0;
973
974 for (i = 0; i < num_actuals; i++)
975 if (args[i].reg != 0 && ! args[i].pass_on_stack)
976 {
977 *reg_parm_seen = 1;
978
979 if (args[i].value == 0)
980 {
981 push_temp_slots ();
982 args[i].value = expand_normal (args[i].tree_value);
983 preserve_temp_slots (args[i].value);
984 pop_temp_slots ();
985 }
986
987 /* If we are to promote the function arg to a wider mode,
988 do it now. */
989
990 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
991 args[i].value
992 = convert_modes (args[i].mode,
993 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
994 args[i].value, args[i].unsignedp);
995
996 /* If the value is a non-legitimate constant, force it into a
997 pseudo now. TLS symbols sometimes need a call to resolve. */
998 if (CONSTANT_P (args[i].value)
999 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
1000 args[i].value = force_reg (args[i].mode, args[i].value);
1001
1002 /* If we're going to have to load the value by parts, pull the
1003 parts into pseudos. The part extraction process can involve
1004 non-trivial computation. */
1005 if (GET_CODE (args[i].reg) == PARALLEL)
1006 {
1007 tree type = TREE_TYPE (args[i].tree_value);
1008 args[i].parallel_value
1009 = emit_group_load_into_temps (args[i].reg, args[i].value,
1010 type, int_size_in_bytes (type));
1011 }
1012
1013 /* If the value is expensive, and we are inside an appropriately
1014 short loop, put the value into a pseudo and then put the pseudo
1015 into the hard reg.
1016
1017 For small register classes, also do this if this call uses
1018 register parameters. This is to avoid reload conflicts while
1019 loading the parameters registers. */
1020
1021 else if ((! (REG_P (args[i].value)
1022 || (GET_CODE (args[i].value) == SUBREG
1023 && REG_P (SUBREG_REG (args[i].value)))))
1024 && args[i].mode != BLKmode
1025 && (set_src_cost (args[i].value, args[i].mode,
1026 optimize_insn_for_speed_p ())
1027 > COSTS_N_INSNS (1))
1028 && ((*reg_parm_seen
1029 && targetm.small_register_classes_for_mode_p (args[i].mode))
1030 || optimize))
1031 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1032 }
1033 }
1034
1035 #ifdef REG_PARM_STACK_SPACE
1036
1037 /* The argument list is the property of the called routine and it
1038 may clobber it. If the fixed area has been used for previous
1039 parameters, we must save and restore it. */
1040
1041 static rtx
1042 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1043 {
1044 unsigned int low;
1045 unsigned int high;
1046
1047 /* Compute the boundary of the area that needs to be saved, if any. */
1048 high = reg_parm_stack_space;
1049 if (ARGS_GROW_DOWNWARD)
1050 high += 1;
1051
1052 if (high > highest_outgoing_arg_in_use)
1053 high = highest_outgoing_arg_in_use;
1054
1055 for (low = 0; low < high; low++)
1056 if (stack_usage_map[low] != 0 || low >= stack_usage_watermark)
1057 {
1058 int num_to_save;
1059 machine_mode save_mode;
1060 int delta;
1061 rtx addr;
1062 rtx stack_area;
1063 rtx save_area;
1064
1065 while (stack_usage_map[--high] == 0)
1066 ;
1067
1068 *low_to_save = low;
1069 *high_to_save = high;
1070
1071 num_to_save = high - low + 1;
1072
1073 /* If we don't have the required alignment, must do this
1074 in BLKmode. */
1075 scalar_int_mode imode;
1076 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1077 && (low & (MIN (GET_MODE_SIZE (imode),
1078 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1079 save_mode = imode;
1080 else
1081 save_mode = BLKmode;
1082
1083 if (ARGS_GROW_DOWNWARD)
1084 delta = -high;
1085 else
1086 delta = low;
1087
1088 addr = plus_constant (Pmode, argblock, delta);
1089 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1090
1091 set_mem_align (stack_area, PARM_BOUNDARY);
1092 if (save_mode == BLKmode)
1093 {
1094 save_area = assign_stack_temp (BLKmode, num_to_save);
1095 emit_block_move (validize_mem (save_area), stack_area,
1096 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1097 }
1098 else
1099 {
1100 save_area = gen_reg_rtx (save_mode);
1101 emit_move_insn (save_area, stack_area);
1102 }
1103
1104 return save_area;
1105 }
1106
1107 return NULL_RTX;
1108 }
1109
1110 static void
1111 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1112 {
1113 machine_mode save_mode = GET_MODE (save_area);
1114 int delta;
1115 rtx addr, stack_area;
1116
1117 if (ARGS_GROW_DOWNWARD)
1118 delta = -high_to_save;
1119 else
1120 delta = low_to_save;
1121
1122 addr = plus_constant (Pmode, argblock, delta);
1123 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1124 set_mem_align (stack_area, PARM_BOUNDARY);
1125
1126 if (save_mode != BLKmode)
1127 emit_move_insn (stack_area, save_area);
1128 else
1129 emit_block_move (stack_area, validize_mem (save_area),
1130 GEN_INT (high_to_save - low_to_save + 1),
1131 BLOCK_OP_CALL_PARM);
1132 }
1133 #endif /* REG_PARM_STACK_SPACE */
1134
1135 /* If any elements in ARGS refer to parameters that are to be passed in
1136 registers, but not in memory, and whose alignment does not permit a
1137 direct copy into registers. Copy the values into a group of pseudos
1138 which we will later copy into the appropriate hard registers.
1139
1140 Pseudos for each unaligned argument will be stored into the array
1141 args[argnum].aligned_regs. The caller is responsible for deallocating
1142 the aligned_regs array if it is nonzero. */
1143
1144 static void
1145 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1146 {
1147 int i, j;
1148
1149 for (i = 0; i < num_actuals; i++)
1150 if (args[i].reg != 0 && ! args[i].pass_on_stack
1151 && GET_CODE (args[i].reg) != PARALLEL
1152 && args[i].mode == BLKmode
1153 && MEM_P (args[i].value)
1154 && (MEM_ALIGN (args[i].value)
1155 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1156 {
1157 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1158 int endian_correction = 0;
1159
1160 if (args[i].partial)
1161 {
1162 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1163 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1164 }
1165 else
1166 {
1167 args[i].n_aligned_regs
1168 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1169 }
1170
1171 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1172
1173 /* Structures smaller than a word are normally aligned to the
1174 least significant byte. On a BYTES_BIG_ENDIAN machine,
1175 this means we must skip the empty high order bytes when
1176 calculating the bit offset. */
1177 if (bytes < UNITS_PER_WORD
1178 #ifdef BLOCK_REG_PADDING
1179 && (BLOCK_REG_PADDING (args[i].mode,
1180 TREE_TYPE (args[i].tree_value), 1)
1181 == PAD_DOWNWARD)
1182 #else
1183 && BYTES_BIG_ENDIAN
1184 #endif
1185 )
1186 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1187
1188 for (j = 0; j < args[i].n_aligned_regs; j++)
1189 {
1190 rtx reg = gen_reg_rtx (word_mode);
1191 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1192 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1193
1194 args[i].aligned_regs[j] = reg;
1195 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1196 word_mode, word_mode, false, NULL);
1197
1198 /* There is no need to restrict this code to loading items
1199 in TYPE_ALIGN sized hunks. The bitfield instructions can
1200 load up entire word sized registers efficiently.
1201
1202 ??? This may not be needed anymore.
1203 We use to emit a clobber here but that doesn't let later
1204 passes optimize the instructions we emit. By storing 0 into
1205 the register later passes know the first AND to zero out the
1206 bitfield being set in the register is unnecessary. The store
1207 of 0 will be deleted as will at least the first AND. */
1208
1209 emit_move_insn (reg, const0_rtx);
1210
1211 bytes -= bitsize / BITS_PER_UNIT;
1212 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1213 word_mode, word, false);
1214 }
1215 }
1216 }
1217
1218 /* The limit set by -Walloc-larger-than=. */
1219 static GTY(()) tree alloc_object_size_limit;
1220
1221 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1222 setting if the option is specified, or to the maximum object size if it
1223 is not. Return the initialized value. */
1224
1225 static tree
1226 alloc_max_size (void)
1227 {
1228 if (alloc_object_size_limit)
1229 return alloc_object_size_limit;
1230
1231 HOST_WIDE_INT limit = warn_alloc_size_limit;
1232 if (limit == HOST_WIDE_INT_MAX)
1233 limit = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
1234
1235 alloc_object_size_limit = build_int_cst (size_type_node, limit);
1236
1237 return alloc_object_size_limit;
1238 }
1239
1240 /* Return true when EXP's range can be determined and set RANGE[] to it
1241 after adjusting it if necessary to make EXP a represents a valid size
1242 of object, or a valid size argument to an allocation function declared
1243 with attribute alloc_size (whose argument may be signed), or to a string
1244 manipulation function like memset. When ALLOW_ZERO is true, allow
1245 returning a range of [0, 0] for a size in an anti-range [1, N] where
1246 N > PTRDIFF_MAX. A zero range is a (nearly) invalid argument to
1247 allocation functions like malloc but it is a valid argument to
1248 functions like memset. */
1249
1250 bool
1251 get_size_range (tree exp, tree range[2], bool allow_zero /* = false */)
1252 {
1253 if (!exp)
1254 return false;
1255
1256 if (tree_fits_uhwi_p (exp))
1257 {
1258 /* EXP is a constant. */
1259 range[0] = range[1] = exp;
1260 return true;
1261 }
1262
1263 tree exptype = TREE_TYPE (exp);
1264 bool integral = INTEGRAL_TYPE_P (exptype);
1265
1266 wide_int min, max;
1267 enum value_range_kind range_type;
1268
1269 if (integral)
1270 range_type = determine_value_range (exp, &min, &max);
1271 else
1272 range_type = VR_VARYING;
1273
1274 if (range_type == VR_VARYING)
1275 {
1276 if (integral)
1277 {
1278 /* Use the full range of the type of the expression when
1279 no value range information is available. */
1280 range[0] = TYPE_MIN_VALUE (exptype);
1281 range[1] = TYPE_MAX_VALUE (exptype);
1282 return true;
1283 }
1284
1285 range[0] = NULL_TREE;
1286 range[1] = NULL_TREE;
1287 return false;
1288 }
1289
1290 unsigned expprec = TYPE_PRECISION (exptype);
1291
1292 bool signed_p = !TYPE_UNSIGNED (exptype);
1293
1294 if (range_type == VR_ANTI_RANGE)
1295 {
1296 if (signed_p)
1297 {
1298 if (wi::les_p (max, 0))
1299 {
1300 /* EXP is not in a strictly negative range. That means
1301 it must be in some (not necessarily strictly) positive
1302 range which includes zero. Since in signed to unsigned
1303 conversions negative values end up converted to large
1304 positive values, and otherwise they are not valid sizes,
1305 the resulting range is in both cases [0, TYPE_MAX]. */
1306 min = wi::zero (expprec);
1307 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1308 }
1309 else if (wi::les_p (min - 1, 0))
1310 {
1311 /* EXP is not in a negative-positive range. That means EXP
1312 is either negative, or greater than max. Since negative
1313 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1314 min = max + 1;
1315 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1316 }
1317 else
1318 {
1319 max = min - 1;
1320 min = wi::zero (expprec);
1321 }
1322 }
1323 else if (wi::eq_p (0, min - 1))
1324 {
1325 /* EXP is unsigned and not in the range [1, MAX]. That means
1326 it's either zero or greater than MAX. Even though 0 would
1327 normally be detected by -Walloc-zero, unless ALLOW_ZERO
1328 is true, set the range to [MAX, TYPE_MAX] so that when MAX
1329 is greater than the limit the whole range is diagnosed. */
1330 if (allow_zero)
1331 min = max = wi::zero (expprec);
1332 else
1333 {
1334 min = max + 1;
1335 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1336 }
1337 }
1338 else
1339 {
1340 max = min - 1;
1341 min = wi::zero (expprec);
1342 }
1343 }
1344
1345 range[0] = wide_int_to_tree (exptype, min);
1346 range[1] = wide_int_to_tree (exptype, max);
1347
1348 return true;
1349 }
1350
1351 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1352 whose argument numbers given by IDX with values given by ARGS exceed
1353 the maximum object size or cause an unsigned oveflow (wrapping) when
1354 multiplied. FN is null when EXP is a call via a function pointer.
1355 When ARGS[0] is null the function does nothing. ARGS[1] may be null
1356 for functions like malloc, and non-null for those like calloc that
1357 are decorated with a two-argument attribute alloc_size. */
1358
1359 void
1360 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1361 {
1362 /* The range each of the (up to) two arguments is known to be in. */
1363 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1364
1365 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1366 tree maxobjsize = alloc_max_size ();
1367
1368 location_t loc = EXPR_LOCATION (exp);
1369
1370 tree fntype = fn ? TREE_TYPE (fn) : TREE_TYPE (TREE_TYPE (exp));
1371 bool warned = false;
1372
1373 /* Validate each argument individually. */
1374 for (unsigned i = 0; i != 2 && args[i]; ++i)
1375 {
1376 if (TREE_CODE (args[i]) == INTEGER_CST)
1377 {
1378 argrange[i][0] = args[i];
1379 argrange[i][1] = args[i];
1380
1381 if (tree_int_cst_lt (args[i], integer_zero_node))
1382 {
1383 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1384 "%Kargument %i value %qE is negative",
1385 exp, idx[i] + 1, args[i]);
1386 }
1387 else if (integer_zerop (args[i]))
1388 {
1389 /* Avoid issuing -Walloc-zero for allocation functions other
1390 than __builtin_alloca that are declared with attribute
1391 returns_nonnull because there's no portability risk. This
1392 avoids warning for such calls to libiberty's xmalloc and
1393 friends.
1394 Also avoid issuing the warning for calls to function named
1395 "alloca". */
1396 if (fn && fndecl_built_in_p (fn, BUILT_IN_ALLOCA)
1397 ? IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6
1398 : !lookup_attribute ("returns_nonnull",
1399 TYPE_ATTRIBUTES (fntype)))
1400 warned = warning_at (loc, OPT_Walloc_zero,
1401 "%Kargument %i value is zero",
1402 exp, idx[i] + 1);
1403 }
1404 else if (tree_int_cst_lt (maxobjsize, args[i]))
1405 {
1406 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1407 mode and with -fno-exceptions as a way to indicate array
1408 size overflow. There's no good way to detect C++98 here
1409 so avoid diagnosing these calls for all C++ modes. */
1410 if (i == 0
1411 && fn
1412 && !args[1]
1413 && lang_GNU_CXX ()
1414 && DECL_IS_OPERATOR_NEW_P (fn)
1415 && integer_all_onesp (args[i]))
1416 continue;
1417
1418 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1419 "%Kargument %i value %qE exceeds "
1420 "maximum object size %E",
1421 exp, idx[i] + 1, args[i], maxobjsize);
1422 }
1423 }
1424 else if (TREE_CODE (args[i]) == SSA_NAME
1425 && get_size_range (args[i], argrange[i]))
1426 {
1427 /* Verify that the argument's range is not negative (including
1428 upper bound of zero). */
1429 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1430 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1431 {
1432 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1433 "%Kargument %i range [%E, %E] is negative",
1434 exp, idx[i] + 1,
1435 argrange[i][0], argrange[i][1]);
1436 }
1437 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1438 {
1439 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1440 "%Kargument %i range [%E, %E] exceeds "
1441 "maximum object size %E",
1442 exp, idx[i] + 1,
1443 argrange[i][0], argrange[i][1],
1444 maxobjsize);
1445 }
1446 }
1447 }
1448
1449 if (!argrange[0])
1450 return;
1451
1452 /* For a two-argument alloc_size, validate the product of the two
1453 arguments if both of their values or ranges are known. */
1454 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1455 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1456 && !integer_onep (argrange[0][0])
1457 && !integer_onep (argrange[1][0]))
1458 {
1459 /* Check for overflow in the product of a function decorated with
1460 attribute alloc_size (X, Y). */
1461 unsigned szprec = TYPE_PRECISION (size_type_node);
1462 wide_int x = wi::to_wide (argrange[0][0], szprec);
1463 wide_int y = wi::to_wide (argrange[1][0], szprec);
1464
1465 wi::overflow_type vflow;
1466 wide_int prod = wi::umul (x, y, &vflow);
1467
1468 if (vflow)
1469 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1470 "%Kproduct %<%E * %E%> of arguments %i and %i "
1471 "exceeds %<SIZE_MAX%>",
1472 exp, argrange[0][0], argrange[1][0],
1473 idx[0] + 1, idx[1] + 1);
1474 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1475 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1476 "%Kproduct %<%E * %E%> of arguments %i and %i "
1477 "exceeds maximum object size %E",
1478 exp, argrange[0][0], argrange[1][0],
1479 idx[0] + 1, idx[1] + 1,
1480 maxobjsize);
1481
1482 if (warned)
1483 {
1484 /* Print the full range of each of the two arguments to make
1485 it clear when it is, in fact, in a range and not constant. */
1486 if (argrange[0][0] != argrange [0][1])
1487 inform (loc, "argument %i in the range [%E, %E]",
1488 idx[0] + 1, argrange[0][0], argrange[0][1]);
1489 if (argrange[1][0] != argrange [1][1])
1490 inform (loc, "argument %i in the range [%E, %E]",
1491 idx[1] + 1, argrange[1][0], argrange[1][1]);
1492 }
1493 }
1494
1495 if (warned && fn)
1496 {
1497 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1498
1499 if (DECL_IS_BUILTIN (fn))
1500 inform (loc,
1501 "in a call to built-in allocation function %qD", fn);
1502 else
1503 inform (fnloc,
1504 "in a call to allocation function %qD declared here", fn);
1505 }
1506 }
1507
1508 /* If EXPR refers to a character array or pointer declared attribute
1509 nonstring return a decl for that array or pointer and set *REF to
1510 the referenced enclosing object or pointer. Otherwise returns
1511 null. */
1512
1513 tree
1514 get_attr_nonstring_decl (tree expr, tree *ref)
1515 {
1516 tree decl = expr;
1517 tree var = NULL_TREE;
1518 if (TREE_CODE (decl) == SSA_NAME)
1519 {
1520 gimple *def = SSA_NAME_DEF_STMT (decl);
1521
1522 if (is_gimple_assign (def))
1523 {
1524 tree_code code = gimple_assign_rhs_code (def);
1525 if (code == ADDR_EXPR
1526 || code == COMPONENT_REF
1527 || code == VAR_DECL)
1528 decl = gimple_assign_rhs1 (def);
1529 }
1530 else
1531 var = SSA_NAME_VAR (decl);
1532 }
1533
1534 if (TREE_CODE (decl) == ADDR_EXPR)
1535 decl = TREE_OPERAND (decl, 0);
1536
1537 /* To simplify calling code, store the referenced DECL regardless of
1538 the attribute determined below, but avoid storing the SSA_NAME_VAR
1539 obtained above (it's not useful for dataflow purposes). */
1540 if (ref)
1541 *ref = decl;
1542
1543 /* Use the SSA_NAME_VAR that was determined above to see if it's
1544 declared nonstring. Otherwise drill down into the referenced
1545 DECL. */
1546 if (var)
1547 decl = var;
1548 else if (TREE_CODE (decl) == ARRAY_REF)
1549 decl = TREE_OPERAND (decl, 0);
1550 else if (TREE_CODE (decl) == COMPONENT_REF)
1551 decl = TREE_OPERAND (decl, 1);
1552 else if (TREE_CODE (decl) == MEM_REF)
1553 return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
1554
1555 if (DECL_P (decl)
1556 && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
1557 return decl;
1558
1559 return NULL_TREE;
1560 }
1561
1562 /* Warn about passing a non-string array/pointer to a function that
1563 expects a nul-terminated string argument. */
1564
1565 void
1566 maybe_warn_nonstring_arg (tree fndecl, tree exp)
1567 {
1568 if (!fndecl || !fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
1569 return;
1570
1571 if (TREE_NO_WARNING (exp) || !warn_stringop_overflow)
1572 return;
1573
1574 /* Avoid clearly invalid calls (more checking done below). */
1575 unsigned nargs = call_expr_nargs (exp);
1576 if (!nargs)
1577 return;
1578
1579 /* The bound argument to a bounded string function like strncpy. */
1580 tree bound = NULL_TREE;
1581
1582 /* The longest known or possible string argument to one of the comparison
1583 functions. If the length is less than the bound it is used instead.
1584 Since the length is only used for warning and not for code generation
1585 disable strict mode in the calls to get_range_strlen below. */
1586 tree maxlen = NULL_TREE;
1587
1588 /* It's safe to call "bounded" string functions with a non-string
1589 argument since the functions provide an explicit bound for this
1590 purpose. The exception is strncat where the bound may refer to
1591 either the destination or the source. */
1592 int fncode = DECL_FUNCTION_CODE (fndecl);
1593 switch (fncode)
1594 {
1595 case BUILT_IN_STRCMP:
1596 case BUILT_IN_STRNCMP:
1597 case BUILT_IN_STRNCASECMP:
1598 {
1599 /* For these, if one argument refers to one or more of a set
1600 of string constants or arrays of known size, determine
1601 the range of their known or possible lengths and use it
1602 conservatively as the bound for the unbounded function,
1603 and to adjust the range of the bound of the bounded ones. */
1604 for (unsigned argno = 0;
1605 argno < MIN (nargs, 2)
1606 && !(maxlen && TREE_CODE (maxlen) == INTEGER_CST); argno++)
1607 {
1608 tree arg = CALL_EXPR_ARG (exp, argno);
1609 if (!get_attr_nonstring_decl (arg))
1610 {
1611 c_strlen_data lendata = { };
1612 /* Set MAXBOUND to an arbitrary non-null non-integer
1613 node as a request to have it set to the length of
1614 the longest string in a PHI. */
1615 lendata.maxbound = arg;
1616 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1617 maxlen = lendata.maxbound;
1618 }
1619 }
1620 }
1621 /* Fall through. */
1622
1623 case BUILT_IN_STRNCAT:
1624 case BUILT_IN_STPNCPY:
1625 case BUILT_IN_STRNCPY:
1626 if (nargs > 2)
1627 bound = CALL_EXPR_ARG (exp, 2);
1628 break;
1629
1630 case BUILT_IN_STRNDUP:
1631 if (nargs > 1)
1632 bound = CALL_EXPR_ARG (exp, 1);
1633 break;
1634
1635 case BUILT_IN_STRNLEN:
1636 {
1637 tree arg = CALL_EXPR_ARG (exp, 0);
1638 if (!get_attr_nonstring_decl (arg))
1639 {
1640 c_strlen_data lendata = { };
1641 /* Set MAXBOUND to an arbitrary non-null non-integer
1642 node as a request to have it set to the length of
1643 the longest string in a PHI. */
1644 lendata.maxbound = arg;
1645 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1646 maxlen = lendata.maxbound;
1647 }
1648 if (nargs > 1)
1649 bound = CALL_EXPR_ARG (exp, 1);
1650 break;
1651 }
1652
1653 default:
1654 break;
1655 }
1656
1657 /* Determine the range of the bound argument (if specified). */
1658 tree bndrng[2] = { NULL_TREE, NULL_TREE };
1659 if (bound)
1660 {
1661 STRIP_NOPS (bound);
1662 get_size_range (bound, bndrng);
1663 }
1664
1665 location_t loc = EXPR_LOCATION (exp);
1666
1667 if (bndrng[0])
1668 {
1669 /* Diagnose excessive bound prior the adjustment below and
1670 regardless of attribute nonstring. */
1671 tree maxobjsize = max_object_size ();
1672 if (tree_int_cst_lt (maxobjsize, bndrng[0]))
1673 {
1674 if (tree_int_cst_equal (bndrng[0], bndrng[1]))
1675 warning_at (loc, OPT_Wstringop_overflow_,
1676 "%K%qD specified bound %E "
1677 "exceeds maximum object size %E",
1678 exp, fndecl, bndrng[0], maxobjsize);
1679 else
1680 warning_at (loc, OPT_Wstringop_overflow_,
1681 "%K%qD specified bound [%E, %E] "
1682 "exceeds maximum object size %E",
1683 exp, fndecl, bndrng[0], bndrng[1], maxobjsize);
1684 return;
1685 }
1686 }
1687
1688 if (maxlen && !integer_all_onesp (maxlen))
1689 {
1690 /* Add one for the nul. */
1691 maxlen = const_binop (PLUS_EXPR, TREE_TYPE (maxlen), maxlen,
1692 size_one_node);
1693
1694 if (!bndrng[0])
1695 {
1696 /* Conservatively use the upper bound of the lengths for
1697 both the lower and the upper bound of the operation. */
1698 bndrng[0] = maxlen;
1699 bndrng[1] = maxlen;
1700 bound = void_type_node;
1701 }
1702 else if (maxlen)
1703 {
1704 /* Replace the bound on the operation with the upper bound
1705 of the length of the string if the latter is smaller. */
1706 if (tree_int_cst_lt (maxlen, bndrng[0]))
1707 bndrng[0] = maxlen;
1708 else if (tree_int_cst_lt (maxlen, bndrng[1]))
1709 bndrng[1] = maxlen;
1710 }
1711 }
1712
1713 /* Iterate over the built-in function's formal arguments and check
1714 each const char* against the actual argument. If the actual
1715 argument is declared attribute non-string issue a warning unless
1716 the argument's maximum length is bounded. */
1717 function_args_iterator it;
1718 function_args_iter_init (&it, TREE_TYPE (fndecl));
1719
1720 for (unsigned argno = 0; ; ++argno, function_args_iter_next (&it))
1721 {
1722 /* Avoid iterating past the declared argument in a call
1723 to function declared without a prototype. */
1724 if (argno >= nargs)
1725 break;
1726
1727 tree argtype = function_args_iter_cond (&it);
1728 if (!argtype)
1729 break;
1730
1731 if (TREE_CODE (argtype) != POINTER_TYPE)
1732 continue;
1733
1734 argtype = TREE_TYPE (argtype);
1735
1736 if (TREE_CODE (argtype) != INTEGER_TYPE
1737 || !TYPE_READONLY (argtype))
1738 continue;
1739
1740 argtype = TYPE_MAIN_VARIANT (argtype);
1741 if (argtype != char_type_node)
1742 continue;
1743
1744 tree callarg = CALL_EXPR_ARG (exp, argno);
1745 if (TREE_CODE (callarg) == ADDR_EXPR)
1746 callarg = TREE_OPERAND (callarg, 0);
1747
1748 /* See if the destination is declared with attribute "nonstring". */
1749 tree decl = get_attr_nonstring_decl (callarg);
1750 if (!decl)
1751 continue;
1752
1753 /* The maximum number of array elements accessed. */
1754 offset_int wibnd = 0;
1755
1756 if (argno && fncode == BUILT_IN_STRNCAT)
1757 {
1758 /* See if the bound in strncat is derived from the length
1759 of the strlen of the destination (as it's expected to be).
1760 If so, reset BOUND and FNCODE to trigger a warning. */
1761 tree dstarg = CALL_EXPR_ARG (exp, 0);
1762 if (is_strlen_related_p (dstarg, bound))
1763 {
1764 /* The bound applies to the destination, not to the source,
1765 so reset these to trigger a warning without mentioning
1766 the bound. */
1767 bound = NULL;
1768 fncode = 0;
1769 }
1770 else if (bndrng[1])
1771 /* Use the upper bound of the range for strncat. */
1772 wibnd = wi::to_offset (bndrng[1]);
1773 }
1774 else if (bndrng[0])
1775 /* Use the lower bound of the range for functions other than
1776 strncat. */
1777 wibnd = wi::to_offset (bndrng[0]);
1778
1779 /* Determine the size of the argument array if it is one. */
1780 offset_int asize = wibnd;
1781 bool known_size = false;
1782 tree type = TREE_TYPE (decl);
1783
1784 /* Determine the array size. For arrays of unknown bound and
1785 pointers reset BOUND to trigger the appropriate warning. */
1786 if (TREE_CODE (type) == ARRAY_TYPE)
1787 {
1788 if (tree arrbnd = TYPE_DOMAIN (type))
1789 {
1790 if ((arrbnd = TYPE_MAX_VALUE (arrbnd)))
1791 {
1792 asize = wi::to_offset (arrbnd) + 1;
1793 known_size = true;
1794 }
1795 }
1796 else if (bound == void_type_node)
1797 bound = NULL_TREE;
1798 }
1799 else if (bound == void_type_node)
1800 bound = NULL_TREE;
1801
1802 /* In a call to strncat with a bound in a range whose lower but
1803 not upper bound is less than the array size, reset ASIZE to
1804 be the same as the bound and the other variable to trigger
1805 the apprpriate warning below. */
1806 if (fncode == BUILT_IN_STRNCAT
1807 && bndrng[0] != bndrng[1]
1808 && wi::ltu_p (wi::to_offset (bndrng[0]), asize)
1809 && (!known_size
1810 || wi::ltu_p (asize, wibnd)))
1811 {
1812 asize = wibnd;
1813 bound = NULL_TREE;
1814 fncode = 0;
1815 }
1816
1817 bool warned = false;
1818
1819 auto_diagnostic_group d;
1820 if (wi::ltu_p (asize, wibnd))
1821 {
1822 if (bndrng[0] == bndrng[1])
1823 warned = warning_at (loc, OPT_Wstringop_overflow_,
1824 "%qD argument %i declared attribute "
1825 "%<nonstring%> is smaller than the specified "
1826 "bound %wu",
1827 fndecl, argno + 1, wibnd.to_uhwi ());
1828 else if (wi::ltu_p (asize, wi::to_offset (bndrng[0])))
1829 warned = warning_at (loc, OPT_Wstringop_overflow_,
1830 "%qD argument %i declared attribute "
1831 "%<nonstring%> is smaller than "
1832 "the specified bound [%E, %E]",
1833 fndecl, argno + 1, bndrng[0], bndrng[1]);
1834 else
1835 warned = warning_at (loc, OPT_Wstringop_overflow_,
1836 "%qD argument %i declared attribute "
1837 "%<nonstring%> may be smaller than "
1838 "the specified bound [%E, %E]",
1839 fndecl, argno + 1, bndrng[0], bndrng[1]);
1840 }
1841 else if (fncode == BUILT_IN_STRNCAT)
1842 ; /* Avoid warning for calls to strncat() when the bound
1843 is equal to the size of the non-string argument. */
1844 else if (!bound)
1845 warned = warning_at (loc, OPT_Wstringop_overflow_,
1846 "%qD argument %i declared attribute %<nonstring%>",
1847 fndecl, argno + 1);
1848
1849 if (warned)
1850 inform (DECL_SOURCE_LOCATION (decl),
1851 "argument %qD declared here", decl);
1852 }
1853 }
1854
1855 /* Issue an error if CALL_EXPR was flagged as requiring
1856 tall-call optimization. */
1857
1858 static void
1859 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1860 {
1861 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1862 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1863 return;
1864
1865 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1866 }
1867
1868 /* Used to define rdwr_map below. */
1869 struct rdwr_access_hash: int_hash<int, -1> { };
1870
1871 /* A mapping between argument number corresponding to attribute access
1872 mode (read_only, write_only, or read_write) and operands. */
1873 typedef hash_map<rdwr_access_hash, attr_access> rdwr_map;
1874
1875 /* Initialize a mapping for a call to function FNDECL declared with
1876 attribute access. Each attribute positional operand inserts one
1877 entry into the mapping with the operand number as the key. */
1878
1879 static void
1880 init_attr_rdwr_indices (rdwr_map *rwm, tree fntype)
1881 {
1882 if (!fntype)
1883 return;
1884
1885 for (tree access = TYPE_ATTRIBUTES (fntype);
1886 (access = lookup_attribute ("access", access));
1887 access = TREE_CHAIN (access))
1888 {
1889 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
1890 is the attribute argument's value. */
1891 tree mode = TREE_VALUE (access);
1892 gcc_assert (TREE_CODE (mode) == TREE_LIST);
1893 mode = TREE_VALUE (mode);
1894 gcc_assert (TREE_CODE (mode) == STRING_CST);
1895
1896 const char *modestr = TREE_STRING_POINTER (mode);
1897 for (const char *m = modestr; *m; )
1898 {
1899 attr_access acc = { };
1900
1901 switch (*m)
1902 {
1903 case 'r': acc.mode = acc.read_only; break;
1904 case 'w': acc.mode = acc.write_only; break;
1905 default: acc.mode = acc.read_write; break;
1906 }
1907
1908 char *end;
1909 acc.ptrarg = strtoul (++m, &end, 10);
1910 m = end;
1911 if (*m == ',')
1912 {
1913 acc.sizarg = strtoul (++m, &end, 10);
1914 m = end;
1915 }
1916 else
1917 acc.sizarg = UINT_MAX;
1918
1919 acc.ptr = NULL_TREE;
1920 acc.size = NULL_TREE;
1921
1922 /* Unconditionally add an entry for the required pointer
1923 operand of the attribute, and one for the optional size
1924 operand when it's specified. */
1925 rwm->put (acc.ptrarg, acc);
1926 if (acc.sizarg != UINT_MAX)
1927 rwm->put (acc.sizarg, acc);
1928 }
1929 }
1930 }
1931
1932 /* Returns the type of the argument ARGNO to function with type FNTYPE
1933 or null when the typoe cannot be determined or no such argument exists. */
1934
1935 static tree
1936 fntype_argno_type (tree fntype, unsigned argno)
1937 {
1938 if (!prototype_p (fntype))
1939 return NULL_TREE;
1940
1941 tree argtype;
1942 function_args_iterator it;
1943 FOREACH_FUNCTION_ARGS (fntype, argtype, it)
1944 if (argno-- == 0)
1945 return argtype;
1946
1947 return NULL_TREE;
1948 }
1949
1950 /* Helper to append the "rdwr" attribute specification described
1951 by ACCESS to the array ATTRSTR with size STRSIZE. Used in
1952 diagnostics. */
1953
1954 static inline void
1955 append_attrname (const std::pair<int, attr_access> &access,
1956 char *attrstr, size_t strsize)
1957 {
1958 /* Append the relevant attribute to the string. This (deliberately)
1959 appends the attribute pointer operand even when none was specified. */
1960 size_t len = strlen (attrstr);
1961
1962 const char *atname
1963 = (access.second.mode == attr_access::read_only
1964 ? "read_only"
1965 : (access.second.mode == attr_access::write_only
1966 ? "write_only" : "read_write"));
1967
1968 const char *sep = len ? ", " : "";
1969
1970 if (access.second.sizarg == UINT_MAX)
1971 snprintf (attrstr + len, strsize - len,
1972 "%s%s (%i)", sep, atname,
1973 access.second.ptrarg + 1);
1974 else
1975 snprintf (attrstr + len, strsize - len,
1976 "%s%s (%i, %i)", sep, atname,
1977 access.second.ptrarg + 1, access.second.sizarg + 1);
1978 }
1979
1980 /* Iterate over attribute access read-only, read-write, and write-only
1981 arguments and diagnose past-the-end accesses and related problems
1982 in the function call EXP. */
1983
1984 static void
1985 maybe_warn_rdwr_sizes (rdwr_map *rwm, tree exp)
1986 {
1987 tree fndecl = NULL_TREE;
1988 tree fntype = NULL_TREE;
1989 if (tree fnaddr = CALL_EXPR_FN (exp))
1990 {
1991 if (TREE_CODE (fnaddr) == ADDR_EXPR)
1992 {
1993 fndecl = TREE_OPERAND (fnaddr, 0);
1994 fntype = TREE_TYPE (fndecl);
1995 }
1996 else
1997 fntype = TREE_TYPE (TREE_TYPE (fnaddr));
1998 }
1999
2000 if (!fntype)
2001 return;
2002
2003 /* A string describing the attributes that the warnings issued by this
2004 function apply to. Used to print one informational note per function
2005 call, rather than one per warning. That reduces clutter. */
2006 char attrstr[80];
2007 attrstr[0] = 0;
2008
2009 for (rdwr_map::iterator it = rwm->begin (); it != rwm->end (); ++it)
2010 {
2011 std::pair<int, attr_access> access = *it;
2012
2013 /* Get the function call arguments corresponding to the attribute's
2014 positional arguments. When both arguments have been specified
2015 there will be two entries in *RWM, one for each. They are
2016 cross-referenced by their respective argument numbers in
2017 ACCESS.PTRARG and ACCESS.SIZARG. */
2018 const int ptridx = access.second.ptrarg;
2019 const int sizidx = access.second.sizarg;
2020
2021 gcc_assert (ptridx != -1);
2022 gcc_assert (access.first == ptridx || access.first == sizidx);
2023
2024 /* The pointer is set to null for the entry corresponding to
2025 the size argument. Skip it. It's handled when the entry
2026 corresponding to the pointer argument comes up. */
2027 if (!access.second.ptr)
2028 continue;
2029
2030 tree argtype = fntype_argno_type (fntype, ptridx);
2031 argtype = TREE_TYPE (argtype);
2032
2033 tree size;
2034 if (sizidx == -1)
2035 {
2036 /* If only the pointer attribute operand was specified
2037 and not size, set SIZE to the size of one element of
2038 the pointed to type to detect smaller objects (null
2039 pointers are diagnosed in this case only if
2040 the pointer is also declared with attribute nonnull. */
2041 size = size_one_node;
2042 }
2043 else
2044 size = rwm->get (sizidx)->size;
2045
2046 tree ptr = access.second.ptr;
2047 tree sizrng[2] = { size_zero_node, build_all_ones_cst (sizetype) };
2048 if (get_size_range (size, sizrng, true)
2049 && tree_int_cst_sgn (sizrng[0]) < 0
2050 && tree_int_cst_sgn (sizrng[1]) < 0)
2051 {
2052 /* Warn about negative sizes. */
2053 bool warned = false;
2054 location_t loc = EXPR_LOCATION (exp);
2055 if (tree_int_cst_equal (sizrng[0], sizrng[1]))
2056 warned = warning_at (loc, OPT_Wstringop_overflow_,
2057 "%Kargument %i value %E is negative",
2058 exp, sizidx + 1, size);
2059 else
2060 warned = warning_at (loc, OPT_Wstringop_overflow_,
2061 "%Kargument %i range [%E, %E] is negative",
2062 exp, sizidx + 1, sizrng[0], sizrng[1]);
2063 if (warned)
2064 {
2065 append_attrname (access, attrstr, sizeof attrstr);
2066 /* Avoid warning again for the same attribute. */
2067 continue;
2068 }
2069 }
2070
2071 if (tree_int_cst_sgn (sizrng[0]) >= 0)
2072 {
2073 if (COMPLETE_TYPE_P (argtype))
2074 {
2075 /* Multiple SIZE by the size of the type the pointer
2076 argument points to. If it's incomplete the size
2077 is used as is. */
2078 size = NULL_TREE;
2079 if (tree argsize = TYPE_SIZE_UNIT (argtype))
2080 if (TREE_CODE (argsize) == INTEGER_CST)
2081 {
2082 const int prec = TYPE_PRECISION (sizetype);
2083 wide_int minsize = wi::to_wide (sizrng[0], prec);
2084 minsize *= wi::to_wide (argsize, prec);
2085 size = wide_int_to_tree (sizetype, minsize);
2086 }
2087 }
2088 }
2089 else
2090 size = NULL_TREE;
2091
2092 if (sizidx >= 0
2093 && integer_zerop (ptr)
2094 && tree_int_cst_sgn (sizrng[0]) > 0)
2095 {
2096 /* Warn about null pointers with positive sizes. This is
2097 different from also declaring the pointer argument with
2098 attribute nonnull when the function accepts null pointers
2099 only when the corresponding size is zero. */
2100 bool warned = false;
2101 location_t loc = EXPR_LOCATION (exp);
2102 if (tree_int_cst_equal (sizrng[0], sizrng[1]))
2103 warned = warning_at (loc, OPT_Wnonnull,
2104 "%Kargument %i is null but the corresponding "
2105 "size argument %i value is %E",
2106 exp, ptridx + 1, sizidx + 1, size);
2107 else
2108 warned = warning_at (loc, OPT_Wnonnull,
2109 "%Kargument %i is null but the corresponding "
2110 "size argument %i range is [%E, %E]",
2111 exp, ptridx + 1, sizidx + 1,
2112 sizrng[0], sizrng[1]);
2113 if (warned)
2114 {
2115 append_attrname (access, attrstr, sizeof attrstr);
2116 /* Avoid warning again for the same attribute. */
2117 continue;
2118 }
2119 }
2120
2121 tree objsize = compute_objsize (ptr, 0);
2122
2123 tree srcsize;
2124 if (access.second.mode == attr_access::write_only)
2125 {
2126 /* For a write-only argument there is no source. */
2127 srcsize = NULL_TREE;
2128 }
2129 else
2130 {
2131 /* For read-only and read-write attributes also set the source
2132 size. */
2133 srcsize = objsize;
2134 if (access.second.mode == attr_access::read_only)
2135 {
2136 /* For a read-only attribute there is no destination so
2137 clear OBJSIZE. This emits "reading N bytes" kind of
2138 diagnostics instead of the "writing N bytes" kind. */
2139 objsize = NULL_TREE;
2140 }
2141 }
2142
2143 /* Clear the no-warning bit in case it was set in a prior
2144 iteration so that accesses via different arguments are
2145 diagnosed. */
2146 TREE_NO_WARNING (exp) = false;
2147 check_access (exp, NULL_TREE, NULL_TREE, size, /*maxread=*/ NULL_TREE,
2148 srcsize, objsize);
2149
2150 if (TREE_NO_WARNING (exp))
2151 /* If check_access issued a warning above, append the relevant
2152 attribute to the string. */
2153 append_attrname (access, attrstr, sizeof attrstr);
2154 }
2155
2156 if (!*attrstr)
2157 return;
2158
2159 if (fndecl)
2160 inform (DECL_SOURCE_LOCATION (fndecl),
2161 "in a call to function %qD declared with attribute %qs",
2162 fndecl, attrstr);
2163 else
2164 inform (EXPR_LOCATION (fndecl),
2165 "in a call with type %qT and attribute %qs",
2166 fntype, attrstr);
2167
2168 /* Set the bit in case if was cleared and not set above. */
2169 TREE_NO_WARNING (exp) = true;
2170 }
2171
2172 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
2173 CALL_EXPR EXP.
2174
2175 NUM_ACTUALS is the total number of parameters.
2176
2177 N_NAMED_ARGS is the total number of named arguments.
2178
2179 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
2180 value, or null.
2181
2182 FNDECL is the tree code for the target of this call (if known)
2183
2184 ARGS_SO_FAR holds state needed by the target to know where to place
2185 the next argument.
2186
2187 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
2188 for arguments which are passed in registers.
2189
2190 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
2191 and may be modified by this routine.
2192
2193 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
2194 flags which may be modified by this routine.
2195
2196 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
2197 that requires allocation of stack space.
2198
2199 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
2200 the thunked-to function. */
2201
2202 static void
2203 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
2204 struct arg_data *args,
2205 struct args_size *args_size,
2206 int n_named_args ATTRIBUTE_UNUSED,
2207 tree exp, tree struct_value_addr_value,
2208 tree fndecl, tree fntype,
2209 cumulative_args_t args_so_far,
2210 int reg_parm_stack_space,
2211 rtx *old_stack_level,
2212 poly_int64_pod *old_pending_adj,
2213 int *must_preallocate, int *ecf_flags,
2214 bool *may_tailcall, bool call_from_thunk_p)
2215 {
2216 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
2217 location_t loc = EXPR_LOCATION (exp);
2218
2219 /* Count arg position in order args appear. */
2220 int argpos;
2221
2222 int i;
2223
2224 args_size->constant = 0;
2225 args_size->var = 0;
2226
2227 bitmap_obstack_initialize (NULL);
2228
2229 /* In this loop, we consider args in the order they are written.
2230 We fill up ARGS from the back. */
2231
2232 i = num_actuals - 1;
2233 {
2234 int j = i;
2235 call_expr_arg_iterator iter;
2236 tree arg;
2237 bitmap slots = NULL;
2238
2239 if (struct_value_addr_value)
2240 {
2241 args[j].tree_value = struct_value_addr_value;
2242 j--;
2243 }
2244 argpos = 0;
2245 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2246 {
2247 tree argtype = TREE_TYPE (arg);
2248
2249 if (targetm.calls.split_complex_arg
2250 && argtype
2251 && TREE_CODE (argtype) == COMPLEX_TYPE
2252 && targetm.calls.split_complex_arg (argtype))
2253 {
2254 tree subtype = TREE_TYPE (argtype);
2255 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
2256 j--;
2257 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
2258 }
2259 else
2260 args[j].tree_value = arg;
2261 j--;
2262 argpos++;
2263 }
2264
2265 if (slots)
2266 BITMAP_FREE (slots);
2267 }
2268
2269 bitmap_obstack_release (NULL);
2270
2271 /* Extract attribute alloc_size from the type of the called expression
2272 (which could be a function or a function pointer) and if set, store
2273 the indices of the corresponding arguments in ALLOC_IDX, and then
2274 the actual argument(s) at those indices in ALLOC_ARGS. */
2275 int alloc_idx[2] = { -1, -1 };
2276 if (tree alloc_size = lookup_attribute ("alloc_size",
2277 TYPE_ATTRIBUTES (fntype)))
2278 {
2279 tree args = TREE_VALUE (alloc_size);
2280 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
2281 if (TREE_CHAIN (args))
2282 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
2283 }
2284
2285 /* Array for up to the two attribute alloc_size arguments. */
2286 tree alloc_args[] = { NULL_TREE, NULL_TREE };
2287
2288 /* Map of attribute read_only, write_only, or read_write specifications
2289 for function arguments. */
2290 rdwr_map rdwr_idx;
2291 init_attr_rdwr_indices (&rdwr_idx, fntype);
2292
2293 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
2294 for (argpos = 0; argpos < num_actuals; i--, argpos++)
2295 {
2296 tree type = TREE_TYPE (args[i].tree_value);
2297 int unsignedp;
2298
2299 /* Replace erroneous argument with constant zero. */
2300 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2301 args[i].tree_value = integer_zero_node, type = integer_type_node;
2302
2303 /* If TYPE is a transparent union or record, pass things the way
2304 we would pass the first field of the union or record. We have
2305 already verified that the modes are the same. */
2306 if (RECORD_OR_UNION_TYPE_P (type) && TYPE_TRANSPARENT_AGGR (type))
2307 type = TREE_TYPE (first_field (type));
2308
2309 /* Decide where to pass this arg.
2310
2311 args[i].reg is nonzero if all or part is passed in registers.
2312
2313 args[i].partial is nonzero if part but not all is passed in registers,
2314 and the exact value says how many bytes are passed in registers.
2315
2316 args[i].pass_on_stack is nonzero if the argument must at least be
2317 computed on the stack. It may then be loaded back into registers
2318 if args[i].reg is nonzero.
2319
2320 These decisions are driven by the FUNCTION_... macros and must agree
2321 with those made by function.c. */
2322
2323 /* See if this argument should be passed by invisible reference. */
2324 function_arg_info arg (type, argpos < n_named_args);
2325 if (pass_by_reference (args_so_far_pnt, arg))
2326 {
2327 bool callee_copies;
2328 tree base = NULL_TREE;
2329
2330 callee_copies = reference_callee_copied (args_so_far_pnt, arg);
2331
2332 /* If we're compiling a thunk, pass through invisible references
2333 instead of making a copy. */
2334 if (call_from_thunk_p
2335 || (callee_copies
2336 && !TREE_ADDRESSABLE (type)
2337 && (base = get_base_address (args[i].tree_value))
2338 && TREE_CODE (base) != SSA_NAME
2339 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
2340 {
2341 /* We may have turned the parameter value into an SSA name.
2342 Go back to the original parameter so we can take the
2343 address. */
2344 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
2345 {
2346 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
2347 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
2348 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
2349 }
2350 /* Argument setup code may have copied the value to register. We
2351 revert that optimization now because the tail call code must
2352 use the original location. */
2353 if (TREE_CODE (args[i].tree_value) == PARM_DECL
2354 && !MEM_P (DECL_RTL (args[i].tree_value))
2355 && DECL_INCOMING_RTL (args[i].tree_value)
2356 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
2357 set_decl_rtl (args[i].tree_value,
2358 DECL_INCOMING_RTL (args[i].tree_value));
2359
2360 mark_addressable (args[i].tree_value);
2361
2362 /* We can't use sibcalls if a callee-copied argument is
2363 stored in the current function's frame. */
2364 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
2365 {
2366 *may_tailcall = false;
2367 maybe_complain_about_tail_call (exp,
2368 "a callee-copied argument is"
2369 " stored in the current"
2370 " function's frame");
2371 }
2372
2373 args[i].tree_value = build_fold_addr_expr_loc (loc,
2374 args[i].tree_value);
2375 type = TREE_TYPE (args[i].tree_value);
2376
2377 if (*ecf_flags & ECF_CONST)
2378 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
2379 }
2380 else
2381 {
2382 /* We make a copy of the object and pass the address to the
2383 function being called. */
2384 rtx copy;
2385
2386 if (!COMPLETE_TYPE_P (type)
2387 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
2388 || (flag_stack_check == GENERIC_STACK_CHECK
2389 && compare_tree_int (TYPE_SIZE_UNIT (type),
2390 STACK_CHECK_MAX_VAR_SIZE) > 0))
2391 {
2392 /* This is a variable-sized object. Make space on the stack
2393 for it. */
2394 rtx size_rtx = expr_size (args[i].tree_value);
2395
2396 if (*old_stack_level == 0)
2397 {
2398 emit_stack_save (SAVE_BLOCK, old_stack_level);
2399 *old_pending_adj = pending_stack_adjust;
2400 pending_stack_adjust = 0;
2401 }
2402
2403 /* We can pass TRUE as the 4th argument because we just
2404 saved the stack pointer and will restore it right after
2405 the call. */
2406 copy = allocate_dynamic_stack_space (size_rtx,
2407 TYPE_ALIGN (type),
2408 TYPE_ALIGN (type),
2409 max_int_size_in_bytes
2410 (type),
2411 true);
2412 copy = gen_rtx_MEM (BLKmode, copy);
2413 set_mem_attributes (copy, type, 1);
2414 }
2415 else
2416 copy = assign_temp (type, 1, 0);
2417
2418 store_expr (args[i].tree_value, copy, 0, false, false);
2419
2420 /* Just change the const function to pure and then let
2421 the next test clear the pure based on
2422 callee_copies. */
2423 if (*ecf_flags & ECF_CONST)
2424 {
2425 *ecf_flags &= ~ECF_CONST;
2426 *ecf_flags |= ECF_PURE;
2427 }
2428
2429 if (!callee_copies && *ecf_flags & ECF_PURE)
2430 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2431
2432 args[i].tree_value
2433 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
2434 type = TREE_TYPE (args[i].tree_value);
2435 *may_tailcall = false;
2436 maybe_complain_about_tail_call (exp,
2437 "argument must be passed"
2438 " by copying");
2439 }
2440 arg.pass_by_reference = true;
2441 }
2442
2443 unsignedp = TYPE_UNSIGNED (type);
2444 arg.type = type;
2445 arg.mode
2446 = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
2447 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
2448
2449 args[i].unsignedp = unsignedp;
2450 args[i].mode = arg.mode;
2451
2452 targetm.calls.warn_parameter_passing_abi (args_so_far, type);
2453
2454 args[i].reg = targetm.calls.function_arg (args_so_far, arg);
2455
2456 if (args[i].reg && CONST_INT_P (args[i].reg))
2457 args[i].reg = NULL;
2458
2459 /* If this is a sibling call and the machine has register windows, the
2460 register window has to be unwinded before calling the routine, so
2461 arguments have to go into the incoming registers. */
2462 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
2463 args[i].tail_call_reg
2464 = targetm.calls.function_incoming_arg (args_so_far, arg);
2465 else
2466 args[i].tail_call_reg = args[i].reg;
2467
2468 if (args[i].reg)
2469 args[i].partial = targetm.calls.arg_partial_bytes (args_so_far, arg);
2470
2471 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (arg);
2472
2473 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
2474 it means that we are to pass this arg in the register(s) designated
2475 by the PARALLEL, but also to pass it in the stack. */
2476 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
2477 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
2478 args[i].pass_on_stack = 1;
2479
2480 /* If this is an addressable type, we must preallocate the stack
2481 since we must evaluate the object into its final location.
2482
2483 If this is to be passed in both registers and the stack, it is simpler
2484 to preallocate. */
2485 if (TREE_ADDRESSABLE (type)
2486 || (args[i].pass_on_stack && args[i].reg != 0))
2487 *must_preallocate = 1;
2488
2489 /* Compute the stack-size of this argument. */
2490 if (args[i].reg == 0 || args[i].partial != 0
2491 || reg_parm_stack_space > 0
2492 || args[i].pass_on_stack)
2493 locate_and_pad_parm (arg.mode, type,
2494 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2495 1,
2496 #else
2497 args[i].reg != 0,
2498 #endif
2499 reg_parm_stack_space,
2500 args[i].pass_on_stack ? 0 : args[i].partial,
2501 fndecl, args_size, &args[i].locate);
2502 #ifdef BLOCK_REG_PADDING
2503 else
2504 /* The argument is passed entirely in registers. See at which
2505 end it should be padded. */
2506 args[i].locate.where_pad =
2507 BLOCK_REG_PADDING (arg.mode, type,
2508 int_size_in_bytes (type) <= UNITS_PER_WORD);
2509 #endif
2510
2511 /* Update ARGS_SIZE, the total stack space for args so far. */
2512
2513 args_size->constant += args[i].locate.size.constant;
2514 if (args[i].locate.size.var)
2515 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
2516
2517 /* Increment ARGS_SO_FAR, which has info about which arg-registers
2518 have been used, etc. */
2519
2520 /* ??? Traditionally we've passed TYPE_MODE here, instead of the
2521 promoted_mode used for function_arg above. However, the
2522 corresponding handling of incoming arguments in function.c
2523 does pass the promoted mode. */
2524 arg.mode = TYPE_MODE (type);
2525 targetm.calls.function_arg_advance (args_so_far, arg);
2526
2527 /* Store argument values for functions decorated with attribute
2528 alloc_size. */
2529 if (argpos == alloc_idx[0])
2530 alloc_args[0] = args[i].tree_value;
2531 else if (argpos == alloc_idx[1])
2532 alloc_args[1] = args[i].tree_value;
2533
2534 /* Save the actual argument that corresponds to the access attribute
2535 operand for later processing. */
2536 if (attr_access *access = rdwr_idx.get (argpos))
2537 {
2538 if (POINTER_TYPE_P (type))
2539 {
2540 access->ptr = args[i].tree_value;
2541 gcc_assert (access->size == NULL_TREE);
2542 }
2543 else
2544 {
2545 access->size = args[i].tree_value;
2546 gcc_assert (access->ptr == NULL_TREE);
2547 }
2548 }
2549 }
2550
2551 if (alloc_args[0])
2552 {
2553 /* Check the arguments of functions decorated with attribute
2554 alloc_size. */
2555 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
2556 }
2557
2558 /* Detect passing non-string arguments to functions expecting
2559 nul-terminated strings. */
2560 maybe_warn_nonstring_arg (fndecl, exp);
2561
2562 /* Check read_only, write_only, and read_write arguments. */
2563 maybe_warn_rdwr_sizes (&rdwr_idx, exp);
2564 }
2565
2566 /* Update ARGS_SIZE to contain the total size for the argument block.
2567 Return the original constant component of the argument block's size.
2568
2569 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
2570 for arguments passed in registers. */
2571
2572 static poly_int64
2573 compute_argument_block_size (int reg_parm_stack_space,
2574 struct args_size *args_size,
2575 tree fndecl ATTRIBUTE_UNUSED,
2576 tree fntype ATTRIBUTE_UNUSED,
2577 int preferred_stack_boundary ATTRIBUTE_UNUSED)
2578 {
2579 poly_int64 unadjusted_args_size = args_size->constant;
2580
2581 /* For accumulate outgoing args mode we don't need to align, since the frame
2582 will be already aligned. Align to STACK_BOUNDARY in order to prevent
2583 backends from generating misaligned frame sizes. */
2584 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
2585 preferred_stack_boundary = STACK_BOUNDARY;
2586
2587 /* Compute the actual size of the argument block required. The variable
2588 and constant sizes must be combined, the size may have to be rounded,
2589 and there may be a minimum required size. */
2590
2591 if (args_size->var)
2592 {
2593 args_size->var = ARGS_SIZE_TREE (*args_size);
2594 args_size->constant = 0;
2595
2596 preferred_stack_boundary /= BITS_PER_UNIT;
2597 if (preferred_stack_boundary > 1)
2598 {
2599 /* We don't handle this case yet. To handle it correctly we have
2600 to add the delta, round and subtract the delta.
2601 Currently no machine description requires this support. */
2602 gcc_assert (multiple_p (stack_pointer_delta,
2603 preferred_stack_boundary));
2604 args_size->var = round_up (args_size->var, preferred_stack_boundary);
2605 }
2606
2607 if (reg_parm_stack_space > 0)
2608 {
2609 args_size->var
2610 = size_binop (MAX_EXPR, args_size->var,
2611 ssize_int (reg_parm_stack_space));
2612
2613 /* The area corresponding to register parameters is not to count in
2614 the size of the block we need. So make the adjustment. */
2615 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2616 args_size->var
2617 = size_binop (MINUS_EXPR, args_size->var,
2618 ssize_int (reg_parm_stack_space));
2619 }
2620 }
2621 else
2622 {
2623 preferred_stack_boundary /= BITS_PER_UNIT;
2624 if (preferred_stack_boundary < 1)
2625 preferred_stack_boundary = 1;
2626 args_size->constant = (aligned_upper_bound (args_size->constant
2627 + stack_pointer_delta,
2628 preferred_stack_boundary)
2629 - stack_pointer_delta);
2630
2631 args_size->constant = upper_bound (args_size->constant,
2632 reg_parm_stack_space);
2633
2634 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2635 args_size->constant -= reg_parm_stack_space;
2636 }
2637 return unadjusted_args_size;
2638 }
2639
2640 /* Precompute parameters as needed for a function call.
2641
2642 FLAGS is mask of ECF_* constants.
2643
2644 NUM_ACTUALS is the number of arguments.
2645
2646 ARGS is an array containing information for each argument; this
2647 routine fills in the INITIAL_VALUE and VALUE fields for each
2648 precomputed argument. */
2649
2650 static void
2651 precompute_arguments (int num_actuals, struct arg_data *args)
2652 {
2653 int i;
2654
2655 /* If this is a libcall, then precompute all arguments so that we do not
2656 get extraneous instructions emitted as part of the libcall sequence. */
2657
2658 /* If we preallocated the stack space, and some arguments must be passed
2659 on the stack, then we must precompute any parameter which contains a
2660 function call which will store arguments on the stack.
2661 Otherwise, evaluating the parameter may clobber previous parameters
2662 which have already been stored into the stack. (we have code to avoid
2663 such case by saving the outgoing stack arguments, but it results in
2664 worse code) */
2665 if (!ACCUMULATE_OUTGOING_ARGS)
2666 return;
2667
2668 for (i = 0; i < num_actuals; i++)
2669 {
2670 tree type;
2671 machine_mode mode;
2672
2673 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2674 continue;
2675
2676 /* If this is an addressable type, we cannot pre-evaluate it. */
2677 type = TREE_TYPE (args[i].tree_value);
2678 gcc_assert (!TREE_ADDRESSABLE (type));
2679
2680 args[i].initial_value = args[i].value
2681 = expand_normal (args[i].tree_value);
2682
2683 mode = TYPE_MODE (type);
2684 if (mode != args[i].mode)
2685 {
2686 int unsignedp = args[i].unsignedp;
2687 args[i].value
2688 = convert_modes (args[i].mode, mode,
2689 args[i].value, args[i].unsignedp);
2690
2691 /* CSE will replace this only if it contains args[i].value
2692 pseudo, so convert it down to the declared mode using
2693 a SUBREG. */
2694 if (REG_P (args[i].value)
2695 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2696 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2697 {
2698 args[i].initial_value
2699 = gen_lowpart_SUBREG (mode, args[i].value);
2700 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2701 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2702 }
2703 }
2704 }
2705 }
2706
2707 /* Given the current state of MUST_PREALLOCATE and information about
2708 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2709 compute and return the final value for MUST_PREALLOCATE. */
2710
2711 static int
2712 finalize_must_preallocate (int must_preallocate, int num_actuals,
2713 struct arg_data *args, struct args_size *args_size)
2714 {
2715 /* See if we have or want to preallocate stack space.
2716
2717 If we would have to push a partially-in-regs parm
2718 before other stack parms, preallocate stack space instead.
2719
2720 If the size of some parm is not a multiple of the required stack
2721 alignment, we must preallocate.
2722
2723 If the total size of arguments that would otherwise create a copy in
2724 a temporary (such as a CALL) is more than half the total argument list
2725 size, preallocation is faster.
2726
2727 Another reason to preallocate is if we have a machine (like the m88k)
2728 where stack alignment is required to be maintained between every
2729 pair of insns, not just when the call is made. However, we assume here
2730 that such machines either do not have push insns (and hence preallocation
2731 would occur anyway) or the problem is taken care of with
2732 PUSH_ROUNDING. */
2733
2734 if (! must_preallocate)
2735 {
2736 int partial_seen = 0;
2737 poly_int64 copy_to_evaluate_size = 0;
2738 int i;
2739
2740 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2741 {
2742 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2743 partial_seen = 1;
2744 else if (partial_seen && args[i].reg == 0)
2745 must_preallocate = 1;
2746
2747 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2748 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2749 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2750 || TREE_CODE (args[i].tree_value) == COND_EXPR
2751 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2752 copy_to_evaluate_size
2753 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2754 }
2755
2756 if (maybe_ne (args_size->constant, 0)
2757 && maybe_ge (copy_to_evaluate_size * 2, args_size->constant))
2758 must_preallocate = 1;
2759 }
2760 return must_preallocate;
2761 }
2762
2763 /* If we preallocated stack space, compute the address of each argument
2764 and store it into the ARGS array.
2765
2766 We need not ensure it is a valid memory address here; it will be
2767 validized when it is used.
2768
2769 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2770
2771 static void
2772 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2773 {
2774 if (argblock)
2775 {
2776 rtx arg_reg = argblock;
2777 int i;
2778 poly_int64 arg_offset = 0;
2779
2780 if (GET_CODE (argblock) == PLUS)
2781 {
2782 arg_reg = XEXP (argblock, 0);
2783 arg_offset = rtx_to_poly_int64 (XEXP (argblock, 1));
2784 }
2785
2786 for (i = 0; i < num_actuals; i++)
2787 {
2788 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2789 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2790 rtx addr;
2791 unsigned int align, boundary;
2792 poly_uint64 units_on_stack = 0;
2793 machine_mode partial_mode = VOIDmode;
2794
2795 /* Skip this parm if it will not be passed on the stack. */
2796 if (! args[i].pass_on_stack
2797 && args[i].reg != 0
2798 && args[i].partial == 0)
2799 continue;
2800
2801 if (TYPE_EMPTY_P (TREE_TYPE (args[i].tree_value)))
2802 continue;
2803
2804 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
2805 addr = plus_constant (Pmode, addr, arg_offset);
2806
2807 if (args[i].partial != 0)
2808 {
2809 /* Only part of the parameter is being passed on the stack.
2810 Generate a simple memory reference of the correct size. */
2811 units_on_stack = args[i].locate.size.constant;
2812 poly_uint64 bits_on_stack = units_on_stack * BITS_PER_UNIT;
2813 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
2814 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2815 set_mem_size (args[i].stack, units_on_stack);
2816 }
2817 else
2818 {
2819 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2820 set_mem_attributes (args[i].stack,
2821 TREE_TYPE (args[i].tree_value), 1);
2822 }
2823 align = BITS_PER_UNIT;
2824 boundary = args[i].locate.boundary;
2825 poly_int64 offset_val;
2826 if (args[i].locate.where_pad != PAD_DOWNWARD)
2827 align = boundary;
2828 else if (poly_int_rtx_p (offset, &offset_val))
2829 {
2830 align = least_bit_hwi (boundary);
2831 unsigned int offset_align
2832 = known_alignment (offset_val) * BITS_PER_UNIT;
2833 if (offset_align != 0)
2834 align = MIN (align, offset_align);
2835 }
2836 set_mem_align (args[i].stack, align);
2837
2838 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
2839 addr = plus_constant (Pmode, addr, arg_offset);
2840
2841 if (args[i].partial != 0)
2842 {
2843 /* Only part of the parameter is being passed on the stack.
2844 Generate a simple memory reference of the correct size.
2845 */
2846 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2847 set_mem_size (args[i].stack_slot, units_on_stack);
2848 }
2849 else
2850 {
2851 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2852 set_mem_attributes (args[i].stack_slot,
2853 TREE_TYPE (args[i].tree_value), 1);
2854 }
2855 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2856
2857 /* Function incoming arguments may overlap with sibling call
2858 outgoing arguments and we cannot allow reordering of reads
2859 from function arguments with stores to outgoing arguments
2860 of sibling calls. */
2861 set_mem_alias_set (args[i].stack, 0);
2862 set_mem_alias_set (args[i].stack_slot, 0);
2863 }
2864 }
2865 }
2866
2867 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2868 in a call instruction.
2869
2870 FNDECL is the tree node for the target function. For an indirect call
2871 FNDECL will be NULL_TREE.
2872
2873 ADDR is the operand 0 of CALL_EXPR for this call. */
2874
2875 static rtx
2876 rtx_for_function_call (tree fndecl, tree addr)
2877 {
2878 rtx funexp;
2879
2880 /* Get the function to call, in the form of RTL. */
2881 if (fndecl)
2882 {
2883 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2884 TREE_USED (fndecl) = 1;
2885
2886 /* Get a SYMBOL_REF rtx for the function address. */
2887 funexp = XEXP (DECL_RTL (fndecl), 0);
2888 }
2889 else
2890 /* Generate an rtx (probably a pseudo-register) for the address. */
2891 {
2892 push_temp_slots ();
2893 funexp = expand_normal (addr);
2894 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2895 }
2896 return funexp;
2897 }
2898
2899 /* Return the static chain for this function, if any. */
2900
2901 rtx
2902 rtx_for_static_chain (const_tree fndecl_or_type, bool incoming_p)
2903 {
2904 if (DECL_P (fndecl_or_type) && !DECL_STATIC_CHAIN (fndecl_or_type))
2905 return NULL;
2906
2907 return targetm.calls.static_chain (fndecl_or_type, incoming_p);
2908 }
2909
2910 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2911 static struct
2912 {
2913 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2914 or NULL_RTX if none has been scanned yet. */
2915 rtx_insn *scan_start;
2916 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2917 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2918 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2919 with fixed offset, or PC if this is with variable or unknown offset. */
2920 vec<rtx> cache;
2921 } internal_arg_pointer_exp_state;
2922
2923 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2924
2925 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2926 the tail call sequence, starting with first insn that hasn't been
2927 scanned yet, and note for each pseudo on the LHS whether it is based
2928 on crtl->args.internal_arg_pointer or not, and what offset from that
2929 that pointer it has. */
2930
2931 static void
2932 internal_arg_pointer_based_exp_scan (void)
2933 {
2934 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2935
2936 if (scan_start == NULL_RTX)
2937 insn = get_insns ();
2938 else
2939 insn = NEXT_INSN (scan_start);
2940
2941 while (insn)
2942 {
2943 rtx set = single_set (insn);
2944 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2945 {
2946 rtx val = NULL_RTX;
2947 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2948 /* Punt on pseudos set multiple times. */
2949 if (idx < internal_arg_pointer_exp_state.cache.length ()
2950 && (internal_arg_pointer_exp_state.cache[idx]
2951 != NULL_RTX))
2952 val = pc_rtx;
2953 else
2954 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2955 if (val != NULL_RTX)
2956 {
2957 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2958 internal_arg_pointer_exp_state.cache
2959 .safe_grow_cleared (idx + 1);
2960 internal_arg_pointer_exp_state.cache[idx] = val;
2961 }
2962 }
2963 if (NEXT_INSN (insn) == NULL_RTX)
2964 scan_start = insn;
2965 insn = NEXT_INSN (insn);
2966 }
2967
2968 internal_arg_pointer_exp_state.scan_start = scan_start;
2969 }
2970
2971 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2972 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2973 it with fixed offset, or PC if this is with variable or unknown offset.
2974 TOPLEVEL is true if the function is invoked at the topmost level. */
2975
2976 static rtx
2977 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2978 {
2979 if (CONSTANT_P (rtl))
2980 return NULL_RTX;
2981
2982 if (rtl == crtl->args.internal_arg_pointer)
2983 return const0_rtx;
2984
2985 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2986 return NULL_RTX;
2987
2988 poly_int64 offset;
2989 if (GET_CODE (rtl) == PLUS && poly_int_rtx_p (XEXP (rtl, 1), &offset))
2990 {
2991 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2992 if (val == NULL_RTX || val == pc_rtx)
2993 return val;
2994 return plus_constant (Pmode, val, offset);
2995 }
2996
2997 /* When called at the topmost level, scan pseudo assignments in between the
2998 last scanned instruction in the tail call sequence and the latest insn
2999 in that sequence. */
3000 if (toplevel)
3001 internal_arg_pointer_based_exp_scan ();
3002
3003 if (REG_P (rtl))
3004 {
3005 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
3006 if (idx < internal_arg_pointer_exp_state.cache.length ())
3007 return internal_arg_pointer_exp_state.cache[idx];
3008
3009 return NULL_RTX;
3010 }
3011
3012 subrtx_iterator::array_type array;
3013 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
3014 {
3015 const_rtx x = *iter;
3016 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
3017 return pc_rtx;
3018 if (MEM_P (x))
3019 iter.skip_subrtxes ();
3020 }
3021
3022 return NULL_RTX;
3023 }
3024
3025 /* Return true if SIZE bytes starting from address ADDR might overlap an
3026 already-clobbered argument area. This function is used to determine
3027 if we should give up a sibcall. */
3028
3029 static bool
3030 mem_might_overlap_already_clobbered_arg_p (rtx addr, poly_uint64 size)
3031 {
3032 poly_int64 i;
3033 unsigned HOST_WIDE_INT start, end;
3034 rtx val;
3035
3036 if (bitmap_empty_p (stored_args_map)
3037 && stored_args_watermark == HOST_WIDE_INT_M1U)
3038 return false;
3039 val = internal_arg_pointer_based_exp (addr, true);
3040 if (val == NULL_RTX)
3041 return false;
3042 else if (!poly_int_rtx_p (val, &i))
3043 return true;
3044
3045 if (known_eq (size, 0U))
3046 return false;
3047
3048 if (STACK_GROWS_DOWNWARD)
3049 i -= crtl->args.pretend_args_size;
3050 else
3051 i += crtl->args.pretend_args_size;
3052
3053 if (ARGS_GROW_DOWNWARD)
3054 i = -i - size;
3055
3056 /* We can ignore any references to the function's pretend args,
3057 which at this point would manifest as negative values of I. */
3058 if (known_le (i, 0) && known_le (size, poly_uint64 (-i)))
3059 return false;
3060
3061 start = maybe_lt (i, 0) ? 0 : constant_lower_bound (i);
3062 if (!(i + size).is_constant (&end))
3063 end = HOST_WIDE_INT_M1U;
3064
3065 if (end > stored_args_watermark)
3066 return true;
3067
3068 end = MIN (end, SBITMAP_SIZE (stored_args_map));
3069 for (unsigned HOST_WIDE_INT k = start; k < end; ++k)
3070 if (bitmap_bit_p (stored_args_map, k))
3071 return true;
3072
3073 return false;
3074 }
3075
3076 /* Do the register loads required for any wholly-register parms or any
3077 parms which are passed both on the stack and in a register. Their
3078 expressions were already evaluated.
3079
3080 Mark all register-parms as living through the call, putting these USE
3081 insns in the CALL_INSN_FUNCTION_USAGE field.
3082
3083 When IS_SIBCALL, perform the check_sibcall_argument_overlap
3084 checking, setting *SIBCALL_FAILURE if appropriate. */
3085
3086 static void
3087 load_register_parameters (struct arg_data *args, int num_actuals,
3088 rtx *call_fusage, int flags, int is_sibcall,
3089 int *sibcall_failure)
3090 {
3091 int i, j;
3092
3093 for (i = 0; i < num_actuals; i++)
3094 {
3095 rtx reg = ((flags & ECF_SIBCALL)
3096 ? args[i].tail_call_reg : args[i].reg);
3097 if (reg)
3098 {
3099 int partial = args[i].partial;
3100 int nregs;
3101 poly_int64 size = 0;
3102 HOST_WIDE_INT const_size = 0;
3103 rtx_insn *before_arg = get_last_insn ();
3104 tree type = TREE_TYPE (args[i].tree_value);
3105 if (RECORD_OR_UNION_TYPE_P (type) && TYPE_TRANSPARENT_AGGR (type))
3106 type = TREE_TYPE (first_field (type));
3107 /* Set non-negative if we must move a word at a time, even if
3108 just one word (e.g, partial == 4 && mode == DFmode). Set
3109 to -1 if we just use a normal move insn. This value can be
3110 zero if the argument is a zero size structure. */
3111 nregs = -1;
3112 if (GET_CODE (reg) == PARALLEL)
3113 ;
3114 else if (partial)
3115 {
3116 gcc_assert (partial % UNITS_PER_WORD == 0);
3117 nregs = partial / UNITS_PER_WORD;
3118 }
3119 else if (TYPE_MODE (type) == BLKmode)
3120 {
3121 /* Variable-sized parameters should be described by a
3122 PARALLEL instead. */
3123 const_size = int_size_in_bytes (type);
3124 gcc_assert (const_size >= 0);
3125 nregs = (const_size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3126 size = const_size;
3127 }
3128 else
3129 size = GET_MODE_SIZE (args[i].mode);
3130
3131 /* Handle calls that pass values in multiple non-contiguous
3132 locations. The Irix 6 ABI has examples of this. */
3133
3134 if (GET_CODE (reg) == PARALLEL)
3135 emit_group_move (reg, args[i].parallel_value);
3136
3137 /* If simple case, just do move. If normal partial, store_one_arg
3138 has already loaded the register for us. In all other cases,
3139 load the register(s) from memory. */
3140
3141 else if (nregs == -1)
3142 {
3143 emit_move_insn (reg, args[i].value);
3144 #ifdef BLOCK_REG_PADDING
3145 /* Handle case where we have a value that needs shifting
3146 up to the msb. eg. a QImode value and we're padding
3147 upward on a BYTES_BIG_ENDIAN machine. */
3148 if (args[i].locate.where_pad
3149 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))
3150 {
3151 gcc_checking_assert (ordered_p (size, UNITS_PER_WORD));
3152 if (maybe_lt (size, UNITS_PER_WORD))
3153 {
3154 rtx x;
3155 poly_int64 shift
3156 = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3157
3158 /* Assigning REG here rather than a temp makes
3159 CALL_FUSAGE report the whole reg as used.
3160 Strictly speaking, the call only uses SIZE
3161 bytes at the msb end, but it doesn't seem worth
3162 generating rtl to say that. */
3163 reg = gen_rtx_REG (word_mode, REGNO (reg));
3164 x = expand_shift (LSHIFT_EXPR, word_mode,
3165 reg, shift, reg, 1);
3166 if (x != reg)
3167 emit_move_insn (reg, x);
3168 }
3169 }
3170 #endif
3171 }
3172
3173 /* If we have pre-computed the values to put in the registers in
3174 the case of non-aligned structures, copy them in now. */
3175
3176 else if (args[i].n_aligned_regs != 0)
3177 for (j = 0; j < args[i].n_aligned_regs; j++)
3178 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
3179 args[i].aligned_regs[j]);
3180
3181 else if (partial == 0 || args[i].pass_on_stack)
3182 {
3183 /* SIZE and CONST_SIZE are 0 for partial arguments and
3184 the size of a BLKmode type otherwise. */
3185 gcc_checking_assert (known_eq (size, const_size));
3186 rtx mem = validize_mem (copy_rtx (args[i].value));
3187
3188 /* Check for overlap with already clobbered argument area,
3189 providing that this has non-zero size. */
3190 if (is_sibcall
3191 && const_size != 0
3192 && (mem_might_overlap_already_clobbered_arg_p
3193 (XEXP (args[i].value, 0), const_size)))
3194 *sibcall_failure = 1;
3195
3196 if (const_size % UNITS_PER_WORD == 0
3197 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
3198 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
3199 else
3200 {
3201 if (nregs > 1)
3202 move_block_to_reg (REGNO (reg), mem, nregs - 1,
3203 args[i].mode);
3204 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
3205 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
3206 unsigned int bitsize = const_size * BITS_PER_UNIT - bitoff;
3207 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
3208 word_mode, word_mode, false,
3209 NULL);
3210 if (BYTES_BIG_ENDIAN)
3211 x = expand_shift (LSHIFT_EXPR, word_mode, x,
3212 BITS_PER_WORD - bitsize, dest, 1);
3213 if (x != dest)
3214 emit_move_insn (dest, x);
3215 }
3216
3217 /* Handle a BLKmode that needs shifting. */
3218 if (nregs == 1 && const_size < UNITS_PER_WORD
3219 #ifdef BLOCK_REG_PADDING
3220 && args[i].locate.where_pad == PAD_DOWNWARD
3221 #else
3222 && BYTES_BIG_ENDIAN
3223 #endif
3224 )
3225 {
3226 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
3227 int shift = (UNITS_PER_WORD - const_size) * BITS_PER_UNIT;
3228 enum tree_code dir = (BYTES_BIG_ENDIAN
3229 ? RSHIFT_EXPR : LSHIFT_EXPR);
3230 rtx x;
3231
3232 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
3233 if (x != dest)
3234 emit_move_insn (dest, x);
3235 }
3236 }
3237
3238 /* When a parameter is a block, and perhaps in other cases, it is
3239 possible that it did a load from an argument slot that was
3240 already clobbered. */
3241 if (is_sibcall
3242 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
3243 *sibcall_failure = 1;
3244
3245 /* Handle calls that pass values in multiple non-contiguous
3246 locations. The Irix 6 ABI has examples of this. */
3247 if (GET_CODE (reg) == PARALLEL)
3248 use_group_regs (call_fusage, reg);
3249 else if (nregs == -1)
3250 use_reg_mode (call_fusage, reg, TYPE_MODE (type));
3251 else if (nregs > 0)
3252 use_regs (call_fusage, REGNO (reg), nregs);
3253 }
3254 }
3255 }
3256
3257 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
3258 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
3259 bytes, then we would need to push some additional bytes to pad the
3260 arguments. So, we try to compute an adjust to the stack pointer for an
3261 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
3262 bytes. Then, when the arguments are pushed the stack will be perfectly
3263 aligned.
3264
3265 Return true if this optimization is possible, storing the adjustment
3266 in ADJUSTMENT_OUT and setting ARGS_SIZE->CONSTANT to the number of
3267 bytes that should be popped after the call. */
3268
3269 static bool
3270 combine_pending_stack_adjustment_and_call (poly_int64_pod *adjustment_out,
3271 poly_int64 unadjusted_args_size,
3272 struct args_size *args_size,
3273 unsigned int preferred_unit_stack_boundary)
3274 {
3275 /* The number of bytes to pop so that the stack will be
3276 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
3277 poly_int64 adjustment;
3278 /* The alignment of the stack after the arguments are pushed, if we
3279 just pushed the arguments without adjust the stack here. */
3280 unsigned HOST_WIDE_INT unadjusted_alignment;
3281
3282 if (!known_misalignment (stack_pointer_delta + unadjusted_args_size,
3283 preferred_unit_stack_boundary,
3284 &unadjusted_alignment))
3285 return false;
3286
3287 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
3288 as possible -- leaving just enough left to cancel out the
3289 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
3290 PENDING_STACK_ADJUST is non-negative, and congruent to
3291 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
3292
3293 /* Begin by trying to pop all the bytes. */
3294 unsigned HOST_WIDE_INT tmp_misalignment;
3295 if (!known_misalignment (pending_stack_adjust,
3296 preferred_unit_stack_boundary,
3297 &tmp_misalignment))
3298 return false;
3299 unadjusted_alignment -= tmp_misalignment;
3300 adjustment = pending_stack_adjust;
3301 /* Push enough additional bytes that the stack will be aligned
3302 after the arguments are pushed. */
3303 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
3304 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
3305
3306 /* We need to know whether the adjusted argument size
3307 (UNADJUSTED_ARGS_SIZE - ADJUSTMENT) constitutes an allocation
3308 or a deallocation. */
3309 if (!ordered_p (adjustment, unadjusted_args_size))
3310 return false;
3311
3312 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
3313 bytes after the call. The right number is the entire
3314 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
3315 by the arguments in the first place. */
3316 args_size->constant
3317 = pending_stack_adjust - adjustment + unadjusted_args_size;
3318
3319 *adjustment_out = adjustment;
3320 return true;
3321 }
3322
3323 /* Scan X expression if it does not dereference any argument slots
3324 we already clobbered by tail call arguments (as noted in stored_args_map
3325 bitmap).
3326 Return nonzero if X expression dereferences such argument slots,
3327 zero otherwise. */
3328
3329 static int
3330 check_sibcall_argument_overlap_1 (rtx x)
3331 {
3332 RTX_CODE code;
3333 int i, j;
3334 const char *fmt;
3335
3336 if (x == NULL_RTX)
3337 return 0;
3338
3339 code = GET_CODE (x);
3340
3341 /* We need not check the operands of the CALL expression itself. */
3342 if (code == CALL)
3343 return 0;
3344
3345 if (code == MEM)
3346 return (mem_might_overlap_already_clobbered_arg_p
3347 (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x))));
3348
3349 /* Scan all subexpressions. */
3350 fmt = GET_RTX_FORMAT (code);
3351 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3352 {
3353 if (*fmt == 'e')
3354 {
3355 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
3356 return 1;
3357 }
3358 else if (*fmt == 'E')
3359 {
3360 for (j = 0; j < XVECLEN (x, i); j++)
3361 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
3362 return 1;
3363 }
3364 }
3365 return 0;
3366 }
3367
3368 /* Scan sequence after INSN if it does not dereference any argument slots
3369 we already clobbered by tail call arguments (as noted in stored_args_map
3370 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
3371 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
3372 should be 0). Return nonzero if sequence after INSN dereferences such argument
3373 slots, zero otherwise. */
3374
3375 static int
3376 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
3377 int mark_stored_args_map)
3378 {
3379 poly_uint64 low, high;
3380 unsigned HOST_WIDE_INT const_low, const_high;
3381
3382 if (insn == NULL_RTX)
3383 insn = get_insns ();
3384 else
3385 insn = NEXT_INSN (insn);
3386
3387 for (; insn; insn = NEXT_INSN (insn))
3388 if (INSN_P (insn)
3389 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
3390 break;
3391
3392 if (mark_stored_args_map)
3393 {
3394 if (ARGS_GROW_DOWNWARD)
3395 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
3396 else
3397 low = arg->locate.slot_offset.constant;
3398 high = low + arg->locate.size.constant;
3399
3400 const_low = constant_lower_bound (low);
3401 if (high.is_constant (&const_high))
3402 for (unsigned HOST_WIDE_INT i = const_low; i < const_high; ++i)
3403 bitmap_set_bit (stored_args_map, i);
3404 else
3405 stored_args_watermark = MIN (stored_args_watermark, const_low);
3406 }
3407 return insn != NULL_RTX;
3408 }
3409
3410 /* Given that a function returns a value of mode MODE at the most
3411 significant end of hard register VALUE, shift VALUE left or right
3412 as specified by LEFT_P. Return true if some action was needed. */
3413
3414 bool
3415 shift_return_value (machine_mode mode, bool left_p, rtx value)
3416 {
3417 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
3418 machine_mode value_mode = GET_MODE (value);
3419 poly_int64 shift = GET_MODE_BITSIZE (value_mode) - GET_MODE_BITSIZE (mode);
3420
3421 if (known_eq (shift, 0))
3422 return false;
3423
3424 /* Use ashr rather than lshr for right shifts. This is for the benefit
3425 of the MIPS port, which requires SImode values to be sign-extended
3426 when stored in 64-bit registers. */
3427 if (!force_expand_binop (value_mode, left_p ? ashl_optab : ashr_optab,
3428 value, gen_int_shift_amount (value_mode, shift),
3429 value, 1, OPTAB_WIDEN))
3430 gcc_unreachable ();
3431 return true;
3432 }
3433
3434 /* If X is a likely-spilled register value, copy it to a pseudo
3435 register and return that register. Return X otherwise. */
3436
3437 static rtx
3438 avoid_likely_spilled_reg (rtx x)
3439 {
3440 rtx new_rtx;
3441
3442 if (REG_P (x)
3443 && HARD_REGISTER_P (x)
3444 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
3445 {
3446 /* Make sure that we generate a REG rather than a CONCAT.
3447 Moves into CONCATs can need nontrivial instructions,
3448 and the whole point of this function is to avoid
3449 using the hard register directly in such a situation. */
3450 generating_concat_p = 0;
3451 new_rtx = gen_reg_rtx (GET_MODE (x));
3452 generating_concat_p = 1;
3453 emit_move_insn (new_rtx, x);
3454 return new_rtx;
3455 }
3456 return x;
3457 }
3458
3459 /* Helper function for expand_call.
3460 Return false is EXP is not implementable as a sibling call. */
3461
3462 static bool
3463 can_implement_as_sibling_call_p (tree exp,
3464 rtx structure_value_addr,
3465 tree funtype,
3466 int reg_parm_stack_space ATTRIBUTE_UNUSED,
3467 tree fndecl,
3468 int flags,
3469 tree addr,
3470 const args_size &args_size)
3471 {
3472 if (!targetm.have_sibcall_epilogue ())
3473 {
3474 maybe_complain_about_tail_call
3475 (exp,
3476 "machine description does not have"
3477 " a sibcall_epilogue instruction pattern");
3478 return false;
3479 }
3480
3481 /* Doing sibling call optimization needs some work, since
3482 structure_value_addr can be allocated on the stack.
3483 It does not seem worth the effort since few optimizable
3484 sibling calls will return a structure. */
3485 if (structure_value_addr != NULL_RTX)
3486 {
3487 maybe_complain_about_tail_call (exp, "callee returns a structure");
3488 return false;
3489 }
3490
3491 #ifdef REG_PARM_STACK_SPACE
3492 /* If outgoing reg parm stack space changes, we cannot do sibcall. */
3493 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
3494 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
3495 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
3496 {
3497 maybe_complain_about_tail_call (exp,
3498 "inconsistent size of stack space"
3499 " allocated for arguments which are"
3500 " passed in registers");
3501 return false;
3502 }
3503 #endif
3504
3505 /* Check whether the target is able to optimize the call
3506 into a sibcall. */
3507 if (!targetm.function_ok_for_sibcall (fndecl, exp))
3508 {
3509 maybe_complain_about_tail_call (exp,
3510 "target is not able to optimize the"
3511 " call into a sibling call");
3512 return false;
3513 }
3514
3515 /* Functions that do not return exactly once may not be sibcall
3516 optimized. */
3517 if (flags & ECF_RETURNS_TWICE)
3518 {
3519 maybe_complain_about_tail_call (exp, "callee returns twice");
3520 return false;
3521 }
3522 if (flags & ECF_NORETURN)
3523 {
3524 maybe_complain_about_tail_call (exp, "callee does not return");
3525 return false;
3526 }
3527
3528 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
3529 {
3530 maybe_complain_about_tail_call (exp, "volatile function type");
3531 return false;
3532 }
3533
3534 /* If the called function is nested in the current one, it might access
3535 some of the caller's arguments, but could clobber them beforehand if
3536 the argument areas are shared. */
3537 if (fndecl && decl_function_context (fndecl) == current_function_decl)
3538 {
3539 maybe_complain_about_tail_call (exp, "nested function");
3540 return false;
3541 }
3542
3543 /* If this function requires more stack slots than the current
3544 function, we cannot change it into a sibling call.
3545 crtl->args.pretend_args_size is not part of the
3546 stack allocated by our caller. */
3547 if (maybe_gt (args_size.constant,
3548 crtl->args.size - crtl->args.pretend_args_size))
3549 {
3550 maybe_complain_about_tail_call (exp,
3551 "callee required more stack slots"
3552 " than the caller");
3553 return false;
3554 }
3555
3556 /* If the callee pops its own arguments, then it must pop exactly
3557 the same number of arguments as the current function. */
3558 if (maybe_ne (targetm.calls.return_pops_args (fndecl, funtype,
3559 args_size.constant),
3560 targetm.calls.return_pops_args (current_function_decl,
3561 TREE_TYPE
3562 (current_function_decl),
3563 crtl->args.size)))
3564 {
3565 maybe_complain_about_tail_call (exp,
3566 "inconsistent number of"
3567 " popped arguments");
3568 return false;
3569 }
3570
3571 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
3572 {
3573 maybe_complain_about_tail_call (exp, "frontend does not support"
3574 " sibling call");
3575 return false;
3576 }
3577
3578 /* All checks passed. */
3579 return true;
3580 }
3581
3582 /* Update stack alignment when the parameter is passed in the stack
3583 since the outgoing parameter requires extra alignment on the calling
3584 function side. */
3585
3586 static void
3587 update_stack_alignment_for_call (struct locate_and_pad_arg_data *locate)
3588 {
3589 if (crtl->stack_alignment_needed < locate->boundary)
3590 crtl->stack_alignment_needed = locate->boundary;
3591 if (crtl->preferred_stack_boundary < locate->boundary)
3592 crtl->preferred_stack_boundary = locate->boundary;
3593 }
3594
3595 /* Generate all the code for a CALL_EXPR exp
3596 and return an rtx for its value.
3597 Store the value in TARGET (specified as an rtx) if convenient.
3598 If the value is stored in TARGET then TARGET is returned.
3599 If IGNORE is nonzero, then we ignore the value of the function call. */
3600
3601 rtx
3602 expand_call (tree exp, rtx target, int ignore)
3603 {
3604 /* Nonzero if we are currently expanding a call. */
3605 static int currently_expanding_call = 0;
3606
3607 /* RTX for the function to be called. */
3608 rtx funexp;
3609 /* Sequence of insns to perform a normal "call". */
3610 rtx_insn *normal_call_insns = NULL;
3611 /* Sequence of insns to perform a tail "call". */
3612 rtx_insn *tail_call_insns = NULL;
3613 /* Data type of the function. */
3614 tree funtype;
3615 tree type_arg_types;
3616 tree rettype;
3617 /* Declaration of the function being called,
3618 or 0 if the function is computed (not known by name). */
3619 tree fndecl = 0;
3620 /* The type of the function being called. */
3621 tree fntype;
3622 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
3623 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
3624 int pass;
3625
3626 /* Register in which non-BLKmode value will be returned,
3627 or 0 if no value or if value is BLKmode. */
3628 rtx valreg;
3629 /* Address where we should return a BLKmode value;
3630 0 if value not BLKmode. */
3631 rtx structure_value_addr = 0;
3632 /* Nonzero if that address is being passed by treating it as
3633 an extra, implicit first parameter. Otherwise,
3634 it is passed by being copied directly into struct_value_rtx. */
3635 int structure_value_addr_parm = 0;
3636 /* Holds the value of implicit argument for the struct value. */
3637 tree structure_value_addr_value = NULL_TREE;
3638 /* Size of aggregate value wanted, or zero if none wanted
3639 or if we are using the non-reentrant PCC calling convention
3640 or expecting the value in registers. */
3641 poly_int64 struct_value_size = 0;
3642 /* Nonzero if called function returns an aggregate in memory PCC style,
3643 by returning the address of where to find it. */
3644 int pcc_struct_value = 0;
3645 rtx struct_value = 0;
3646
3647 /* Number of actual parameters in this call, including struct value addr. */
3648 int num_actuals;
3649 /* Number of named args. Args after this are anonymous ones
3650 and they must all go on the stack. */
3651 int n_named_args;
3652 /* Number of complex actual arguments that need to be split. */
3653 int num_complex_actuals = 0;
3654
3655 /* Vector of information about each argument.
3656 Arguments are numbered in the order they will be pushed,
3657 not the order they are written. */
3658 struct arg_data *args;
3659
3660 /* Total size in bytes of all the stack-parms scanned so far. */
3661 struct args_size args_size;
3662 struct args_size adjusted_args_size;
3663 /* Size of arguments before any adjustments (such as rounding). */
3664 poly_int64 unadjusted_args_size;
3665 /* Data on reg parms scanned so far. */
3666 CUMULATIVE_ARGS args_so_far_v;
3667 cumulative_args_t args_so_far;
3668 /* Nonzero if a reg parm has been scanned. */
3669 int reg_parm_seen;
3670 /* Nonzero if this is an indirect function call. */
3671
3672 /* Nonzero if we must avoid push-insns in the args for this call.
3673 If stack space is allocated for register parameters, but not by the
3674 caller, then it is preallocated in the fixed part of the stack frame.
3675 So the entire argument block must then be preallocated (i.e., we
3676 ignore PUSH_ROUNDING in that case). */
3677
3678 int must_preallocate = !PUSH_ARGS;
3679
3680 /* Size of the stack reserved for parameter registers. */
3681 int reg_parm_stack_space = 0;
3682
3683 /* Address of space preallocated for stack parms
3684 (on machines that lack push insns), or 0 if space not preallocated. */
3685 rtx argblock = 0;
3686
3687 /* Mask of ECF_ and ERF_ flags. */
3688 int flags = 0;
3689 int return_flags = 0;
3690 #ifdef REG_PARM_STACK_SPACE
3691 /* Define the boundary of the register parm stack space that needs to be
3692 saved, if any. */
3693 int low_to_save, high_to_save;
3694 rtx save_area = 0; /* Place that it is saved */
3695 #endif
3696
3697 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3698 char *initial_stack_usage_map = stack_usage_map;
3699 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
3700 char *stack_usage_map_buf = NULL;
3701
3702 poly_int64 old_stack_allocated;
3703
3704 /* State variables to track stack modifications. */
3705 rtx old_stack_level = 0;
3706 int old_stack_arg_under_construction = 0;
3707 poly_int64 old_pending_adj = 0;
3708 int old_inhibit_defer_pop = inhibit_defer_pop;
3709
3710 /* Some stack pointer alterations we make are performed via
3711 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3712 which we then also need to save/restore along the way. */
3713 poly_int64 old_stack_pointer_delta = 0;
3714
3715 rtx call_fusage;
3716 tree addr = CALL_EXPR_FN (exp);
3717 int i;
3718 /* The alignment of the stack, in bits. */
3719 unsigned HOST_WIDE_INT preferred_stack_boundary;
3720 /* The alignment of the stack, in bytes. */
3721 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3722 /* The static chain value to use for this call. */
3723 rtx static_chain_value;
3724 /* See if this is "nothrow" function call. */
3725 if (TREE_NOTHROW (exp))
3726 flags |= ECF_NOTHROW;
3727
3728 /* See if we can find a DECL-node for the actual function, and get the
3729 function attributes (flags) from the function decl or type node. */
3730 fndecl = get_callee_fndecl (exp);
3731 if (fndecl)
3732 {
3733 fntype = TREE_TYPE (fndecl);
3734 flags |= flags_from_decl_or_type (fndecl);
3735 return_flags |= decl_return_flags (fndecl);
3736 }
3737 else
3738 {
3739 fntype = TREE_TYPE (TREE_TYPE (addr));
3740 flags |= flags_from_decl_or_type (fntype);
3741 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3742 flags |= ECF_BY_DESCRIPTOR;
3743 }
3744 rettype = TREE_TYPE (exp);
3745
3746 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3747
3748 /* Warn if this value is an aggregate type,
3749 regardless of which calling convention we are using for it. */
3750 if (AGGREGATE_TYPE_P (rettype))
3751 warning (OPT_Waggregate_return, "function call has aggregate value");
3752
3753 /* If the result of a non looping pure or const function call is
3754 ignored (or void), and none of its arguments are volatile, we can
3755 avoid expanding the call and just evaluate the arguments for
3756 side-effects. */
3757 if ((flags & (ECF_CONST | ECF_PURE))
3758 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3759 && (ignore || target == const0_rtx
3760 || TYPE_MODE (rettype) == VOIDmode))
3761 {
3762 bool volatilep = false;
3763 tree arg;
3764 call_expr_arg_iterator iter;
3765
3766 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3767 if (TREE_THIS_VOLATILE (arg))
3768 {
3769 volatilep = true;
3770 break;
3771 }
3772
3773 if (! volatilep)
3774 {
3775 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3776 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3777 return const0_rtx;
3778 }
3779 }
3780
3781 #ifdef REG_PARM_STACK_SPACE
3782 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3783 #endif
3784
3785 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3786 && reg_parm_stack_space > 0 && PUSH_ARGS)
3787 must_preallocate = 1;
3788
3789 /* Set up a place to return a structure. */
3790
3791 /* Cater to broken compilers. */
3792 if (aggregate_value_p (exp, fntype))
3793 {
3794 /* This call returns a big structure. */
3795 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3796
3797 #ifdef PCC_STATIC_STRUCT_RETURN
3798 {
3799 pcc_struct_value = 1;
3800 }
3801 #else /* not PCC_STATIC_STRUCT_RETURN */
3802 {
3803 if (!poly_int_tree_p (TYPE_SIZE_UNIT (rettype), &struct_value_size))
3804 struct_value_size = -1;
3805
3806 /* Even if it is semantically safe to use the target as the return
3807 slot, it may be not sufficiently aligned for the return type. */
3808 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3809 && target
3810 && MEM_P (target)
3811 /* If rettype is addressable, we may not create a temporary.
3812 If target is properly aligned at runtime and the compiler
3813 just doesn't know about it, it will work fine, otherwise it
3814 will be UB. */
3815 && (TREE_ADDRESSABLE (rettype)
3816 || !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3817 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
3818 MEM_ALIGN (target)))))
3819 structure_value_addr = XEXP (target, 0);
3820 else
3821 {
3822 /* For variable-sized objects, we must be called with a target
3823 specified. If we were to allocate space on the stack here,
3824 we would have no way of knowing when to free it. */
3825 rtx d = assign_temp (rettype, 1, 1);
3826 structure_value_addr = XEXP (d, 0);
3827 target = 0;
3828 }
3829 }
3830 #endif /* not PCC_STATIC_STRUCT_RETURN */
3831 }
3832
3833 /* Figure out the amount to which the stack should be aligned. */
3834 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3835 if (fndecl)
3836 {
3837 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3838 /* Without automatic stack alignment, we can't increase preferred
3839 stack boundary. With automatic stack alignment, it is
3840 unnecessary since unless we can guarantee that all callers will
3841 align the outgoing stack properly, callee has to align its
3842 stack anyway. */
3843 if (i
3844 && i->preferred_incoming_stack_boundary
3845 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3846 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3847 }
3848
3849 /* Operand 0 is a pointer-to-function; get the type of the function. */
3850 funtype = TREE_TYPE (addr);
3851 gcc_assert (POINTER_TYPE_P (funtype));
3852 funtype = TREE_TYPE (funtype);
3853
3854 /* Count whether there are actual complex arguments that need to be split
3855 into their real and imaginary parts. Munge the type_arg_types
3856 appropriately here as well. */
3857 if (targetm.calls.split_complex_arg)
3858 {
3859 call_expr_arg_iterator iter;
3860 tree arg;
3861 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3862 {
3863 tree type = TREE_TYPE (arg);
3864 if (type && TREE_CODE (type) == COMPLEX_TYPE
3865 && targetm.calls.split_complex_arg (type))
3866 num_complex_actuals++;
3867 }
3868 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3869 }
3870 else
3871 type_arg_types = TYPE_ARG_TYPES (funtype);
3872
3873 if (flags & ECF_MAY_BE_ALLOCA)
3874 cfun->calls_alloca = 1;
3875
3876 /* If struct_value_rtx is 0, it means pass the address
3877 as if it were an extra parameter. Put the argument expression
3878 in structure_value_addr_value. */
3879 if (structure_value_addr && struct_value == 0)
3880 {
3881 /* If structure_value_addr is a REG other than
3882 virtual_outgoing_args_rtx, we can use always use it. If it
3883 is not a REG, we must always copy it into a register.
3884 If it is virtual_outgoing_args_rtx, we must copy it to another
3885 register in some cases. */
3886 rtx temp = (!REG_P (structure_value_addr)
3887 || (ACCUMULATE_OUTGOING_ARGS
3888 && stack_arg_under_construction
3889 && structure_value_addr == virtual_outgoing_args_rtx)
3890 ? copy_addr_to_reg (convert_memory_address
3891 (Pmode, structure_value_addr))
3892 : structure_value_addr);
3893
3894 structure_value_addr_value =
3895 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3896 structure_value_addr_parm = 1;
3897 }
3898
3899 /* Count the arguments and set NUM_ACTUALS. */
3900 num_actuals =
3901 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3902
3903 /* Compute number of named args.
3904 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3905
3906 if (type_arg_types != 0)
3907 n_named_args
3908 = (list_length (type_arg_types)
3909 /* Count the struct value address, if it is passed as a parm. */
3910 + structure_value_addr_parm);
3911 else
3912 /* If we know nothing, treat all args as named. */
3913 n_named_args = num_actuals;
3914
3915 /* Start updating where the next arg would go.
3916
3917 On some machines (such as the PA) indirect calls have a different
3918 calling convention than normal calls. The fourth argument in
3919 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3920 or not. */
3921 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3922 args_so_far = pack_cumulative_args (&args_so_far_v);
3923
3924 /* Now possibly adjust the number of named args.
3925 Normally, don't include the last named arg if anonymous args follow.
3926 We do include the last named arg if
3927 targetm.calls.strict_argument_naming() returns nonzero.
3928 (If no anonymous args follow, the result of list_length is actually
3929 one too large. This is harmless.)
3930
3931 If targetm.calls.pretend_outgoing_varargs_named() returns
3932 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3933 this machine will be able to place unnamed args that were passed
3934 in registers into the stack. So treat all args as named. This
3935 allows the insns emitting for a specific argument list to be
3936 independent of the function declaration.
3937
3938 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3939 we do not have any reliable way to pass unnamed args in
3940 registers, so we must force them into memory. */
3941
3942 if (type_arg_types != 0
3943 && targetm.calls.strict_argument_naming (args_so_far))
3944 ;
3945 else if (type_arg_types != 0
3946 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3947 /* Don't include the last named arg. */
3948 --n_named_args;
3949 else
3950 /* Treat all args as named. */
3951 n_named_args = num_actuals;
3952
3953 /* Make a vector to hold all the information about each arg. */
3954 args = XCNEWVEC (struct arg_data, num_actuals);
3955
3956 /* Build up entries in the ARGS array, compute the size of the
3957 arguments into ARGS_SIZE, etc. */
3958 initialize_argument_information (num_actuals, args, &args_size,
3959 n_named_args, exp,
3960 structure_value_addr_value, fndecl, fntype,
3961 args_so_far, reg_parm_stack_space,
3962 &old_stack_level, &old_pending_adj,
3963 &must_preallocate, &flags,
3964 &try_tail_call, CALL_FROM_THUNK_P (exp));
3965
3966 if (args_size.var)
3967 must_preallocate = 1;
3968
3969 /* Now make final decision about preallocating stack space. */
3970 must_preallocate = finalize_must_preallocate (must_preallocate,
3971 num_actuals, args,
3972 &args_size);
3973
3974 /* If the structure value address will reference the stack pointer, we
3975 must stabilize it. We don't need to do this if we know that we are
3976 not going to adjust the stack pointer in processing this call. */
3977
3978 if (structure_value_addr
3979 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3980 || reg_mentioned_p (virtual_outgoing_args_rtx,
3981 structure_value_addr))
3982 && (args_size.var
3983 || (!ACCUMULATE_OUTGOING_ARGS
3984 && maybe_ne (args_size.constant, 0))))
3985 structure_value_addr = copy_to_reg (structure_value_addr);
3986
3987 /* Tail calls can make things harder to debug, and we've traditionally
3988 pushed these optimizations into -O2. Don't try if we're already
3989 expanding a call, as that means we're an argument. Don't try if
3990 there's cleanups, as we know there's code to follow the call. */
3991 if (currently_expanding_call++ != 0
3992 || (!flag_optimize_sibling_calls && !CALL_FROM_THUNK_P (exp))
3993 || args_size.var
3994 || dbg_cnt (tail_call) == false)
3995 try_tail_call = 0;
3996
3997 /* Workaround buggy C/C++ wrappers around Fortran routines with
3998 character(len=constant) arguments if the hidden string length arguments
3999 are passed on the stack; if the callers forget to pass those arguments,
4000 attempting to tail call in such routines leads to stack corruption.
4001 Avoid tail calls in functions where at least one such hidden string
4002 length argument is passed (partially or fully) on the stack in the
4003 caller and the callee needs to pass any arguments on the stack.
4004 See PR90329. */
4005 if (try_tail_call && maybe_ne (args_size.constant, 0))
4006 for (tree arg = DECL_ARGUMENTS (current_function_decl);
4007 arg; arg = DECL_CHAIN (arg))
4008 if (DECL_HIDDEN_STRING_LENGTH (arg) && DECL_INCOMING_RTL (arg))
4009 {
4010 subrtx_iterator::array_type array;
4011 FOR_EACH_SUBRTX (iter, array, DECL_INCOMING_RTL (arg), NONCONST)
4012 if (MEM_P (*iter))
4013 {
4014 try_tail_call = 0;
4015 break;
4016 }
4017 }
4018
4019 /* If the user has marked the function as requiring tail-call
4020 optimization, attempt it. */
4021 if (must_tail_call)
4022 try_tail_call = 1;
4023
4024 /* Rest of purposes for tail call optimizations to fail. */
4025 if (try_tail_call)
4026 try_tail_call = can_implement_as_sibling_call_p (exp,
4027 structure_value_addr,
4028 funtype,
4029 reg_parm_stack_space,
4030 fndecl,
4031 flags, addr, args_size);
4032
4033 /* Check if caller and callee disagree in promotion of function
4034 return value. */
4035 if (try_tail_call)
4036 {
4037 machine_mode caller_mode, caller_promoted_mode;
4038 machine_mode callee_mode, callee_promoted_mode;
4039 int caller_unsignedp, callee_unsignedp;
4040 tree caller_res = DECL_RESULT (current_function_decl);
4041
4042 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
4043 caller_mode = DECL_MODE (caller_res);
4044 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
4045 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
4046 caller_promoted_mode
4047 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
4048 &caller_unsignedp,
4049 TREE_TYPE (current_function_decl), 1);
4050 callee_promoted_mode
4051 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
4052 &callee_unsignedp,
4053 funtype, 1);
4054 if (caller_mode != VOIDmode
4055 && (caller_promoted_mode != callee_promoted_mode
4056 || ((caller_mode != caller_promoted_mode
4057 || callee_mode != callee_promoted_mode)
4058 && (caller_unsignedp != callee_unsignedp
4059 || partial_subreg_p (caller_mode, callee_mode)))))
4060 {
4061 try_tail_call = 0;
4062 maybe_complain_about_tail_call (exp,
4063 "caller and callee disagree in"
4064 " promotion of function"
4065 " return value");
4066 }
4067 }
4068
4069 /* Ensure current function's preferred stack boundary is at least
4070 what we need. Stack alignment may also increase preferred stack
4071 boundary. */
4072 for (i = 0; i < num_actuals; i++)
4073 if (reg_parm_stack_space > 0
4074 || args[i].reg == 0
4075 || args[i].partial != 0
4076 || args[i].pass_on_stack)
4077 update_stack_alignment_for_call (&args[i].locate);
4078 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
4079 crtl->preferred_stack_boundary = preferred_stack_boundary;
4080 else
4081 preferred_stack_boundary = crtl->preferred_stack_boundary;
4082
4083 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
4084
4085 if (flag_callgraph_info)
4086 record_final_call (fndecl, EXPR_LOCATION (exp));
4087
4088 /* We want to make two insn chains; one for a sibling call, the other
4089 for a normal call. We will select one of the two chains after
4090 initial RTL generation is complete. */
4091 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
4092 {
4093 int sibcall_failure = 0;
4094 /* We want to emit any pending stack adjustments before the tail
4095 recursion "call". That way we know any adjustment after the tail
4096 recursion call can be ignored if we indeed use the tail
4097 call expansion. */
4098 saved_pending_stack_adjust save;
4099 rtx_insn *insns, *before_call, *after_args;
4100 rtx next_arg_reg;
4101
4102 if (pass == 0)
4103 {
4104 /* State variables we need to save and restore between
4105 iterations. */
4106 save_pending_stack_adjust (&save);
4107 }
4108 if (pass)
4109 flags &= ~ECF_SIBCALL;
4110 else
4111 flags |= ECF_SIBCALL;
4112
4113 /* Other state variables that we must reinitialize each time
4114 through the loop (that are not initialized by the loop itself). */
4115 argblock = 0;
4116 call_fusage = 0;
4117
4118 /* Start a new sequence for the normal call case.
4119
4120 From this point on, if the sibling call fails, we want to set
4121 sibcall_failure instead of continuing the loop. */
4122 start_sequence ();
4123
4124 /* Don't let pending stack adjusts add up to too much.
4125 Also, do all pending adjustments now if there is any chance
4126 this might be a call to alloca or if we are expanding a sibling
4127 call sequence.
4128 Also do the adjustments before a throwing call, otherwise
4129 exception handling can fail; PR 19225. */
4130 if (maybe_ge (pending_stack_adjust, 32)
4131 || (maybe_ne (pending_stack_adjust, 0)
4132 && (flags & ECF_MAY_BE_ALLOCA))
4133 || (maybe_ne (pending_stack_adjust, 0)
4134 && flag_exceptions && !(flags & ECF_NOTHROW))
4135 || pass == 0)
4136 do_pending_stack_adjust ();
4137
4138 /* Precompute any arguments as needed. */
4139 if (pass)
4140 precompute_arguments (num_actuals, args);
4141
4142 /* Now we are about to start emitting insns that can be deleted
4143 if a libcall is deleted. */
4144 if (pass && (flags & ECF_MALLOC))
4145 start_sequence ();
4146
4147 if (pass == 0
4148 && crtl->stack_protect_guard
4149 && targetm.stack_protect_runtime_enabled_p ())
4150 stack_protect_epilogue ();
4151
4152 adjusted_args_size = args_size;
4153 /* Compute the actual size of the argument block required. The variable
4154 and constant sizes must be combined, the size may have to be rounded,
4155 and there may be a minimum required size. When generating a sibcall
4156 pattern, do not round up, since we'll be re-using whatever space our
4157 caller provided. */
4158 unadjusted_args_size
4159 = compute_argument_block_size (reg_parm_stack_space,
4160 &adjusted_args_size,
4161 fndecl, fntype,
4162 (pass == 0 ? 0
4163 : preferred_stack_boundary));
4164
4165 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4166
4167 /* The argument block when performing a sibling call is the
4168 incoming argument block. */
4169 if (pass == 0)
4170 {
4171 argblock = crtl->args.internal_arg_pointer;
4172 if (STACK_GROWS_DOWNWARD)
4173 argblock
4174 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
4175 else
4176 argblock
4177 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
4178
4179 HOST_WIDE_INT map_size = constant_lower_bound (args_size.constant);
4180 stored_args_map = sbitmap_alloc (map_size);
4181 bitmap_clear (stored_args_map);
4182 stored_args_watermark = HOST_WIDE_INT_M1U;
4183 }
4184
4185 /* If we have no actual push instructions, or shouldn't use them,
4186 make space for all args right now. */
4187 else if (adjusted_args_size.var != 0)
4188 {
4189 if (old_stack_level == 0)
4190 {
4191 emit_stack_save (SAVE_BLOCK, &old_stack_level);
4192 old_stack_pointer_delta = stack_pointer_delta;
4193 old_pending_adj = pending_stack_adjust;
4194 pending_stack_adjust = 0;
4195 /* stack_arg_under_construction says whether a stack arg is
4196 being constructed at the old stack level. Pushing the stack
4197 gets a clean outgoing argument block. */
4198 old_stack_arg_under_construction = stack_arg_under_construction;
4199 stack_arg_under_construction = 0;
4200 }
4201 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
4202 if (flag_stack_usage_info)
4203 current_function_has_unbounded_dynamic_stack_size = 1;
4204 }
4205 else
4206 {
4207 /* Note that we must go through the motions of allocating an argument
4208 block even if the size is zero because we may be storing args
4209 in the area reserved for register arguments, which may be part of
4210 the stack frame. */
4211
4212 poly_int64 needed = adjusted_args_size.constant;
4213
4214 /* Store the maximum argument space used. It will be pushed by
4215 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
4216 checking). */
4217
4218 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
4219 needed);
4220
4221 if (must_preallocate)
4222 {
4223 if (ACCUMULATE_OUTGOING_ARGS)
4224 {
4225 /* Since the stack pointer will never be pushed, it is
4226 possible for the evaluation of a parm to clobber
4227 something we have already written to the stack.
4228 Since most function calls on RISC machines do not use
4229 the stack, this is uncommon, but must work correctly.
4230
4231 Therefore, we save any area of the stack that was already
4232 written and that we are using. Here we set up to do this
4233 by making a new stack usage map from the old one. The
4234 actual save will be done by store_one_arg.
4235
4236 Another approach might be to try to reorder the argument
4237 evaluations to avoid this conflicting stack usage. */
4238
4239 /* Since we will be writing into the entire argument area,
4240 the map must be allocated for its entire size, not just
4241 the part that is the responsibility of the caller. */
4242 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4243 needed += reg_parm_stack_space;
4244
4245 poly_int64 limit = needed;
4246 if (ARGS_GROW_DOWNWARD)
4247 limit += 1;
4248
4249 /* For polynomial sizes, this is the maximum possible
4250 size needed for arguments with a constant size
4251 and offset. */
4252 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
4253 highest_outgoing_arg_in_use
4254 = MAX (initial_highest_arg_in_use, const_limit);
4255
4256 free (stack_usage_map_buf);
4257 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
4258 stack_usage_map = stack_usage_map_buf;
4259
4260 if (initial_highest_arg_in_use)
4261 memcpy (stack_usage_map, initial_stack_usage_map,
4262 initial_highest_arg_in_use);
4263
4264 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
4265 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
4266 (highest_outgoing_arg_in_use
4267 - initial_highest_arg_in_use));
4268 needed = 0;
4269
4270 /* The address of the outgoing argument list must not be
4271 copied to a register here, because argblock would be left
4272 pointing to the wrong place after the call to
4273 allocate_dynamic_stack_space below. */
4274
4275 argblock = virtual_outgoing_args_rtx;
4276 }
4277 else
4278 {
4279 /* Try to reuse some or all of the pending_stack_adjust
4280 to get this space. */
4281 if (inhibit_defer_pop == 0
4282 && (combine_pending_stack_adjustment_and_call
4283 (&needed,
4284 unadjusted_args_size,
4285 &adjusted_args_size,
4286 preferred_unit_stack_boundary)))
4287 {
4288 /* combine_pending_stack_adjustment_and_call computes
4289 an adjustment before the arguments are allocated.
4290 Account for them and see whether or not the stack
4291 needs to go up or down. */
4292 needed = unadjusted_args_size - needed;
4293
4294 /* Checked by
4295 combine_pending_stack_adjustment_and_call. */
4296 gcc_checking_assert (ordered_p (needed, 0));
4297 if (maybe_lt (needed, 0))
4298 {
4299 /* We're releasing stack space. */
4300 /* ??? We can avoid any adjustment at all if we're
4301 already aligned. FIXME. */
4302 pending_stack_adjust = -needed;
4303 do_pending_stack_adjust ();
4304 needed = 0;
4305 }
4306 else
4307 /* We need to allocate space. We'll do that in
4308 push_block below. */
4309 pending_stack_adjust = 0;
4310 }
4311
4312 /* Special case this because overhead of `push_block' in
4313 this case is non-trivial. */
4314 if (known_eq (needed, 0))
4315 argblock = virtual_outgoing_args_rtx;
4316 else
4317 {
4318 rtx needed_rtx = gen_int_mode (needed, Pmode);
4319 argblock = push_block (needed_rtx, 0, 0);
4320 if (ARGS_GROW_DOWNWARD)
4321 argblock = plus_constant (Pmode, argblock, needed);
4322 }
4323
4324 /* We only really need to call `copy_to_reg' in the case
4325 where push insns are going to be used to pass ARGBLOCK
4326 to a function call in ARGS. In that case, the stack
4327 pointer changes value from the allocation point to the
4328 call point, and hence the value of
4329 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
4330 as well always do it. */
4331 argblock = copy_to_reg (argblock);
4332 }
4333 }
4334 }
4335
4336 if (ACCUMULATE_OUTGOING_ARGS)
4337 {
4338 /* The save/restore code in store_one_arg handles all
4339 cases except one: a constructor call (including a C
4340 function returning a BLKmode struct) to initialize
4341 an argument. */
4342 if (stack_arg_under_construction)
4343 {
4344 rtx push_size
4345 = (gen_int_mode
4346 (adjusted_args_size.constant
4347 + (OUTGOING_REG_PARM_STACK_SPACE (!fndecl ? fntype
4348 : TREE_TYPE (fndecl))
4349 ? 0 : reg_parm_stack_space), Pmode));
4350 if (old_stack_level == 0)
4351 {
4352 emit_stack_save (SAVE_BLOCK, &old_stack_level);
4353 old_stack_pointer_delta = stack_pointer_delta;
4354 old_pending_adj = pending_stack_adjust;
4355 pending_stack_adjust = 0;
4356 /* stack_arg_under_construction says whether a stack
4357 arg is being constructed at the old stack level.
4358 Pushing the stack gets a clean outgoing argument
4359 block. */
4360 old_stack_arg_under_construction
4361 = stack_arg_under_construction;
4362 stack_arg_under_construction = 0;
4363 /* Make a new map for the new argument list. */
4364 free (stack_usage_map_buf);
4365 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
4366 stack_usage_map = stack_usage_map_buf;
4367 highest_outgoing_arg_in_use = 0;
4368 stack_usage_watermark = HOST_WIDE_INT_M1U;
4369 }
4370 /* We can pass TRUE as the 4th argument because we just
4371 saved the stack pointer and will restore it right after
4372 the call. */
4373 allocate_dynamic_stack_space (push_size, 0, BIGGEST_ALIGNMENT,
4374 -1, true);
4375 }
4376
4377 /* If argument evaluation might modify the stack pointer,
4378 copy the address of the argument list to a register. */
4379 for (i = 0; i < num_actuals; i++)
4380 if (args[i].pass_on_stack)
4381 {
4382 argblock = copy_addr_to_reg (argblock);
4383 break;
4384 }
4385 }
4386
4387 compute_argument_addresses (args, argblock, num_actuals);
4388
4389 /* Stack is properly aligned, pops can't safely be deferred during
4390 the evaluation of the arguments. */
4391 NO_DEFER_POP;
4392
4393 /* Precompute all register parameters. It isn't safe to compute
4394 anything once we have started filling any specific hard regs.
4395 TLS symbols sometimes need a call to resolve. Precompute
4396 register parameters before any stack pointer manipulation
4397 to avoid unaligned stack in the called function. */
4398 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
4399
4400 OK_DEFER_POP;
4401
4402 /* Perform stack alignment before the first push (the last arg). */
4403 if (argblock == 0
4404 && maybe_gt (adjusted_args_size.constant, reg_parm_stack_space)
4405 && maybe_ne (adjusted_args_size.constant, unadjusted_args_size))
4406 {
4407 /* When the stack adjustment is pending, we get better code
4408 by combining the adjustments. */
4409 if (maybe_ne (pending_stack_adjust, 0)
4410 && ! inhibit_defer_pop
4411 && (combine_pending_stack_adjustment_and_call
4412 (&pending_stack_adjust,
4413 unadjusted_args_size,
4414 &adjusted_args_size,
4415 preferred_unit_stack_boundary)))
4416 do_pending_stack_adjust ();
4417 else if (argblock == 0)
4418 anti_adjust_stack (gen_int_mode (adjusted_args_size.constant
4419 - unadjusted_args_size,
4420 Pmode));
4421 }
4422 /* Now that the stack is properly aligned, pops can't safely
4423 be deferred during the evaluation of the arguments. */
4424 NO_DEFER_POP;
4425
4426 /* Record the maximum pushed stack space size. We need to delay
4427 doing it this far to take into account the optimization done
4428 by combine_pending_stack_adjustment_and_call. */
4429 if (flag_stack_usage_info
4430 && !ACCUMULATE_OUTGOING_ARGS
4431 && pass
4432 && adjusted_args_size.var == 0)
4433 {
4434 poly_int64 pushed = (adjusted_args_size.constant
4435 + pending_stack_adjust);
4436 current_function_pushed_stack_size
4437 = upper_bound (current_function_pushed_stack_size, pushed);
4438 }
4439
4440 funexp = rtx_for_function_call (fndecl, addr);
4441
4442 if (CALL_EXPR_STATIC_CHAIN (exp))
4443 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
4444 else
4445 static_chain_value = 0;
4446
4447 #ifdef REG_PARM_STACK_SPACE
4448 /* Save the fixed argument area if it's part of the caller's frame and
4449 is clobbered by argument setup for this call. */
4450 if (ACCUMULATE_OUTGOING_ARGS && pass)
4451 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4452 &low_to_save, &high_to_save);
4453 #endif
4454
4455 /* Now store (and compute if necessary) all non-register parms.
4456 These come before register parms, since they can require block-moves,
4457 which could clobber the registers used for register parms.
4458 Parms which have partial registers are not stored here,
4459 but we do preallocate space here if they want that. */
4460
4461 for (i = 0; i < num_actuals; i++)
4462 {
4463 if (args[i].reg == 0 || args[i].pass_on_stack)
4464 {
4465 rtx_insn *before_arg = get_last_insn ();
4466
4467 /* We don't allow passing huge (> 2^30 B) arguments
4468 by value. It would cause an overflow later on. */
4469 if (constant_lower_bound (adjusted_args_size.constant)
4470 >= (1 << (HOST_BITS_PER_INT - 2)))
4471 {
4472 sorry ("passing too large argument on stack");
4473 continue;
4474 }
4475
4476 if (store_one_arg (&args[i], argblock, flags,
4477 adjusted_args_size.var != 0,
4478 reg_parm_stack_space)
4479 || (pass == 0
4480 && check_sibcall_argument_overlap (before_arg,
4481 &args[i], 1)))
4482 sibcall_failure = 1;
4483 }
4484
4485 if (args[i].stack)
4486 call_fusage
4487 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
4488 gen_rtx_USE (VOIDmode, args[i].stack),
4489 call_fusage);
4490 }
4491
4492 /* If we have a parm that is passed in registers but not in memory
4493 and whose alignment does not permit a direct copy into registers,
4494 make a group of pseudos that correspond to each register that we
4495 will later fill. */
4496 if (STRICT_ALIGNMENT)
4497 store_unaligned_arguments_into_pseudos (args, num_actuals);
4498
4499 /* Now store any partially-in-registers parm.
4500 This is the last place a block-move can happen. */
4501 if (reg_parm_seen)
4502 for (i = 0; i < num_actuals; i++)
4503 if (args[i].partial != 0 && ! args[i].pass_on_stack)
4504 {
4505 rtx_insn *before_arg = get_last_insn ();
4506
4507 /* On targets with weird calling conventions (e.g. PA) it's
4508 hard to ensure that all cases of argument overlap between
4509 stack and registers work. Play it safe and bail out. */
4510 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
4511 {
4512 sibcall_failure = 1;
4513 break;
4514 }
4515
4516 if (store_one_arg (&args[i], argblock, flags,
4517 adjusted_args_size.var != 0,
4518 reg_parm_stack_space)
4519 || (pass == 0
4520 && check_sibcall_argument_overlap (before_arg,
4521 &args[i], 1)))
4522 sibcall_failure = 1;
4523 }
4524
4525 bool any_regs = false;
4526 for (i = 0; i < num_actuals; i++)
4527 if (args[i].reg != NULL_RTX)
4528 {
4529 any_regs = true;
4530 targetm.calls.call_args (args[i].reg, funtype);
4531 }
4532 if (!any_regs)
4533 targetm.calls.call_args (pc_rtx, funtype);
4534
4535 /* Figure out the register where the value, if any, will come back. */
4536 valreg = 0;
4537 if (TYPE_MODE (rettype) != VOIDmode
4538 && ! structure_value_addr)
4539 {
4540 if (pcc_struct_value)
4541 valreg = hard_function_value (build_pointer_type (rettype),
4542 fndecl, NULL, (pass == 0));
4543 else
4544 valreg = hard_function_value (rettype, fndecl, fntype,
4545 (pass == 0));
4546
4547 /* If VALREG is a PARALLEL whose first member has a zero
4548 offset, use that. This is for targets such as m68k that
4549 return the same value in multiple places. */
4550 if (GET_CODE (valreg) == PARALLEL)
4551 {
4552 rtx elem = XVECEXP (valreg, 0, 0);
4553 rtx where = XEXP (elem, 0);
4554 rtx offset = XEXP (elem, 1);
4555 if (offset == const0_rtx
4556 && GET_MODE (where) == GET_MODE (valreg))
4557 valreg = where;
4558 }
4559 }
4560
4561 /* If register arguments require space on the stack and stack space
4562 was not preallocated, allocate stack space here for arguments
4563 passed in registers. */
4564 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
4565 && !ACCUMULATE_OUTGOING_ARGS
4566 && must_preallocate == 0 && reg_parm_stack_space > 0)
4567 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
4568
4569 /* Pass the function the address in which to return a
4570 structure value. */
4571 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
4572 {
4573 structure_value_addr
4574 = convert_memory_address (Pmode, structure_value_addr);
4575 emit_move_insn (struct_value,
4576 force_reg (Pmode,
4577 force_operand (structure_value_addr,
4578 NULL_RTX)));
4579
4580 if (REG_P (struct_value))
4581 use_reg (&call_fusage, struct_value);
4582 }
4583
4584 after_args = get_last_insn ();
4585 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
4586 static_chain_value, &call_fusage,
4587 reg_parm_seen, flags);
4588
4589 load_register_parameters (args, num_actuals, &call_fusage, flags,
4590 pass == 0, &sibcall_failure);
4591
4592 /* Save a pointer to the last insn before the call, so that we can
4593 later safely search backwards to find the CALL_INSN. */
4594 before_call = get_last_insn ();
4595
4596 /* Set up next argument register. For sibling calls on machines
4597 with register windows this should be the incoming register. */
4598 if (pass == 0)
4599 next_arg_reg = targetm.calls.function_incoming_arg
4600 (args_so_far, function_arg_info::end_marker ());
4601 else
4602 next_arg_reg = targetm.calls.function_arg
4603 (args_so_far, function_arg_info::end_marker ());
4604
4605 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
4606 {
4607 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
4608 arg_nr = num_actuals - arg_nr - 1;
4609 if (arg_nr >= 0
4610 && arg_nr < num_actuals
4611 && args[arg_nr].reg
4612 && valreg
4613 && REG_P (valreg)
4614 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
4615 call_fusage
4616 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
4617 gen_rtx_SET (valreg, args[arg_nr].reg),
4618 call_fusage);
4619 }
4620 /* All arguments and registers used for the call must be set up by
4621 now! */
4622
4623 /* Stack must be properly aligned now. */
4624 gcc_assert (!pass
4625 || multiple_p (stack_pointer_delta,
4626 preferred_unit_stack_boundary));
4627
4628 /* Generate the actual call instruction. */
4629 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
4630 adjusted_args_size.constant, struct_value_size,
4631 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
4632 flags, args_so_far);
4633
4634 if (flag_ipa_ra)
4635 {
4636 rtx_call_insn *last;
4637 rtx datum = NULL_RTX;
4638 if (fndecl != NULL_TREE)
4639 {
4640 datum = XEXP (DECL_RTL (fndecl), 0);
4641 gcc_assert (datum != NULL_RTX
4642 && GET_CODE (datum) == SYMBOL_REF);
4643 }
4644 last = last_call_insn ();
4645 add_reg_note (last, REG_CALL_DECL, datum);
4646 }
4647
4648 /* If the call setup or the call itself overlaps with anything
4649 of the argument setup we probably clobbered our call address.
4650 In that case we can't do sibcalls. */
4651 if (pass == 0
4652 && check_sibcall_argument_overlap (after_args, 0, 0))
4653 sibcall_failure = 1;
4654
4655 /* If a non-BLKmode value is returned at the most significant end
4656 of a register, shift the register right by the appropriate amount
4657 and update VALREG accordingly. BLKmode values are handled by the
4658 group load/store machinery below. */
4659 if (!structure_value_addr
4660 && !pcc_struct_value
4661 && TYPE_MODE (rettype) != VOIDmode
4662 && TYPE_MODE (rettype) != BLKmode
4663 && REG_P (valreg)
4664 && targetm.calls.return_in_msb (rettype))
4665 {
4666 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
4667 sibcall_failure = 1;
4668 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
4669 }
4670
4671 if (pass && (flags & ECF_MALLOC))
4672 {
4673 rtx temp = gen_reg_rtx (GET_MODE (valreg));
4674 rtx_insn *last, *insns;
4675
4676 /* The return value from a malloc-like function is a pointer. */
4677 if (TREE_CODE (rettype) == POINTER_TYPE)
4678 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
4679
4680 emit_move_insn (temp, valreg);
4681
4682 /* The return value from a malloc-like function cannot alias
4683 anything else. */
4684 last = get_last_insn ();
4685 add_reg_note (last, REG_NOALIAS, temp);
4686
4687 /* Write out the sequence. */
4688 insns = get_insns ();
4689 end_sequence ();
4690 emit_insn (insns);
4691 valreg = temp;
4692 }
4693
4694 /* For calls to `setjmp', etc., inform
4695 function.c:setjmp_warnings that it should complain if
4696 nonvolatile values are live. For functions that cannot
4697 return, inform flow that control does not fall through. */
4698
4699 if ((flags & ECF_NORETURN) || pass == 0)
4700 {
4701 /* The barrier must be emitted
4702 immediately after the CALL_INSN. Some ports emit more
4703 than just a CALL_INSN above, so we must search for it here. */
4704
4705 rtx_insn *last = get_last_insn ();
4706 while (!CALL_P (last))
4707 {
4708 last = PREV_INSN (last);
4709 /* There was no CALL_INSN? */
4710 gcc_assert (last != before_call);
4711 }
4712
4713 emit_barrier_after (last);
4714
4715 /* Stack adjustments after a noreturn call are dead code.
4716 However when NO_DEFER_POP is in effect, we must preserve
4717 stack_pointer_delta. */
4718 if (inhibit_defer_pop == 0)
4719 {
4720 stack_pointer_delta = old_stack_allocated;
4721 pending_stack_adjust = 0;
4722 }
4723 }
4724
4725 /* If value type not void, return an rtx for the value. */
4726
4727 if (TYPE_MODE (rettype) == VOIDmode
4728 || ignore)
4729 target = const0_rtx;
4730 else if (structure_value_addr)
4731 {
4732 if (target == 0 || !MEM_P (target))
4733 {
4734 target
4735 = gen_rtx_MEM (TYPE_MODE (rettype),
4736 memory_address (TYPE_MODE (rettype),
4737 structure_value_addr));
4738 set_mem_attributes (target, rettype, 1);
4739 }
4740 }
4741 else if (pcc_struct_value)
4742 {
4743 /* This is the special C++ case where we need to
4744 know what the true target was. We take care to
4745 never use this value more than once in one expression. */
4746 target = gen_rtx_MEM (TYPE_MODE (rettype),
4747 copy_to_reg (valreg));
4748 set_mem_attributes (target, rettype, 1);
4749 }
4750 /* Handle calls that return values in multiple non-contiguous locations.
4751 The Irix 6 ABI has examples of this. */
4752 else if (GET_CODE (valreg) == PARALLEL)
4753 {
4754 if (target == 0)
4755 target = emit_group_move_into_temps (valreg);
4756 else if (rtx_equal_p (target, valreg))
4757 ;
4758 else if (GET_CODE (target) == PARALLEL)
4759 /* Handle the result of a emit_group_move_into_temps
4760 call in the previous pass. */
4761 emit_group_move (target, valreg);
4762 else
4763 emit_group_store (target, valreg, rettype,
4764 int_size_in_bytes (rettype));
4765 }
4766 else if (target
4767 && GET_MODE (target) == TYPE_MODE (rettype)
4768 && GET_MODE (target) == GET_MODE (valreg))
4769 {
4770 bool may_overlap = false;
4771
4772 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4773 reg to a plain register. */
4774 if (!REG_P (target) || HARD_REGISTER_P (target))
4775 valreg = avoid_likely_spilled_reg (valreg);
4776
4777 /* If TARGET is a MEM in the argument area, and we have
4778 saved part of the argument area, then we can't store
4779 directly into TARGET as it may get overwritten when we
4780 restore the argument save area below. Don't work too
4781 hard though and simply force TARGET to a register if it
4782 is a MEM; the optimizer is quite likely to sort it out. */
4783 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4784 for (i = 0; i < num_actuals; i++)
4785 if (args[i].save_area)
4786 {
4787 may_overlap = true;
4788 break;
4789 }
4790
4791 if (may_overlap)
4792 target = copy_to_reg (valreg);
4793 else
4794 {
4795 /* TARGET and VALREG cannot be equal at this point
4796 because the latter would not have
4797 REG_FUNCTION_VALUE_P true, while the former would if
4798 it were referring to the same register.
4799
4800 If they refer to the same register, this move will be
4801 a no-op, except when function inlining is being
4802 done. */
4803 emit_move_insn (target, valreg);
4804
4805 /* If we are setting a MEM, this code must be executed.
4806 Since it is emitted after the call insn, sibcall
4807 optimization cannot be performed in that case. */
4808 if (MEM_P (target))
4809 sibcall_failure = 1;
4810 }
4811 }
4812 else
4813 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4814
4815 /* If we promoted this return value, make the proper SUBREG.
4816 TARGET might be const0_rtx here, so be careful. */
4817 if (REG_P (target)
4818 && TYPE_MODE (rettype) != BLKmode
4819 && GET_MODE (target) != TYPE_MODE (rettype))
4820 {
4821 tree type = rettype;
4822 int unsignedp = TYPE_UNSIGNED (type);
4823 machine_mode pmode;
4824
4825 /* Ensure we promote as expected, and get the new unsignedness. */
4826 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4827 funtype, 1);
4828 gcc_assert (GET_MODE (target) == pmode);
4829
4830 poly_uint64 offset = subreg_lowpart_offset (TYPE_MODE (type),
4831 GET_MODE (target));
4832 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4833 SUBREG_PROMOTED_VAR_P (target) = 1;
4834 SUBREG_PROMOTED_SET (target, unsignedp);
4835 }
4836
4837 /* If size of args is variable or this was a constructor call for a stack
4838 argument, restore saved stack-pointer value. */
4839
4840 if (old_stack_level)
4841 {
4842 rtx_insn *prev = get_last_insn ();
4843
4844 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4845 stack_pointer_delta = old_stack_pointer_delta;
4846
4847 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4848
4849 pending_stack_adjust = old_pending_adj;
4850 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4851 stack_arg_under_construction = old_stack_arg_under_construction;
4852 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4853 stack_usage_map = initial_stack_usage_map;
4854 stack_usage_watermark = initial_stack_usage_watermark;
4855 sibcall_failure = 1;
4856 }
4857 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4858 {
4859 #ifdef REG_PARM_STACK_SPACE
4860 if (save_area)
4861 restore_fixed_argument_area (save_area, argblock,
4862 high_to_save, low_to_save);
4863 #endif
4864
4865 /* If we saved any argument areas, restore them. */
4866 for (i = 0; i < num_actuals; i++)
4867 if (args[i].save_area)
4868 {
4869 machine_mode save_mode = GET_MODE (args[i].save_area);
4870 rtx stack_area
4871 = gen_rtx_MEM (save_mode,
4872 memory_address (save_mode,
4873 XEXP (args[i].stack_slot, 0)));
4874
4875 if (save_mode != BLKmode)
4876 emit_move_insn (stack_area, args[i].save_area);
4877 else
4878 emit_block_move (stack_area, args[i].save_area,
4879 (gen_int_mode
4880 (args[i].locate.size.constant, Pmode)),
4881 BLOCK_OP_CALL_PARM);
4882 }
4883
4884 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4885 stack_usage_map = initial_stack_usage_map;
4886 stack_usage_watermark = initial_stack_usage_watermark;
4887 }
4888
4889 /* If this was alloca, record the new stack level. */
4890 if (flags & ECF_MAY_BE_ALLOCA)
4891 record_new_stack_level ();
4892
4893 /* Free up storage we no longer need. */
4894 for (i = 0; i < num_actuals; ++i)
4895 free (args[i].aligned_regs);
4896
4897 targetm.calls.end_call_args ();
4898
4899 insns = get_insns ();
4900 end_sequence ();
4901
4902 if (pass == 0)
4903 {
4904 tail_call_insns = insns;
4905
4906 /* Restore the pending stack adjustment now that we have
4907 finished generating the sibling call sequence. */
4908
4909 restore_pending_stack_adjust (&save);
4910
4911 /* Prepare arg structure for next iteration. */
4912 for (i = 0; i < num_actuals; i++)
4913 {
4914 args[i].value = 0;
4915 args[i].aligned_regs = 0;
4916 args[i].stack = 0;
4917 }
4918
4919 sbitmap_free (stored_args_map);
4920 internal_arg_pointer_exp_state.scan_start = NULL;
4921 internal_arg_pointer_exp_state.cache.release ();
4922 }
4923 else
4924 {
4925 normal_call_insns = insns;
4926
4927 /* Verify that we've deallocated all the stack we used. */
4928 gcc_assert ((flags & ECF_NORETURN)
4929 || known_eq (old_stack_allocated,
4930 stack_pointer_delta
4931 - pending_stack_adjust));
4932 }
4933
4934 /* If something prevents making this a sibling call,
4935 zero out the sequence. */
4936 if (sibcall_failure)
4937 tail_call_insns = NULL;
4938 else
4939 break;
4940 }
4941
4942 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4943 arguments too, as argument area is now clobbered by the call. */
4944 if (tail_call_insns)
4945 {
4946 emit_insn (tail_call_insns);
4947 crtl->tail_call_emit = true;
4948 }
4949 else
4950 {
4951 emit_insn (normal_call_insns);
4952 if (try_tail_call)
4953 /* Ideally we'd emit a message for all of the ways that it could
4954 have failed. */
4955 maybe_complain_about_tail_call (exp, "tail call production failed");
4956 }
4957
4958 currently_expanding_call--;
4959
4960 free (stack_usage_map_buf);
4961 free (args);
4962 return target;
4963 }
4964
4965 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4966 this function's incoming arguments.
4967
4968 At the start of RTL generation we know the only REG_EQUIV notes
4969 in the rtl chain are those for incoming arguments, so we can look
4970 for REG_EQUIV notes between the start of the function and the
4971 NOTE_INSN_FUNCTION_BEG.
4972
4973 This is (slight) overkill. We could keep track of the highest
4974 argument we clobber and be more selective in removing notes, but it
4975 does not seem to be worth the effort. */
4976
4977 void
4978 fixup_tail_calls (void)
4979 {
4980 rtx_insn *insn;
4981
4982 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4983 {
4984 rtx note;
4985
4986 /* There are never REG_EQUIV notes for the incoming arguments
4987 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4988 if (NOTE_P (insn)
4989 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4990 break;
4991
4992 note = find_reg_note (insn, REG_EQUIV, 0);
4993 if (note)
4994 remove_note (insn, note);
4995 note = find_reg_note (insn, REG_EQUIV, 0);
4996 gcc_assert (!note);
4997 }
4998 }
4999
5000 /* Traverse a list of TYPES and expand all complex types into their
5001 components. */
5002 static tree
5003 split_complex_types (tree types)
5004 {
5005 tree p;
5006
5007 /* Before allocating memory, check for the common case of no complex. */
5008 for (p = types; p; p = TREE_CHAIN (p))
5009 {
5010 tree type = TREE_VALUE (p);
5011 if (TREE_CODE (type) == COMPLEX_TYPE
5012 && targetm.calls.split_complex_arg (type))
5013 goto found;
5014 }
5015 return types;
5016
5017 found:
5018 types = copy_list (types);
5019
5020 for (p = types; p; p = TREE_CHAIN (p))
5021 {
5022 tree complex_type = TREE_VALUE (p);
5023
5024 if (TREE_CODE (complex_type) == COMPLEX_TYPE
5025 && targetm.calls.split_complex_arg (complex_type))
5026 {
5027 tree next, imag;
5028
5029 /* Rewrite complex type with component type. */
5030 TREE_VALUE (p) = TREE_TYPE (complex_type);
5031 next = TREE_CHAIN (p);
5032
5033 /* Add another component type for the imaginary part. */
5034 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
5035 TREE_CHAIN (p) = imag;
5036 TREE_CHAIN (imag) = next;
5037
5038 /* Skip the newly created node. */
5039 p = TREE_CHAIN (p);
5040 }
5041 }
5042
5043 return types;
5044 }
5045 \f
5046 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
5047 for a value of mode OUTMODE,
5048 with NARGS different arguments, passed as ARGS.
5049 Store the return value if RETVAL is nonzero: store it in VALUE if
5050 VALUE is nonnull, otherwise pick a convenient location. In either
5051 case return the location of the stored value.
5052
5053 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
5054 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
5055 other types of library calls. */
5056
5057 rtx
5058 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
5059 enum libcall_type fn_type,
5060 machine_mode outmode, int nargs, rtx_mode_t *args)
5061 {
5062 /* Total size in bytes of all the stack-parms scanned so far. */
5063 struct args_size args_size;
5064 /* Size of arguments before any adjustments (such as rounding). */
5065 struct args_size original_args_size;
5066 int argnum;
5067 rtx fun;
5068 /* Todo, choose the correct decl type of orgfun. Sadly this information
5069 isn't present here, so we default to native calling abi here. */
5070 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
5071 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
5072 int count;
5073 rtx argblock = 0;
5074 CUMULATIVE_ARGS args_so_far_v;
5075 cumulative_args_t args_so_far;
5076 struct arg
5077 {
5078 rtx value;
5079 machine_mode mode;
5080 rtx reg;
5081 int partial;
5082 struct locate_and_pad_arg_data locate;
5083 rtx save_area;
5084 };
5085 struct arg *argvec;
5086 int old_inhibit_defer_pop = inhibit_defer_pop;
5087 rtx call_fusage = 0;
5088 rtx mem_value = 0;
5089 rtx valreg;
5090 int pcc_struct_value = 0;
5091 poly_int64 struct_value_size = 0;
5092 int flags;
5093 int reg_parm_stack_space = 0;
5094 poly_int64 needed;
5095 rtx_insn *before_call;
5096 bool have_push_fusage;
5097 tree tfom; /* type_for_mode (outmode, 0) */
5098
5099 #ifdef REG_PARM_STACK_SPACE
5100 /* Define the boundary of the register parm stack space that needs to be
5101 save, if any. */
5102 int low_to_save = 0, high_to_save = 0;
5103 rtx save_area = 0; /* Place that it is saved. */
5104 #endif
5105
5106 /* Size of the stack reserved for parameter registers. */
5107 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
5108 char *initial_stack_usage_map = stack_usage_map;
5109 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
5110 char *stack_usage_map_buf = NULL;
5111
5112 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
5113
5114 #ifdef REG_PARM_STACK_SPACE
5115 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
5116 #endif
5117
5118 /* By default, library functions cannot throw. */
5119 flags = ECF_NOTHROW;
5120
5121 switch (fn_type)
5122 {
5123 case LCT_NORMAL:
5124 break;
5125 case LCT_CONST:
5126 flags |= ECF_CONST;
5127 break;
5128 case LCT_PURE:
5129 flags |= ECF_PURE;
5130 break;
5131 case LCT_NORETURN:
5132 flags |= ECF_NORETURN;
5133 break;
5134 case LCT_THROW:
5135 flags &= ~ECF_NOTHROW;
5136 break;
5137 case LCT_RETURNS_TWICE:
5138 flags = ECF_RETURNS_TWICE;
5139 break;
5140 }
5141 fun = orgfun;
5142
5143 /* Ensure current function's preferred stack boundary is at least
5144 what we need. */
5145 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
5146 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
5147
5148 /* If this kind of value comes back in memory,
5149 decide where in memory it should come back. */
5150 if (outmode != VOIDmode)
5151 {
5152 tfom = lang_hooks.types.type_for_mode (outmode, 0);
5153 if (aggregate_value_p (tfom, 0))
5154 {
5155 #ifdef PCC_STATIC_STRUCT_RETURN
5156 rtx pointer_reg
5157 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
5158 mem_value = gen_rtx_MEM (outmode, pointer_reg);
5159 pcc_struct_value = 1;
5160 if (value == 0)
5161 value = gen_reg_rtx (outmode);
5162 #else /* not PCC_STATIC_STRUCT_RETURN */
5163 struct_value_size = GET_MODE_SIZE (outmode);
5164 if (value != 0 && MEM_P (value))
5165 mem_value = value;
5166 else
5167 mem_value = assign_temp (tfom, 1, 1);
5168 #endif
5169 /* This call returns a big structure. */
5170 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
5171 }
5172 }
5173 else
5174 tfom = void_type_node;
5175
5176 /* ??? Unfinished: must pass the memory address as an argument. */
5177
5178 /* Copy all the libcall-arguments out of the varargs data
5179 and into a vector ARGVEC.
5180
5181 Compute how to pass each argument. We only support a very small subset
5182 of the full argument passing conventions to limit complexity here since
5183 library functions shouldn't have many args. */
5184
5185 argvec = XALLOCAVEC (struct arg, nargs + 1);
5186 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
5187
5188 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
5189 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
5190 #else
5191 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
5192 #endif
5193 args_so_far = pack_cumulative_args (&args_so_far_v);
5194
5195 args_size.constant = 0;
5196 args_size.var = 0;
5197
5198 count = 0;
5199
5200 push_temp_slots ();
5201
5202 /* If there's a structure value address to be passed,
5203 either pass it in the special place, or pass it as an extra argument. */
5204 if (mem_value && struct_value == 0 && ! pcc_struct_value)
5205 {
5206 rtx addr = XEXP (mem_value, 0);
5207
5208 nargs++;
5209
5210 /* Make sure it is a reasonable operand for a move or push insn. */
5211 if (!REG_P (addr) && !MEM_P (addr)
5212 && !(CONSTANT_P (addr)
5213 && targetm.legitimate_constant_p (Pmode, addr)))
5214 addr = force_operand (addr, NULL_RTX);
5215
5216 argvec[count].value = addr;
5217 argvec[count].mode = Pmode;
5218 argvec[count].partial = 0;
5219
5220 function_arg_info ptr_arg (Pmode, /*named=*/true);
5221 argvec[count].reg = targetm.calls.function_arg (args_so_far, ptr_arg);
5222 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, ptr_arg) == 0);
5223
5224 locate_and_pad_parm (Pmode, NULL_TREE,
5225 #ifdef STACK_PARMS_IN_REG_PARM_AREA
5226 1,
5227 #else
5228 argvec[count].reg != 0,
5229 #endif
5230 reg_parm_stack_space, 0,
5231 NULL_TREE, &args_size, &argvec[count].locate);
5232
5233 if (argvec[count].reg == 0 || argvec[count].partial != 0
5234 || reg_parm_stack_space > 0)
5235 args_size.constant += argvec[count].locate.size.constant;
5236
5237 targetm.calls.function_arg_advance (args_so_far, ptr_arg);
5238
5239 count++;
5240 }
5241
5242 for (unsigned int i = 0; count < nargs; i++, count++)
5243 {
5244 rtx val = args[i].first;
5245 function_arg_info arg (args[i].second, /*named=*/true);
5246 int unsigned_p = 0;
5247
5248 /* We cannot convert the arg value to the mode the library wants here;
5249 must do it earlier where we know the signedness of the arg. */
5250 gcc_assert (arg.mode != BLKmode
5251 && (GET_MODE (val) == arg.mode
5252 || GET_MODE (val) == VOIDmode));
5253
5254 /* Make sure it is a reasonable operand for a move or push insn. */
5255 if (!REG_P (val) && !MEM_P (val)
5256 && !(CONSTANT_P (val)
5257 && targetm.legitimate_constant_p (arg.mode, val)))
5258 val = force_operand (val, NULL_RTX);
5259
5260 if (pass_by_reference (&args_so_far_v, arg))
5261 {
5262 rtx slot;
5263 int must_copy = !reference_callee_copied (&args_so_far_v, arg);
5264
5265 /* If this was a CONST function, it is now PURE since it now
5266 reads memory. */
5267 if (flags & ECF_CONST)
5268 {
5269 flags &= ~ECF_CONST;
5270 flags |= ECF_PURE;
5271 }
5272
5273 if (MEM_P (val) && !must_copy)
5274 {
5275 tree val_expr = MEM_EXPR (val);
5276 if (val_expr)
5277 mark_addressable (val_expr);
5278 slot = val;
5279 }
5280 else
5281 {
5282 slot = assign_temp (lang_hooks.types.type_for_mode (arg.mode, 0),
5283 1, 1);
5284 emit_move_insn (slot, val);
5285 }
5286
5287 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
5288 gen_rtx_USE (VOIDmode, slot),
5289 call_fusage);
5290 if (must_copy)
5291 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
5292 gen_rtx_CLOBBER (VOIDmode,
5293 slot),
5294 call_fusage);
5295
5296 arg.mode = Pmode;
5297 arg.pass_by_reference = true;
5298 val = force_operand (XEXP (slot, 0), NULL_RTX);
5299 }
5300
5301 arg.mode = promote_function_mode (NULL_TREE, arg.mode, &unsigned_p,
5302 NULL_TREE, 0);
5303 argvec[count].mode = arg.mode;
5304 argvec[count].value = convert_modes (arg.mode, GET_MODE (val), val,
5305 unsigned_p);
5306 argvec[count].reg = targetm.calls.function_arg (args_so_far, arg);
5307
5308 argvec[count].partial
5309 = targetm.calls.arg_partial_bytes (args_so_far, arg);
5310
5311 if (argvec[count].reg == 0
5312 || argvec[count].partial != 0
5313 || reg_parm_stack_space > 0)
5314 {
5315 locate_and_pad_parm (arg.mode, NULL_TREE,
5316 #ifdef STACK_PARMS_IN_REG_PARM_AREA
5317 1,
5318 #else
5319 argvec[count].reg != 0,
5320 #endif
5321 reg_parm_stack_space, argvec[count].partial,
5322 NULL_TREE, &args_size, &argvec[count].locate);
5323 args_size.constant += argvec[count].locate.size.constant;
5324 gcc_assert (!argvec[count].locate.size.var);
5325 }
5326 #ifdef BLOCK_REG_PADDING
5327 else
5328 /* The argument is passed entirely in registers. See at which
5329 end it should be padded. */
5330 argvec[count].locate.where_pad =
5331 BLOCK_REG_PADDING (arg.mode, NULL_TREE,
5332 known_le (GET_MODE_SIZE (arg.mode),
5333 UNITS_PER_WORD));
5334 #endif
5335
5336 targetm.calls.function_arg_advance (args_so_far, arg);
5337 }
5338
5339 for (int i = 0; i < nargs; i++)
5340 if (reg_parm_stack_space > 0
5341 || argvec[i].reg == 0
5342 || argvec[i].partial != 0)
5343 update_stack_alignment_for_call (&argvec[i].locate);
5344
5345 /* If this machine requires an external definition for library
5346 functions, write one out. */
5347 assemble_external_libcall (fun);
5348
5349 original_args_size = args_size;
5350 args_size.constant = (aligned_upper_bound (args_size.constant
5351 + stack_pointer_delta,
5352 STACK_BYTES)
5353 - stack_pointer_delta);
5354
5355 args_size.constant = upper_bound (args_size.constant,
5356 reg_parm_stack_space);
5357
5358 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5359 args_size.constant -= reg_parm_stack_space;
5360
5361 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
5362 args_size.constant);
5363
5364 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
5365 {
5366 poly_int64 pushed = args_size.constant + pending_stack_adjust;
5367 current_function_pushed_stack_size
5368 = upper_bound (current_function_pushed_stack_size, pushed);
5369 }
5370
5371 if (ACCUMULATE_OUTGOING_ARGS)
5372 {
5373 /* Since the stack pointer will never be pushed, it is possible for
5374 the evaluation of a parm to clobber something we have already
5375 written to the stack. Since most function calls on RISC machines
5376 do not use the stack, this is uncommon, but must work correctly.
5377
5378 Therefore, we save any area of the stack that was already written
5379 and that we are using. Here we set up to do this by making a new
5380 stack usage map from the old one.
5381
5382 Another approach might be to try to reorder the argument
5383 evaluations to avoid this conflicting stack usage. */
5384
5385 needed = args_size.constant;
5386
5387 /* Since we will be writing into the entire argument area, the
5388 map must be allocated for its entire size, not just the part that
5389 is the responsibility of the caller. */
5390 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5391 needed += reg_parm_stack_space;
5392
5393 poly_int64 limit = needed;
5394 if (ARGS_GROW_DOWNWARD)
5395 limit += 1;
5396
5397 /* For polynomial sizes, this is the maximum possible size needed
5398 for arguments with a constant size and offset. */
5399 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
5400 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
5401 const_limit);
5402
5403 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
5404 stack_usage_map = stack_usage_map_buf;
5405
5406 if (initial_highest_arg_in_use)
5407 memcpy (stack_usage_map, initial_stack_usage_map,
5408 initial_highest_arg_in_use);
5409
5410 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
5411 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
5412 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
5413 needed = 0;
5414
5415 /* We must be careful to use virtual regs before they're instantiated,
5416 and real regs afterwards. Loop optimization, for example, can create
5417 new libcalls after we've instantiated the virtual regs, and if we
5418 use virtuals anyway, they won't match the rtl patterns. */
5419
5420 if (virtuals_instantiated)
5421 argblock = plus_constant (Pmode, stack_pointer_rtx,
5422 STACK_POINTER_OFFSET);
5423 else
5424 argblock = virtual_outgoing_args_rtx;
5425 }
5426 else
5427 {
5428 if (!PUSH_ARGS)
5429 argblock = push_block (gen_int_mode (args_size.constant, Pmode), 0, 0);
5430 }
5431
5432 /* We push args individually in reverse order, perform stack alignment
5433 before the first push (the last arg). */
5434 if (argblock == 0)
5435 anti_adjust_stack (gen_int_mode (args_size.constant
5436 - original_args_size.constant,
5437 Pmode));
5438
5439 argnum = nargs - 1;
5440
5441 #ifdef REG_PARM_STACK_SPACE
5442 if (ACCUMULATE_OUTGOING_ARGS)
5443 {
5444 /* The argument list is the property of the called routine and it
5445 may clobber it. If the fixed area has been used for previous
5446 parameters, we must save and restore it. */
5447 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
5448 &low_to_save, &high_to_save);
5449 }
5450 #endif
5451
5452 /* When expanding a normal call, args are stored in push order,
5453 which is the reverse of what we have here. */
5454 bool any_regs = false;
5455 for (int i = nargs; i-- > 0; )
5456 if (argvec[i].reg != NULL_RTX)
5457 {
5458 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
5459 any_regs = true;
5460 }
5461 if (!any_regs)
5462 targetm.calls.call_args (pc_rtx, NULL_TREE);
5463
5464 /* Push the args that need to be pushed. */
5465
5466 have_push_fusage = false;
5467
5468 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5469 are to be pushed. */
5470 for (count = 0; count < nargs; count++, argnum--)
5471 {
5472 machine_mode mode = argvec[argnum].mode;
5473 rtx val = argvec[argnum].value;
5474 rtx reg = argvec[argnum].reg;
5475 int partial = argvec[argnum].partial;
5476 unsigned int parm_align = argvec[argnum].locate.boundary;
5477 poly_int64 lower_bound = 0, upper_bound = 0;
5478
5479 if (! (reg != 0 && partial == 0))
5480 {
5481 rtx use;
5482
5483 if (ACCUMULATE_OUTGOING_ARGS)
5484 {
5485 /* If this is being stored into a pre-allocated, fixed-size,
5486 stack area, save any previous data at that location. */
5487
5488 if (ARGS_GROW_DOWNWARD)
5489 {
5490 /* stack_slot is negative, but we want to index stack_usage_map
5491 with positive values. */
5492 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
5493 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
5494 }
5495 else
5496 {
5497 lower_bound = argvec[argnum].locate.slot_offset.constant;
5498 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
5499 }
5500
5501 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5502 reg_parm_stack_space))
5503 {
5504 /* We need to make a save area. */
5505 poly_uint64 size
5506 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
5507 machine_mode save_mode
5508 = int_mode_for_size (size, 1).else_blk ();
5509 rtx adr
5510 = plus_constant (Pmode, argblock,
5511 argvec[argnum].locate.offset.constant);
5512 rtx stack_area
5513 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
5514
5515 if (save_mode == BLKmode)
5516 {
5517 argvec[argnum].save_area
5518 = assign_stack_temp (BLKmode,
5519 argvec[argnum].locate.size.constant
5520 );
5521
5522 emit_block_move (validize_mem
5523 (copy_rtx (argvec[argnum].save_area)),
5524 stack_area,
5525 (gen_int_mode
5526 (argvec[argnum].locate.size.constant,
5527 Pmode)),
5528 BLOCK_OP_CALL_PARM);
5529 }
5530 else
5531 {
5532 argvec[argnum].save_area = gen_reg_rtx (save_mode);
5533
5534 emit_move_insn (argvec[argnum].save_area, stack_area);
5535 }
5536 }
5537 }
5538
5539 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
5540 partial, reg, 0, argblock,
5541 (gen_int_mode
5542 (argvec[argnum].locate.offset.constant, Pmode)),
5543 reg_parm_stack_space,
5544 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
5545
5546 /* Now mark the segment we just used. */
5547 if (ACCUMULATE_OUTGOING_ARGS)
5548 mark_stack_region_used (lower_bound, upper_bound);
5549
5550 NO_DEFER_POP;
5551
5552 /* Indicate argument access so that alias.c knows that these
5553 values are live. */
5554 if (argblock)
5555 use = plus_constant (Pmode, argblock,
5556 argvec[argnum].locate.offset.constant);
5557 else if (have_push_fusage)
5558 continue;
5559 else
5560 {
5561 /* When arguments are pushed, trying to tell alias.c where
5562 exactly this argument is won't work, because the
5563 auto-increment causes confusion. So we merely indicate
5564 that we access something with a known mode somewhere on
5565 the stack. */
5566 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
5567 gen_rtx_SCRATCH (Pmode));
5568 have_push_fusage = true;
5569 }
5570 use = gen_rtx_MEM (argvec[argnum].mode, use);
5571 use = gen_rtx_USE (VOIDmode, use);
5572 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
5573 }
5574 }
5575
5576 argnum = nargs - 1;
5577
5578 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
5579
5580 /* Now load any reg parms into their regs. */
5581
5582 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5583 are to be pushed. */
5584 for (count = 0; count < nargs; count++, argnum--)
5585 {
5586 machine_mode mode = argvec[argnum].mode;
5587 rtx val = argvec[argnum].value;
5588 rtx reg = argvec[argnum].reg;
5589 int partial = argvec[argnum].partial;
5590
5591 /* Handle calls that pass values in multiple non-contiguous
5592 locations. The PA64 has examples of this for library calls. */
5593 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5594 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
5595 else if (reg != 0 && partial == 0)
5596 {
5597 emit_move_insn (reg, val);
5598 #ifdef BLOCK_REG_PADDING
5599 poly_int64 size = GET_MODE_SIZE (argvec[argnum].mode);
5600
5601 /* Copied from load_register_parameters. */
5602
5603 /* Handle case where we have a value that needs shifting
5604 up to the msb. eg. a QImode value and we're padding
5605 upward on a BYTES_BIG_ENDIAN machine. */
5606 if (known_lt (size, UNITS_PER_WORD)
5607 && (argvec[argnum].locate.where_pad
5608 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5609 {
5610 rtx x;
5611 poly_int64 shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
5612
5613 /* Assigning REG here rather than a temp makes CALL_FUSAGE
5614 report the whole reg as used. Strictly speaking, the
5615 call only uses SIZE bytes at the msb end, but it doesn't
5616 seem worth generating rtl to say that. */
5617 reg = gen_rtx_REG (word_mode, REGNO (reg));
5618 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
5619 if (x != reg)
5620 emit_move_insn (reg, x);
5621 }
5622 #endif
5623 }
5624
5625 NO_DEFER_POP;
5626 }
5627
5628 /* Any regs containing parms remain in use through the call. */
5629 for (count = 0; count < nargs; count++)
5630 {
5631 rtx reg = argvec[count].reg;
5632 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5633 use_group_regs (&call_fusage, reg);
5634 else if (reg != 0)
5635 {
5636 int partial = argvec[count].partial;
5637 if (partial)
5638 {
5639 int nregs;
5640 gcc_assert (partial % UNITS_PER_WORD == 0);
5641 nregs = partial / UNITS_PER_WORD;
5642 use_regs (&call_fusage, REGNO (reg), nregs);
5643 }
5644 else
5645 use_reg (&call_fusage, reg);
5646 }
5647 }
5648
5649 /* Pass the function the address in which to return a structure value. */
5650 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
5651 {
5652 emit_move_insn (struct_value,
5653 force_reg (Pmode,
5654 force_operand (XEXP (mem_value, 0),
5655 NULL_RTX)));
5656 if (REG_P (struct_value))
5657 use_reg (&call_fusage, struct_value);
5658 }
5659
5660 /* Don't allow popping to be deferred, since then
5661 cse'ing of library calls could delete a call and leave the pop. */
5662 NO_DEFER_POP;
5663 valreg = (mem_value == 0 && outmode != VOIDmode
5664 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
5665
5666 /* Stack must be properly aligned now. */
5667 gcc_assert (multiple_p (stack_pointer_delta,
5668 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
5669
5670 before_call = get_last_insn ();
5671
5672 if (flag_callgraph_info)
5673 record_final_call (SYMBOL_REF_DECL (orgfun), UNKNOWN_LOCATION);
5674
5675 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
5676 will set inhibit_defer_pop to that value. */
5677 /* The return type is needed to decide how many bytes the function pops.
5678 Signedness plays no role in that, so for simplicity, we pretend it's
5679 always signed. We also assume that the list of arguments passed has
5680 no impact, so we pretend it is unknown. */
5681
5682 emit_call_1 (fun, NULL,
5683 get_identifier (XSTR (orgfun, 0)),
5684 build_function_type (tfom, NULL_TREE),
5685 original_args_size.constant, args_size.constant,
5686 struct_value_size,
5687 targetm.calls.function_arg (args_so_far,
5688 function_arg_info::end_marker ()),
5689 valreg,
5690 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
5691
5692 if (flag_ipa_ra)
5693 {
5694 rtx datum = orgfun;
5695 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
5696 rtx_call_insn *last = last_call_insn ();
5697 add_reg_note (last, REG_CALL_DECL, datum);
5698 }
5699
5700 /* Right-shift returned value if necessary. */
5701 if (!pcc_struct_value
5702 && TYPE_MODE (tfom) != BLKmode
5703 && targetm.calls.return_in_msb (tfom))
5704 {
5705 shift_return_value (TYPE_MODE (tfom), false, valreg);
5706 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5707 }
5708
5709 targetm.calls.end_call_args ();
5710
5711 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5712 that it should complain if nonvolatile values are live. For
5713 functions that cannot return, inform flow that control does not
5714 fall through. */
5715 if (flags & ECF_NORETURN)
5716 {
5717 /* The barrier note must be emitted
5718 immediately after the CALL_INSN. Some ports emit more than
5719 just a CALL_INSN above, so we must search for it here. */
5720 rtx_insn *last = get_last_insn ();
5721 while (!CALL_P (last))
5722 {
5723 last = PREV_INSN (last);
5724 /* There was no CALL_INSN? */
5725 gcc_assert (last != before_call);
5726 }
5727
5728 emit_barrier_after (last);
5729 }
5730
5731 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5732 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5733 if (flags & ECF_NOTHROW)
5734 {
5735 rtx_insn *last = get_last_insn ();
5736 while (!CALL_P (last))
5737 {
5738 last = PREV_INSN (last);
5739 /* There was no CALL_INSN? */
5740 gcc_assert (last != before_call);
5741 }
5742
5743 make_reg_eh_region_note_nothrow_nononlocal (last);
5744 }
5745
5746 /* Now restore inhibit_defer_pop to its actual original value. */
5747 OK_DEFER_POP;
5748
5749 pop_temp_slots ();
5750
5751 /* Copy the value to the right place. */
5752 if (outmode != VOIDmode && retval)
5753 {
5754 if (mem_value)
5755 {
5756 if (value == 0)
5757 value = mem_value;
5758 if (value != mem_value)
5759 emit_move_insn (value, mem_value);
5760 }
5761 else if (GET_CODE (valreg) == PARALLEL)
5762 {
5763 if (value == 0)
5764 value = gen_reg_rtx (outmode);
5765 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5766 }
5767 else
5768 {
5769 /* Convert to the proper mode if a promotion has been active. */
5770 if (GET_MODE (valreg) != outmode)
5771 {
5772 int unsignedp = TYPE_UNSIGNED (tfom);
5773
5774 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5775 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5776 == GET_MODE (valreg));
5777 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5778 }
5779
5780 if (value != 0)
5781 emit_move_insn (value, valreg);
5782 else
5783 value = valreg;
5784 }
5785 }
5786
5787 if (ACCUMULATE_OUTGOING_ARGS)
5788 {
5789 #ifdef REG_PARM_STACK_SPACE
5790 if (save_area)
5791 restore_fixed_argument_area (save_area, argblock,
5792 high_to_save, low_to_save);
5793 #endif
5794
5795 /* If we saved any argument areas, restore them. */
5796 for (count = 0; count < nargs; count++)
5797 if (argvec[count].save_area)
5798 {
5799 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5800 rtx adr = plus_constant (Pmode, argblock,
5801 argvec[count].locate.offset.constant);
5802 rtx stack_area = gen_rtx_MEM (save_mode,
5803 memory_address (save_mode, adr));
5804
5805 if (save_mode == BLKmode)
5806 emit_block_move (stack_area,
5807 validize_mem
5808 (copy_rtx (argvec[count].save_area)),
5809 (gen_int_mode
5810 (argvec[count].locate.size.constant, Pmode)),
5811 BLOCK_OP_CALL_PARM);
5812 else
5813 emit_move_insn (stack_area, argvec[count].save_area);
5814 }
5815
5816 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5817 stack_usage_map = initial_stack_usage_map;
5818 stack_usage_watermark = initial_stack_usage_watermark;
5819 }
5820
5821 free (stack_usage_map_buf);
5822
5823 return value;
5824
5825 }
5826 \f
5827
5828 /* Store a single argument for a function call
5829 into the register or memory area where it must be passed.
5830 *ARG describes the argument value and where to pass it.
5831
5832 ARGBLOCK is the address of the stack-block for all the arguments,
5833 or 0 on a machine where arguments are pushed individually.
5834
5835 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5836 so must be careful about how the stack is used.
5837
5838 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5839 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5840 that we need not worry about saving and restoring the stack.
5841
5842 FNDECL is the declaration of the function we are calling.
5843
5844 Return nonzero if this arg should cause sibcall failure,
5845 zero otherwise. */
5846
5847 static int
5848 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5849 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5850 {
5851 tree pval = arg->tree_value;
5852 rtx reg = 0;
5853 int partial = 0;
5854 poly_int64 used = 0;
5855 poly_int64 lower_bound = 0, upper_bound = 0;
5856 int sibcall_failure = 0;
5857
5858 if (TREE_CODE (pval) == ERROR_MARK)
5859 return 1;
5860
5861 /* Push a new temporary level for any temporaries we make for
5862 this argument. */
5863 push_temp_slots ();
5864
5865 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5866 {
5867 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5868 save any previous data at that location. */
5869 if (argblock && ! variable_size && arg->stack)
5870 {
5871 if (ARGS_GROW_DOWNWARD)
5872 {
5873 /* stack_slot is negative, but we want to index stack_usage_map
5874 with positive values. */
5875 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5876 {
5877 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5878 upper_bound = -rtx_to_poly_int64 (offset) + 1;
5879 }
5880 else
5881 upper_bound = 0;
5882
5883 lower_bound = upper_bound - arg->locate.size.constant;
5884 }
5885 else
5886 {
5887 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5888 {
5889 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5890 lower_bound = rtx_to_poly_int64 (offset);
5891 }
5892 else
5893 lower_bound = 0;
5894
5895 upper_bound = lower_bound + arg->locate.size.constant;
5896 }
5897
5898 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5899 reg_parm_stack_space))
5900 {
5901 /* We need to make a save area. */
5902 poly_uint64 size = arg->locate.size.constant * BITS_PER_UNIT;
5903 machine_mode save_mode
5904 = int_mode_for_size (size, 1).else_blk ();
5905 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5906 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5907
5908 if (save_mode == BLKmode)
5909 {
5910 arg->save_area
5911 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5912 preserve_temp_slots (arg->save_area);
5913 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5914 stack_area,
5915 (gen_int_mode
5916 (arg->locate.size.constant, Pmode)),
5917 BLOCK_OP_CALL_PARM);
5918 }
5919 else
5920 {
5921 arg->save_area = gen_reg_rtx (save_mode);
5922 emit_move_insn (arg->save_area, stack_area);
5923 }
5924 }
5925 }
5926 }
5927
5928 /* If this isn't going to be placed on both the stack and in registers,
5929 set up the register and number of words. */
5930 if (! arg->pass_on_stack)
5931 {
5932 if (flags & ECF_SIBCALL)
5933 reg = arg->tail_call_reg;
5934 else
5935 reg = arg->reg;
5936 partial = arg->partial;
5937 }
5938
5939 /* Being passed entirely in a register. We shouldn't be called in
5940 this case. */
5941 gcc_assert (reg == 0 || partial != 0);
5942
5943 /* If this arg needs special alignment, don't load the registers
5944 here. */
5945 if (arg->n_aligned_regs != 0)
5946 reg = 0;
5947
5948 /* If this is being passed partially in a register, we can't evaluate
5949 it directly into its stack slot. Otherwise, we can. */
5950 if (arg->value == 0)
5951 {
5952 /* stack_arg_under_construction is nonzero if a function argument is
5953 being evaluated directly into the outgoing argument list and
5954 expand_call must take special action to preserve the argument list
5955 if it is called recursively.
5956
5957 For scalar function arguments stack_usage_map is sufficient to
5958 determine which stack slots must be saved and restored. Scalar
5959 arguments in general have pass_on_stack == 0.
5960
5961 If this argument is initialized by a function which takes the
5962 address of the argument (a C++ constructor or a C function
5963 returning a BLKmode structure), then stack_usage_map is
5964 insufficient and expand_call must push the stack around the
5965 function call. Such arguments have pass_on_stack == 1.
5966
5967 Note that it is always safe to set stack_arg_under_construction,
5968 but this generates suboptimal code if set when not needed. */
5969
5970 if (arg->pass_on_stack)
5971 stack_arg_under_construction++;
5972
5973 arg->value = expand_expr (pval,
5974 (partial
5975 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5976 ? NULL_RTX : arg->stack,
5977 VOIDmode, EXPAND_STACK_PARM);
5978
5979 /* If we are promoting object (or for any other reason) the mode
5980 doesn't agree, convert the mode. */
5981
5982 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5983 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5984 arg->value, arg->unsignedp);
5985
5986 if (arg->pass_on_stack)
5987 stack_arg_under_construction--;
5988 }
5989
5990 /* Check for overlap with already clobbered argument area. */
5991 if ((flags & ECF_SIBCALL)
5992 && MEM_P (arg->value)
5993 && mem_might_overlap_already_clobbered_arg_p (XEXP (arg->value, 0),
5994 arg->locate.size.constant))
5995 sibcall_failure = 1;
5996
5997 /* Don't allow anything left on stack from computation
5998 of argument to alloca. */
5999 if (flags & ECF_MAY_BE_ALLOCA)
6000 do_pending_stack_adjust ();
6001
6002 if (arg->value == arg->stack)
6003 /* If the value is already in the stack slot, we are done. */
6004 ;
6005 else if (arg->mode != BLKmode)
6006 {
6007 unsigned int parm_align;
6008
6009 /* Argument is a scalar, not entirely passed in registers.
6010 (If part is passed in registers, arg->partial says how much
6011 and emit_push_insn will take care of putting it there.)
6012
6013 Push it, and if its size is less than the
6014 amount of space allocated to it,
6015 also bump stack pointer by the additional space.
6016 Note that in C the default argument promotions
6017 will prevent such mismatches. */
6018
6019 poly_int64 size = (TYPE_EMPTY_P (TREE_TYPE (pval))
6020 ? 0 : GET_MODE_SIZE (arg->mode));
6021
6022 /* Compute how much space the push instruction will push.
6023 On many machines, pushing a byte will advance the stack
6024 pointer by a halfword. */
6025 #ifdef PUSH_ROUNDING
6026 size = PUSH_ROUNDING (size);
6027 #endif
6028 used = size;
6029
6030 /* Compute how much space the argument should get:
6031 round up to a multiple of the alignment for arguments. */
6032 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
6033 != PAD_NONE)
6034 /* At the moment we don't (need to) support ABIs for which the
6035 padding isn't known at compile time. In principle it should
6036 be easy to add though. */
6037 used = force_align_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
6038
6039 /* Compute the alignment of the pushed argument. */
6040 parm_align = arg->locate.boundary;
6041 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
6042 == PAD_DOWNWARD)
6043 {
6044 poly_int64 pad = used - size;
6045 unsigned int pad_align = known_alignment (pad) * BITS_PER_UNIT;
6046 if (pad_align != 0)
6047 parm_align = MIN (parm_align, pad_align);
6048 }
6049
6050 /* This isn't already where we want it on the stack, so put it there.
6051 This can either be done with push or copy insns. */
6052 if (maybe_ne (used, 0)
6053 && !emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval),
6054 NULL_RTX, parm_align, partial, reg, used - size,
6055 argblock, ARGS_SIZE_RTX (arg->locate.offset),
6056 reg_parm_stack_space,
6057 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
6058 sibcall_failure = 1;
6059
6060 /* Unless this is a partially-in-register argument, the argument is now
6061 in the stack. */
6062 if (partial == 0)
6063 arg->value = arg->stack;
6064 }
6065 else
6066 {
6067 /* BLKmode, at least partly to be pushed. */
6068
6069 unsigned int parm_align;
6070 poly_int64 excess;
6071 rtx size_rtx;
6072
6073 /* Pushing a nonscalar.
6074 If part is passed in registers, PARTIAL says how much
6075 and emit_push_insn will take care of putting it there. */
6076
6077 /* Round its size up to a multiple
6078 of the allocation unit for arguments. */
6079
6080 if (arg->locate.size.var != 0)
6081 {
6082 excess = 0;
6083 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
6084 }
6085 else
6086 {
6087 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
6088 for BLKmode is careful to avoid it. */
6089 excess = (arg->locate.size.constant
6090 - arg_int_size_in_bytes (TREE_TYPE (pval))
6091 + partial);
6092 size_rtx = expand_expr (arg_size_in_bytes (TREE_TYPE (pval)),
6093 NULL_RTX, TYPE_MODE (sizetype),
6094 EXPAND_NORMAL);
6095 }
6096
6097 parm_align = arg->locate.boundary;
6098
6099 /* When an argument is padded down, the block is aligned to
6100 PARM_BOUNDARY, but the actual argument isn't. */
6101 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
6102 == PAD_DOWNWARD)
6103 {
6104 if (arg->locate.size.var)
6105 parm_align = BITS_PER_UNIT;
6106 else
6107 {
6108 unsigned int excess_align
6109 = known_alignment (excess) * BITS_PER_UNIT;
6110 if (excess_align != 0)
6111 parm_align = MIN (parm_align, excess_align);
6112 }
6113 }
6114
6115 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
6116 {
6117 /* emit_push_insn might not work properly if arg->value and
6118 argblock + arg->locate.offset areas overlap. */
6119 rtx x = arg->value;
6120 poly_int64 i = 0;
6121
6122 if (strip_offset (XEXP (x, 0), &i)
6123 == crtl->args.internal_arg_pointer)
6124 {
6125 /* arg.locate doesn't contain the pretend_args_size offset,
6126 it's part of argblock. Ensure we don't count it in I. */
6127 if (STACK_GROWS_DOWNWARD)
6128 i -= crtl->args.pretend_args_size;
6129 else
6130 i += crtl->args.pretend_args_size;
6131
6132 /* expand_call should ensure this. */
6133 gcc_assert (!arg->locate.offset.var
6134 && arg->locate.size.var == 0);
6135 poly_int64 size_val = rtx_to_poly_int64 (size_rtx);
6136
6137 if (known_eq (arg->locate.offset.constant, i))
6138 {
6139 /* Even though they appear to be at the same location,
6140 if part of the outgoing argument is in registers,
6141 they aren't really at the same location. Check for
6142 this by making sure that the incoming size is the
6143 same as the outgoing size. */
6144 if (maybe_ne (arg->locate.size.constant, size_val))
6145 sibcall_failure = 1;
6146 }
6147 else if (maybe_in_range_p (arg->locate.offset.constant,
6148 i, size_val))
6149 sibcall_failure = 1;
6150 /* Use arg->locate.size.constant instead of size_rtx
6151 because we only care about the part of the argument
6152 on the stack. */
6153 else if (maybe_in_range_p (i, arg->locate.offset.constant,
6154 arg->locate.size.constant))
6155 sibcall_failure = 1;
6156 }
6157 }
6158
6159 if (!CONST_INT_P (size_rtx) || INTVAL (size_rtx) != 0)
6160 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
6161 parm_align, partial, reg, excess, argblock,
6162 ARGS_SIZE_RTX (arg->locate.offset),
6163 reg_parm_stack_space,
6164 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
6165
6166 /* Unless this is a partially-in-register argument, the argument is now
6167 in the stack.
6168
6169 ??? Unlike the case above, in which we want the actual
6170 address of the data, so that we can load it directly into a
6171 register, here we want the address of the stack slot, so that
6172 it's properly aligned for word-by-word copying or something
6173 like that. It's not clear that this is always correct. */
6174 if (partial == 0)
6175 arg->value = arg->stack_slot;
6176 }
6177
6178 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
6179 {
6180 tree type = TREE_TYPE (arg->tree_value);
6181 arg->parallel_value
6182 = emit_group_load_into_temps (arg->reg, arg->value, type,
6183 int_size_in_bytes (type));
6184 }
6185
6186 /* Mark all slots this store used. */
6187 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
6188 && argblock && ! variable_size && arg->stack)
6189 mark_stack_region_used (lower_bound, upper_bound);
6190
6191 /* Once we have pushed something, pops can't safely
6192 be deferred during the rest of the arguments. */
6193 NO_DEFER_POP;
6194
6195 /* Free any temporary slots made in processing this argument. */
6196 pop_temp_slots ();
6197
6198 return sibcall_failure;
6199 }
6200
6201 /* Nonzero if we do not know how to pass ARG solely in registers. */
6202
6203 bool
6204 must_pass_in_stack_var_size (const function_arg_info &arg)
6205 {
6206 if (!arg.type)
6207 return false;
6208
6209 /* If the type has variable size... */
6210 if (!poly_int_tree_p (TYPE_SIZE (arg.type)))
6211 return true;
6212
6213 /* If the type is marked as addressable (it is required
6214 to be constructed into the stack)... */
6215 if (TREE_ADDRESSABLE (arg.type))
6216 return true;
6217
6218 return false;
6219 }
6220
6221 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
6222 takes trailing padding of a structure into account. */
6223 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
6224
6225 bool
6226 must_pass_in_stack_var_size_or_pad (const function_arg_info &arg)
6227 {
6228 if (!arg.type)
6229 return false;
6230
6231 /* If the type has variable size... */
6232 if (TREE_CODE (TYPE_SIZE (arg.type)) != INTEGER_CST)
6233 return true;
6234
6235 /* If the type is marked as addressable (it is required
6236 to be constructed into the stack)... */
6237 if (TREE_ADDRESSABLE (arg.type))
6238 return true;
6239
6240 if (TYPE_EMPTY_P (arg.type))
6241 return false;
6242
6243 /* If the padding and mode of the type is such that a copy into
6244 a register would put it into the wrong part of the register. */
6245 if (arg.mode == BLKmode
6246 && int_size_in_bytes (arg.type) % (PARM_BOUNDARY / BITS_PER_UNIT)
6247 && (targetm.calls.function_arg_padding (arg.mode, arg.type)
6248 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
6249 return true;
6250
6251 return false;
6252 }
6253
6254 /* Return true if TYPE must be passed on the stack when passed to
6255 the "..." arguments of a function. */
6256
6257 bool
6258 must_pass_va_arg_in_stack (tree type)
6259 {
6260 function_arg_info arg (type, /*named=*/false);
6261 return targetm.calls.must_pass_in_stack (arg);
6262 }
6263
6264 /* Return true if FIELD is the C++17 empty base field that should
6265 be ignored for ABI calling convention decisions in order to
6266 maintain ABI compatibility between C++14 and earlier, which doesn't
6267 add this FIELD to classes with empty bases, and C++17 and later
6268 which does. */
6269
6270 bool
6271 cxx17_empty_base_field_p (const_tree field)
6272 {
6273 return (DECL_FIELD_ABI_IGNORED (field)
6274 && DECL_ARTIFICIAL (field)
6275 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (field))
6276 && !lookup_attribute ("no_unique_address", DECL_ATTRIBUTES (field)));
6277 }
6278
6279 /* Tell the garbage collector about GTY markers in this source file. */
6280 #include "gt-calls.h"