]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
vec: add exact argument for various grow functions.
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-vrp.h"
51 #include "tree-ssanames.h"
52 #include "tree-ssa-strlen.h"
53 #include "intl.h"
54 #include "stringpool.h"
55 #include "hash-map.h"
56 #include "hash-traits.h"
57 #include "attribs.h"
58 #include "builtins.h"
59 #include "gimple-fold.h"
60
61 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
62 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
63
64 /* Data structure and subroutines used within expand_call. */
65
66 struct arg_data
67 {
68 /* Tree node for this argument. */
69 tree tree_value;
70 /* Mode for value; TYPE_MODE unless promoted. */
71 machine_mode mode;
72 /* Current RTL value for argument, or 0 if it isn't precomputed. */
73 rtx value;
74 /* Initially-compute RTL value for argument; only for const functions. */
75 rtx initial_value;
76 /* Register to pass this argument in, 0 if passed on stack, or an
77 PARALLEL if the arg is to be copied into multiple non-contiguous
78 registers. */
79 rtx reg;
80 /* Register to pass this argument in when generating tail call sequence.
81 This is not the same register as for normal calls on machines with
82 register windows. */
83 rtx tail_call_reg;
84 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
85 form for emit_group_move. */
86 rtx parallel_value;
87 /* If REG was promoted from the actual mode of the argument expression,
88 indicates whether the promotion is sign- or zero-extended. */
89 int unsignedp;
90 /* Number of bytes to put in registers. 0 means put the whole arg
91 in registers. Also 0 if not passed in registers. */
92 int partial;
93 /* Nonzero if argument must be passed on stack.
94 Note that some arguments may be passed on the stack
95 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
96 pass_on_stack identifies arguments that *cannot* go in registers. */
97 int pass_on_stack;
98 /* Some fields packaged up for locate_and_pad_parm. */
99 struct locate_and_pad_arg_data locate;
100 /* Location on the stack at which parameter should be stored. The store
101 has already been done if STACK == VALUE. */
102 rtx stack;
103 /* Location on the stack of the start of this argument slot. This can
104 differ from STACK if this arg pads downward. This location is known
105 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
106 rtx stack_slot;
107 /* Place that this stack area has been saved, if needed. */
108 rtx save_area;
109 /* If an argument's alignment does not permit direct copying into registers,
110 copy in smaller-sized pieces into pseudos. These are stored in a
111 block pointed to by this field. The next field says how many
112 word-sized pseudos we made. */
113 rtx *aligned_regs;
114 int n_aligned_regs;
115 };
116
117 /* A vector of one char per byte of stack space. A byte if nonzero if
118 the corresponding stack location has been used.
119 This vector is used to prevent a function call within an argument from
120 clobbering any stack already set up. */
121 static char *stack_usage_map;
122
123 /* Size of STACK_USAGE_MAP. */
124 static unsigned int highest_outgoing_arg_in_use;
125
126 /* Assume that any stack location at this byte index is used,
127 without checking the contents of stack_usage_map. */
128 static unsigned HOST_WIDE_INT stack_usage_watermark = HOST_WIDE_INT_M1U;
129
130 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
131 stack location's tail call argument has been already stored into the stack.
132 This bitmap is used to prevent sibling call optimization if function tries
133 to use parent's incoming argument slots when they have been already
134 overwritten with tail call arguments. */
135 static sbitmap stored_args_map;
136
137 /* Assume that any virtual-incoming location at this byte index has been
138 stored, without checking the contents of stored_args_map. */
139 static unsigned HOST_WIDE_INT stored_args_watermark;
140
141 /* stack_arg_under_construction is nonzero when an argument may be
142 initialized with a constructor call (including a C function that
143 returns a BLKmode struct) and expand_call must take special action
144 to make sure the object being constructed does not overlap the
145 argument list for the constructor call. */
146 static int stack_arg_under_construction;
147
148 static void precompute_register_parameters (int, struct arg_data *, int *);
149 static int store_one_arg (struct arg_data *, rtx, int, int, int);
150 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
151 static int finalize_must_preallocate (int, int, struct arg_data *,
152 struct args_size *);
153 static void precompute_arguments (int, struct arg_data *);
154 static void compute_argument_addresses (struct arg_data *, rtx, int);
155 static rtx rtx_for_function_call (tree, tree);
156 static void load_register_parameters (struct arg_data *, int, rtx *, int,
157 int, int *);
158 static int special_function_p (const_tree, int);
159 static int check_sibcall_argument_overlap_1 (rtx);
160 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
161
162 static tree split_complex_types (tree);
163
164 #ifdef REG_PARM_STACK_SPACE
165 static rtx save_fixed_argument_area (int, rtx, int *, int *);
166 static void restore_fixed_argument_area (rtx, rtx, int, int);
167 #endif
168 \f
169 /* Return true if bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
170 stack region might already be in use. */
171
172 static bool
173 stack_region_maybe_used_p (poly_uint64 lower_bound, poly_uint64 upper_bound,
174 unsigned int reg_parm_stack_space)
175 {
176 unsigned HOST_WIDE_INT const_lower, const_upper;
177 const_lower = constant_lower_bound (lower_bound);
178 if (!upper_bound.is_constant (&const_upper))
179 const_upper = HOST_WIDE_INT_M1U;
180
181 if (const_upper > stack_usage_watermark)
182 return true;
183
184 /* Don't worry about things in the fixed argument area;
185 it has already been saved. */
186 const_lower = MAX (const_lower, reg_parm_stack_space);
187 const_upper = MIN (const_upper, highest_outgoing_arg_in_use);
188 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
189 if (stack_usage_map[i])
190 return true;
191 return false;
192 }
193
194 /* Record that bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
195 stack region are now in use. */
196
197 static void
198 mark_stack_region_used (poly_uint64 lower_bound, poly_uint64 upper_bound)
199 {
200 unsigned HOST_WIDE_INT const_lower, const_upper;
201 const_lower = constant_lower_bound (lower_bound);
202 if (upper_bound.is_constant (&const_upper))
203 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
204 stack_usage_map[i] = 1;
205 else
206 stack_usage_watermark = MIN (stack_usage_watermark, const_lower);
207 }
208
209 /* Force FUNEXP into a form suitable for the address of a CALL,
210 and return that as an rtx. Also load the static chain register
211 if FNDECL is a nested function.
212
213 CALL_FUSAGE points to a variable holding the prospective
214 CALL_INSN_FUNCTION_USAGE information. */
215
216 rtx
217 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
218 rtx *call_fusage, int reg_parm_seen, int flags)
219 {
220 /* Make a valid memory address and copy constants through pseudo-regs,
221 but not for a constant address if -fno-function-cse. */
222 if (GET_CODE (funexp) != SYMBOL_REF)
223 {
224 /* If it's an indirect call by descriptor, generate code to perform
225 runtime identification of the pointer and load the descriptor. */
226 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
227 {
228 const int bit_val = targetm.calls.custom_function_descriptors;
229 rtx call_lab = gen_label_rtx ();
230
231 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
232 fndecl_or_type
233 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
234 fndecl_or_type);
235 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
236 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
237
238 if (GET_MODE (funexp) != Pmode)
239 funexp = convert_memory_address (Pmode, funexp);
240
241 /* Avoid long live ranges around function calls. */
242 funexp = copy_to_mode_reg (Pmode, funexp);
243
244 if (REG_P (chain))
245 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
246
247 /* Emit the runtime identification pattern. */
248 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
249 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
250 call_lab);
251
252 /* Statically predict the branch to very likely taken. */
253 rtx_insn *insn = get_last_insn ();
254 if (JUMP_P (insn))
255 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
256
257 /* Load the descriptor. */
258 rtx mem = gen_rtx_MEM (ptr_mode,
259 plus_constant (Pmode, funexp, - bit_val));
260 MEM_NOTRAP_P (mem) = 1;
261 mem = convert_memory_address (Pmode, mem);
262 emit_move_insn (chain, mem);
263
264 mem = gen_rtx_MEM (ptr_mode,
265 plus_constant (Pmode, funexp,
266 POINTER_SIZE / BITS_PER_UNIT
267 - bit_val));
268 MEM_NOTRAP_P (mem) = 1;
269 mem = convert_memory_address (Pmode, mem);
270 emit_move_insn (funexp, mem);
271
272 emit_label (call_lab);
273
274 if (REG_P (chain))
275 {
276 use_reg (call_fusage, chain);
277 STATIC_CHAIN_REG_P (chain) = 1;
278 }
279
280 /* Make sure we're not going to be overwritten below. */
281 gcc_assert (!static_chain_value);
282 }
283
284 /* If we are using registers for parameters, force the
285 function address into a register now. */
286 funexp = ((reg_parm_seen
287 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
288 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
289 : memory_address (FUNCTION_MODE, funexp));
290 }
291 else
292 {
293 /* funexp could be a SYMBOL_REF represents a function pointer which is
294 of ptr_mode. In this case, it should be converted into address mode
295 to be a valid address for memory rtx pattern. See PR 64971. */
296 if (GET_MODE (funexp) != Pmode)
297 funexp = convert_memory_address (Pmode, funexp);
298
299 if (!(flags & ECF_SIBCALL))
300 {
301 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
302 funexp = force_reg (Pmode, funexp);
303 }
304 }
305
306 if (static_chain_value != 0
307 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
308 || DECL_STATIC_CHAIN (fndecl_or_type)))
309 {
310 rtx chain;
311
312 chain = targetm.calls.static_chain (fndecl_or_type, false);
313 static_chain_value = convert_memory_address (Pmode, static_chain_value);
314
315 emit_move_insn (chain, static_chain_value);
316 if (REG_P (chain))
317 {
318 use_reg (call_fusage, chain);
319 STATIC_CHAIN_REG_P (chain) = 1;
320 }
321 }
322
323 return funexp;
324 }
325
326 /* Generate instructions to call function FUNEXP,
327 and optionally pop the results.
328 The CALL_INSN is the first insn generated.
329
330 FNDECL is the declaration node of the function. This is given to the
331 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
332 its own args.
333
334 FUNTYPE is the data type of the function. This is given to the hook
335 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
336 own args. We used to allow an identifier for library functions, but
337 that doesn't work when the return type is an aggregate type and the
338 calling convention says that the pointer to this aggregate is to be
339 popped by the callee.
340
341 STACK_SIZE is the number of bytes of arguments on the stack,
342 ROUNDED_STACK_SIZE is that number rounded up to
343 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
344 both to put into the call insn and to generate explicit popping
345 code if necessary.
346
347 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
348 It is zero if this call doesn't want a structure value.
349
350 NEXT_ARG_REG is the rtx that results from executing
351 targetm.calls.function_arg (&args_so_far,
352 function_arg_info::end_marker ());
353 just after all the args have had their registers assigned.
354 This could be whatever you like, but normally it is the first
355 arg-register beyond those used for args in this call,
356 or 0 if all the arg-registers are used in this call.
357 It is passed on to `gen_call' so you can put this info in the call insn.
358
359 VALREG is a hard register in which a value is returned,
360 or 0 if the call does not return a value.
361
362 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
363 the args to this call were processed.
364 We restore `inhibit_defer_pop' to that value.
365
366 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
367 denote registers used by the called function. */
368
369 static void
370 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
371 tree funtype ATTRIBUTE_UNUSED,
372 poly_int64 stack_size ATTRIBUTE_UNUSED,
373 poly_int64 rounded_stack_size,
374 poly_int64 struct_value_size ATTRIBUTE_UNUSED,
375 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
376 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
377 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
378 {
379 rtx rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
380 rtx call, funmem, pat;
381 int already_popped = 0;
382 poly_int64 n_popped = 0;
383
384 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
385 patterns exist). Any popping that the callee does on return will
386 be from our caller's frame rather than ours. */
387 if (!(ecf_flags & ECF_SIBCALL))
388 {
389 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
390
391 #ifdef CALL_POPS_ARGS
392 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
393 #endif
394 }
395
396 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
397 and we don't want to load it into a register as an optimization,
398 because prepare_call_address already did it if it should be done. */
399 if (GET_CODE (funexp) != SYMBOL_REF)
400 funexp = memory_address (FUNCTION_MODE, funexp);
401
402 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
403 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
404 {
405 tree t = fndecl;
406
407 /* Although a built-in FUNCTION_DECL and its non-__builtin
408 counterpart compare equal and get a shared mem_attrs, they
409 produce different dump output in compare-debug compilations,
410 if an entry gets garbage collected in one compilation, then
411 adds a different (but equivalent) entry, while the other
412 doesn't run the garbage collector at the same spot and then
413 shares the mem_attr with the equivalent entry. */
414 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
415 {
416 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
417 if (t2)
418 t = t2;
419 }
420
421 set_mem_expr (funmem, t);
422 }
423 else if (fntree)
424 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
425
426 if (ecf_flags & ECF_SIBCALL)
427 {
428 if (valreg)
429 pat = targetm.gen_sibcall_value (valreg, funmem,
430 rounded_stack_size_rtx,
431 next_arg_reg, NULL_RTX);
432 else
433 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
434 next_arg_reg,
435 gen_int_mode (struct_value_size, Pmode));
436 }
437 /* If the target has "call" or "call_value" insns, then prefer them
438 if no arguments are actually popped. If the target does not have
439 "call" or "call_value" insns, then we must use the popping versions
440 even if the call has no arguments to pop. */
441 else if (maybe_ne (n_popped, 0)
442 || !(valreg
443 ? targetm.have_call_value ()
444 : targetm.have_call ()))
445 {
446 rtx n_pop = gen_int_mode (n_popped, Pmode);
447
448 /* If this subroutine pops its own args, record that in the call insn
449 if possible, for the sake of frame pointer elimination. */
450
451 if (valreg)
452 pat = targetm.gen_call_value_pop (valreg, funmem,
453 rounded_stack_size_rtx,
454 next_arg_reg, n_pop);
455 else
456 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
457 next_arg_reg, n_pop);
458
459 already_popped = 1;
460 }
461 else
462 {
463 if (valreg)
464 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
465 next_arg_reg, NULL_RTX);
466 else
467 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
468 gen_int_mode (struct_value_size, Pmode));
469 }
470 emit_insn (pat);
471
472 /* Find the call we just emitted. */
473 rtx_call_insn *call_insn = last_call_insn ();
474
475 /* Some target create a fresh MEM instead of reusing the one provided
476 above. Set its MEM_EXPR. */
477 call = get_call_rtx_from (call_insn);
478 if (call
479 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
480 && MEM_EXPR (funmem) != NULL_TREE)
481 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
482
483 /* Put the register usage information there. */
484 add_function_usage_to (call_insn, call_fusage);
485
486 /* If this is a const call, then set the insn's unchanging bit. */
487 if (ecf_flags & ECF_CONST)
488 RTL_CONST_CALL_P (call_insn) = 1;
489
490 /* If this is a pure call, then set the insn's unchanging bit. */
491 if (ecf_flags & ECF_PURE)
492 RTL_PURE_CALL_P (call_insn) = 1;
493
494 /* If this is a const call, then set the insn's unchanging bit. */
495 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
496 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
497
498 /* Create a nothrow REG_EH_REGION note, if needed. */
499 make_reg_eh_region_note (call_insn, ecf_flags, 0);
500
501 if (ecf_flags & ECF_NORETURN)
502 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
503
504 if (ecf_flags & ECF_RETURNS_TWICE)
505 {
506 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
507 cfun->calls_setjmp = 1;
508 }
509
510 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
511
512 /* Restore this now, so that we do defer pops for this call's args
513 if the context of the call as a whole permits. */
514 inhibit_defer_pop = old_inhibit_defer_pop;
515
516 if (maybe_ne (n_popped, 0))
517 {
518 if (!already_popped)
519 CALL_INSN_FUNCTION_USAGE (call_insn)
520 = gen_rtx_EXPR_LIST (VOIDmode,
521 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
522 CALL_INSN_FUNCTION_USAGE (call_insn));
523 rounded_stack_size -= n_popped;
524 rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
525 stack_pointer_delta -= n_popped;
526
527 add_args_size_note (call_insn, stack_pointer_delta);
528
529 /* If popup is needed, stack realign must use DRAP */
530 if (SUPPORTS_STACK_ALIGNMENT)
531 crtl->need_drap = true;
532 }
533 /* For noreturn calls when not accumulating outgoing args force
534 REG_ARGS_SIZE note to prevent crossjumping of calls with different
535 args sizes. */
536 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
537 add_args_size_note (call_insn, stack_pointer_delta);
538
539 if (!ACCUMULATE_OUTGOING_ARGS)
540 {
541 /* If returning from the subroutine does not automatically pop the args,
542 we need an instruction to pop them sooner or later.
543 Perhaps do it now; perhaps just record how much space to pop later.
544
545 If returning from the subroutine does pop the args, indicate that the
546 stack pointer will be changed. */
547
548 if (maybe_ne (rounded_stack_size, 0))
549 {
550 if (ecf_flags & ECF_NORETURN)
551 /* Just pretend we did the pop. */
552 stack_pointer_delta -= rounded_stack_size;
553 else if (flag_defer_pop && inhibit_defer_pop == 0
554 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
555 pending_stack_adjust += rounded_stack_size;
556 else
557 adjust_stack (rounded_stack_size_rtx);
558 }
559 }
560 /* When we accumulate outgoing args, we must avoid any stack manipulations.
561 Restore the stack pointer to its original value now. Usually
562 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
563 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
564 popping variants of functions exist as well.
565
566 ??? We may optimize similar to defer_pop above, but it is
567 probably not worthwhile.
568
569 ??? It will be worthwhile to enable combine_stack_adjustments even for
570 such machines. */
571 else if (maybe_ne (n_popped, 0))
572 anti_adjust_stack (gen_int_mode (n_popped, Pmode));
573 }
574
575 /* Determine if the function identified by FNDECL is one with
576 special properties we wish to know about. Modify FLAGS accordingly.
577
578 For example, if the function might return more than one time (setjmp), then
579 set ECF_RETURNS_TWICE.
580
581 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
582 space from the stack such as alloca. */
583
584 static int
585 special_function_p (const_tree fndecl, int flags)
586 {
587 tree name_decl = DECL_NAME (fndecl);
588
589 if (maybe_special_function_p (fndecl)
590 && IDENTIFIER_LENGTH (name_decl) <= 11)
591 {
592 const char *name = IDENTIFIER_POINTER (name_decl);
593 const char *tname = name;
594
595 /* We assume that alloca will always be called by name. It
596 makes no sense to pass it as a pointer-to-function to
597 anything that does not understand its behavior. */
598 if (IDENTIFIER_LENGTH (name_decl) == 6
599 && name[0] == 'a'
600 && ! strcmp (name, "alloca"))
601 flags |= ECF_MAY_BE_ALLOCA;
602
603 /* Disregard prefix _ or __. */
604 if (name[0] == '_')
605 {
606 if (name[1] == '_')
607 tname += 2;
608 else
609 tname += 1;
610 }
611
612 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
613 if (! strcmp (tname, "setjmp")
614 || ! strcmp (tname, "sigsetjmp")
615 || ! strcmp (name, "savectx")
616 || ! strcmp (name, "vfork")
617 || ! strcmp (name, "getcontext"))
618 flags |= ECF_RETURNS_TWICE;
619 }
620
621 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
622 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
623 flags |= ECF_MAY_BE_ALLOCA;
624
625 return flags;
626 }
627
628 /* Similar to special_function_p; return a set of ERF_ flags for the
629 function FNDECL. */
630 static int
631 decl_return_flags (tree fndecl)
632 {
633 tree attr;
634 tree type = TREE_TYPE (fndecl);
635 if (!type)
636 return 0;
637
638 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
639 if (!attr)
640 return 0;
641
642 attr = TREE_VALUE (TREE_VALUE (attr));
643 if (!attr || TREE_STRING_LENGTH (attr) < 1)
644 return 0;
645
646 switch (TREE_STRING_POINTER (attr)[0])
647 {
648 case '1':
649 case '2':
650 case '3':
651 case '4':
652 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
653
654 case 'm':
655 return ERF_NOALIAS;
656
657 case '.':
658 default:
659 return 0;
660 }
661 }
662
663 /* Return nonzero when FNDECL represents a call to setjmp. */
664
665 int
666 setjmp_call_p (const_tree fndecl)
667 {
668 if (DECL_IS_RETURNS_TWICE (fndecl))
669 return ECF_RETURNS_TWICE;
670 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
671 }
672
673
674 /* Return true if STMT may be an alloca call. */
675
676 bool
677 gimple_maybe_alloca_call_p (const gimple *stmt)
678 {
679 tree fndecl;
680
681 if (!is_gimple_call (stmt))
682 return false;
683
684 fndecl = gimple_call_fndecl (stmt);
685 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
686 return true;
687
688 return false;
689 }
690
691 /* Return true if STMT is a builtin alloca call. */
692
693 bool
694 gimple_alloca_call_p (const gimple *stmt)
695 {
696 tree fndecl;
697
698 if (!is_gimple_call (stmt))
699 return false;
700
701 fndecl = gimple_call_fndecl (stmt);
702 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
703 switch (DECL_FUNCTION_CODE (fndecl))
704 {
705 CASE_BUILT_IN_ALLOCA:
706 return gimple_call_num_args (stmt) > 0;
707 default:
708 break;
709 }
710
711 return false;
712 }
713
714 /* Return true when exp contains a builtin alloca call. */
715
716 bool
717 alloca_call_p (const_tree exp)
718 {
719 tree fndecl;
720 if (TREE_CODE (exp) == CALL_EXPR
721 && (fndecl = get_callee_fndecl (exp))
722 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
723 switch (DECL_FUNCTION_CODE (fndecl))
724 {
725 CASE_BUILT_IN_ALLOCA:
726 return true;
727 default:
728 break;
729 }
730
731 return false;
732 }
733
734 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
735 function. Return FALSE otherwise. */
736
737 static bool
738 is_tm_builtin (const_tree fndecl)
739 {
740 if (fndecl == NULL)
741 return false;
742
743 if (decl_is_tm_clone (fndecl))
744 return true;
745
746 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
747 {
748 switch (DECL_FUNCTION_CODE (fndecl))
749 {
750 case BUILT_IN_TM_COMMIT:
751 case BUILT_IN_TM_COMMIT_EH:
752 case BUILT_IN_TM_ABORT:
753 case BUILT_IN_TM_IRREVOCABLE:
754 case BUILT_IN_TM_GETTMCLONE_IRR:
755 case BUILT_IN_TM_MEMCPY:
756 case BUILT_IN_TM_MEMMOVE:
757 case BUILT_IN_TM_MEMSET:
758 CASE_BUILT_IN_TM_STORE (1):
759 CASE_BUILT_IN_TM_STORE (2):
760 CASE_BUILT_IN_TM_STORE (4):
761 CASE_BUILT_IN_TM_STORE (8):
762 CASE_BUILT_IN_TM_STORE (FLOAT):
763 CASE_BUILT_IN_TM_STORE (DOUBLE):
764 CASE_BUILT_IN_TM_STORE (LDOUBLE):
765 CASE_BUILT_IN_TM_STORE (M64):
766 CASE_BUILT_IN_TM_STORE (M128):
767 CASE_BUILT_IN_TM_STORE (M256):
768 CASE_BUILT_IN_TM_LOAD (1):
769 CASE_BUILT_IN_TM_LOAD (2):
770 CASE_BUILT_IN_TM_LOAD (4):
771 CASE_BUILT_IN_TM_LOAD (8):
772 CASE_BUILT_IN_TM_LOAD (FLOAT):
773 CASE_BUILT_IN_TM_LOAD (DOUBLE):
774 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
775 CASE_BUILT_IN_TM_LOAD (M64):
776 CASE_BUILT_IN_TM_LOAD (M128):
777 CASE_BUILT_IN_TM_LOAD (M256):
778 case BUILT_IN_TM_LOG:
779 case BUILT_IN_TM_LOG_1:
780 case BUILT_IN_TM_LOG_2:
781 case BUILT_IN_TM_LOG_4:
782 case BUILT_IN_TM_LOG_8:
783 case BUILT_IN_TM_LOG_FLOAT:
784 case BUILT_IN_TM_LOG_DOUBLE:
785 case BUILT_IN_TM_LOG_LDOUBLE:
786 case BUILT_IN_TM_LOG_M64:
787 case BUILT_IN_TM_LOG_M128:
788 case BUILT_IN_TM_LOG_M256:
789 return true;
790 default:
791 break;
792 }
793 }
794 return false;
795 }
796
797 /* Detect flags (function attributes) from the function decl or type node. */
798
799 int
800 flags_from_decl_or_type (const_tree exp)
801 {
802 int flags = 0;
803
804 if (DECL_P (exp))
805 {
806 /* The function exp may have the `malloc' attribute. */
807 if (DECL_IS_MALLOC (exp))
808 flags |= ECF_MALLOC;
809
810 /* The function exp may have the `returns_twice' attribute. */
811 if (DECL_IS_RETURNS_TWICE (exp))
812 flags |= ECF_RETURNS_TWICE;
813
814 /* Process the pure and const attributes. */
815 if (TREE_READONLY (exp))
816 flags |= ECF_CONST;
817 if (DECL_PURE_P (exp))
818 flags |= ECF_PURE;
819 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
820 flags |= ECF_LOOPING_CONST_OR_PURE;
821
822 if (DECL_IS_NOVOPS (exp))
823 flags |= ECF_NOVOPS;
824 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
825 flags |= ECF_LEAF;
826 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
827 flags |= ECF_COLD;
828
829 if (TREE_NOTHROW (exp))
830 flags |= ECF_NOTHROW;
831
832 if (flag_tm)
833 {
834 if (is_tm_builtin (exp))
835 flags |= ECF_TM_BUILTIN;
836 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
837 || lookup_attribute ("transaction_pure",
838 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
839 flags |= ECF_TM_PURE;
840 }
841
842 flags = special_function_p (exp, flags);
843 }
844 else if (TYPE_P (exp))
845 {
846 if (TYPE_READONLY (exp))
847 flags |= ECF_CONST;
848
849 if (flag_tm
850 && ((flags & ECF_CONST) != 0
851 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
852 flags |= ECF_TM_PURE;
853 }
854 else
855 gcc_unreachable ();
856
857 if (TREE_THIS_VOLATILE (exp))
858 {
859 flags |= ECF_NORETURN;
860 if (flags & (ECF_CONST|ECF_PURE))
861 flags |= ECF_LOOPING_CONST_OR_PURE;
862 }
863
864 return flags;
865 }
866
867 /* Detect flags from a CALL_EXPR. */
868
869 int
870 call_expr_flags (const_tree t)
871 {
872 int flags;
873 tree decl = get_callee_fndecl (t);
874
875 if (decl)
876 flags = flags_from_decl_or_type (decl);
877 else if (CALL_EXPR_FN (t) == NULL_TREE)
878 flags = internal_fn_flags (CALL_EXPR_IFN (t));
879 else
880 {
881 tree type = TREE_TYPE (CALL_EXPR_FN (t));
882 if (type && TREE_CODE (type) == POINTER_TYPE)
883 flags = flags_from_decl_or_type (TREE_TYPE (type));
884 else
885 flags = 0;
886 if (CALL_EXPR_BY_DESCRIPTOR (t))
887 flags |= ECF_BY_DESCRIPTOR;
888 }
889
890 return flags;
891 }
892
893 /* Return true if ARG should be passed by invisible reference. */
894
895 bool
896 pass_by_reference (CUMULATIVE_ARGS *ca, function_arg_info arg)
897 {
898 if (tree type = arg.type)
899 {
900 /* If this type contains non-trivial constructors, then it is
901 forbidden for the middle-end to create any new copies. */
902 if (TREE_ADDRESSABLE (type))
903 return true;
904
905 /* GCC post 3.4 passes *all* variable sized types by reference. */
906 if (!TYPE_SIZE (type) || !poly_int_tree_p (TYPE_SIZE (type)))
907 return true;
908
909 /* If a record type should be passed the same as its first (and only)
910 member, use the type and mode of that member. */
911 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
912 {
913 arg.type = TREE_TYPE (first_field (type));
914 arg.mode = TYPE_MODE (arg.type);
915 }
916 }
917
918 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), arg);
919 }
920
921 /* Return true if TYPE should be passed by reference when passed to
922 the "..." arguments of a function. */
923
924 bool
925 pass_va_arg_by_reference (tree type)
926 {
927 return pass_by_reference (NULL, function_arg_info (type, /*named=*/false));
928 }
929
930 /* Decide whether ARG, which occurs in the state described by CA,
931 should be passed by reference. Return true if so and update
932 ARG accordingly. */
933
934 bool
935 apply_pass_by_reference_rules (CUMULATIVE_ARGS *ca, function_arg_info &arg)
936 {
937 if (pass_by_reference (ca, arg))
938 {
939 arg.type = build_pointer_type (arg.type);
940 arg.mode = TYPE_MODE (arg.type);
941 arg.pass_by_reference = true;
942 return true;
943 }
944 return false;
945 }
946
947 /* Return true if ARG, which is passed by reference, should be callee
948 copied instead of caller copied. */
949
950 bool
951 reference_callee_copied (CUMULATIVE_ARGS *ca, const function_arg_info &arg)
952 {
953 if (arg.type && TREE_ADDRESSABLE (arg.type))
954 return false;
955 return targetm.calls.callee_copies (pack_cumulative_args (ca), arg);
956 }
957
958
959 /* Precompute all register parameters as described by ARGS, storing values
960 into fields within the ARGS array.
961
962 NUM_ACTUALS indicates the total number elements in the ARGS array.
963
964 Set REG_PARM_SEEN if we encounter a register parameter. */
965
966 static void
967 precompute_register_parameters (int num_actuals, struct arg_data *args,
968 int *reg_parm_seen)
969 {
970 int i;
971
972 *reg_parm_seen = 0;
973
974 for (i = 0; i < num_actuals; i++)
975 if (args[i].reg != 0 && ! args[i].pass_on_stack)
976 {
977 *reg_parm_seen = 1;
978
979 if (args[i].value == 0)
980 {
981 push_temp_slots ();
982 args[i].value = expand_normal (args[i].tree_value);
983 preserve_temp_slots (args[i].value);
984 pop_temp_slots ();
985 }
986
987 /* If we are to promote the function arg to a wider mode,
988 do it now. */
989
990 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
991 args[i].value
992 = convert_modes (args[i].mode,
993 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
994 args[i].value, args[i].unsignedp);
995
996 /* If the value is a non-legitimate constant, force it into a
997 pseudo now. TLS symbols sometimes need a call to resolve. */
998 if (CONSTANT_P (args[i].value)
999 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
1000 args[i].value = force_reg (args[i].mode, args[i].value);
1001
1002 /* If we're going to have to load the value by parts, pull the
1003 parts into pseudos. The part extraction process can involve
1004 non-trivial computation. */
1005 if (GET_CODE (args[i].reg) == PARALLEL)
1006 {
1007 tree type = TREE_TYPE (args[i].tree_value);
1008 args[i].parallel_value
1009 = emit_group_load_into_temps (args[i].reg, args[i].value,
1010 type, int_size_in_bytes (type));
1011 }
1012
1013 /* If the value is expensive, and we are inside an appropriately
1014 short loop, put the value into a pseudo and then put the pseudo
1015 into the hard reg.
1016
1017 For small register classes, also do this if this call uses
1018 register parameters. This is to avoid reload conflicts while
1019 loading the parameters registers. */
1020
1021 else if ((! (REG_P (args[i].value)
1022 || (GET_CODE (args[i].value) == SUBREG
1023 && REG_P (SUBREG_REG (args[i].value)))))
1024 && args[i].mode != BLKmode
1025 && (set_src_cost (args[i].value, args[i].mode,
1026 optimize_insn_for_speed_p ())
1027 > COSTS_N_INSNS (1))
1028 && ((*reg_parm_seen
1029 && targetm.small_register_classes_for_mode_p (args[i].mode))
1030 || optimize))
1031 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1032 }
1033 }
1034
1035 #ifdef REG_PARM_STACK_SPACE
1036
1037 /* The argument list is the property of the called routine and it
1038 may clobber it. If the fixed area has been used for previous
1039 parameters, we must save and restore it. */
1040
1041 static rtx
1042 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1043 {
1044 unsigned int low;
1045 unsigned int high;
1046
1047 /* Compute the boundary of the area that needs to be saved, if any. */
1048 high = reg_parm_stack_space;
1049 if (ARGS_GROW_DOWNWARD)
1050 high += 1;
1051
1052 if (high > highest_outgoing_arg_in_use)
1053 high = highest_outgoing_arg_in_use;
1054
1055 for (low = 0; low < high; low++)
1056 if (stack_usage_map[low] != 0 || low >= stack_usage_watermark)
1057 {
1058 int num_to_save;
1059 machine_mode save_mode;
1060 int delta;
1061 rtx addr;
1062 rtx stack_area;
1063 rtx save_area;
1064
1065 while (stack_usage_map[--high] == 0)
1066 ;
1067
1068 *low_to_save = low;
1069 *high_to_save = high;
1070
1071 num_to_save = high - low + 1;
1072
1073 /* If we don't have the required alignment, must do this
1074 in BLKmode. */
1075 scalar_int_mode imode;
1076 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1077 && (low & (MIN (GET_MODE_SIZE (imode),
1078 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1079 save_mode = imode;
1080 else
1081 save_mode = BLKmode;
1082
1083 if (ARGS_GROW_DOWNWARD)
1084 delta = -high;
1085 else
1086 delta = low;
1087
1088 addr = plus_constant (Pmode, argblock, delta);
1089 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1090
1091 set_mem_align (stack_area, PARM_BOUNDARY);
1092 if (save_mode == BLKmode)
1093 {
1094 save_area = assign_stack_temp (BLKmode, num_to_save);
1095 emit_block_move (validize_mem (save_area), stack_area,
1096 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1097 }
1098 else
1099 {
1100 save_area = gen_reg_rtx (save_mode);
1101 emit_move_insn (save_area, stack_area);
1102 }
1103
1104 return save_area;
1105 }
1106
1107 return NULL_RTX;
1108 }
1109
1110 static void
1111 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1112 {
1113 machine_mode save_mode = GET_MODE (save_area);
1114 int delta;
1115 rtx addr, stack_area;
1116
1117 if (ARGS_GROW_DOWNWARD)
1118 delta = -high_to_save;
1119 else
1120 delta = low_to_save;
1121
1122 addr = plus_constant (Pmode, argblock, delta);
1123 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1124 set_mem_align (stack_area, PARM_BOUNDARY);
1125
1126 if (save_mode != BLKmode)
1127 emit_move_insn (stack_area, save_area);
1128 else
1129 emit_block_move (stack_area, validize_mem (save_area),
1130 GEN_INT (high_to_save - low_to_save + 1),
1131 BLOCK_OP_CALL_PARM);
1132 }
1133 #endif /* REG_PARM_STACK_SPACE */
1134
1135 /* If any elements in ARGS refer to parameters that are to be passed in
1136 registers, but not in memory, and whose alignment does not permit a
1137 direct copy into registers. Copy the values into a group of pseudos
1138 which we will later copy into the appropriate hard registers.
1139
1140 Pseudos for each unaligned argument will be stored into the array
1141 args[argnum].aligned_regs. The caller is responsible for deallocating
1142 the aligned_regs array if it is nonzero. */
1143
1144 static void
1145 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1146 {
1147 int i, j;
1148
1149 for (i = 0; i < num_actuals; i++)
1150 if (args[i].reg != 0 && ! args[i].pass_on_stack
1151 && GET_CODE (args[i].reg) != PARALLEL
1152 && args[i].mode == BLKmode
1153 && MEM_P (args[i].value)
1154 && (MEM_ALIGN (args[i].value)
1155 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1156 {
1157 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1158 int endian_correction = 0;
1159
1160 if (args[i].partial)
1161 {
1162 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1163 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1164 }
1165 else
1166 {
1167 args[i].n_aligned_regs
1168 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1169 }
1170
1171 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1172
1173 /* Structures smaller than a word are normally aligned to the
1174 least significant byte. On a BYTES_BIG_ENDIAN machine,
1175 this means we must skip the empty high order bytes when
1176 calculating the bit offset. */
1177 if (bytes < UNITS_PER_WORD
1178 #ifdef BLOCK_REG_PADDING
1179 && (BLOCK_REG_PADDING (args[i].mode,
1180 TREE_TYPE (args[i].tree_value), 1)
1181 == PAD_DOWNWARD)
1182 #else
1183 && BYTES_BIG_ENDIAN
1184 #endif
1185 )
1186 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1187
1188 for (j = 0; j < args[i].n_aligned_regs; j++)
1189 {
1190 rtx reg = gen_reg_rtx (word_mode);
1191 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1192 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1193
1194 args[i].aligned_regs[j] = reg;
1195 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1196 word_mode, word_mode, false, NULL);
1197
1198 /* There is no need to restrict this code to loading items
1199 in TYPE_ALIGN sized hunks. The bitfield instructions can
1200 load up entire word sized registers efficiently.
1201
1202 ??? This may not be needed anymore.
1203 We use to emit a clobber here but that doesn't let later
1204 passes optimize the instructions we emit. By storing 0 into
1205 the register later passes know the first AND to zero out the
1206 bitfield being set in the register is unnecessary. The store
1207 of 0 will be deleted as will at least the first AND. */
1208
1209 emit_move_insn (reg, const0_rtx);
1210
1211 bytes -= bitsize / BITS_PER_UNIT;
1212 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1213 word_mode, word, false);
1214 }
1215 }
1216 }
1217
1218 /* The limit set by -Walloc-larger-than=. */
1219 static GTY(()) tree alloc_object_size_limit;
1220
1221 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1222 setting if the option is specified, or to the maximum object size if it
1223 is not. Return the initialized value. */
1224
1225 static tree
1226 alloc_max_size (void)
1227 {
1228 if (alloc_object_size_limit)
1229 return alloc_object_size_limit;
1230
1231 HOST_WIDE_INT limit = warn_alloc_size_limit;
1232 if (limit == HOST_WIDE_INT_MAX)
1233 limit = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
1234
1235 alloc_object_size_limit = build_int_cst (size_type_node, limit);
1236
1237 return alloc_object_size_limit;
1238 }
1239
1240 /* Return true when EXP's range can be determined and set RANGE[] to it
1241 after adjusting it if necessary to make EXP a represents a valid size
1242 of object, or a valid size argument to an allocation function declared
1243 with attribute alloc_size (whose argument may be signed), or to a string
1244 manipulation function like memset. When ALLOW_ZERO is true, allow
1245 returning a range of [0, 0] for a size in an anti-range [1, N] where
1246 N > PTRDIFF_MAX. A zero range is a (nearly) invalid argument to
1247 allocation functions like malloc but it is a valid argument to
1248 functions like memset. */
1249
1250 bool
1251 get_size_range (tree exp, tree range[2], bool allow_zero /* = false */)
1252 {
1253 if (!exp)
1254 return false;
1255
1256 if (tree_fits_uhwi_p (exp))
1257 {
1258 /* EXP is a constant. */
1259 range[0] = range[1] = exp;
1260 return true;
1261 }
1262
1263 tree exptype = TREE_TYPE (exp);
1264 bool integral = INTEGRAL_TYPE_P (exptype);
1265
1266 wide_int min, max;
1267 enum value_range_kind range_type;
1268
1269 if (integral)
1270 range_type = determine_value_range (exp, &min, &max);
1271 else
1272 range_type = VR_VARYING;
1273
1274 if (range_type == VR_VARYING)
1275 {
1276 if (integral)
1277 {
1278 /* Use the full range of the type of the expression when
1279 no value range information is available. */
1280 range[0] = TYPE_MIN_VALUE (exptype);
1281 range[1] = TYPE_MAX_VALUE (exptype);
1282 return true;
1283 }
1284
1285 range[0] = NULL_TREE;
1286 range[1] = NULL_TREE;
1287 return false;
1288 }
1289
1290 unsigned expprec = TYPE_PRECISION (exptype);
1291
1292 bool signed_p = !TYPE_UNSIGNED (exptype);
1293
1294 if (range_type == VR_ANTI_RANGE)
1295 {
1296 if (signed_p)
1297 {
1298 if (wi::les_p (max, 0))
1299 {
1300 /* EXP is not in a strictly negative range. That means
1301 it must be in some (not necessarily strictly) positive
1302 range which includes zero. Since in signed to unsigned
1303 conversions negative values end up converted to large
1304 positive values, and otherwise they are not valid sizes,
1305 the resulting range is in both cases [0, TYPE_MAX]. */
1306 min = wi::zero (expprec);
1307 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1308 }
1309 else if (wi::les_p (min - 1, 0))
1310 {
1311 /* EXP is not in a negative-positive range. That means EXP
1312 is either negative, or greater than max. Since negative
1313 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1314 min = max + 1;
1315 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1316 }
1317 else
1318 {
1319 max = min - 1;
1320 min = wi::zero (expprec);
1321 }
1322 }
1323 else if (wi::eq_p (0, min - 1))
1324 {
1325 /* EXP is unsigned and not in the range [1, MAX]. That means
1326 it's either zero or greater than MAX. Even though 0 would
1327 normally be detected by -Walloc-zero, unless ALLOW_ZERO
1328 is true, set the range to [MAX, TYPE_MAX] so that when MAX
1329 is greater than the limit the whole range is diagnosed. */
1330 if (allow_zero)
1331 min = max = wi::zero (expprec);
1332 else
1333 {
1334 min = max + 1;
1335 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1336 }
1337 }
1338 else
1339 {
1340 max = min - 1;
1341 min = wi::zero (expprec);
1342 }
1343 }
1344
1345 range[0] = wide_int_to_tree (exptype, min);
1346 range[1] = wide_int_to_tree (exptype, max);
1347
1348 return true;
1349 }
1350
1351 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1352 whose argument numbers given by IDX with values given by ARGS exceed
1353 the maximum object size or cause an unsigned oveflow (wrapping) when
1354 multiplied. FN is null when EXP is a call via a function pointer.
1355 When ARGS[0] is null the function does nothing. ARGS[1] may be null
1356 for functions like malloc, and non-null for those like calloc that
1357 are decorated with a two-argument attribute alloc_size. */
1358
1359 void
1360 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1361 {
1362 /* The range each of the (up to) two arguments is known to be in. */
1363 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1364
1365 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1366 tree maxobjsize = alloc_max_size ();
1367
1368 location_t loc = EXPR_LOCATION (exp);
1369
1370 tree fntype = fn ? TREE_TYPE (fn) : TREE_TYPE (TREE_TYPE (exp));
1371 bool warned = false;
1372
1373 /* Validate each argument individually. */
1374 for (unsigned i = 0; i != 2 && args[i]; ++i)
1375 {
1376 if (TREE_CODE (args[i]) == INTEGER_CST)
1377 {
1378 argrange[i][0] = args[i];
1379 argrange[i][1] = args[i];
1380
1381 if (tree_int_cst_lt (args[i], integer_zero_node))
1382 {
1383 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1384 "%Kargument %i value %qE is negative",
1385 exp, idx[i] + 1, args[i]);
1386 }
1387 else if (integer_zerop (args[i]))
1388 {
1389 /* Avoid issuing -Walloc-zero for allocation functions other
1390 than __builtin_alloca that are declared with attribute
1391 returns_nonnull because there's no portability risk. This
1392 avoids warning for such calls to libiberty's xmalloc and
1393 friends.
1394 Also avoid issuing the warning for calls to function named
1395 "alloca". */
1396 if (fn && fndecl_built_in_p (fn, BUILT_IN_ALLOCA)
1397 ? IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6
1398 : !lookup_attribute ("returns_nonnull",
1399 TYPE_ATTRIBUTES (fntype)))
1400 warned = warning_at (loc, OPT_Walloc_zero,
1401 "%Kargument %i value is zero",
1402 exp, idx[i] + 1);
1403 }
1404 else if (tree_int_cst_lt (maxobjsize, args[i]))
1405 {
1406 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1407 mode and with -fno-exceptions as a way to indicate array
1408 size overflow. There's no good way to detect C++98 here
1409 so avoid diagnosing these calls for all C++ modes. */
1410 if (i == 0
1411 && fn
1412 && !args[1]
1413 && lang_GNU_CXX ()
1414 && DECL_IS_OPERATOR_NEW_P (fn)
1415 && integer_all_onesp (args[i]))
1416 continue;
1417
1418 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1419 "%Kargument %i value %qE exceeds "
1420 "maximum object size %E",
1421 exp, idx[i] + 1, args[i], maxobjsize);
1422 }
1423 }
1424 else if (TREE_CODE (args[i]) == SSA_NAME
1425 && get_size_range (args[i], argrange[i]))
1426 {
1427 /* Verify that the argument's range is not negative (including
1428 upper bound of zero). */
1429 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1430 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1431 {
1432 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1433 "%Kargument %i range [%E, %E] is negative",
1434 exp, idx[i] + 1,
1435 argrange[i][0], argrange[i][1]);
1436 }
1437 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1438 {
1439 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1440 "%Kargument %i range [%E, %E] exceeds "
1441 "maximum object size %E",
1442 exp, idx[i] + 1,
1443 argrange[i][0], argrange[i][1],
1444 maxobjsize);
1445 }
1446 }
1447 }
1448
1449 if (!argrange[0])
1450 return;
1451
1452 /* For a two-argument alloc_size, validate the product of the two
1453 arguments if both of their values or ranges are known. */
1454 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1455 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1456 && !integer_onep (argrange[0][0])
1457 && !integer_onep (argrange[1][0]))
1458 {
1459 /* Check for overflow in the product of a function decorated with
1460 attribute alloc_size (X, Y). */
1461 unsigned szprec = TYPE_PRECISION (size_type_node);
1462 wide_int x = wi::to_wide (argrange[0][0], szprec);
1463 wide_int y = wi::to_wide (argrange[1][0], szprec);
1464
1465 wi::overflow_type vflow;
1466 wide_int prod = wi::umul (x, y, &vflow);
1467
1468 if (vflow)
1469 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1470 "%Kproduct %<%E * %E%> of arguments %i and %i "
1471 "exceeds %<SIZE_MAX%>",
1472 exp, argrange[0][0], argrange[1][0],
1473 idx[0] + 1, idx[1] + 1);
1474 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1475 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1476 "%Kproduct %<%E * %E%> of arguments %i and %i "
1477 "exceeds maximum object size %E",
1478 exp, argrange[0][0], argrange[1][0],
1479 idx[0] + 1, idx[1] + 1,
1480 maxobjsize);
1481
1482 if (warned)
1483 {
1484 /* Print the full range of each of the two arguments to make
1485 it clear when it is, in fact, in a range and not constant. */
1486 if (argrange[0][0] != argrange [0][1])
1487 inform (loc, "argument %i in the range [%E, %E]",
1488 idx[0] + 1, argrange[0][0], argrange[0][1]);
1489 if (argrange[1][0] != argrange [1][1])
1490 inform (loc, "argument %i in the range [%E, %E]",
1491 idx[1] + 1, argrange[1][0], argrange[1][1]);
1492 }
1493 }
1494
1495 if (warned && fn)
1496 {
1497 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1498
1499 if (DECL_IS_BUILTIN (fn))
1500 inform (loc,
1501 "in a call to built-in allocation function %qD", fn);
1502 else
1503 inform (fnloc,
1504 "in a call to allocation function %qD declared here", fn);
1505 }
1506 }
1507
1508 /* If EXPR refers to a character array or pointer declared attribute
1509 nonstring return a decl for that array or pointer and set *REF to
1510 the referenced enclosing object or pointer. Otherwise returns
1511 null. */
1512
1513 tree
1514 get_attr_nonstring_decl (tree expr, tree *ref)
1515 {
1516 tree decl = expr;
1517 tree var = NULL_TREE;
1518 if (TREE_CODE (decl) == SSA_NAME)
1519 {
1520 gimple *def = SSA_NAME_DEF_STMT (decl);
1521
1522 if (is_gimple_assign (def))
1523 {
1524 tree_code code = gimple_assign_rhs_code (def);
1525 if (code == ADDR_EXPR
1526 || code == COMPONENT_REF
1527 || code == VAR_DECL)
1528 decl = gimple_assign_rhs1 (def);
1529 }
1530 else
1531 var = SSA_NAME_VAR (decl);
1532 }
1533
1534 if (TREE_CODE (decl) == ADDR_EXPR)
1535 decl = TREE_OPERAND (decl, 0);
1536
1537 /* To simplify calling code, store the referenced DECL regardless of
1538 the attribute determined below, but avoid storing the SSA_NAME_VAR
1539 obtained above (it's not useful for dataflow purposes). */
1540 if (ref)
1541 *ref = decl;
1542
1543 /* Use the SSA_NAME_VAR that was determined above to see if it's
1544 declared nonstring. Otherwise drill down into the referenced
1545 DECL. */
1546 if (var)
1547 decl = var;
1548 else if (TREE_CODE (decl) == ARRAY_REF)
1549 decl = TREE_OPERAND (decl, 0);
1550 else if (TREE_CODE (decl) == COMPONENT_REF)
1551 decl = TREE_OPERAND (decl, 1);
1552 else if (TREE_CODE (decl) == MEM_REF)
1553 return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
1554
1555 if (DECL_P (decl)
1556 && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
1557 return decl;
1558
1559 return NULL_TREE;
1560 }
1561
1562 /* Warn about passing a non-string array/pointer to a function that
1563 expects a nul-terminated string argument. */
1564
1565 void
1566 maybe_warn_nonstring_arg (tree fndecl, tree exp)
1567 {
1568 if (!fndecl || !fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
1569 return;
1570
1571 if (TREE_NO_WARNING (exp) || !warn_stringop_overflow)
1572 return;
1573
1574 /* Avoid clearly invalid calls (more checking done below). */
1575 unsigned nargs = call_expr_nargs (exp);
1576 if (!nargs)
1577 return;
1578
1579 /* The bound argument to a bounded string function like strncpy. */
1580 tree bound = NULL_TREE;
1581
1582 /* The longest known or possible string argument to one of the comparison
1583 functions. If the length is less than the bound it is used instead.
1584 Since the length is only used for warning and not for code generation
1585 disable strict mode in the calls to get_range_strlen below. */
1586 tree maxlen = NULL_TREE;
1587
1588 /* It's safe to call "bounded" string functions with a non-string
1589 argument since the functions provide an explicit bound for this
1590 purpose. The exception is strncat where the bound may refer to
1591 either the destination or the source. */
1592 int fncode = DECL_FUNCTION_CODE (fndecl);
1593 switch (fncode)
1594 {
1595 case BUILT_IN_STRCMP:
1596 case BUILT_IN_STRNCMP:
1597 case BUILT_IN_STRNCASECMP:
1598 {
1599 /* For these, if one argument refers to one or more of a set
1600 of string constants or arrays of known size, determine
1601 the range of their known or possible lengths and use it
1602 conservatively as the bound for the unbounded function,
1603 and to adjust the range of the bound of the bounded ones. */
1604 for (unsigned argno = 0;
1605 argno < MIN (nargs, 2)
1606 && !(maxlen && TREE_CODE (maxlen) == INTEGER_CST); argno++)
1607 {
1608 tree arg = CALL_EXPR_ARG (exp, argno);
1609 if (!get_attr_nonstring_decl (arg))
1610 {
1611 c_strlen_data lendata = { };
1612 /* Set MAXBOUND to an arbitrary non-null non-integer
1613 node as a request to have it set to the length of
1614 the longest string in a PHI. */
1615 lendata.maxbound = arg;
1616 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1617 maxlen = lendata.maxbound;
1618 }
1619 }
1620 }
1621 /* Fall through. */
1622
1623 case BUILT_IN_STRNCAT:
1624 case BUILT_IN_STPNCPY:
1625 case BUILT_IN_STRNCPY:
1626 if (nargs > 2)
1627 bound = CALL_EXPR_ARG (exp, 2);
1628 break;
1629
1630 case BUILT_IN_STRNDUP:
1631 if (nargs > 1)
1632 bound = CALL_EXPR_ARG (exp, 1);
1633 break;
1634
1635 case BUILT_IN_STRNLEN:
1636 {
1637 tree arg = CALL_EXPR_ARG (exp, 0);
1638 if (!get_attr_nonstring_decl (arg))
1639 {
1640 c_strlen_data lendata = { };
1641 /* Set MAXBOUND to an arbitrary non-null non-integer
1642 node as a request to have it set to the length of
1643 the longest string in a PHI. */
1644 lendata.maxbound = arg;
1645 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1646 maxlen = lendata.maxbound;
1647 }
1648 if (nargs > 1)
1649 bound = CALL_EXPR_ARG (exp, 1);
1650 break;
1651 }
1652
1653 default:
1654 break;
1655 }
1656
1657 /* Determine the range of the bound argument (if specified). */
1658 tree bndrng[2] = { NULL_TREE, NULL_TREE };
1659 if (bound)
1660 {
1661 STRIP_NOPS (bound);
1662 get_size_range (bound, bndrng);
1663 }
1664
1665 location_t loc = EXPR_LOCATION (exp);
1666
1667 if (bndrng[0])
1668 {
1669 /* Diagnose excessive bound prior the adjustment below and
1670 regardless of attribute nonstring. */
1671 tree maxobjsize = max_object_size ();
1672 if (tree_int_cst_lt (maxobjsize, bndrng[0]))
1673 {
1674 if (tree_int_cst_equal (bndrng[0], bndrng[1]))
1675 warning_at (loc, OPT_Wstringop_overflow_,
1676 "%K%qD specified bound %E "
1677 "exceeds maximum object size %E",
1678 exp, fndecl, bndrng[0], maxobjsize);
1679 else
1680 warning_at (loc, OPT_Wstringop_overflow_,
1681 "%K%qD specified bound [%E, %E] "
1682 "exceeds maximum object size %E",
1683 exp, fndecl, bndrng[0], bndrng[1], maxobjsize);
1684 return;
1685 }
1686 }
1687
1688 if (maxlen && !integer_all_onesp (maxlen))
1689 {
1690 /* Add one for the nul. */
1691 maxlen = const_binop (PLUS_EXPR, TREE_TYPE (maxlen), maxlen,
1692 size_one_node);
1693
1694 if (!bndrng[0])
1695 {
1696 /* Conservatively use the upper bound of the lengths for
1697 both the lower and the upper bound of the operation. */
1698 bndrng[0] = maxlen;
1699 bndrng[1] = maxlen;
1700 bound = void_type_node;
1701 }
1702 else if (maxlen)
1703 {
1704 /* Replace the bound on the operation with the upper bound
1705 of the length of the string if the latter is smaller. */
1706 if (tree_int_cst_lt (maxlen, bndrng[0]))
1707 bndrng[0] = maxlen;
1708 else if (tree_int_cst_lt (maxlen, bndrng[1]))
1709 bndrng[1] = maxlen;
1710 }
1711 }
1712
1713 /* Iterate over the built-in function's formal arguments and check
1714 each const char* against the actual argument. If the actual
1715 argument is declared attribute non-string issue a warning unless
1716 the argument's maximum length is bounded. */
1717 function_args_iterator it;
1718 function_args_iter_init (&it, TREE_TYPE (fndecl));
1719
1720 for (unsigned argno = 0; ; ++argno, function_args_iter_next (&it))
1721 {
1722 /* Avoid iterating past the declared argument in a call
1723 to function declared without a prototype. */
1724 if (argno >= nargs)
1725 break;
1726
1727 tree argtype = function_args_iter_cond (&it);
1728 if (!argtype)
1729 break;
1730
1731 if (TREE_CODE (argtype) != POINTER_TYPE)
1732 continue;
1733
1734 argtype = TREE_TYPE (argtype);
1735
1736 if (TREE_CODE (argtype) != INTEGER_TYPE
1737 || !TYPE_READONLY (argtype))
1738 continue;
1739
1740 argtype = TYPE_MAIN_VARIANT (argtype);
1741 if (argtype != char_type_node)
1742 continue;
1743
1744 tree callarg = CALL_EXPR_ARG (exp, argno);
1745 if (TREE_CODE (callarg) == ADDR_EXPR)
1746 callarg = TREE_OPERAND (callarg, 0);
1747
1748 /* See if the destination is declared with attribute "nonstring". */
1749 tree decl = get_attr_nonstring_decl (callarg);
1750 if (!decl)
1751 continue;
1752
1753 /* The maximum number of array elements accessed. */
1754 offset_int wibnd = 0;
1755
1756 if (argno && fncode == BUILT_IN_STRNCAT)
1757 {
1758 /* See if the bound in strncat is derived from the length
1759 of the strlen of the destination (as it's expected to be).
1760 If so, reset BOUND and FNCODE to trigger a warning. */
1761 tree dstarg = CALL_EXPR_ARG (exp, 0);
1762 if (is_strlen_related_p (dstarg, bound))
1763 {
1764 /* The bound applies to the destination, not to the source,
1765 so reset these to trigger a warning without mentioning
1766 the bound. */
1767 bound = NULL;
1768 fncode = 0;
1769 }
1770 else if (bndrng[1])
1771 /* Use the upper bound of the range for strncat. */
1772 wibnd = wi::to_offset (bndrng[1]);
1773 }
1774 else if (bndrng[0])
1775 /* Use the lower bound of the range for functions other than
1776 strncat. */
1777 wibnd = wi::to_offset (bndrng[0]);
1778
1779 /* Determine the size of the argument array if it is one. */
1780 offset_int asize = wibnd;
1781 bool known_size = false;
1782 tree type = TREE_TYPE (decl);
1783
1784 /* Determine the array size. For arrays of unknown bound and
1785 pointers reset BOUND to trigger the appropriate warning. */
1786 if (TREE_CODE (type) == ARRAY_TYPE)
1787 {
1788 if (tree arrbnd = TYPE_DOMAIN (type))
1789 {
1790 if ((arrbnd = TYPE_MAX_VALUE (arrbnd)))
1791 {
1792 asize = wi::to_offset (arrbnd) + 1;
1793 known_size = true;
1794 }
1795 }
1796 else if (bound == void_type_node)
1797 bound = NULL_TREE;
1798 }
1799 else if (bound == void_type_node)
1800 bound = NULL_TREE;
1801
1802 /* In a call to strncat with a bound in a range whose lower but
1803 not upper bound is less than the array size, reset ASIZE to
1804 be the same as the bound and the other variable to trigger
1805 the apprpriate warning below. */
1806 if (fncode == BUILT_IN_STRNCAT
1807 && bndrng[0] != bndrng[1]
1808 && wi::ltu_p (wi::to_offset (bndrng[0]), asize)
1809 && (!known_size
1810 || wi::ltu_p (asize, wibnd)))
1811 {
1812 asize = wibnd;
1813 bound = NULL_TREE;
1814 fncode = 0;
1815 }
1816
1817 bool warned = false;
1818
1819 auto_diagnostic_group d;
1820 if (wi::ltu_p (asize, wibnd))
1821 {
1822 if (bndrng[0] == bndrng[1])
1823 warned = warning_at (loc, OPT_Wstringop_overflow_,
1824 "%qD argument %i declared attribute "
1825 "%<nonstring%> is smaller than the specified "
1826 "bound %wu",
1827 fndecl, argno + 1, wibnd.to_uhwi ());
1828 else if (wi::ltu_p (asize, wi::to_offset (bndrng[0])))
1829 warned = warning_at (loc, OPT_Wstringop_overflow_,
1830 "%qD argument %i declared attribute "
1831 "%<nonstring%> is smaller than "
1832 "the specified bound [%E, %E]",
1833 fndecl, argno + 1, bndrng[0], bndrng[1]);
1834 else
1835 warned = warning_at (loc, OPT_Wstringop_overflow_,
1836 "%qD argument %i declared attribute "
1837 "%<nonstring%> may be smaller than "
1838 "the specified bound [%E, %E]",
1839 fndecl, argno + 1, bndrng[0], bndrng[1]);
1840 }
1841 else if (fncode == BUILT_IN_STRNCAT)
1842 ; /* Avoid warning for calls to strncat() when the bound
1843 is equal to the size of the non-string argument. */
1844 else if (!bound)
1845 warned = warning_at (loc, OPT_Wstringop_overflow_,
1846 "%qD argument %i declared attribute %<nonstring%>",
1847 fndecl, argno + 1);
1848
1849 if (warned)
1850 inform (DECL_SOURCE_LOCATION (decl),
1851 "argument %qD declared here", decl);
1852 }
1853 }
1854
1855 /* Issue an error if CALL_EXPR was flagged as requiring
1856 tall-call optimization. */
1857
1858 static void
1859 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1860 {
1861 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1862 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1863 return;
1864
1865 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1866 }
1867
1868 /* Returns the type of the argument ARGNO to function with type FNTYPE
1869 or null when the typoe cannot be determined or no such argument exists. */
1870
1871 static tree
1872 fntype_argno_type (tree fntype, unsigned argno)
1873 {
1874 if (!prototype_p (fntype))
1875 return NULL_TREE;
1876
1877 tree argtype;
1878 function_args_iterator it;
1879 FOREACH_FUNCTION_ARGS (fntype, argtype, it)
1880 if (argno-- == 0)
1881 return argtype;
1882
1883 return NULL_TREE;
1884 }
1885
1886 /* Helper to append the "rdwr" attribute specification described
1887 by ACCESS to the array ATTRSTR with size STRSIZE. Used in
1888 diagnostics. */
1889
1890 static inline void
1891 append_attrname (const std::pair<int, attr_access> &access,
1892 char *attrstr, size_t strsize)
1893 {
1894 /* Append the relevant attribute to the string. This (deliberately)
1895 appends the attribute pointer operand even when none was specified. */
1896 size_t len = strlen (attrstr);
1897
1898 const char* const atname
1899 = (access.second.mode == attr_access::read_only
1900 ? "read_only"
1901 : (access.second.mode == attr_access::write_only
1902 ? "write_only"
1903 : (access.second.mode == attr_access::read_write
1904 ? "read_write" : "none")));
1905
1906 const char *sep = len ? ", " : "";
1907
1908 if (access.second.sizarg == UINT_MAX)
1909 snprintf (attrstr + len, strsize - len,
1910 "%s%s (%i)", sep, atname,
1911 access.second.ptrarg + 1);
1912 else
1913 snprintf (attrstr + len, strsize - len,
1914 "%s%s (%i, %i)", sep, atname,
1915 access.second.ptrarg + 1, access.second.sizarg + 1);
1916 }
1917
1918 /* Iterate over attribute access read-only, read-write, and write-only
1919 arguments and diagnose past-the-end accesses and related problems
1920 in the function call EXP. */
1921
1922 static void
1923 maybe_warn_rdwr_sizes (rdwr_map *rwm, tree fndecl, tree fntype, tree exp)
1924 {
1925 auto_diagnostic_group adg;
1926
1927 /* A string describing the attributes that the warnings issued by this
1928 function apply to. Used to print one informational note per function
1929 call, rather than one per warning. That reduces clutter. */
1930 char attrstr[80];
1931 attrstr[0] = 0;
1932
1933 for (rdwr_map::iterator it = rwm->begin (); it != rwm->end (); ++it)
1934 {
1935 std::pair<int, attr_access> access = *it;
1936
1937 /* Get the function call arguments corresponding to the attribute's
1938 positional arguments. When both arguments have been specified
1939 there will be two entries in *RWM, one for each. They are
1940 cross-referenced by their respective argument numbers in
1941 ACCESS.PTRARG and ACCESS.SIZARG. */
1942 const int ptridx = access.second.ptrarg;
1943 const int sizidx = access.second.sizarg;
1944
1945 gcc_assert (ptridx != -1);
1946 gcc_assert (access.first == ptridx || access.first == sizidx);
1947
1948 /* The pointer is set to null for the entry corresponding to
1949 the size argument. Skip it. It's handled when the entry
1950 corresponding to the pointer argument comes up. */
1951 if (!access.second.ptr)
1952 continue;
1953
1954 tree argtype = fntype_argno_type (fntype, ptridx);
1955 argtype = TREE_TYPE (argtype);
1956
1957 tree size;
1958 if (sizidx == -1)
1959 {
1960 /* If only the pointer attribute operand was specified
1961 and not size, set SIZE to the size of one element of
1962 the pointed to type to detect smaller objects (null
1963 pointers are diagnosed in this case only if
1964 the pointer is also declared with attribute nonnull. */
1965 size = size_one_node;
1966 }
1967 else
1968 size = rwm->get (sizidx)->size;
1969
1970 tree ptr = access.second.ptr;
1971 tree sizrng[2] = { size_zero_node, build_all_ones_cst (sizetype) };
1972 if (get_size_range (size, sizrng, true)
1973 && tree_int_cst_sgn (sizrng[0]) < 0
1974 && tree_int_cst_sgn (sizrng[1]) < 0)
1975 {
1976 /* Warn about negative sizes. */
1977 bool warned = false;
1978 location_t loc = EXPR_LOCATION (exp);
1979 if (tree_int_cst_equal (sizrng[0], sizrng[1]))
1980 warned = warning_at (loc, OPT_Wstringop_overflow_,
1981 "%Kargument %i value %E is negative",
1982 exp, sizidx + 1, size);
1983 else
1984 warned = warning_at (loc, OPT_Wstringop_overflow_,
1985 "%Kargument %i range [%E, %E] is negative",
1986 exp, sizidx + 1, sizrng[0], sizrng[1]);
1987 if (warned)
1988 {
1989 append_attrname (access, attrstr, sizeof attrstr);
1990 /* Avoid warning again for the same attribute. */
1991 continue;
1992 }
1993 }
1994
1995 if (tree_int_cst_sgn (sizrng[0]) >= 0)
1996 {
1997 if (COMPLETE_TYPE_P (argtype))
1998 {
1999 /* Multiple SIZE by the size of the type the pointer
2000 argument points to. If it's incomplete the size
2001 is used as is. */
2002 size = NULL_TREE;
2003 if (tree argsize = TYPE_SIZE_UNIT (argtype))
2004 if (TREE_CODE (argsize) == INTEGER_CST)
2005 {
2006 const int prec = TYPE_PRECISION (sizetype);
2007 wide_int minsize = wi::to_wide (sizrng[0], prec);
2008 minsize *= wi::to_wide (argsize, prec);
2009 size = wide_int_to_tree (sizetype, minsize);
2010 }
2011 }
2012 }
2013 else
2014 size = NULL_TREE;
2015
2016 if (sizidx >= 0
2017 && integer_zerop (ptr)
2018 && tree_int_cst_sgn (sizrng[0]) > 0)
2019 {
2020 /* Warn about null pointers with positive sizes. This is
2021 different from also declaring the pointer argument with
2022 attribute nonnull when the function accepts null pointers
2023 only when the corresponding size is zero. */
2024 bool warned = false;
2025 const location_t loc = EXPR_LOC_OR_LOC (ptr, EXPR_LOCATION (exp));
2026 if (tree_int_cst_equal (sizrng[0], sizrng[1]))
2027 warned = warning_at (loc, OPT_Wnonnull,
2028 "%Kargument %i is null but the corresponding "
2029 "size argument %i value is %E",
2030 exp, ptridx + 1, sizidx + 1, size);
2031 else
2032 warned = warning_at (loc, OPT_Wnonnull,
2033 "%Kargument %i is null but the corresponding "
2034 "size argument %i range is [%E, %E]",
2035 exp, ptridx + 1, sizidx + 1,
2036 sizrng[0], sizrng[1]);
2037 if (warned)
2038 {
2039 append_attrname (access, attrstr, sizeof attrstr);
2040 /* Avoid warning again for the same attribute. */
2041 continue;
2042 }
2043 }
2044
2045 tree objsize = compute_objsize (ptr, 0);
2046
2047 tree srcsize;
2048 if (access.second.mode == attr_access::write_only)
2049 {
2050 /* For a write-only argument there is no source. */
2051 srcsize = NULL_TREE;
2052 }
2053 else
2054 {
2055 /* For read-only and read-write attributes also set the source
2056 size. */
2057 srcsize = objsize;
2058 if (access.second.mode == attr_access::read_only
2059 || access.second.mode == attr_access::none)
2060 {
2061 /* For a read-only attribute there is no destination so
2062 clear OBJSIZE. This emits "reading N bytes" kind of
2063 diagnostics instead of the "writing N bytes" kind,
2064 unless MODE is none. */
2065 objsize = NULL_TREE;
2066 }
2067 }
2068
2069 /* Clear the no-warning bit in case it was set in a prior
2070 iteration so that accesses via different arguments are
2071 diagnosed. */
2072 TREE_NO_WARNING (exp) = false;
2073 check_access (exp, NULL_TREE, NULL_TREE, size, /*maxread=*/ NULL_TREE,
2074 srcsize, objsize, access.second.mode != attr_access::none);
2075
2076 if (TREE_NO_WARNING (exp))
2077 /* If check_access issued a warning above, append the relevant
2078 attribute to the string. */
2079 append_attrname (access, attrstr, sizeof attrstr);
2080 }
2081
2082 if (!*attrstr)
2083 return;
2084
2085 if (fndecl)
2086 inform (DECL_SOURCE_LOCATION (fndecl),
2087 "in a call to function %qD declared with attribute %qs",
2088 fndecl, attrstr);
2089 else
2090 inform (EXPR_LOCATION (fndecl),
2091 "in a call with type %qT and attribute %qs",
2092 fntype, attrstr);
2093
2094 /* Set the bit in case if was cleared and not set above. */
2095 TREE_NO_WARNING (exp) = true;
2096 }
2097
2098 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
2099 CALL_EXPR EXP.
2100
2101 NUM_ACTUALS is the total number of parameters.
2102
2103 N_NAMED_ARGS is the total number of named arguments.
2104
2105 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
2106 value, or null.
2107
2108 FNDECL is the tree code for the target of this call (if known)
2109
2110 ARGS_SO_FAR holds state needed by the target to know where to place
2111 the next argument.
2112
2113 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
2114 for arguments which are passed in registers.
2115
2116 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
2117 and may be modified by this routine.
2118
2119 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
2120 flags which may be modified by this routine.
2121
2122 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
2123 that requires allocation of stack space.
2124
2125 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
2126 the thunked-to function. */
2127
2128 static void
2129 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
2130 struct arg_data *args,
2131 struct args_size *args_size,
2132 int n_named_args ATTRIBUTE_UNUSED,
2133 tree exp, tree struct_value_addr_value,
2134 tree fndecl, tree fntype,
2135 cumulative_args_t args_so_far,
2136 int reg_parm_stack_space,
2137 rtx *old_stack_level,
2138 poly_int64_pod *old_pending_adj,
2139 int *must_preallocate, int *ecf_flags,
2140 bool *may_tailcall, bool call_from_thunk_p)
2141 {
2142 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
2143 location_t loc = EXPR_LOCATION (exp);
2144
2145 /* Count arg position in order args appear. */
2146 int argpos;
2147
2148 int i;
2149
2150 args_size->constant = 0;
2151 args_size->var = 0;
2152
2153 bitmap_obstack_initialize (NULL);
2154
2155 /* In this loop, we consider args in the order they are written.
2156 We fill up ARGS from the back. */
2157
2158 i = num_actuals - 1;
2159 {
2160 int j = i;
2161 call_expr_arg_iterator iter;
2162 tree arg;
2163 bitmap slots = NULL;
2164
2165 if (struct_value_addr_value)
2166 {
2167 args[j].tree_value = struct_value_addr_value;
2168 j--;
2169 }
2170 argpos = 0;
2171 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2172 {
2173 tree argtype = TREE_TYPE (arg);
2174
2175 if (targetm.calls.split_complex_arg
2176 && argtype
2177 && TREE_CODE (argtype) == COMPLEX_TYPE
2178 && targetm.calls.split_complex_arg (argtype))
2179 {
2180 tree subtype = TREE_TYPE (argtype);
2181 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
2182 j--;
2183 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
2184 }
2185 else
2186 args[j].tree_value = arg;
2187 j--;
2188 argpos++;
2189 }
2190
2191 if (slots)
2192 BITMAP_FREE (slots);
2193 }
2194
2195 bitmap_obstack_release (NULL);
2196
2197 /* Extract attribute alloc_size from the type of the called expression
2198 (which could be a function or a function pointer) and if set, store
2199 the indices of the corresponding arguments in ALLOC_IDX, and then
2200 the actual argument(s) at those indices in ALLOC_ARGS. */
2201 int alloc_idx[2] = { -1, -1 };
2202 if (tree alloc_size = lookup_attribute ("alloc_size",
2203 TYPE_ATTRIBUTES (fntype)))
2204 {
2205 tree args = TREE_VALUE (alloc_size);
2206 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
2207 if (TREE_CHAIN (args))
2208 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
2209 }
2210
2211 /* Array for up to the two attribute alloc_size arguments. */
2212 tree alloc_args[] = { NULL_TREE, NULL_TREE };
2213
2214 /* Map of attribute accewss specifications for function arguments. */
2215 rdwr_map rdwr_idx;
2216 init_attr_rdwr_indices (&rdwr_idx, fntype);
2217
2218 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
2219 for (argpos = 0; argpos < num_actuals; i--, argpos++)
2220 {
2221 tree type = TREE_TYPE (args[i].tree_value);
2222 int unsignedp;
2223
2224 /* Replace erroneous argument with constant zero. */
2225 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2226 args[i].tree_value = integer_zero_node, type = integer_type_node;
2227
2228 /* If TYPE is a transparent union or record, pass things the way
2229 we would pass the first field of the union or record. We have
2230 already verified that the modes are the same. */
2231 if (RECORD_OR_UNION_TYPE_P (type) && TYPE_TRANSPARENT_AGGR (type))
2232 type = TREE_TYPE (first_field (type));
2233
2234 /* Decide where to pass this arg.
2235
2236 args[i].reg is nonzero if all or part is passed in registers.
2237
2238 args[i].partial is nonzero if part but not all is passed in registers,
2239 and the exact value says how many bytes are passed in registers.
2240
2241 args[i].pass_on_stack is nonzero if the argument must at least be
2242 computed on the stack. It may then be loaded back into registers
2243 if args[i].reg is nonzero.
2244
2245 These decisions are driven by the FUNCTION_... macros and must agree
2246 with those made by function.c. */
2247
2248 /* See if this argument should be passed by invisible reference. */
2249 function_arg_info arg (type, argpos < n_named_args);
2250 if (pass_by_reference (args_so_far_pnt, arg))
2251 {
2252 bool callee_copies;
2253 tree base = NULL_TREE;
2254
2255 callee_copies = reference_callee_copied (args_so_far_pnt, arg);
2256
2257 /* If we're compiling a thunk, pass through invisible references
2258 instead of making a copy. */
2259 if (call_from_thunk_p
2260 || (callee_copies
2261 && !TREE_ADDRESSABLE (type)
2262 && (base = get_base_address (args[i].tree_value))
2263 && TREE_CODE (base) != SSA_NAME
2264 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
2265 {
2266 /* We may have turned the parameter value into an SSA name.
2267 Go back to the original parameter so we can take the
2268 address. */
2269 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
2270 {
2271 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
2272 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
2273 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
2274 }
2275 /* Argument setup code may have copied the value to register. We
2276 revert that optimization now because the tail call code must
2277 use the original location. */
2278 if (TREE_CODE (args[i].tree_value) == PARM_DECL
2279 && !MEM_P (DECL_RTL (args[i].tree_value))
2280 && DECL_INCOMING_RTL (args[i].tree_value)
2281 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
2282 set_decl_rtl (args[i].tree_value,
2283 DECL_INCOMING_RTL (args[i].tree_value));
2284
2285 mark_addressable (args[i].tree_value);
2286
2287 /* We can't use sibcalls if a callee-copied argument is
2288 stored in the current function's frame. */
2289 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
2290 {
2291 *may_tailcall = false;
2292 maybe_complain_about_tail_call (exp,
2293 "a callee-copied argument is"
2294 " stored in the current"
2295 " function's frame");
2296 }
2297
2298 args[i].tree_value = build_fold_addr_expr_loc (loc,
2299 args[i].tree_value);
2300 type = TREE_TYPE (args[i].tree_value);
2301
2302 if (*ecf_flags & ECF_CONST)
2303 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
2304 }
2305 else
2306 {
2307 /* We make a copy of the object and pass the address to the
2308 function being called. */
2309 rtx copy;
2310
2311 if (!COMPLETE_TYPE_P (type)
2312 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
2313 || (flag_stack_check == GENERIC_STACK_CHECK
2314 && compare_tree_int (TYPE_SIZE_UNIT (type),
2315 STACK_CHECK_MAX_VAR_SIZE) > 0))
2316 {
2317 /* This is a variable-sized object. Make space on the stack
2318 for it. */
2319 rtx size_rtx = expr_size (args[i].tree_value);
2320
2321 if (*old_stack_level == 0)
2322 {
2323 emit_stack_save (SAVE_BLOCK, old_stack_level);
2324 *old_pending_adj = pending_stack_adjust;
2325 pending_stack_adjust = 0;
2326 }
2327
2328 /* We can pass TRUE as the 4th argument because we just
2329 saved the stack pointer and will restore it right after
2330 the call. */
2331 copy = allocate_dynamic_stack_space (size_rtx,
2332 TYPE_ALIGN (type),
2333 TYPE_ALIGN (type),
2334 max_int_size_in_bytes
2335 (type),
2336 true);
2337 copy = gen_rtx_MEM (BLKmode, copy);
2338 set_mem_attributes (copy, type, 1);
2339 }
2340 else
2341 copy = assign_temp (type, 1, 0);
2342
2343 store_expr (args[i].tree_value, copy, 0, false, false);
2344
2345 /* Just change the const function to pure and then let
2346 the next test clear the pure based on
2347 callee_copies. */
2348 if (*ecf_flags & ECF_CONST)
2349 {
2350 *ecf_flags &= ~ECF_CONST;
2351 *ecf_flags |= ECF_PURE;
2352 }
2353
2354 if (!callee_copies && *ecf_flags & ECF_PURE)
2355 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2356
2357 args[i].tree_value
2358 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
2359 type = TREE_TYPE (args[i].tree_value);
2360 *may_tailcall = false;
2361 maybe_complain_about_tail_call (exp,
2362 "argument must be passed"
2363 " by copying");
2364 }
2365 arg.pass_by_reference = true;
2366 }
2367
2368 unsignedp = TYPE_UNSIGNED (type);
2369 arg.type = type;
2370 arg.mode
2371 = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
2372 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
2373
2374 args[i].unsignedp = unsignedp;
2375 args[i].mode = arg.mode;
2376
2377 targetm.calls.warn_parameter_passing_abi (args_so_far, type);
2378
2379 args[i].reg = targetm.calls.function_arg (args_so_far, arg);
2380
2381 if (args[i].reg && CONST_INT_P (args[i].reg))
2382 args[i].reg = NULL;
2383
2384 /* If this is a sibling call and the machine has register windows, the
2385 register window has to be unwinded before calling the routine, so
2386 arguments have to go into the incoming registers. */
2387 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
2388 args[i].tail_call_reg
2389 = targetm.calls.function_incoming_arg (args_so_far, arg);
2390 else
2391 args[i].tail_call_reg = args[i].reg;
2392
2393 if (args[i].reg)
2394 args[i].partial = targetm.calls.arg_partial_bytes (args_so_far, arg);
2395
2396 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (arg);
2397
2398 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
2399 it means that we are to pass this arg in the register(s) designated
2400 by the PARALLEL, but also to pass it in the stack. */
2401 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
2402 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
2403 args[i].pass_on_stack = 1;
2404
2405 /* If this is an addressable type, we must preallocate the stack
2406 since we must evaluate the object into its final location.
2407
2408 If this is to be passed in both registers and the stack, it is simpler
2409 to preallocate. */
2410 if (TREE_ADDRESSABLE (type)
2411 || (args[i].pass_on_stack && args[i].reg != 0))
2412 *must_preallocate = 1;
2413
2414 /* Compute the stack-size of this argument. */
2415 if (args[i].reg == 0 || args[i].partial != 0
2416 || reg_parm_stack_space > 0
2417 || args[i].pass_on_stack)
2418 locate_and_pad_parm (arg.mode, type,
2419 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2420 1,
2421 #else
2422 args[i].reg != 0,
2423 #endif
2424 reg_parm_stack_space,
2425 args[i].pass_on_stack ? 0 : args[i].partial,
2426 fndecl, args_size, &args[i].locate);
2427 #ifdef BLOCK_REG_PADDING
2428 else
2429 /* The argument is passed entirely in registers. See at which
2430 end it should be padded. */
2431 args[i].locate.where_pad =
2432 BLOCK_REG_PADDING (arg.mode, type,
2433 int_size_in_bytes (type) <= UNITS_PER_WORD);
2434 #endif
2435
2436 /* Update ARGS_SIZE, the total stack space for args so far. */
2437
2438 args_size->constant += args[i].locate.size.constant;
2439 if (args[i].locate.size.var)
2440 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
2441
2442 /* Increment ARGS_SO_FAR, which has info about which arg-registers
2443 have been used, etc. */
2444
2445 /* ??? Traditionally we've passed TYPE_MODE here, instead of the
2446 promoted_mode used for function_arg above. However, the
2447 corresponding handling of incoming arguments in function.c
2448 does pass the promoted mode. */
2449 arg.mode = TYPE_MODE (type);
2450 targetm.calls.function_arg_advance (args_so_far, arg);
2451
2452 /* Store argument values for functions decorated with attribute
2453 alloc_size. */
2454 if (argpos == alloc_idx[0])
2455 alloc_args[0] = args[i].tree_value;
2456 else if (argpos == alloc_idx[1])
2457 alloc_args[1] = args[i].tree_value;
2458
2459 /* Save the actual argument that corresponds to the access attribute
2460 operand for later processing. */
2461 if (attr_access *access = rdwr_idx.get (argpos))
2462 {
2463 if (POINTER_TYPE_P (type))
2464 {
2465 access->ptr = args[i].tree_value;
2466 gcc_assert (access->size == NULL_TREE);
2467 }
2468 else
2469 {
2470 access->size = args[i].tree_value;
2471 gcc_assert (access->ptr == NULL_TREE);
2472 }
2473 }
2474 }
2475
2476 if (alloc_args[0])
2477 {
2478 /* Check the arguments of functions decorated with attribute
2479 alloc_size. */
2480 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
2481 }
2482
2483 /* Detect passing non-string arguments to functions expecting
2484 nul-terminated strings. */
2485 maybe_warn_nonstring_arg (fndecl, exp);
2486
2487 /* Check attribute access arguments. */
2488 maybe_warn_rdwr_sizes (&rdwr_idx, fndecl, fntype, exp);
2489 }
2490
2491 /* Update ARGS_SIZE to contain the total size for the argument block.
2492 Return the original constant component of the argument block's size.
2493
2494 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
2495 for arguments passed in registers. */
2496
2497 static poly_int64
2498 compute_argument_block_size (int reg_parm_stack_space,
2499 struct args_size *args_size,
2500 tree fndecl ATTRIBUTE_UNUSED,
2501 tree fntype ATTRIBUTE_UNUSED,
2502 int preferred_stack_boundary ATTRIBUTE_UNUSED)
2503 {
2504 poly_int64 unadjusted_args_size = args_size->constant;
2505
2506 /* For accumulate outgoing args mode we don't need to align, since the frame
2507 will be already aligned. Align to STACK_BOUNDARY in order to prevent
2508 backends from generating misaligned frame sizes. */
2509 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
2510 preferred_stack_boundary = STACK_BOUNDARY;
2511
2512 /* Compute the actual size of the argument block required. The variable
2513 and constant sizes must be combined, the size may have to be rounded,
2514 and there may be a minimum required size. */
2515
2516 if (args_size->var)
2517 {
2518 args_size->var = ARGS_SIZE_TREE (*args_size);
2519 args_size->constant = 0;
2520
2521 preferred_stack_boundary /= BITS_PER_UNIT;
2522 if (preferred_stack_boundary > 1)
2523 {
2524 /* We don't handle this case yet. To handle it correctly we have
2525 to add the delta, round and subtract the delta.
2526 Currently no machine description requires this support. */
2527 gcc_assert (multiple_p (stack_pointer_delta,
2528 preferred_stack_boundary));
2529 args_size->var = round_up (args_size->var, preferred_stack_boundary);
2530 }
2531
2532 if (reg_parm_stack_space > 0)
2533 {
2534 args_size->var
2535 = size_binop (MAX_EXPR, args_size->var,
2536 ssize_int (reg_parm_stack_space));
2537
2538 /* The area corresponding to register parameters is not to count in
2539 the size of the block we need. So make the adjustment. */
2540 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2541 args_size->var
2542 = size_binop (MINUS_EXPR, args_size->var,
2543 ssize_int (reg_parm_stack_space));
2544 }
2545 }
2546 else
2547 {
2548 preferred_stack_boundary /= BITS_PER_UNIT;
2549 if (preferred_stack_boundary < 1)
2550 preferred_stack_boundary = 1;
2551 args_size->constant = (aligned_upper_bound (args_size->constant
2552 + stack_pointer_delta,
2553 preferred_stack_boundary)
2554 - stack_pointer_delta);
2555
2556 args_size->constant = upper_bound (args_size->constant,
2557 reg_parm_stack_space);
2558
2559 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2560 args_size->constant -= reg_parm_stack_space;
2561 }
2562 return unadjusted_args_size;
2563 }
2564
2565 /* Precompute parameters as needed for a function call.
2566
2567 FLAGS is mask of ECF_* constants.
2568
2569 NUM_ACTUALS is the number of arguments.
2570
2571 ARGS is an array containing information for each argument; this
2572 routine fills in the INITIAL_VALUE and VALUE fields for each
2573 precomputed argument. */
2574
2575 static void
2576 precompute_arguments (int num_actuals, struct arg_data *args)
2577 {
2578 int i;
2579
2580 /* If this is a libcall, then precompute all arguments so that we do not
2581 get extraneous instructions emitted as part of the libcall sequence. */
2582
2583 /* If we preallocated the stack space, and some arguments must be passed
2584 on the stack, then we must precompute any parameter which contains a
2585 function call which will store arguments on the stack.
2586 Otherwise, evaluating the parameter may clobber previous parameters
2587 which have already been stored into the stack. (we have code to avoid
2588 such case by saving the outgoing stack arguments, but it results in
2589 worse code) */
2590 if (!ACCUMULATE_OUTGOING_ARGS)
2591 return;
2592
2593 for (i = 0; i < num_actuals; i++)
2594 {
2595 tree type;
2596 machine_mode mode;
2597
2598 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2599 continue;
2600
2601 /* If this is an addressable type, we cannot pre-evaluate it. */
2602 type = TREE_TYPE (args[i].tree_value);
2603 gcc_assert (!TREE_ADDRESSABLE (type));
2604
2605 args[i].initial_value = args[i].value
2606 = expand_normal (args[i].tree_value);
2607
2608 mode = TYPE_MODE (type);
2609 if (mode != args[i].mode)
2610 {
2611 int unsignedp = args[i].unsignedp;
2612 args[i].value
2613 = convert_modes (args[i].mode, mode,
2614 args[i].value, args[i].unsignedp);
2615
2616 /* CSE will replace this only if it contains args[i].value
2617 pseudo, so convert it down to the declared mode using
2618 a SUBREG. */
2619 if (REG_P (args[i].value)
2620 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2621 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2622 {
2623 args[i].initial_value
2624 = gen_lowpart_SUBREG (mode, args[i].value);
2625 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2626 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2627 }
2628 }
2629 }
2630 }
2631
2632 /* Given the current state of MUST_PREALLOCATE and information about
2633 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2634 compute and return the final value for MUST_PREALLOCATE. */
2635
2636 static int
2637 finalize_must_preallocate (int must_preallocate, int num_actuals,
2638 struct arg_data *args, struct args_size *args_size)
2639 {
2640 /* See if we have or want to preallocate stack space.
2641
2642 If we would have to push a partially-in-regs parm
2643 before other stack parms, preallocate stack space instead.
2644
2645 If the size of some parm is not a multiple of the required stack
2646 alignment, we must preallocate.
2647
2648 If the total size of arguments that would otherwise create a copy in
2649 a temporary (such as a CALL) is more than half the total argument list
2650 size, preallocation is faster.
2651
2652 Another reason to preallocate is if we have a machine (like the m88k)
2653 where stack alignment is required to be maintained between every
2654 pair of insns, not just when the call is made. However, we assume here
2655 that such machines either do not have push insns (and hence preallocation
2656 would occur anyway) or the problem is taken care of with
2657 PUSH_ROUNDING. */
2658
2659 if (! must_preallocate)
2660 {
2661 int partial_seen = 0;
2662 poly_int64 copy_to_evaluate_size = 0;
2663 int i;
2664
2665 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2666 {
2667 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2668 partial_seen = 1;
2669 else if (partial_seen && args[i].reg == 0)
2670 must_preallocate = 1;
2671
2672 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2673 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2674 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2675 || TREE_CODE (args[i].tree_value) == COND_EXPR
2676 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2677 copy_to_evaluate_size
2678 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2679 }
2680
2681 if (maybe_ne (args_size->constant, 0)
2682 && maybe_ge (copy_to_evaluate_size * 2, args_size->constant))
2683 must_preallocate = 1;
2684 }
2685 return must_preallocate;
2686 }
2687
2688 /* If we preallocated stack space, compute the address of each argument
2689 and store it into the ARGS array.
2690
2691 We need not ensure it is a valid memory address here; it will be
2692 validized when it is used.
2693
2694 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2695
2696 static void
2697 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2698 {
2699 if (argblock)
2700 {
2701 rtx arg_reg = argblock;
2702 int i;
2703 poly_int64 arg_offset = 0;
2704
2705 if (GET_CODE (argblock) == PLUS)
2706 {
2707 arg_reg = XEXP (argblock, 0);
2708 arg_offset = rtx_to_poly_int64 (XEXP (argblock, 1));
2709 }
2710
2711 for (i = 0; i < num_actuals; i++)
2712 {
2713 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2714 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2715 rtx addr;
2716 unsigned int align, boundary;
2717 poly_uint64 units_on_stack = 0;
2718 machine_mode partial_mode = VOIDmode;
2719
2720 /* Skip this parm if it will not be passed on the stack. */
2721 if (! args[i].pass_on_stack
2722 && args[i].reg != 0
2723 && args[i].partial == 0)
2724 continue;
2725
2726 if (TYPE_EMPTY_P (TREE_TYPE (args[i].tree_value)))
2727 continue;
2728
2729 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
2730 addr = plus_constant (Pmode, addr, arg_offset);
2731
2732 if (args[i].partial != 0)
2733 {
2734 /* Only part of the parameter is being passed on the stack.
2735 Generate a simple memory reference of the correct size. */
2736 units_on_stack = args[i].locate.size.constant;
2737 poly_uint64 bits_on_stack = units_on_stack * BITS_PER_UNIT;
2738 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
2739 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2740 set_mem_size (args[i].stack, units_on_stack);
2741 }
2742 else
2743 {
2744 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2745 set_mem_attributes (args[i].stack,
2746 TREE_TYPE (args[i].tree_value), 1);
2747 }
2748 align = BITS_PER_UNIT;
2749 boundary = args[i].locate.boundary;
2750 poly_int64 offset_val;
2751 if (args[i].locate.where_pad != PAD_DOWNWARD)
2752 align = boundary;
2753 else if (poly_int_rtx_p (offset, &offset_val))
2754 {
2755 align = least_bit_hwi (boundary);
2756 unsigned int offset_align
2757 = known_alignment (offset_val) * BITS_PER_UNIT;
2758 if (offset_align != 0)
2759 align = MIN (align, offset_align);
2760 }
2761 set_mem_align (args[i].stack, align);
2762
2763 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
2764 addr = plus_constant (Pmode, addr, arg_offset);
2765
2766 if (args[i].partial != 0)
2767 {
2768 /* Only part of the parameter is being passed on the stack.
2769 Generate a simple memory reference of the correct size.
2770 */
2771 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2772 set_mem_size (args[i].stack_slot, units_on_stack);
2773 }
2774 else
2775 {
2776 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2777 set_mem_attributes (args[i].stack_slot,
2778 TREE_TYPE (args[i].tree_value), 1);
2779 }
2780 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2781
2782 /* Function incoming arguments may overlap with sibling call
2783 outgoing arguments and we cannot allow reordering of reads
2784 from function arguments with stores to outgoing arguments
2785 of sibling calls. */
2786 set_mem_alias_set (args[i].stack, 0);
2787 set_mem_alias_set (args[i].stack_slot, 0);
2788 }
2789 }
2790 }
2791
2792 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2793 in a call instruction.
2794
2795 FNDECL is the tree node for the target function. For an indirect call
2796 FNDECL will be NULL_TREE.
2797
2798 ADDR is the operand 0 of CALL_EXPR for this call. */
2799
2800 static rtx
2801 rtx_for_function_call (tree fndecl, tree addr)
2802 {
2803 rtx funexp;
2804
2805 /* Get the function to call, in the form of RTL. */
2806 if (fndecl)
2807 {
2808 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2809 TREE_USED (fndecl) = 1;
2810
2811 /* Get a SYMBOL_REF rtx for the function address. */
2812 funexp = XEXP (DECL_RTL (fndecl), 0);
2813 }
2814 else
2815 /* Generate an rtx (probably a pseudo-register) for the address. */
2816 {
2817 push_temp_slots ();
2818 funexp = expand_normal (addr);
2819 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2820 }
2821 return funexp;
2822 }
2823
2824 /* Return the static chain for this function, if any. */
2825
2826 rtx
2827 rtx_for_static_chain (const_tree fndecl_or_type, bool incoming_p)
2828 {
2829 if (DECL_P (fndecl_or_type) && !DECL_STATIC_CHAIN (fndecl_or_type))
2830 return NULL;
2831
2832 return targetm.calls.static_chain (fndecl_or_type, incoming_p);
2833 }
2834
2835 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2836 static struct
2837 {
2838 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2839 or NULL_RTX if none has been scanned yet. */
2840 rtx_insn *scan_start;
2841 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2842 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2843 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2844 with fixed offset, or PC if this is with variable or unknown offset. */
2845 vec<rtx> cache;
2846 } internal_arg_pointer_exp_state;
2847
2848 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2849
2850 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2851 the tail call sequence, starting with first insn that hasn't been
2852 scanned yet, and note for each pseudo on the LHS whether it is based
2853 on crtl->args.internal_arg_pointer or not, and what offset from that
2854 that pointer it has. */
2855
2856 static void
2857 internal_arg_pointer_based_exp_scan (void)
2858 {
2859 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2860
2861 if (scan_start == NULL_RTX)
2862 insn = get_insns ();
2863 else
2864 insn = NEXT_INSN (scan_start);
2865
2866 while (insn)
2867 {
2868 rtx set = single_set (insn);
2869 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2870 {
2871 rtx val = NULL_RTX;
2872 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2873 /* Punt on pseudos set multiple times. */
2874 if (idx < internal_arg_pointer_exp_state.cache.length ()
2875 && (internal_arg_pointer_exp_state.cache[idx]
2876 != NULL_RTX))
2877 val = pc_rtx;
2878 else
2879 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2880 if (val != NULL_RTX)
2881 {
2882 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2883 internal_arg_pointer_exp_state.cache
2884 .safe_grow_cleared (idx + 1, true);
2885 internal_arg_pointer_exp_state.cache[idx] = val;
2886 }
2887 }
2888 if (NEXT_INSN (insn) == NULL_RTX)
2889 scan_start = insn;
2890 insn = NEXT_INSN (insn);
2891 }
2892
2893 internal_arg_pointer_exp_state.scan_start = scan_start;
2894 }
2895
2896 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2897 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2898 it with fixed offset, or PC if this is with variable or unknown offset.
2899 TOPLEVEL is true if the function is invoked at the topmost level. */
2900
2901 static rtx
2902 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2903 {
2904 if (CONSTANT_P (rtl))
2905 return NULL_RTX;
2906
2907 if (rtl == crtl->args.internal_arg_pointer)
2908 return const0_rtx;
2909
2910 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2911 return NULL_RTX;
2912
2913 poly_int64 offset;
2914 if (GET_CODE (rtl) == PLUS && poly_int_rtx_p (XEXP (rtl, 1), &offset))
2915 {
2916 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2917 if (val == NULL_RTX || val == pc_rtx)
2918 return val;
2919 return plus_constant (Pmode, val, offset);
2920 }
2921
2922 /* When called at the topmost level, scan pseudo assignments in between the
2923 last scanned instruction in the tail call sequence and the latest insn
2924 in that sequence. */
2925 if (toplevel)
2926 internal_arg_pointer_based_exp_scan ();
2927
2928 if (REG_P (rtl))
2929 {
2930 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2931 if (idx < internal_arg_pointer_exp_state.cache.length ())
2932 return internal_arg_pointer_exp_state.cache[idx];
2933
2934 return NULL_RTX;
2935 }
2936
2937 subrtx_iterator::array_type array;
2938 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2939 {
2940 const_rtx x = *iter;
2941 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2942 return pc_rtx;
2943 if (MEM_P (x))
2944 iter.skip_subrtxes ();
2945 }
2946
2947 return NULL_RTX;
2948 }
2949
2950 /* Return true if SIZE bytes starting from address ADDR might overlap an
2951 already-clobbered argument area. This function is used to determine
2952 if we should give up a sibcall. */
2953
2954 static bool
2955 mem_might_overlap_already_clobbered_arg_p (rtx addr, poly_uint64 size)
2956 {
2957 poly_int64 i;
2958 unsigned HOST_WIDE_INT start, end;
2959 rtx val;
2960
2961 if (bitmap_empty_p (stored_args_map)
2962 && stored_args_watermark == HOST_WIDE_INT_M1U)
2963 return false;
2964 val = internal_arg_pointer_based_exp (addr, true);
2965 if (val == NULL_RTX)
2966 return false;
2967 else if (!poly_int_rtx_p (val, &i))
2968 return true;
2969
2970 if (known_eq (size, 0U))
2971 return false;
2972
2973 if (STACK_GROWS_DOWNWARD)
2974 i -= crtl->args.pretend_args_size;
2975 else
2976 i += crtl->args.pretend_args_size;
2977
2978 if (ARGS_GROW_DOWNWARD)
2979 i = -i - size;
2980
2981 /* We can ignore any references to the function's pretend args,
2982 which at this point would manifest as negative values of I. */
2983 if (known_le (i, 0) && known_le (size, poly_uint64 (-i)))
2984 return false;
2985
2986 start = maybe_lt (i, 0) ? 0 : constant_lower_bound (i);
2987 if (!(i + size).is_constant (&end))
2988 end = HOST_WIDE_INT_M1U;
2989
2990 if (end > stored_args_watermark)
2991 return true;
2992
2993 end = MIN (end, SBITMAP_SIZE (stored_args_map));
2994 for (unsigned HOST_WIDE_INT k = start; k < end; ++k)
2995 if (bitmap_bit_p (stored_args_map, k))
2996 return true;
2997
2998 return false;
2999 }
3000
3001 /* Do the register loads required for any wholly-register parms or any
3002 parms which are passed both on the stack and in a register. Their
3003 expressions were already evaluated.
3004
3005 Mark all register-parms as living through the call, putting these USE
3006 insns in the CALL_INSN_FUNCTION_USAGE field.
3007
3008 When IS_SIBCALL, perform the check_sibcall_argument_overlap
3009 checking, setting *SIBCALL_FAILURE if appropriate. */
3010
3011 static void
3012 load_register_parameters (struct arg_data *args, int num_actuals,
3013 rtx *call_fusage, int flags, int is_sibcall,
3014 int *sibcall_failure)
3015 {
3016 int i, j;
3017
3018 for (i = 0; i < num_actuals; i++)
3019 {
3020 rtx reg = ((flags & ECF_SIBCALL)
3021 ? args[i].tail_call_reg : args[i].reg);
3022 if (reg)
3023 {
3024 int partial = args[i].partial;
3025 int nregs;
3026 poly_int64 size = 0;
3027 HOST_WIDE_INT const_size = 0;
3028 rtx_insn *before_arg = get_last_insn ();
3029 tree type = TREE_TYPE (args[i].tree_value);
3030 if (RECORD_OR_UNION_TYPE_P (type) && TYPE_TRANSPARENT_AGGR (type))
3031 type = TREE_TYPE (first_field (type));
3032 /* Set non-negative if we must move a word at a time, even if
3033 just one word (e.g, partial == 4 && mode == DFmode). Set
3034 to -1 if we just use a normal move insn. This value can be
3035 zero if the argument is a zero size structure. */
3036 nregs = -1;
3037 if (GET_CODE (reg) == PARALLEL)
3038 ;
3039 else if (partial)
3040 {
3041 gcc_assert (partial % UNITS_PER_WORD == 0);
3042 nregs = partial / UNITS_PER_WORD;
3043 }
3044 else if (TYPE_MODE (type) == BLKmode)
3045 {
3046 /* Variable-sized parameters should be described by a
3047 PARALLEL instead. */
3048 const_size = int_size_in_bytes (type);
3049 gcc_assert (const_size >= 0);
3050 nregs = (const_size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3051 size = const_size;
3052 }
3053 else
3054 size = GET_MODE_SIZE (args[i].mode);
3055
3056 /* Handle calls that pass values in multiple non-contiguous
3057 locations. The Irix 6 ABI has examples of this. */
3058
3059 if (GET_CODE (reg) == PARALLEL)
3060 emit_group_move (reg, args[i].parallel_value);
3061
3062 /* If simple case, just do move. If normal partial, store_one_arg
3063 has already loaded the register for us. In all other cases,
3064 load the register(s) from memory. */
3065
3066 else if (nregs == -1)
3067 {
3068 emit_move_insn (reg, args[i].value);
3069 #ifdef BLOCK_REG_PADDING
3070 /* Handle case where we have a value that needs shifting
3071 up to the msb. eg. a QImode value and we're padding
3072 upward on a BYTES_BIG_ENDIAN machine. */
3073 if (args[i].locate.where_pad
3074 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))
3075 {
3076 gcc_checking_assert (ordered_p (size, UNITS_PER_WORD));
3077 if (maybe_lt (size, UNITS_PER_WORD))
3078 {
3079 rtx x;
3080 poly_int64 shift
3081 = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3082
3083 /* Assigning REG here rather than a temp makes
3084 CALL_FUSAGE report the whole reg as used.
3085 Strictly speaking, the call only uses SIZE
3086 bytes at the msb end, but it doesn't seem worth
3087 generating rtl to say that. */
3088 reg = gen_rtx_REG (word_mode, REGNO (reg));
3089 x = expand_shift (LSHIFT_EXPR, word_mode,
3090 reg, shift, reg, 1);
3091 if (x != reg)
3092 emit_move_insn (reg, x);
3093 }
3094 }
3095 #endif
3096 }
3097
3098 /* If we have pre-computed the values to put in the registers in
3099 the case of non-aligned structures, copy them in now. */
3100
3101 else if (args[i].n_aligned_regs != 0)
3102 for (j = 0; j < args[i].n_aligned_regs; j++)
3103 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
3104 args[i].aligned_regs[j]);
3105
3106 else if (partial == 0 || args[i].pass_on_stack)
3107 {
3108 /* SIZE and CONST_SIZE are 0 for partial arguments and
3109 the size of a BLKmode type otherwise. */
3110 gcc_checking_assert (known_eq (size, const_size));
3111 rtx mem = validize_mem (copy_rtx (args[i].value));
3112
3113 /* Check for overlap with already clobbered argument area,
3114 providing that this has non-zero size. */
3115 if (is_sibcall
3116 && const_size != 0
3117 && (mem_might_overlap_already_clobbered_arg_p
3118 (XEXP (args[i].value, 0), const_size)))
3119 *sibcall_failure = 1;
3120
3121 if (const_size % UNITS_PER_WORD == 0
3122 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
3123 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
3124 else
3125 {
3126 if (nregs > 1)
3127 move_block_to_reg (REGNO (reg), mem, nregs - 1,
3128 args[i].mode);
3129 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
3130 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
3131 unsigned int bitsize = const_size * BITS_PER_UNIT - bitoff;
3132 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
3133 word_mode, word_mode, false,
3134 NULL);
3135 if (BYTES_BIG_ENDIAN)
3136 x = expand_shift (LSHIFT_EXPR, word_mode, x,
3137 BITS_PER_WORD - bitsize, dest, 1);
3138 if (x != dest)
3139 emit_move_insn (dest, x);
3140 }
3141
3142 /* Handle a BLKmode that needs shifting. */
3143 if (nregs == 1 && const_size < UNITS_PER_WORD
3144 #ifdef BLOCK_REG_PADDING
3145 && args[i].locate.where_pad == PAD_DOWNWARD
3146 #else
3147 && BYTES_BIG_ENDIAN
3148 #endif
3149 )
3150 {
3151 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
3152 int shift = (UNITS_PER_WORD - const_size) * BITS_PER_UNIT;
3153 enum tree_code dir = (BYTES_BIG_ENDIAN
3154 ? RSHIFT_EXPR : LSHIFT_EXPR);
3155 rtx x;
3156
3157 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
3158 if (x != dest)
3159 emit_move_insn (dest, x);
3160 }
3161 }
3162
3163 /* When a parameter is a block, and perhaps in other cases, it is
3164 possible that it did a load from an argument slot that was
3165 already clobbered. */
3166 if (is_sibcall
3167 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
3168 *sibcall_failure = 1;
3169
3170 /* Handle calls that pass values in multiple non-contiguous
3171 locations. The Irix 6 ABI has examples of this. */
3172 if (GET_CODE (reg) == PARALLEL)
3173 use_group_regs (call_fusage, reg);
3174 else if (nregs == -1)
3175 use_reg_mode (call_fusage, reg, TYPE_MODE (type));
3176 else if (nregs > 0)
3177 use_regs (call_fusage, REGNO (reg), nregs);
3178 }
3179 }
3180 }
3181
3182 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
3183 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
3184 bytes, then we would need to push some additional bytes to pad the
3185 arguments. So, we try to compute an adjust to the stack pointer for an
3186 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
3187 bytes. Then, when the arguments are pushed the stack will be perfectly
3188 aligned.
3189
3190 Return true if this optimization is possible, storing the adjustment
3191 in ADJUSTMENT_OUT and setting ARGS_SIZE->CONSTANT to the number of
3192 bytes that should be popped after the call. */
3193
3194 static bool
3195 combine_pending_stack_adjustment_and_call (poly_int64_pod *adjustment_out,
3196 poly_int64 unadjusted_args_size,
3197 struct args_size *args_size,
3198 unsigned int preferred_unit_stack_boundary)
3199 {
3200 /* The number of bytes to pop so that the stack will be
3201 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
3202 poly_int64 adjustment;
3203 /* The alignment of the stack after the arguments are pushed, if we
3204 just pushed the arguments without adjust the stack here. */
3205 unsigned HOST_WIDE_INT unadjusted_alignment;
3206
3207 if (!known_misalignment (stack_pointer_delta + unadjusted_args_size,
3208 preferred_unit_stack_boundary,
3209 &unadjusted_alignment))
3210 return false;
3211
3212 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
3213 as possible -- leaving just enough left to cancel out the
3214 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
3215 PENDING_STACK_ADJUST is non-negative, and congruent to
3216 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
3217
3218 /* Begin by trying to pop all the bytes. */
3219 unsigned HOST_WIDE_INT tmp_misalignment;
3220 if (!known_misalignment (pending_stack_adjust,
3221 preferred_unit_stack_boundary,
3222 &tmp_misalignment))
3223 return false;
3224 unadjusted_alignment -= tmp_misalignment;
3225 adjustment = pending_stack_adjust;
3226 /* Push enough additional bytes that the stack will be aligned
3227 after the arguments are pushed. */
3228 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
3229 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
3230
3231 /* We need to know whether the adjusted argument size
3232 (UNADJUSTED_ARGS_SIZE - ADJUSTMENT) constitutes an allocation
3233 or a deallocation. */
3234 if (!ordered_p (adjustment, unadjusted_args_size))
3235 return false;
3236
3237 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
3238 bytes after the call. The right number is the entire
3239 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
3240 by the arguments in the first place. */
3241 args_size->constant
3242 = pending_stack_adjust - adjustment + unadjusted_args_size;
3243
3244 *adjustment_out = adjustment;
3245 return true;
3246 }
3247
3248 /* Scan X expression if it does not dereference any argument slots
3249 we already clobbered by tail call arguments (as noted in stored_args_map
3250 bitmap).
3251 Return nonzero if X expression dereferences such argument slots,
3252 zero otherwise. */
3253
3254 static int
3255 check_sibcall_argument_overlap_1 (rtx x)
3256 {
3257 RTX_CODE code;
3258 int i, j;
3259 const char *fmt;
3260
3261 if (x == NULL_RTX)
3262 return 0;
3263
3264 code = GET_CODE (x);
3265
3266 /* We need not check the operands of the CALL expression itself. */
3267 if (code == CALL)
3268 return 0;
3269
3270 if (code == MEM)
3271 return (mem_might_overlap_already_clobbered_arg_p
3272 (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x))));
3273
3274 /* Scan all subexpressions. */
3275 fmt = GET_RTX_FORMAT (code);
3276 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3277 {
3278 if (*fmt == 'e')
3279 {
3280 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
3281 return 1;
3282 }
3283 else if (*fmt == 'E')
3284 {
3285 for (j = 0; j < XVECLEN (x, i); j++)
3286 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
3287 return 1;
3288 }
3289 }
3290 return 0;
3291 }
3292
3293 /* Scan sequence after INSN if it does not dereference any argument slots
3294 we already clobbered by tail call arguments (as noted in stored_args_map
3295 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
3296 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
3297 should be 0). Return nonzero if sequence after INSN dereferences such argument
3298 slots, zero otherwise. */
3299
3300 static int
3301 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
3302 int mark_stored_args_map)
3303 {
3304 poly_uint64 low, high;
3305 unsigned HOST_WIDE_INT const_low, const_high;
3306
3307 if (insn == NULL_RTX)
3308 insn = get_insns ();
3309 else
3310 insn = NEXT_INSN (insn);
3311
3312 for (; insn; insn = NEXT_INSN (insn))
3313 if (INSN_P (insn)
3314 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
3315 break;
3316
3317 if (mark_stored_args_map)
3318 {
3319 if (ARGS_GROW_DOWNWARD)
3320 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
3321 else
3322 low = arg->locate.slot_offset.constant;
3323 high = low + arg->locate.size.constant;
3324
3325 const_low = constant_lower_bound (low);
3326 if (high.is_constant (&const_high))
3327 for (unsigned HOST_WIDE_INT i = const_low; i < const_high; ++i)
3328 bitmap_set_bit (stored_args_map, i);
3329 else
3330 stored_args_watermark = MIN (stored_args_watermark, const_low);
3331 }
3332 return insn != NULL_RTX;
3333 }
3334
3335 /* Given that a function returns a value of mode MODE at the most
3336 significant end of hard register VALUE, shift VALUE left or right
3337 as specified by LEFT_P. Return true if some action was needed. */
3338
3339 bool
3340 shift_return_value (machine_mode mode, bool left_p, rtx value)
3341 {
3342 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
3343 machine_mode value_mode = GET_MODE (value);
3344 poly_int64 shift = GET_MODE_BITSIZE (value_mode) - GET_MODE_BITSIZE (mode);
3345
3346 if (known_eq (shift, 0))
3347 return false;
3348
3349 /* Use ashr rather than lshr for right shifts. This is for the benefit
3350 of the MIPS port, which requires SImode values to be sign-extended
3351 when stored in 64-bit registers. */
3352 if (!force_expand_binop (value_mode, left_p ? ashl_optab : ashr_optab,
3353 value, gen_int_shift_amount (value_mode, shift),
3354 value, 1, OPTAB_WIDEN))
3355 gcc_unreachable ();
3356 return true;
3357 }
3358
3359 /* If X is a likely-spilled register value, copy it to a pseudo
3360 register and return that register. Return X otherwise. */
3361
3362 static rtx
3363 avoid_likely_spilled_reg (rtx x)
3364 {
3365 rtx new_rtx;
3366
3367 if (REG_P (x)
3368 && HARD_REGISTER_P (x)
3369 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
3370 {
3371 /* Make sure that we generate a REG rather than a CONCAT.
3372 Moves into CONCATs can need nontrivial instructions,
3373 and the whole point of this function is to avoid
3374 using the hard register directly in such a situation. */
3375 generating_concat_p = 0;
3376 new_rtx = gen_reg_rtx (GET_MODE (x));
3377 generating_concat_p = 1;
3378 emit_move_insn (new_rtx, x);
3379 return new_rtx;
3380 }
3381 return x;
3382 }
3383
3384 /* Helper function for expand_call.
3385 Return false is EXP is not implementable as a sibling call. */
3386
3387 static bool
3388 can_implement_as_sibling_call_p (tree exp,
3389 rtx structure_value_addr,
3390 tree funtype,
3391 int reg_parm_stack_space ATTRIBUTE_UNUSED,
3392 tree fndecl,
3393 int flags,
3394 tree addr,
3395 const args_size &args_size)
3396 {
3397 if (!targetm.have_sibcall_epilogue ())
3398 {
3399 maybe_complain_about_tail_call
3400 (exp,
3401 "machine description does not have"
3402 " a sibcall_epilogue instruction pattern");
3403 return false;
3404 }
3405
3406 /* Doing sibling call optimization needs some work, since
3407 structure_value_addr can be allocated on the stack.
3408 It does not seem worth the effort since few optimizable
3409 sibling calls will return a structure. */
3410 if (structure_value_addr != NULL_RTX)
3411 {
3412 maybe_complain_about_tail_call (exp, "callee returns a structure");
3413 return false;
3414 }
3415
3416 #ifdef REG_PARM_STACK_SPACE
3417 /* If outgoing reg parm stack space changes, we cannot do sibcall. */
3418 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
3419 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
3420 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
3421 {
3422 maybe_complain_about_tail_call (exp,
3423 "inconsistent size of stack space"
3424 " allocated for arguments which are"
3425 " passed in registers");
3426 return false;
3427 }
3428 #endif
3429
3430 /* Check whether the target is able to optimize the call
3431 into a sibcall. */
3432 if (!targetm.function_ok_for_sibcall (fndecl, exp))
3433 {
3434 maybe_complain_about_tail_call (exp,
3435 "target is not able to optimize the"
3436 " call into a sibling call");
3437 return false;
3438 }
3439
3440 /* Functions that do not return exactly once may not be sibcall
3441 optimized. */
3442 if (flags & ECF_RETURNS_TWICE)
3443 {
3444 maybe_complain_about_tail_call (exp, "callee returns twice");
3445 return false;
3446 }
3447 if (flags & ECF_NORETURN)
3448 {
3449 maybe_complain_about_tail_call (exp, "callee does not return");
3450 return false;
3451 }
3452
3453 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
3454 {
3455 maybe_complain_about_tail_call (exp, "volatile function type");
3456 return false;
3457 }
3458
3459 /* If the called function is nested in the current one, it might access
3460 some of the caller's arguments, but could clobber them beforehand if
3461 the argument areas are shared. */
3462 if (fndecl && decl_function_context (fndecl) == current_function_decl)
3463 {
3464 maybe_complain_about_tail_call (exp, "nested function");
3465 return false;
3466 }
3467
3468 /* If this function requires more stack slots than the current
3469 function, we cannot change it into a sibling call.
3470 crtl->args.pretend_args_size is not part of the
3471 stack allocated by our caller. */
3472 if (maybe_gt (args_size.constant,
3473 crtl->args.size - crtl->args.pretend_args_size))
3474 {
3475 maybe_complain_about_tail_call (exp,
3476 "callee required more stack slots"
3477 " than the caller");
3478 return false;
3479 }
3480
3481 /* If the callee pops its own arguments, then it must pop exactly
3482 the same number of arguments as the current function. */
3483 if (maybe_ne (targetm.calls.return_pops_args (fndecl, funtype,
3484 args_size.constant),
3485 targetm.calls.return_pops_args (current_function_decl,
3486 TREE_TYPE
3487 (current_function_decl),
3488 crtl->args.size)))
3489 {
3490 maybe_complain_about_tail_call (exp,
3491 "inconsistent number of"
3492 " popped arguments");
3493 return false;
3494 }
3495
3496 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
3497 {
3498 maybe_complain_about_tail_call (exp, "frontend does not support"
3499 " sibling call");
3500 return false;
3501 }
3502
3503 /* All checks passed. */
3504 return true;
3505 }
3506
3507 /* Update stack alignment when the parameter is passed in the stack
3508 since the outgoing parameter requires extra alignment on the calling
3509 function side. */
3510
3511 static void
3512 update_stack_alignment_for_call (struct locate_and_pad_arg_data *locate)
3513 {
3514 if (crtl->stack_alignment_needed < locate->boundary)
3515 crtl->stack_alignment_needed = locate->boundary;
3516 if (crtl->preferred_stack_boundary < locate->boundary)
3517 crtl->preferred_stack_boundary = locate->boundary;
3518 }
3519
3520 /* Generate all the code for a CALL_EXPR exp
3521 and return an rtx for its value.
3522 Store the value in TARGET (specified as an rtx) if convenient.
3523 If the value is stored in TARGET then TARGET is returned.
3524 If IGNORE is nonzero, then we ignore the value of the function call. */
3525
3526 rtx
3527 expand_call (tree exp, rtx target, int ignore)
3528 {
3529 /* Nonzero if we are currently expanding a call. */
3530 static int currently_expanding_call = 0;
3531
3532 /* RTX for the function to be called. */
3533 rtx funexp;
3534 /* Sequence of insns to perform a normal "call". */
3535 rtx_insn *normal_call_insns = NULL;
3536 /* Sequence of insns to perform a tail "call". */
3537 rtx_insn *tail_call_insns = NULL;
3538 /* Data type of the function. */
3539 tree funtype;
3540 tree type_arg_types;
3541 tree rettype;
3542 /* Declaration of the function being called,
3543 or 0 if the function is computed (not known by name). */
3544 tree fndecl = 0;
3545 /* The type of the function being called. */
3546 tree fntype;
3547 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
3548 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
3549 int pass;
3550
3551 /* Register in which non-BLKmode value will be returned,
3552 or 0 if no value or if value is BLKmode. */
3553 rtx valreg;
3554 /* Address where we should return a BLKmode value;
3555 0 if value not BLKmode. */
3556 rtx structure_value_addr = 0;
3557 /* Nonzero if that address is being passed by treating it as
3558 an extra, implicit first parameter. Otherwise,
3559 it is passed by being copied directly into struct_value_rtx. */
3560 int structure_value_addr_parm = 0;
3561 /* Holds the value of implicit argument for the struct value. */
3562 tree structure_value_addr_value = NULL_TREE;
3563 /* Size of aggregate value wanted, or zero if none wanted
3564 or if we are using the non-reentrant PCC calling convention
3565 or expecting the value in registers. */
3566 poly_int64 struct_value_size = 0;
3567 /* Nonzero if called function returns an aggregate in memory PCC style,
3568 by returning the address of where to find it. */
3569 int pcc_struct_value = 0;
3570 rtx struct_value = 0;
3571
3572 /* Number of actual parameters in this call, including struct value addr. */
3573 int num_actuals;
3574 /* Number of named args. Args after this are anonymous ones
3575 and they must all go on the stack. */
3576 int n_named_args;
3577 /* Number of complex actual arguments that need to be split. */
3578 int num_complex_actuals = 0;
3579
3580 /* Vector of information about each argument.
3581 Arguments are numbered in the order they will be pushed,
3582 not the order they are written. */
3583 struct arg_data *args;
3584
3585 /* Total size in bytes of all the stack-parms scanned so far. */
3586 struct args_size args_size;
3587 struct args_size adjusted_args_size;
3588 /* Size of arguments before any adjustments (such as rounding). */
3589 poly_int64 unadjusted_args_size;
3590 /* Data on reg parms scanned so far. */
3591 CUMULATIVE_ARGS args_so_far_v;
3592 cumulative_args_t args_so_far;
3593 /* Nonzero if a reg parm has been scanned. */
3594 int reg_parm_seen;
3595 /* Nonzero if this is an indirect function call. */
3596
3597 /* Nonzero if we must avoid push-insns in the args for this call.
3598 If stack space is allocated for register parameters, but not by the
3599 caller, then it is preallocated in the fixed part of the stack frame.
3600 So the entire argument block must then be preallocated (i.e., we
3601 ignore PUSH_ROUNDING in that case). */
3602
3603 int must_preallocate = !PUSH_ARGS;
3604
3605 /* Size of the stack reserved for parameter registers. */
3606 int reg_parm_stack_space = 0;
3607
3608 /* Address of space preallocated for stack parms
3609 (on machines that lack push insns), or 0 if space not preallocated. */
3610 rtx argblock = 0;
3611
3612 /* Mask of ECF_ and ERF_ flags. */
3613 int flags = 0;
3614 int return_flags = 0;
3615 #ifdef REG_PARM_STACK_SPACE
3616 /* Define the boundary of the register parm stack space that needs to be
3617 saved, if any. */
3618 int low_to_save, high_to_save;
3619 rtx save_area = 0; /* Place that it is saved */
3620 #endif
3621
3622 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3623 char *initial_stack_usage_map = stack_usage_map;
3624 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
3625 char *stack_usage_map_buf = NULL;
3626
3627 poly_int64 old_stack_allocated;
3628
3629 /* State variables to track stack modifications. */
3630 rtx old_stack_level = 0;
3631 int old_stack_arg_under_construction = 0;
3632 poly_int64 old_pending_adj = 0;
3633 int old_inhibit_defer_pop = inhibit_defer_pop;
3634
3635 /* Some stack pointer alterations we make are performed via
3636 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3637 which we then also need to save/restore along the way. */
3638 poly_int64 old_stack_pointer_delta = 0;
3639
3640 rtx call_fusage;
3641 tree addr = CALL_EXPR_FN (exp);
3642 int i;
3643 /* The alignment of the stack, in bits. */
3644 unsigned HOST_WIDE_INT preferred_stack_boundary;
3645 /* The alignment of the stack, in bytes. */
3646 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3647 /* The static chain value to use for this call. */
3648 rtx static_chain_value;
3649 /* See if this is "nothrow" function call. */
3650 if (TREE_NOTHROW (exp))
3651 flags |= ECF_NOTHROW;
3652
3653 /* See if we can find a DECL-node for the actual function, and get the
3654 function attributes (flags) from the function decl or type node. */
3655 fndecl = get_callee_fndecl (exp);
3656 if (fndecl)
3657 {
3658 fntype = TREE_TYPE (fndecl);
3659 flags |= flags_from_decl_or_type (fndecl);
3660 return_flags |= decl_return_flags (fndecl);
3661 }
3662 else
3663 {
3664 fntype = TREE_TYPE (TREE_TYPE (addr));
3665 flags |= flags_from_decl_or_type (fntype);
3666 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3667 flags |= ECF_BY_DESCRIPTOR;
3668 }
3669 rettype = TREE_TYPE (exp);
3670
3671 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3672
3673 /* Warn if this value is an aggregate type,
3674 regardless of which calling convention we are using for it. */
3675 if (AGGREGATE_TYPE_P (rettype))
3676 warning (OPT_Waggregate_return, "function call has aggregate value");
3677
3678 /* If the result of a non looping pure or const function call is
3679 ignored (or void), and none of its arguments are volatile, we can
3680 avoid expanding the call and just evaluate the arguments for
3681 side-effects. */
3682 if ((flags & (ECF_CONST | ECF_PURE))
3683 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3684 && (ignore || target == const0_rtx
3685 || TYPE_MODE (rettype) == VOIDmode))
3686 {
3687 bool volatilep = false;
3688 tree arg;
3689 call_expr_arg_iterator iter;
3690
3691 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3692 if (TREE_THIS_VOLATILE (arg))
3693 {
3694 volatilep = true;
3695 break;
3696 }
3697
3698 if (! volatilep)
3699 {
3700 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3701 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3702 return const0_rtx;
3703 }
3704 }
3705
3706 #ifdef REG_PARM_STACK_SPACE
3707 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3708 #endif
3709
3710 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3711 && reg_parm_stack_space > 0 && PUSH_ARGS)
3712 must_preallocate = 1;
3713
3714 /* Set up a place to return a structure. */
3715
3716 /* Cater to broken compilers. */
3717 if (aggregate_value_p (exp, fntype))
3718 {
3719 /* This call returns a big structure. */
3720 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3721
3722 #ifdef PCC_STATIC_STRUCT_RETURN
3723 {
3724 pcc_struct_value = 1;
3725 }
3726 #else /* not PCC_STATIC_STRUCT_RETURN */
3727 {
3728 if (!poly_int_tree_p (TYPE_SIZE_UNIT (rettype), &struct_value_size))
3729 struct_value_size = -1;
3730
3731 /* Even if it is semantically safe to use the target as the return
3732 slot, it may be not sufficiently aligned for the return type. */
3733 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3734 && target
3735 && MEM_P (target)
3736 /* If rettype is addressable, we may not create a temporary.
3737 If target is properly aligned at runtime and the compiler
3738 just doesn't know about it, it will work fine, otherwise it
3739 will be UB. */
3740 && (TREE_ADDRESSABLE (rettype)
3741 || !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3742 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
3743 MEM_ALIGN (target)))))
3744 structure_value_addr = XEXP (target, 0);
3745 else
3746 {
3747 /* For variable-sized objects, we must be called with a target
3748 specified. If we were to allocate space on the stack here,
3749 we would have no way of knowing when to free it. */
3750 rtx d = assign_temp (rettype, 1, 1);
3751 structure_value_addr = XEXP (d, 0);
3752 target = 0;
3753 }
3754 }
3755 #endif /* not PCC_STATIC_STRUCT_RETURN */
3756 }
3757
3758 /* Figure out the amount to which the stack should be aligned. */
3759 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3760 if (fndecl)
3761 {
3762 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3763 /* Without automatic stack alignment, we can't increase preferred
3764 stack boundary. With automatic stack alignment, it is
3765 unnecessary since unless we can guarantee that all callers will
3766 align the outgoing stack properly, callee has to align its
3767 stack anyway. */
3768 if (i
3769 && i->preferred_incoming_stack_boundary
3770 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3771 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3772 }
3773
3774 /* Operand 0 is a pointer-to-function; get the type of the function. */
3775 funtype = TREE_TYPE (addr);
3776 gcc_assert (POINTER_TYPE_P (funtype));
3777 funtype = TREE_TYPE (funtype);
3778
3779 /* Count whether there are actual complex arguments that need to be split
3780 into their real and imaginary parts. Munge the type_arg_types
3781 appropriately here as well. */
3782 if (targetm.calls.split_complex_arg)
3783 {
3784 call_expr_arg_iterator iter;
3785 tree arg;
3786 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3787 {
3788 tree type = TREE_TYPE (arg);
3789 if (type && TREE_CODE (type) == COMPLEX_TYPE
3790 && targetm.calls.split_complex_arg (type))
3791 num_complex_actuals++;
3792 }
3793 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3794 }
3795 else
3796 type_arg_types = TYPE_ARG_TYPES (funtype);
3797
3798 if (flags & ECF_MAY_BE_ALLOCA)
3799 cfun->calls_alloca = 1;
3800
3801 /* If struct_value_rtx is 0, it means pass the address
3802 as if it were an extra parameter. Put the argument expression
3803 in structure_value_addr_value. */
3804 if (structure_value_addr && struct_value == 0)
3805 {
3806 /* If structure_value_addr is a REG other than
3807 virtual_outgoing_args_rtx, we can use always use it. If it
3808 is not a REG, we must always copy it into a register.
3809 If it is virtual_outgoing_args_rtx, we must copy it to another
3810 register in some cases. */
3811 rtx temp = (!REG_P (structure_value_addr)
3812 || (ACCUMULATE_OUTGOING_ARGS
3813 && stack_arg_under_construction
3814 && structure_value_addr == virtual_outgoing_args_rtx)
3815 ? copy_addr_to_reg (convert_memory_address
3816 (Pmode, structure_value_addr))
3817 : structure_value_addr);
3818
3819 structure_value_addr_value =
3820 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3821 structure_value_addr_parm = 1;
3822 }
3823
3824 /* Count the arguments and set NUM_ACTUALS. */
3825 num_actuals =
3826 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3827
3828 /* Compute number of named args.
3829 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3830
3831 if (type_arg_types != 0)
3832 n_named_args
3833 = (list_length (type_arg_types)
3834 /* Count the struct value address, if it is passed as a parm. */
3835 + structure_value_addr_parm);
3836 else
3837 /* If we know nothing, treat all args as named. */
3838 n_named_args = num_actuals;
3839
3840 /* Start updating where the next arg would go.
3841
3842 On some machines (such as the PA) indirect calls have a different
3843 calling convention than normal calls. The fourth argument in
3844 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3845 or not. */
3846 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3847 args_so_far = pack_cumulative_args (&args_so_far_v);
3848
3849 /* Now possibly adjust the number of named args.
3850 Normally, don't include the last named arg if anonymous args follow.
3851 We do include the last named arg if
3852 targetm.calls.strict_argument_naming() returns nonzero.
3853 (If no anonymous args follow, the result of list_length is actually
3854 one too large. This is harmless.)
3855
3856 If targetm.calls.pretend_outgoing_varargs_named() returns
3857 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3858 this machine will be able to place unnamed args that were passed
3859 in registers into the stack. So treat all args as named. This
3860 allows the insns emitting for a specific argument list to be
3861 independent of the function declaration.
3862
3863 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3864 we do not have any reliable way to pass unnamed args in
3865 registers, so we must force them into memory. */
3866
3867 if (type_arg_types != 0
3868 && targetm.calls.strict_argument_naming (args_so_far))
3869 ;
3870 else if (type_arg_types != 0
3871 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3872 /* Don't include the last named arg. */
3873 --n_named_args;
3874 else
3875 /* Treat all args as named. */
3876 n_named_args = num_actuals;
3877
3878 /* Make a vector to hold all the information about each arg. */
3879 args = XCNEWVEC (struct arg_data, num_actuals);
3880
3881 /* Build up entries in the ARGS array, compute the size of the
3882 arguments into ARGS_SIZE, etc. */
3883 initialize_argument_information (num_actuals, args, &args_size,
3884 n_named_args, exp,
3885 structure_value_addr_value, fndecl, fntype,
3886 args_so_far, reg_parm_stack_space,
3887 &old_stack_level, &old_pending_adj,
3888 &must_preallocate, &flags,
3889 &try_tail_call, CALL_FROM_THUNK_P (exp));
3890
3891 if (args_size.var)
3892 must_preallocate = 1;
3893
3894 /* Now make final decision about preallocating stack space. */
3895 must_preallocate = finalize_must_preallocate (must_preallocate,
3896 num_actuals, args,
3897 &args_size);
3898
3899 /* If the structure value address will reference the stack pointer, we
3900 must stabilize it. We don't need to do this if we know that we are
3901 not going to adjust the stack pointer in processing this call. */
3902
3903 if (structure_value_addr
3904 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3905 || reg_mentioned_p (virtual_outgoing_args_rtx,
3906 structure_value_addr))
3907 && (args_size.var
3908 || (!ACCUMULATE_OUTGOING_ARGS
3909 && maybe_ne (args_size.constant, 0))))
3910 structure_value_addr = copy_to_reg (structure_value_addr);
3911
3912 /* Tail calls can make things harder to debug, and we've traditionally
3913 pushed these optimizations into -O2. Don't try if we're already
3914 expanding a call, as that means we're an argument. Don't try if
3915 there's cleanups, as we know there's code to follow the call. */
3916 if (currently_expanding_call++ != 0
3917 || (!flag_optimize_sibling_calls && !CALL_FROM_THUNK_P (exp))
3918 || args_size.var
3919 || dbg_cnt (tail_call) == false)
3920 try_tail_call = 0;
3921
3922 /* Workaround buggy C/C++ wrappers around Fortran routines with
3923 character(len=constant) arguments if the hidden string length arguments
3924 are passed on the stack; if the callers forget to pass those arguments,
3925 attempting to tail call in such routines leads to stack corruption.
3926 Avoid tail calls in functions where at least one such hidden string
3927 length argument is passed (partially or fully) on the stack in the
3928 caller and the callee needs to pass any arguments on the stack.
3929 See PR90329. */
3930 if (try_tail_call && maybe_ne (args_size.constant, 0))
3931 for (tree arg = DECL_ARGUMENTS (current_function_decl);
3932 arg; arg = DECL_CHAIN (arg))
3933 if (DECL_HIDDEN_STRING_LENGTH (arg) && DECL_INCOMING_RTL (arg))
3934 {
3935 subrtx_iterator::array_type array;
3936 FOR_EACH_SUBRTX (iter, array, DECL_INCOMING_RTL (arg), NONCONST)
3937 if (MEM_P (*iter))
3938 {
3939 try_tail_call = 0;
3940 break;
3941 }
3942 }
3943
3944 /* If the user has marked the function as requiring tail-call
3945 optimization, attempt it. */
3946 if (must_tail_call)
3947 try_tail_call = 1;
3948
3949 /* Rest of purposes for tail call optimizations to fail. */
3950 if (try_tail_call)
3951 try_tail_call = can_implement_as_sibling_call_p (exp,
3952 structure_value_addr,
3953 funtype,
3954 reg_parm_stack_space,
3955 fndecl,
3956 flags, addr, args_size);
3957
3958 /* Check if caller and callee disagree in promotion of function
3959 return value. */
3960 if (try_tail_call)
3961 {
3962 machine_mode caller_mode, caller_promoted_mode;
3963 machine_mode callee_mode, callee_promoted_mode;
3964 int caller_unsignedp, callee_unsignedp;
3965 tree caller_res = DECL_RESULT (current_function_decl);
3966
3967 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3968 caller_mode = DECL_MODE (caller_res);
3969 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3970 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3971 caller_promoted_mode
3972 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3973 &caller_unsignedp,
3974 TREE_TYPE (current_function_decl), 1);
3975 callee_promoted_mode
3976 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3977 &callee_unsignedp,
3978 funtype, 1);
3979 if (caller_mode != VOIDmode
3980 && (caller_promoted_mode != callee_promoted_mode
3981 || ((caller_mode != caller_promoted_mode
3982 || callee_mode != callee_promoted_mode)
3983 && (caller_unsignedp != callee_unsignedp
3984 || partial_subreg_p (caller_mode, callee_mode)))))
3985 {
3986 try_tail_call = 0;
3987 maybe_complain_about_tail_call (exp,
3988 "caller and callee disagree in"
3989 " promotion of function"
3990 " return value");
3991 }
3992 }
3993
3994 /* Ensure current function's preferred stack boundary is at least
3995 what we need. Stack alignment may also increase preferred stack
3996 boundary. */
3997 for (i = 0; i < num_actuals; i++)
3998 if (reg_parm_stack_space > 0
3999 || args[i].reg == 0
4000 || args[i].partial != 0
4001 || args[i].pass_on_stack)
4002 update_stack_alignment_for_call (&args[i].locate);
4003 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
4004 crtl->preferred_stack_boundary = preferred_stack_boundary;
4005 else
4006 preferred_stack_boundary = crtl->preferred_stack_boundary;
4007
4008 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
4009
4010 if (flag_callgraph_info)
4011 record_final_call (fndecl, EXPR_LOCATION (exp));
4012
4013 /* We want to make two insn chains; one for a sibling call, the other
4014 for a normal call. We will select one of the two chains after
4015 initial RTL generation is complete. */
4016 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
4017 {
4018 int sibcall_failure = 0;
4019 /* We want to emit any pending stack adjustments before the tail
4020 recursion "call". That way we know any adjustment after the tail
4021 recursion call can be ignored if we indeed use the tail
4022 call expansion. */
4023 saved_pending_stack_adjust save;
4024 rtx_insn *insns, *before_call, *after_args;
4025 rtx next_arg_reg;
4026
4027 if (pass == 0)
4028 {
4029 /* State variables we need to save and restore between
4030 iterations. */
4031 save_pending_stack_adjust (&save);
4032 }
4033 if (pass)
4034 flags &= ~ECF_SIBCALL;
4035 else
4036 flags |= ECF_SIBCALL;
4037
4038 /* Other state variables that we must reinitialize each time
4039 through the loop (that are not initialized by the loop itself). */
4040 argblock = 0;
4041 call_fusage = 0;
4042
4043 /* Start a new sequence for the normal call case.
4044
4045 From this point on, if the sibling call fails, we want to set
4046 sibcall_failure instead of continuing the loop. */
4047 start_sequence ();
4048
4049 /* Don't let pending stack adjusts add up to too much.
4050 Also, do all pending adjustments now if there is any chance
4051 this might be a call to alloca or if we are expanding a sibling
4052 call sequence.
4053 Also do the adjustments before a throwing call, otherwise
4054 exception handling can fail; PR 19225. */
4055 if (maybe_ge (pending_stack_adjust, 32)
4056 || (maybe_ne (pending_stack_adjust, 0)
4057 && (flags & ECF_MAY_BE_ALLOCA))
4058 || (maybe_ne (pending_stack_adjust, 0)
4059 && flag_exceptions && !(flags & ECF_NOTHROW))
4060 || pass == 0)
4061 do_pending_stack_adjust ();
4062
4063 /* Precompute any arguments as needed. */
4064 if (pass)
4065 precompute_arguments (num_actuals, args);
4066
4067 /* Now we are about to start emitting insns that can be deleted
4068 if a libcall is deleted. */
4069 if (pass && (flags & ECF_MALLOC))
4070 start_sequence ();
4071
4072 if (pass == 0
4073 && crtl->stack_protect_guard
4074 && targetm.stack_protect_runtime_enabled_p ())
4075 stack_protect_epilogue ();
4076
4077 adjusted_args_size = args_size;
4078 /* Compute the actual size of the argument block required. The variable
4079 and constant sizes must be combined, the size may have to be rounded,
4080 and there may be a minimum required size. When generating a sibcall
4081 pattern, do not round up, since we'll be re-using whatever space our
4082 caller provided. */
4083 unadjusted_args_size
4084 = compute_argument_block_size (reg_parm_stack_space,
4085 &adjusted_args_size,
4086 fndecl, fntype,
4087 (pass == 0 ? 0
4088 : preferred_stack_boundary));
4089
4090 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4091
4092 /* The argument block when performing a sibling call is the
4093 incoming argument block. */
4094 if (pass == 0)
4095 {
4096 argblock = crtl->args.internal_arg_pointer;
4097 if (STACK_GROWS_DOWNWARD)
4098 argblock
4099 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
4100 else
4101 argblock
4102 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
4103
4104 HOST_WIDE_INT map_size = constant_lower_bound (args_size.constant);
4105 stored_args_map = sbitmap_alloc (map_size);
4106 bitmap_clear (stored_args_map);
4107 stored_args_watermark = HOST_WIDE_INT_M1U;
4108 }
4109
4110 /* If we have no actual push instructions, or shouldn't use them,
4111 make space for all args right now. */
4112 else if (adjusted_args_size.var != 0)
4113 {
4114 if (old_stack_level == 0)
4115 {
4116 emit_stack_save (SAVE_BLOCK, &old_stack_level);
4117 old_stack_pointer_delta = stack_pointer_delta;
4118 old_pending_adj = pending_stack_adjust;
4119 pending_stack_adjust = 0;
4120 /* stack_arg_under_construction says whether a stack arg is
4121 being constructed at the old stack level. Pushing the stack
4122 gets a clean outgoing argument block. */
4123 old_stack_arg_under_construction = stack_arg_under_construction;
4124 stack_arg_under_construction = 0;
4125 }
4126 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
4127 if (flag_stack_usage_info)
4128 current_function_has_unbounded_dynamic_stack_size = 1;
4129 }
4130 else
4131 {
4132 /* Note that we must go through the motions of allocating an argument
4133 block even if the size is zero because we may be storing args
4134 in the area reserved for register arguments, which may be part of
4135 the stack frame. */
4136
4137 poly_int64 needed = adjusted_args_size.constant;
4138
4139 /* Store the maximum argument space used. It will be pushed by
4140 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
4141 checking). */
4142
4143 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
4144 needed);
4145
4146 if (must_preallocate)
4147 {
4148 if (ACCUMULATE_OUTGOING_ARGS)
4149 {
4150 /* Since the stack pointer will never be pushed, it is
4151 possible for the evaluation of a parm to clobber
4152 something we have already written to the stack.
4153 Since most function calls on RISC machines do not use
4154 the stack, this is uncommon, but must work correctly.
4155
4156 Therefore, we save any area of the stack that was already
4157 written and that we are using. Here we set up to do this
4158 by making a new stack usage map from the old one. The
4159 actual save will be done by store_one_arg.
4160
4161 Another approach might be to try to reorder the argument
4162 evaluations to avoid this conflicting stack usage. */
4163
4164 /* Since we will be writing into the entire argument area,
4165 the map must be allocated for its entire size, not just
4166 the part that is the responsibility of the caller. */
4167 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4168 needed += reg_parm_stack_space;
4169
4170 poly_int64 limit = needed;
4171 if (ARGS_GROW_DOWNWARD)
4172 limit += 1;
4173
4174 /* For polynomial sizes, this is the maximum possible
4175 size needed for arguments with a constant size
4176 and offset. */
4177 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
4178 highest_outgoing_arg_in_use
4179 = MAX (initial_highest_arg_in_use, const_limit);
4180
4181 free (stack_usage_map_buf);
4182 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
4183 stack_usage_map = stack_usage_map_buf;
4184
4185 if (initial_highest_arg_in_use)
4186 memcpy (stack_usage_map, initial_stack_usage_map,
4187 initial_highest_arg_in_use);
4188
4189 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
4190 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
4191 (highest_outgoing_arg_in_use
4192 - initial_highest_arg_in_use));
4193 needed = 0;
4194
4195 /* The address of the outgoing argument list must not be
4196 copied to a register here, because argblock would be left
4197 pointing to the wrong place after the call to
4198 allocate_dynamic_stack_space below. */
4199
4200 argblock = virtual_outgoing_args_rtx;
4201 }
4202 else
4203 {
4204 /* Try to reuse some or all of the pending_stack_adjust
4205 to get this space. */
4206 if (inhibit_defer_pop == 0
4207 && (combine_pending_stack_adjustment_and_call
4208 (&needed,
4209 unadjusted_args_size,
4210 &adjusted_args_size,
4211 preferred_unit_stack_boundary)))
4212 {
4213 /* combine_pending_stack_adjustment_and_call computes
4214 an adjustment before the arguments are allocated.
4215 Account for them and see whether or not the stack
4216 needs to go up or down. */
4217 needed = unadjusted_args_size - needed;
4218
4219 /* Checked by
4220 combine_pending_stack_adjustment_and_call. */
4221 gcc_checking_assert (ordered_p (needed, 0));
4222 if (maybe_lt (needed, 0))
4223 {
4224 /* We're releasing stack space. */
4225 /* ??? We can avoid any adjustment at all if we're
4226 already aligned. FIXME. */
4227 pending_stack_adjust = -needed;
4228 do_pending_stack_adjust ();
4229 needed = 0;
4230 }
4231 else
4232 /* We need to allocate space. We'll do that in
4233 push_block below. */
4234 pending_stack_adjust = 0;
4235 }
4236
4237 /* Special case this because overhead of `push_block' in
4238 this case is non-trivial. */
4239 if (known_eq (needed, 0))
4240 argblock = virtual_outgoing_args_rtx;
4241 else
4242 {
4243 rtx needed_rtx = gen_int_mode (needed, Pmode);
4244 argblock = push_block (needed_rtx, 0, 0);
4245 if (ARGS_GROW_DOWNWARD)
4246 argblock = plus_constant (Pmode, argblock, needed);
4247 }
4248
4249 /* We only really need to call `copy_to_reg' in the case
4250 where push insns are going to be used to pass ARGBLOCK
4251 to a function call in ARGS. In that case, the stack
4252 pointer changes value from the allocation point to the
4253 call point, and hence the value of
4254 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
4255 as well always do it. */
4256 argblock = copy_to_reg (argblock);
4257 }
4258 }
4259 }
4260
4261 if (ACCUMULATE_OUTGOING_ARGS)
4262 {
4263 /* The save/restore code in store_one_arg handles all
4264 cases except one: a constructor call (including a C
4265 function returning a BLKmode struct) to initialize
4266 an argument. */
4267 if (stack_arg_under_construction)
4268 {
4269 rtx push_size
4270 = (gen_int_mode
4271 (adjusted_args_size.constant
4272 + (OUTGOING_REG_PARM_STACK_SPACE (!fndecl ? fntype
4273 : TREE_TYPE (fndecl))
4274 ? 0 : reg_parm_stack_space), Pmode));
4275 if (old_stack_level == 0)
4276 {
4277 emit_stack_save (SAVE_BLOCK, &old_stack_level);
4278 old_stack_pointer_delta = stack_pointer_delta;
4279 old_pending_adj = pending_stack_adjust;
4280 pending_stack_adjust = 0;
4281 /* stack_arg_under_construction says whether a stack
4282 arg is being constructed at the old stack level.
4283 Pushing the stack gets a clean outgoing argument
4284 block. */
4285 old_stack_arg_under_construction
4286 = stack_arg_under_construction;
4287 stack_arg_under_construction = 0;
4288 /* Make a new map for the new argument list. */
4289 free (stack_usage_map_buf);
4290 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
4291 stack_usage_map = stack_usage_map_buf;
4292 highest_outgoing_arg_in_use = 0;
4293 stack_usage_watermark = HOST_WIDE_INT_M1U;
4294 }
4295 /* We can pass TRUE as the 4th argument because we just
4296 saved the stack pointer and will restore it right after
4297 the call. */
4298 allocate_dynamic_stack_space (push_size, 0, BIGGEST_ALIGNMENT,
4299 -1, true);
4300 }
4301
4302 /* If argument evaluation might modify the stack pointer,
4303 copy the address of the argument list to a register. */
4304 for (i = 0; i < num_actuals; i++)
4305 if (args[i].pass_on_stack)
4306 {
4307 argblock = copy_addr_to_reg (argblock);
4308 break;
4309 }
4310 }
4311
4312 compute_argument_addresses (args, argblock, num_actuals);
4313
4314 /* Stack is properly aligned, pops can't safely be deferred during
4315 the evaluation of the arguments. */
4316 NO_DEFER_POP;
4317
4318 /* Precompute all register parameters. It isn't safe to compute
4319 anything once we have started filling any specific hard regs.
4320 TLS symbols sometimes need a call to resolve. Precompute
4321 register parameters before any stack pointer manipulation
4322 to avoid unaligned stack in the called function. */
4323 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
4324
4325 OK_DEFER_POP;
4326
4327 /* Perform stack alignment before the first push (the last arg). */
4328 if (argblock == 0
4329 && maybe_gt (adjusted_args_size.constant, reg_parm_stack_space)
4330 && maybe_ne (adjusted_args_size.constant, unadjusted_args_size))
4331 {
4332 /* When the stack adjustment is pending, we get better code
4333 by combining the adjustments. */
4334 if (maybe_ne (pending_stack_adjust, 0)
4335 && ! inhibit_defer_pop
4336 && (combine_pending_stack_adjustment_and_call
4337 (&pending_stack_adjust,
4338 unadjusted_args_size,
4339 &adjusted_args_size,
4340 preferred_unit_stack_boundary)))
4341 do_pending_stack_adjust ();
4342 else if (argblock == 0)
4343 anti_adjust_stack (gen_int_mode (adjusted_args_size.constant
4344 - unadjusted_args_size,
4345 Pmode));
4346 }
4347 /* Now that the stack is properly aligned, pops can't safely
4348 be deferred during the evaluation of the arguments. */
4349 NO_DEFER_POP;
4350
4351 /* Record the maximum pushed stack space size. We need to delay
4352 doing it this far to take into account the optimization done
4353 by combine_pending_stack_adjustment_and_call. */
4354 if (flag_stack_usage_info
4355 && !ACCUMULATE_OUTGOING_ARGS
4356 && pass
4357 && adjusted_args_size.var == 0)
4358 {
4359 poly_int64 pushed = (adjusted_args_size.constant
4360 + pending_stack_adjust);
4361 current_function_pushed_stack_size
4362 = upper_bound (current_function_pushed_stack_size, pushed);
4363 }
4364
4365 funexp = rtx_for_function_call (fndecl, addr);
4366
4367 if (CALL_EXPR_STATIC_CHAIN (exp))
4368 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
4369 else
4370 static_chain_value = 0;
4371
4372 #ifdef REG_PARM_STACK_SPACE
4373 /* Save the fixed argument area if it's part of the caller's frame and
4374 is clobbered by argument setup for this call. */
4375 if (ACCUMULATE_OUTGOING_ARGS && pass)
4376 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4377 &low_to_save, &high_to_save);
4378 #endif
4379
4380 /* Now store (and compute if necessary) all non-register parms.
4381 These come before register parms, since they can require block-moves,
4382 which could clobber the registers used for register parms.
4383 Parms which have partial registers are not stored here,
4384 but we do preallocate space here if they want that. */
4385
4386 for (i = 0; i < num_actuals; i++)
4387 {
4388 if (args[i].reg == 0 || args[i].pass_on_stack)
4389 {
4390 rtx_insn *before_arg = get_last_insn ();
4391
4392 /* We don't allow passing huge (> 2^30 B) arguments
4393 by value. It would cause an overflow later on. */
4394 if (constant_lower_bound (adjusted_args_size.constant)
4395 >= (1 << (HOST_BITS_PER_INT - 2)))
4396 {
4397 sorry ("passing too large argument on stack");
4398 continue;
4399 }
4400
4401 if (store_one_arg (&args[i], argblock, flags,
4402 adjusted_args_size.var != 0,
4403 reg_parm_stack_space)
4404 || (pass == 0
4405 && check_sibcall_argument_overlap (before_arg,
4406 &args[i], 1)))
4407 sibcall_failure = 1;
4408 }
4409
4410 if (args[i].stack)
4411 call_fusage
4412 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
4413 gen_rtx_USE (VOIDmode, args[i].stack),
4414 call_fusage);
4415 }
4416
4417 /* If we have a parm that is passed in registers but not in memory
4418 and whose alignment does not permit a direct copy into registers,
4419 make a group of pseudos that correspond to each register that we
4420 will later fill. */
4421 if (STRICT_ALIGNMENT)
4422 store_unaligned_arguments_into_pseudos (args, num_actuals);
4423
4424 /* Now store any partially-in-registers parm.
4425 This is the last place a block-move can happen. */
4426 if (reg_parm_seen)
4427 for (i = 0; i < num_actuals; i++)
4428 if (args[i].partial != 0 && ! args[i].pass_on_stack)
4429 {
4430 rtx_insn *before_arg = get_last_insn ();
4431
4432 /* On targets with weird calling conventions (e.g. PA) it's
4433 hard to ensure that all cases of argument overlap between
4434 stack and registers work. Play it safe and bail out. */
4435 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
4436 {
4437 sibcall_failure = 1;
4438 break;
4439 }
4440
4441 if (store_one_arg (&args[i], argblock, flags,
4442 adjusted_args_size.var != 0,
4443 reg_parm_stack_space)
4444 || (pass == 0
4445 && check_sibcall_argument_overlap (before_arg,
4446 &args[i], 1)))
4447 sibcall_failure = 1;
4448 }
4449
4450 bool any_regs = false;
4451 for (i = 0; i < num_actuals; i++)
4452 if (args[i].reg != NULL_RTX)
4453 {
4454 any_regs = true;
4455 targetm.calls.call_args (args[i].reg, funtype);
4456 }
4457 if (!any_regs)
4458 targetm.calls.call_args (pc_rtx, funtype);
4459
4460 /* Figure out the register where the value, if any, will come back. */
4461 valreg = 0;
4462 if (TYPE_MODE (rettype) != VOIDmode
4463 && ! structure_value_addr)
4464 {
4465 if (pcc_struct_value)
4466 valreg = hard_function_value (build_pointer_type (rettype),
4467 fndecl, NULL, (pass == 0));
4468 else
4469 valreg = hard_function_value (rettype, fndecl, fntype,
4470 (pass == 0));
4471
4472 /* If VALREG is a PARALLEL whose first member has a zero
4473 offset, use that. This is for targets such as m68k that
4474 return the same value in multiple places. */
4475 if (GET_CODE (valreg) == PARALLEL)
4476 {
4477 rtx elem = XVECEXP (valreg, 0, 0);
4478 rtx where = XEXP (elem, 0);
4479 rtx offset = XEXP (elem, 1);
4480 if (offset == const0_rtx
4481 && GET_MODE (where) == GET_MODE (valreg))
4482 valreg = where;
4483 }
4484 }
4485
4486 /* If register arguments require space on the stack and stack space
4487 was not preallocated, allocate stack space here for arguments
4488 passed in registers. */
4489 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
4490 && !ACCUMULATE_OUTGOING_ARGS
4491 && must_preallocate == 0 && reg_parm_stack_space > 0)
4492 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
4493
4494 /* Pass the function the address in which to return a
4495 structure value. */
4496 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
4497 {
4498 structure_value_addr
4499 = convert_memory_address (Pmode, structure_value_addr);
4500 emit_move_insn (struct_value,
4501 force_reg (Pmode,
4502 force_operand (structure_value_addr,
4503 NULL_RTX)));
4504
4505 if (REG_P (struct_value))
4506 use_reg (&call_fusage, struct_value);
4507 }
4508
4509 after_args = get_last_insn ();
4510 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
4511 static_chain_value, &call_fusage,
4512 reg_parm_seen, flags);
4513
4514 load_register_parameters (args, num_actuals, &call_fusage, flags,
4515 pass == 0, &sibcall_failure);
4516
4517 /* Save a pointer to the last insn before the call, so that we can
4518 later safely search backwards to find the CALL_INSN. */
4519 before_call = get_last_insn ();
4520
4521 /* Set up next argument register. For sibling calls on machines
4522 with register windows this should be the incoming register. */
4523 if (pass == 0)
4524 next_arg_reg = targetm.calls.function_incoming_arg
4525 (args_so_far, function_arg_info::end_marker ());
4526 else
4527 next_arg_reg = targetm.calls.function_arg
4528 (args_so_far, function_arg_info::end_marker ());
4529
4530 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
4531 {
4532 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
4533 arg_nr = num_actuals - arg_nr - 1;
4534 if (arg_nr >= 0
4535 && arg_nr < num_actuals
4536 && args[arg_nr].reg
4537 && valreg
4538 && REG_P (valreg)
4539 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
4540 call_fusage
4541 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
4542 gen_rtx_SET (valreg, args[arg_nr].reg),
4543 call_fusage);
4544 }
4545 /* All arguments and registers used for the call must be set up by
4546 now! */
4547
4548 /* Stack must be properly aligned now. */
4549 gcc_assert (!pass
4550 || multiple_p (stack_pointer_delta,
4551 preferred_unit_stack_boundary));
4552
4553 /* Generate the actual call instruction. */
4554 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
4555 adjusted_args_size.constant, struct_value_size,
4556 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
4557 flags, args_so_far);
4558
4559 if (flag_ipa_ra)
4560 {
4561 rtx_call_insn *last;
4562 rtx datum = NULL_RTX;
4563 if (fndecl != NULL_TREE)
4564 {
4565 datum = XEXP (DECL_RTL (fndecl), 0);
4566 gcc_assert (datum != NULL_RTX
4567 && GET_CODE (datum) == SYMBOL_REF);
4568 }
4569 last = last_call_insn ();
4570 add_reg_note (last, REG_CALL_DECL, datum);
4571 }
4572
4573 /* If the call setup or the call itself overlaps with anything
4574 of the argument setup we probably clobbered our call address.
4575 In that case we can't do sibcalls. */
4576 if (pass == 0
4577 && check_sibcall_argument_overlap (after_args, 0, 0))
4578 sibcall_failure = 1;
4579
4580 /* If a non-BLKmode value is returned at the most significant end
4581 of a register, shift the register right by the appropriate amount
4582 and update VALREG accordingly. BLKmode values are handled by the
4583 group load/store machinery below. */
4584 if (!structure_value_addr
4585 && !pcc_struct_value
4586 && TYPE_MODE (rettype) != VOIDmode
4587 && TYPE_MODE (rettype) != BLKmode
4588 && REG_P (valreg)
4589 && targetm.calls.return_in_msb (rettype))
4590 {
4591 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
4592 sibcall_failure = 1;
4593 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
4594 }
4595
4596 if (pass && (flags & ECF_MALLOC))
4597 {
4598 rtx temp = gen_reg_rtx (GET_MODE (valreg));
4599 rtx_insn *last, *insns;
4600
4601 /* The return value from a malloc-like function is a pointer. */
4602 if (TREE_CODE (rettype) == POINTER_TYPE)
4603 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
4604
4605 emit_move_insn (temp, valreg);
4606
4607 /* The return value from a malloc-like function cannot alias
4608 anything else. */
4609 last = get_last_insn ();
4610 add_reg_note (last, REG_NOALIAS, temp);
4611
4612 /* Write out the sequence. */
4613 insns = get_insns ();
4614 end_sequence ();
4615 emit_insn (insns);
4616 valreg = temp;
4617 }
4618
4619 /* For calls to `setjmp', etc., inform
4620 function.c:setjmp_warnings that it should complain if
4621 nonvolatile values are live. For functions that cannot
4622 return, inform flow that control does not fall through. */
4623
4624 if ((flags & ECF_NORETURN) || pass == 0)
4625 {
4626 /* The barrier must be emitted
4627 immediately after the CALL_INSN. Some ports emit more
4628 than just a CALL_INSN above, so we must search for it here. */
4629
4630 rtx_insn *last = get_last_insn ();
4631 while (!CALL_P (last))
4632 {
4633 last = PREV_INSN (last);
4634 /* There was no CALL_INSN? */
4635 gcc_assert (last != before_call);
4636 }
4637
4638 emit_barrier_after (last);
4639
4640 /* Stack adjustments after a noreturn call are dead code.
4641 However when NO_DEFER_POP is in effect, we must preserve
4642 stack_pointer_delta. */
4643 if (inhibit_defer_pop == 0)
4644 {
4645 stack_pointer_delta = old_stack_allocated;
4646 pending_stack_adjust = 0;
4647 }
4648 }
4649
4650 /* If value type not void, return an rtx for the value. */
4651
4652 if (TYPE_MODE (rettype) == VOIDmode
4653 || ignore)
4654 target = const0_rtx;
4655 else if (structure_value_addr)
4656 {
4657 if (target == 0 || !MEM_P (target))
4658 {
4659 target
4660 = gen_rtx_MEM (TYPE_MODE (rettype),
4661 memory_address (TYPE_MODE (rettype),
4662 structure_value_addr));
4663 set_mem_attributes (target, rettype, 1);
4664 }
4665 }
4666 else if (pcc_struct_value)
4667 {
4668 /* This is the special C++ case where we need to
4669 know what the true target was. We take care to
4670 never use this value more than once in one expression. */
4671 target = gen_rtx_MEM (TYPE_MODE (rettype),
4672 copy_to_reg (valreg));
4673 set_mem_attributes (target, rettype, 1);
4674 }
4675 /* Handle calls that return values in multiple non-contiguous locations.
4676 The Irix 6 ABI has examples of this. */
4677 else if (GET_CODE (valreg) == PARALLEL)
4678 {
4679 if (target == 0)
4680 target = emit_group_move_into_temps (valreg);
4681 else if (rtx_equal_p (target, valreg))
4682 ;
4683 else if (GET_CODE (target) == PARALLEL)
4684 /* Handle the result of a emit_group_move_into_temps
4685 call in the previous pass. */
4686 emit_group_move (target, valreg);
4687 else
4688 emit_group_store (target, valreg, rettype,
4689 int_size_in_bytes (rettype));
4690 }
4691 else if (target
4692 && GET_MODE (target) == TYPE_MODE (rettype)
4693 && GET_MODE (target) == GET_MODE (valreg))
4694 {
4695 bool may_overlap = false;
4696
4697 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4698 reg to a plain register. */
4699 if (!REG_P (target) || HARD_REGISTER_P (target))
4700 valreg = avoid_likely_spilled_reg (valreg);
4701
4702 /* If TARGET is a MEM in the argument area, and we have
4703 saved part of the argument area, then we can't store
4704 directly into TARGET as it may get overwritten when we
4705 restore the argument save area below. Don't work too
4706 hard though and simply force TARGET to a register if it
4707 is a MEM; the optimizer is quite likely to sort it out. */
4708 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4709 for (i = 0; i < num_actuals; i++)
4710 if (args[i].save_area)
4711 {
4712 may_overlap = true;
4713 break;
4714 }
4715
4716 if (may_overlap)
4717 target = copy_to_reg (valreg);
4718 else
4719 {
4720 /* TARGET and VALREG cannot be equal at this point
4721 because the latter would not have
4722 REG_FUNCTION_VALUE_P true, while the former would if
4723 it were referring to the same register.
4724
4725 If they refer to the same register, this move will be
4726 a no-op, except when function inlining is being
4727 done. */
4728 emit_move_insn (target, valreg);
4729
4730 /* If we are setting a MEM, this code must be executed.
4731 Since it is emitted after the call insn, sibcall
4732 optimization cannot be performed in that case. */
4733 if (MEM_P (target))
4734 sibcall_failure = 1;
4735 }
4736 }
4737 else
4738 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4739
4740 /* If we promoted this return value, make the proper SUBREG.
4741 TARGET might be const0_rtx here, so be careful. */
4742 if (REG_P (target)
4743 && TYPE_MODE (rettype) != BLKmode
4744 && GET_MODE (target) != TYPE_MODE (rettype))
4745 {
4746 tree type = rettype;
4747 int unsignedp = TYPE_UNSIGNED (type);
4748 machine_mode pmode;
4749
4750 /* Ensure we promote as expected, and get the new unsignedness. */
4751 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4752 funtype, 1);
4753 gcc_assert (GET_MODE (target) == pmode);
4754
4755 poly_uint64 offset = subreg_lowpart_offset (TYPE_MODE (type),
4756 GET_MODE (target));
4757 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4758 SUBREG_PROMOTED_VAR_P (target) = 1;
4759 SUBREG_PROMOTED_SET (target, unsignedp);
4760 }
4761
4762 /* If size of args is variable or this was a constructor call for a stack
4763 argument, restore saved stack-pointer value. */
4764
4765 if (old_stack_level)
4766 {
4767 rtx_insn *prev = get_last_insn ();
4768
4769 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4770 stack_pointer_delta = old_stack_pointer_delta;
4771
4772 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4773
4774 pending_stack_adjust = old_pending_adj;
4775 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4776 stack_arg_under_construction = old_stack_arg_under_construction;
4777 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4778 stack_usage_map = initial_stack_usage_map;
4779 stack_usage_watermark = initial_stack_usage_watermark;
4780 sibcall_failure = 1;
4781 }
4782 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4783 {
4784 #ifdef REG_PARM_STACK_SPACE
4785 if (save_area)
4786 restore_fixed_argument_area (save_area, argblock,
4787 high_to_save, low_to_save);
4788 #endif
4789
4790 /* If we saved any argument areas, restore them. */
4791 for (i = 0; i < num_actuals; i++)
4792 if (args[i].save_area)
4793 {
4794 machine_mode save_mode = GET_MODE (args[i].save_area);
4795 rtx stack_area
4796 = gen_rtx_MEM (save_mode,
4797 memory_address (save_mode,
4798 XEXP (args[i].stack_slot, 0)));
4799
4800 if (save_mode != BLKmode)
4801 emit_move_insn (stack_area, args[i].save_area);
4802 else
4803 emit_block_move (stack_area, args[i].save_area,
4804 (gen_int_mode
4805 (args[i].locate.size.constant, Pmode)),
4806 BLOCK_OP_CALL_PARM);
4807 }
4808
4809 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4810 stack_usage_map = initial_stack_usage_map;
4811 stack_usage_watermark = initial_stack_usage_watermark;
4812 }
4813
4814 /* If this was alloca, record the new stack level. */
4815 if (flags & ECF_MAY_BE_ALLOCA)
4816 record_new_stack_level ();
4817
4818 /* Free up storage we no longer need. */
4819 for (i = 0; i < num_actuals; ++i)
4820 free (args[i].aligned_regs);
4821
4822 targetm.calls.end_call_args ();
4823
4824 insns = get_insns ();
4825 end_sequence ();
4826
4827 if (pass == 0)
4828 {
4829 tail_call_insns = insns;
4830
4831 /* Restore the pending stack adjustment now that we have
4832 finished generating the sibling call sequence. */
4833
4834 restore_pending_stack_adjust (&save);
4835
4836 /* Prepare arg structure for next iteration. */
4837 for (i = 0; i < num_actuals; i++)
4838 {
4839 args[i].value = 0;
4840 args[i].aligned_regs = 0;
4841 args[i].stack = 0;
4842 }
4843
4844 sbitmap_free (stored_args_map);
4845 internal_arg_pointer_exp_state.scan_start = NULL;
4846 internal_arg_pointer_exp_state.cache.release ();
4847 }
4848 else
4849 {
4850 normal_call_insns = insns;
4851
4852 /* Verify that we've deallocated all the stack we used. */
4853 gcc_assert ((flags & ECF_NORETURN)
4854 || known_eq (old_stack_allocated,
4855 stack_pointer_delta
4856 - pending_stack_adjust));
4857 }
4858
4859 /* If something prevents making this a sibling call,
4860 zero out the sequence. */
4861 if (sibcall_failure)
4862 tail_call_insns = NULL;
4863 else
4864 break;
4865 }
4866
4867 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4868 arguments too, as argument area is now clobbered by the call. */
4869 if (tail_call_insns)
4870 {
4871 emit_insn (tail_call_insns);
4872 crtl->tail_call_emit = true;
4873 }
4874 else
4875 {
4876 emit_insn (normal_call_insns);
4877 if (try_tail_call)
4878 /* Ideally we'd emit a message for all of the ways that it could
4879 have failed. */
4880 maybe_complain_about_tail_call (exp, "tail call production failed");
4881 }
4882
4883 currently_expanding_call--;
4884
4885 free (stack_usage_map_buf);
4886 free (args);
4887 return target;
4888 }
4889
4890 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4891 this function's incoming arguments.
4892
4893 At the start of RTL generation we know the only REG_EQUIV notes
4894 in the rtl chain are those for incoming arguments, so we can look
4895 for REG_EQUIV notes between the start of the function and the
4896 NOTE_INSN_FUNCTION_BEG.
4897
4898 This is (slight) overkill. We could keep track of the highest
4899 argument we clobber and be more selective in removing notes, but it
4900 does not seem to be worth the effort. */
4901
4902 void
4903 fixup_tail_calls (void)
4904 {
4905 rtx_insn *insn;
4906
4907 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4908 {
4909 rtx note;
4910
4911 /* There are never REG_EQUIV notes for the incoming arguments
4912 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4913 if (NOTE_P (insn)
4914 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4915 break;
4916
4917 note = find_reg_note (insn, REG_EQUIV, 0);
4918 if (note)
4919 remove_note (insn, note);
4920 note = find_reg_note (insn, REG_EQUIV, 0);
4921 gcc_assert (!note);
4922 }
4923 }
4924
4925 /* Traverse a list of TYPES and expand all complex types into their
4926 components. */
4927 static tree
4928 split_complex_types (tree types)
4929 {
4930 tree p;
4931
4932 /* Before allocating memory, check for the common case of no complex. */
4933 for (p = types; p; p = TREE_CHAIN (p))
4934 {
4935 tree type = TREE_VALUE (p);
4936 if (TREE_CODE (type) == COMPLEX_TYPE
4937 && targetm.calls.split_complex_arg (type))
4938 goto found;
4939 }
4940 return types;
4941
4942 found:
4943 types = copy_list (types);
4944
4945 for (p = types; p; p = TREE_CHAIN (p))
4946 {
4947 tree complex_type = TREE_VALUE (p);
4948
4949 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4950 && targetm.calls.split_complex_arg (complex_type))
4951 {
4952 tree next, imag;
4953
4954 /* Rewrite complex type with component type. */
4955 TREE_VALUE (p) = TREE_TYPE (complex_type);
4956 next = TREE_CHAIN (p);
4957
4958 /* Add another component type for the imaginary part. */
4959 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4960 TREE_CHAIN (p) = imag;
4961 TREE_CHAIN (imag) = next;
4962
4963 /* Skip the newly created node. */
4964 p = TREE_CHAIN (p);
4965 }
4966 }
4967
4968 return types;
4969 }
4970 \f
4971 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
4972 for a value of mode OUTMODE,
4973 with NARGS different arguments, passed as ARGS.
4974 Store the return value if RETVAL is nonzero: store it in VALUE if
4975 VALUE is nonnull, otherwise pick a convenient location. In either
4976 case return the location of the stored value.
4977
4978 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4979 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
4980 other types of library calls. */
4981
4982 rtx
4983 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4984 enum libcall_type fn_type,
4985 machine_mode outmode, int nargs, rtx_mode_t *args)
4986 {
4987 /* Total size in bytes of all the stack-parms scanned so far. */
4988 struct args_size args_size;
4989 /* Size of arguments before any adjustments (such as rounding). */
4990 struct args_size original_args_size;
4991 int argnum;
4992 rtx fun;
4993 /* Todo, choose the correct decl type of orgfun. Sadly this information
4994 isn't present here, so we default to native calling abi here. */
4995 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4996 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4997 int count;
4998 rtx argblock = 0;
4999 CUMULATIVE_ARGS args_so_far_v;
5000 cumulative_args_t args_so_far;
5001 struct arg
5002 {
5003 rtx value;
5004 machine_mode mode;
5005 rtx reg;
5006 int partial;
5007 struct locate_and_pad_arg_data locate;
5008 rtx save_area;
5009 };
5010 struct arg *argvec;
5011 int old_inhibit_defer_pop = inhibit_defer_pop;
5012 rtx call_fusage = 0;
5013 rtx mem_value = 0;
5014 rtx valreg;
5015 int pcc_struct_value = 0;
5016 poly_int64 struct_value_size = 0;
5017 int flags;
5018 int reg_parm_stack_space = 0;
5019 poly_int64 needed;
5020 rtx_insn *before_call;
5021 bool have_push_fusage;
5022 tree tfom; /* type_for_mode (outmode, 0) */
5023
5024 #ifdef REG_PARM_STACK_SPACE
5025 /* Define the boundary of the register parm stack space that needs to be
5026 save, if any. */
5027 int low_to_save = 0, high_to_save = 0;
5028 rtx save_area = 0; /* Place that it is saved. */
5029 #endif
5030
5031 /* Size of the stack reserved for parameter registers. */
5032 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
5033 char *initial_stack_usage_map = stack_usage_map;
5034 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
5035 char *stack_usage_map_buf = NULL;
5036
5037 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
5038
5039 #ifdef REG_PARM_STACK_SPACE
5040 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
5041 #endif
5042
5043 /* By default, library functions cannot throw. */
5044 flags = ECF_NOTHROW;
5045
5046 switch (fn_type)
5047 {
5048 case LCT_NORMAL:
5049 break;
5050 case LCT_CONST:
5051 flags |= ECF_CONST;
5052 break;
5053 case LCT_PURE:
5054 flags |= ECF_PURE;
5055 break;
5056 case LCT_NORETURN:
5057 flags |= ECF_NORETURN;
5058 break;
5059 case LCT_THROW:
5060 flags &= ~ECF_NOTHROW;
5061 break;
5062 case LCT_RETURNS_TWICE:
5063 flags = ECF_RETURNS_TWICE;
5064 break;
5065 }
5066 fun = orgfun;
5067
5068 /* Ensure current function's preferred stack boundary is at least
5069 what we need. */
5070 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
5071 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
5072
5073 /* If this kind of value comes back in memory,
5074 decide where in memory it should come back. */
5075 if (outmode != VOIDmode)
5076 {
5077 tfom = lang_hooks.types.type_for_mode (outmode, 0);
5078 if (aggregate_value_p (tfom, 0))
5079 {
5080 #ifdef PCC_STATIC_STRUCT_RETURN
5081 rtx pointer_reg
5082 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
5083 mem_value = gen_rtx_MEM (outmode, pointer_reg);
5084 pcc_struct_value = 1;
5085 if (value == 0)
5086 value = gen_reg_rtx (outmode);
5087 #else /* not PCC_STATIC_STRUCT_RETURN */
5088 struct_value_size = GET_MODE_SIZE (outmode);
5089 if (value != 0 && MEM_P (value))
5090 mem_value = value;
5091 else
5092 mem_value = assign_temp (tfom, 1, 1);
5093 #endif
5094 /* This call returns a big structure. */
5095 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
5096 }
5097 }
5098 else
5099 tfom = void_type_node;
5100
5101 /* ??? Unfinished: must pass the memory address as an argument. */
5102
5103 /* Copy all the libcall-arguments out of the varargs data
5104 and into a vector ARGVEC.
5105
5106 Compute how to pass each argument. We only support a very small subset
5107 of the full argument passing conventions to limit complexity here since
5108 library functions shouldn't have many args. */
5109
5110 argvec = XALLOCAVEC (struct arg, nargs + 1);
5111 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
5112
5113 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
5114 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
5115 #else
5116 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
5117 #endif
5118 args_so_far = pack_cumulative_args (&args_so_far_v);
5119
5120 args_size.constant = 0;
5121 args_size.var = 0;
5122
5123 count = 0;
5124
5125 push_temp_slots ();
5126
5127 /* If there's a structure value address to be passed,
5128 either pass it in the special place, or pass it as an extra argument. */
5129 if (mem_value && struct_value == 0 && ! pcc_struct_value)
5130 {
5131 rtx addr = XEXP (mem_value, 0);
5132
5133 nargs++;
5134
5135 /* Make sure it is a reasonable operand for a move or push insn. */
5136 if (!REG_P (addr) && !MEM_P (addr)
5137 && !(CONSTANT_P (addr)
5138 && targetm.legitimate_constant_p (Pmode, addr)))
5139 addr = force_operand (addr, NULL_RTX);
5140
5141 argvec[count].value = addr;
5142 argvec[count].mode = Pmode;
5143 argvec[count].partial = 0;
5144
5145 function_arg_info ptr_arg (Pmode, /*named=*/true);
5146 argvec[count].reg = targetm.calls.function_arg (args_so_far, ptr_arg);
5147 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, ptr_arg) == 0);
5148
5149 locate_and_pad_parm (Pmode, NULL_TREE,
5150 #ifdef STACK_PARMS_IN_REG_PARM_AREA
5151 1,
5152 #else
5153 argvec[count].reg != 0,
5154 #endif
5155 reg_parm_stack_space, 0,
5156 NULL_TREE, &args_size, &argvec[count].locate);
5157
5158 if (argvec[count].reg == 0 || argvec[count].partial != 0
5159 || reg_parm_stack_space > 0)
5160 args_size.constant += argvec[count].locate.size.constant;
5161
5162 targetm.calls.function_arg_advance (args_so_far, ptr_arg);
5163
5164 count++;
5165 }
5166
5167 for (unsigned int i = 0; count < nargs; i++, count++)
5168 {
5169 rtx val = args[i].first;
5170 function_arg_info arg (args[i].second, /*named=*/true);
5171 int unsigned_p = 0;
5172
5173 /* We cannot convert the arg value to the mode the library wants here;
5174 must do it earlier where we know the signedness of the arg. */
5175 gcc_assert (arg.mode != BLKmode
5176 && (GET_MODE (val) == arg.mode
5177 || GET_MODE (val) == VOIDmode));
5178
5179 /* Make sure it is a reasonable operand for a move or push insn. */
5180 if (!REG_P (val) && !MEM_P (val)
5181 && !(CONSTANT_P (val)
5182 && targetm.legitimate_constant_p (arg.mode, val)))
5183 val = force_operand (val, NULL_RTX);
5184
5185 if (pass_by_reference (&args_so_far_v, arg))
5186 {
5187 rtx slot;
5188 int must_copy = !reference_callee_copied (&args_so_far_v, arg);
5189
5190 /* If this was a CONST function, it is now PURE since it now
5191 reads memory. */
5192 if (flags & ECF_CONST)
5193 {
5194 flags &= ~ECF_CONST;
5195 flags |= ECF_PURE;
5196 }
5197
5198 if (MEM_P (val) && !must_copy)
5199 {
5200 tree val_expr = MEM_EXPR (val);
5201 if (val_expr)
5202 mark_addressable (val_expr);
5203 slot = val;
5204 }
5205 else
5206 {
5207 slot = assign_temp (lang_hooks.types.type_for_mode (arg.mode, 0),
5208 1, 1);
5209 emit_move_insn (slot, val);
5210 }
5211
5212 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
5213 gen_rtx_USE (VOIDmode, slot),
5214 call_fusage);
5215 if (must_copy)
5216 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
5217 gen_rtx_CLOBBER (VOIDmode,
5218 slot),
5219 call_fusage);
5220
5221 arg.mode = Pmode;
5222 arg.pass_by_reference = true;
5223 val = force_operand (XEXP (slot, 0), NULL_RTX);
5224 }
5225
5226 arg.mode = promote_function_mode (NULL_TREE, arg.mode, &unsigned_p,
5227 NULL_TREE, 0);
5228 argvec[count].mode = arg.mode;
5229 argvec[count].value = convert_modes (arg.mode, GET_MODE (val), val,
5230 unsigned_p);
5231 argvec[count].reg = targetm.calls.function_arg (args_so_far, arg);
5232
5233 argvec[count].partial
5234 = targetm.calls.arg_partial_bytes (args_so_far, arg);
5235
5236 if (argvec[count].reg == 0
5237 || argvec[count].partial != 0
5238 || reg_parm_stack_space > 0)
5239 {
5240 locate_and_pad_parm (arg.mode, NULL_TREE,
5241 #ifdef STACK_PARMS_IN_REG_PARM_AREA
5242 1,
5243 #else
5244 argvec[count].reg != 0,
5245 #endif
5246 reg_parm_stack_space, argvec[count].partial,
5247 NULL_TREE, &args_size, &argvec[count].locate);
5248 args_size.constant += argvec[count].locate.size.constant;
5249 gcc_assert (!argvec[count].locate.size.var);
5250 }
5251 #ifdef BLOCK_REG_PADDING
5252 else
5253 /* The argument is passed entirely in registers. See at which
5254 end it should be padded. */
5255 argvec[count].locate.where_pad =
5256 BLOCK_REG_PADDING (arg.mode, NULL_TREE,
5257 known_le (GET_MODE_SIZE (arg.mode),
5258 UNITS_PER_WORD));
5259 #endif
5260
5261 targetm.calls.function_arg_advance (args_so_far, arg);
5262 }
5263
5264 for (int i = 0; i < nargs; i++)
5265 if (reg_parm_stack_space > 0
5266 || argvec[i].reg == 0
5267 || argvec[i].partial != 0)
5268 update_stack_alignment_for_call (&argvec[i].locate);
5269
5270 /* If this machine requires an external definition for library
5271 functions, write one out. */
5272 assemble_external_libcall (fun);
5273
5274 original_args_size = args_size;
5275 args_size.constant = (aligned_upper_bound (args_size.constant
5276 + stack_pointer_delta,
5277 STACK_BYTES)
5278 - stack_pointer_delta);
5279
5280 args_size.constant = upper_bound (args_size.constant,
5281 reg_parm_stack_space);
5282
5283 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5284 args_size.constant -= reg_parm_stack_space;
5285
5286 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
5287 args_size.constant);
5288
5289 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
5290 {
5291 poly_int64 pushed = args_size.constant + pending_stack_adjust;
5292 current_function_pushed_stack_size
5293 = upper_bound (current_function_pushed_stack_size, pushed);
5294 }
5295
5296 if (ACCUMULATE_OUTGOING_ARGS)
5297 {
5298 /* Since the stack pointer will never be pushed, it is possible for
5299 the evaluation of a parm to clobber something we have already
5300 written to the stack. Since most function calls on RISC machines
5301 do not use the stack, this is uncommon, but must work correctly.
5302
5303 Therefore, we save any area of the stack that was already written
5304 and that we are using. Here we set up to do this by making a new
5305 stack usage map from the old one.
5306
5307 Another approach might be to try to reorder the argument
5308 evaluations to avoid this conflicting stack usage. */
5309
5310 needed = args_size.constant;
5311
5312 /* Since we will be writing into the entire argument area, the
5313 map must be allocated for its entire size, not just the part that
5314 is the responsibility of the caller. */
5315 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5316 needed += reg_parm_stack_space;
5317
5318 poly_int64 limit = needed;
5319 if (ARGS_GROW_DOWNWARD)
5320 limit += 1;
5321
5322 /* For polynomial sizes, this is the maximum possible size needed
5323 for arguments with a constant size and offset. */
5324 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
5325 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
5326 const_limit);
5327
5328 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
5329 stack_usage_map = stack_usage_map_buf;
5330
5331 if (initial_highest_arg_in_use)
5332 memcpy (stack_usage_map, initial_stack_usage_map,
5333 initial_highest_arg_in_use);
5334
5335 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
5336 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
5337 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
5338 needed = 0;
5339
5340 /* We must be careful to use virtual regs before they're instantiated,
5341 and real regs afterwards. Loop optimization, for example, can create
5342 new libcalls after we've instantiated the virtual regs, and if we
5343 use virtuals anyway, they won't match the rtl patterns. */
5344
5345 if (virtuals_instantiated)
5346 argblock = plus_constant (Pmode, stack_pointer_rtx,
5347 STACK_POINTER_OFFSET);
5348 else
5349 argblock = virtual_outgoing_args_rtx;
5350 }
5351 else
5352 {
5353 if (!PUSH_ARGS)
5354 argblock = push_block (gen_int_mode (args_size.constant, Pmode), 0, 0);
5355 }
5356
5357 /* We push args individually in reverse order, perform stack alignment
5358 before the first push (the last arg). */
5359 if (argblock == 0)
5360 anti_adjust_stack (gen_int_mode (args_size.constant
5361 - original_args_size.constant,
5362 Pmode));
5363
5364 argnum = nargs - 1;
5365
5366 #ifdef REG_PARM_STACK_SPACE
5367 if (ACCUMULATE_OUTGOING_ARGS)
5368 {
5369 /* The argument list is the property of the called routine and it
5370 may clobber it. If the fixed area has been used for previous
5371 parameters, we must save and restore it. */
5372 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
5373 &low_to_save, &high_to_save);
5374 }
5375 #endif
5376
5377 /* When expanding a normal call, args are stored in push order,
5378 which is the reverse of what we have here. */
5379 bool any_regs = false;
5380 for (int i = nargs; i-- > 0; )
5381 if (argvec[i].reg != NULL_RTX)
5382 {
5383 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
5384 any_regs = true;
5385 }
5386 if (!any_regs)
5387 targetm.calls.call_args (pc_rtx, NULL_TREE);
5388
5389 /* Push the args that need to be pushed. */
5390
5391 have_push_fusage = false;
5392
5393 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5394 are to be pushed. */
5395 for (count = 0; count < nargs; count++, argnum--)
5396 {
5397 machine_mode mode = argvec[argnum].mode;
5398 rtx val = argvec[argnum].value;
5399 rtx reg = argvec[argnum].reg;
5400 int partial = argvec[argnum].partial;
5401 unsigned int parm_align = argvec[argnum].locate.boundary;
5402 poly_int64 lower_bound = 0, upper_bound = 0;
5403
5404 if (! (reg != 0 && partial == 0))
5405 {
5406 rtx use;
5407
5408 if (ACCUMULATE_OUTGOING_ARGS)
5409 {
5410 /* If this is being stored into a pre-allocated, fixed-size,
5411 stack area, save any previous data at that location. */
5412
5413 if (ARGS_GROW_DOWNWARD)
5414 {
5415 /* stack_slot is negative, but we want to index stack_usage_map
5416 with positive values. */
5417 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
5418 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
5419 }
5420 else
5421 {
5422 lower_bound = argvec[argnum].locate.slot_offset.constant;
5423 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
5424 }
5425
5426 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5427 reg_parm_stack_space))
5428 {
5429 /* We need to make a save area. */
5430 poly_uint64 size
5431 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
5432 machine_mode save_mode
5433 = int_mode_for_size (size, 1).else_blk ();
5434 rtx adr
5435 = plus_constant (Pmode, argblock,
5436 argvec[argnum].locate.offset.constant);
5437 rtx stack_area
5438 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
5439
5440 if (save_mode == BLKmode)
5441 {
5442 argvec[argnum].save_area
5443 = assign_stack_temp (BLKmode,
5444 argvec[argnum].locate.size.constant
5445 );
5446
5447 emit_block_move (validize_mem
5448 (copy_rtx (argvec[argnum].save_area)),
5449 stack_area,
5450 (gen_int_mode
5451 (argvec[argnum].locate.size.constant,
5452 Pmode)),
5453 BLOCK_OP_CALL_PARM);
5454 }
5455 else
5456 {
5457 argvec[argnum].save_area = gen_reg_rtx (save_mode);
5458
5459 emit_move_insn (argvec[argnum].save_area, stack_area);
5460 }
5461 }
5462 }
5463
5464 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
5465 partial, reg, 0, argblock,
5466 (gen_int_mode
5467 (argvec[argnum].locate.offset.constant, Pmode)),
5468 reg_parm_stack_space,
5469 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
5470
5471 /* Now mark the segment we just used. */
5472 if (ACCUMULATE_OUTGOING_ARGS)
5473 mark_stack_region_used (lower_bound, upper_bound);
5474
5475 NO_DEFER_POP;
5476
5477 /* Indicate argument access so that alias.c knows that these
5478 values are live. */
5479 if (argblock)
5480 use = plus_constant (Pmode, argblock,
5481 argvec[argnum].locate.offset.constant);
5482 else if (have_push_fusage)
5483 continue;
5484 else
5485 {
5486 /* When arguments are pushed, trying to tell alias.c where
5487 exactly this argument is won't work, because the
5488 auto-increment causes confusion. So we merely indicate
5489 that we access something with a known mode somewhere on
5490 the stack. */
5491 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
5492 gen_rtx_SCRATCH (Pmode));
5493 have_push_fusage = true;
5494 }
5495 use = gen_rtx_MEM (argvec[argnum].mode, use);
5496 use = gen_rtx_USE (VOIDmode, use);
5497 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
5498 }
5499 }
5500
5501 argnum = nargs - 1;
5502
5503 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
5504
5505 /* Now load any reg parms into their regs. */
5506
5507 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5508 are to be pushed. */
5509 for (count = 0; count < nargs; count++, argnum--)
5510 {
5511 machine_mode mode = argvec[argnum].mode;
5512 rtx val = argvec[argnum].value;
5513 rtx reg = argvec[argnum].reg;
5514 int partial = argvec[argnum].partial;
5515
5516 /* Handle calls that pass values in multiple non-contiguous
5517 locations. The PA64 has examples of this for library calls. */
5518 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5519 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
5520 else if (reg != 0 && partial == 0)
5521 {
5522 emit_move_insn (reg, val);
5523 #ifdef BLOCK_REG_PADDING
5524 poly_int64 size = GET_MODE_SIZE (argvec[argnum].mode);
5525
5526 /* Copied from load_register_parameters. */
5527
5528 /* Handle case where we have a value that needs shifting
5529 up to the msb. eg. a QImode value and we're padding
5530 upward on a BYTES_BIG_ENDIAN machine. */
5531 if (known_lt (size, UNITS_PER_WORD)
5532 && (argvec[argnum].locate.where_pad
5533 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5534 {
5535 rtx x;
5536 poly_int64 shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
5537
5538 /* Assigning REG here rather than a temp makes CALL_FUSAGE
5539 report the whole reg as used. Strictly speaking, the
5540 call only uses SIZE bytes at the msb end, but it doesn't
5541 seem worth generating rtl to say that. */
5542 reg = gen_rtx_REG (word_mode, REGNO (reg));
5543 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
5544 if (x != reg)
5545 emit_move_insn (reg, x);
5546 }
5547 #endif
5548 }
5549
5550 NO_DEFER_POP;
5551 }
5552
5553 /* Any regs containing parms remain in use through the call. */
5554 for (count = 0; count < nargs; count++)
5555 {
5556 rtx reg = argvec[count].reg;
5557 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5558 use_group_regs (&call_fusage, reg);
5559 else if (reg != 0)
5560 {
5561 int partial = argvec[count].partial;
5562 if (partial)
5563 {
5564 int nregs;
5565 gcc_assert (partial % UNITS_PER_WORD == 0);
5566 nregs = partial / UNITS_PER_WORD;
5567 use_regs (&call_fusage, REGNO (reg), nregs);
5568 }
5569 else
5570 use_reg (&call_fusage, reg);
5571 }
5572 }
5573
5574 /* Pass the function the address in which to return a structure value. */
5575 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
5576 {
5577 emit_move_insn (struct_value,
5578 force_reg (Pmode,
5579 force_operand (XEXP (mem_value, 0),
5580 NULL_RTX)));
5581 if (REG_P (struct_value))
5582 use_reg (&call_fusage, struct_value);
5583 }
5584
5585 /* Don't allow popping to be deferred, since then
5586 cse'ing of library calls could delete a call and leave the pop. */
5587 NO_DEFER_POP;
5588 valreg = (mem_value == 0 && outmode != VOIDmode
5589 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
5590
5591 /* Stack must be properly aligned now. */
5592 gcc_assert (multiple_p (stack_pointer_delta,
5593 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
5594
5595 before_call = get_last_insn ();
5596
5597 if (flag_callgraph_info)
5598 record_final_call (SYMBOL_REF_DECL (orgfun), UNKNOWN_LOCATION);
5599
5600 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
5601 will set inhibit_defer_pop to that value. */
5602 /* The return type is needed to decide how many bytes the function pops.
5603 Signedness plays no role in that, so for simplicity, we pretend it's
5604 always signed. We also assume that the list of arguments passed has
5605 no impact, so we pretend it is unknown. */
5606
5607 emit_call_1 (fun, NULL,
5608 get_identifier (XSTR (orgfun, 0)),
5609 build_function_type (tfom, NULL_TREE),
5610 original_args_size.constant, args_size.constant,
5611 struct_value_size,
5612 targetm.calls.function_arg (args_so_far,
5613 function_arg_info::end_marker ()),
5614 valreg,
5615 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
5616
5617 if (flag_ipa_ra)
5618 {
5619 rtx datum = orgfun;
5620 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
5621 rtx_call_insn *last = last_call_insn ();
5622 add_reg_note (last, REG_CALL_DECL, datum);
5623 }
5624
5625 /* Right-shift returned value if necessary. */
5626 if (!pcc_struct_value
5627 && TYPE_MODE (tfom) != BLKmode
5628 && targetm.calls.return_in_msb (tfom))
5629 {
5630 shift_return_value (TYPE_MODE (tfom), false, valreg);
5631 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5632 }
5633
5634 targetm.calls.end_call_args ();
5635
5636 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5637 that it should complain if nonvolatile values are live. For
5638 functions that cannot return, inform flow that control does not
5639 fall through. */
5640 if (flags & ECF_NORETURN)
5641 {
5642 /* The barrier note must be emitted
5643 immediately after the CALL_INSN. Some ports emit more than
5644 just a CALL_INSN above, so we must search for it here. */
5645 rtx_insn *last = get_last_insn ();
5646 while (!CALL_P (last))
5647 {
5648 last = PREV_INSN (last);
5649 /* There was no CALL_INSN? */
5650 gcc_assert (last != before_call);
5651 }
5652
5653 emit_barrier_after (last);
5654 }
5655
5656 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5657 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5658 if (flags & ECF_NOTHROW)
5659 {
5660 rtx_insn *last = get_last_insn ();
5661 while (!CALL_P (last))
5662 {
5663 last = PREV_INSN (last);
5664 /* There was no CALL_INSN? */
5665 gcc_assert (last != before_call);
5666 }
5667
5668 make_reg_eh_region_note_nothrow_nononlocal (last);
5669 }
5670
5671 /* Now restore inhibit_defer_pop to its actual original value. */
5672 OK_DEFER_POP;
5673
5674 pop_temp_slots ();
5675
5676 /* Copy the value to the right place. */
5677 if (outmode != VOIDmode && retval)
5678 {
5679 if (mem_value)
5680 {
5681 if (value == 0)
5682 value = mem_value;
5683 if (value != mem_value)
5684 emit_move_insn (value, mem_value);
5685 }
5686 else if (GET_CODE (valreg) == PARALLEL)
5687 {
5688 if (value == 0)
5689 value = gen_reg_rtx (outmode);
5690 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5691 }
5692 else
5693 {
5694 /* Convert to the proper mode if a promotion has been active. */
5695 if (GET_MODE (valreg) != outmode)
5696 {
5697 int unsignedp = TYPE_UNSIGNED (tfom);
5698
5699 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5700 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5701 == GET_MODE (valreg));
5702 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5703 }
5704
5705 if (value != 0)
5706 emit_move_insn (value, valreg);
5707 else
5708 value = valreg;
5709 }
5710 }
5711
5712 if (ACCUMULATE_OUTGOING_ARGS)
5713 {
5714 #ifdef REG_PARM_STACK_SPACE
5715 if (save_area)
5716 restore_fixed_argument_area (save_area, argblock,
5717 high_to_save, low_to_save);
5718 #endif
5719
5720 /* If we saved any argument areas, restore them. */
5721 for (count = 0; count < nargs; count++)
5722 if (argvec[count].save_area)
5723 {
5724 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5725 rtx adr = plus_constant (Pmode, argblock,
5726 argvec[count].locate.offset.constant);
5727 rtx stack_area = gen_rtx_MEM (save_mode,
5728 memory_address (save_mode, adr));
5729
5730 if (save_mode == BLKmode)
5731 emit_block_move (stack_area,
5732 validize_mem
5733 (copy_rtx (argvec[count].save_area)),
5734 (gen_int_mode
5735 (argvec[count].locate.size.constant, Pmode)),
5736 BLOCK_OP_CALL_PARM);
5737 else
5738 emit_move_insn (stack_area, argvec[count].save_area);
5739 }
5740
5741 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5742 stack_usage_map = initial_stack_usage_map;
5743 stack_usage_watermark = initial_stack_usage_watermark;
5744 }
5745
5746 free (stack_usage_map_buf);
5747
5748 return value;
5749
5750 }
5751 \f
5752
5753 /* Store a single argument for a function call
5754 into the register or memory area where it must be passed.
5755 *ARG describes the argument value and where to pass it.
5756
5757 ARGBLOCK is the address of the stack-block for all the arguments,
5758 or 0 on a machine where arguments are pushed individually.
5759
5760 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5761 so must be careful about how the stack is used.
5762
5763 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5764 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5765 that we need not worry about saving and restoring the stack.
5766
5767 FNDECL is the declaration of the function we are calling.
5768
5769 Return nonzero if this arg should cause sibcall failure,
5770 zero otherwise. */
5771
5772 static int
5773 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5774 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5775 {
5776 tree pval = arg->tree_value;
5777 rtx reg = 0;
5778 int partial = 0;
5779 poly_int64 used = 0;
5780 poly_int64 lower_bound = 0, upper_bound = 0;
5781 int sibcall_failure = 0;
5782
5783 if (TREE_CODE (pval) == ERROR_MARK)
5784 return 1;
5785
5786 /* Push a new temporary level for any temporaries we make for
5787 this argument. */
5788 push_temp_slots ();
5789
5790 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5791 {
5792 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5793 save any previous data at that location. */
5794 if (argblock && ! variable_size && arg->stack)
5795 {
5796 if (ARGS_GROW_DOWNWARD)
5797 {
5798 /* stack_slot is negative, but we want to index stack_usage_map
5799 with positive values. */
5800 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5801 {
5802 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5803 upper_bound = -rtx_to_poly_int64 (offset) + 1;
5804 }
5805 else
5806 upper_bound = 0;
5807
5808 lower_bound = upper_bound - arg->locate.size.constant;
5809 }
5810 else
5811 {
5812 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5813 {
5814 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5815 lower_bound = rtx_to_poly_int64 (offset);
5816 }
5817 else
5818 lower_bound = 0;
5819
5820 upper_bound = lower_bound + arg->locate.size.constant;
5821 }
5822
5823 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5824 reg_parm_stack_space))
5825 {
5826 /* We need to make a save area. */
5827 poly_uint64 size = arg->locate.size.constant * BITS_PER_UNIT;
5828 machine_mode save_mode
5829 = int_mode_for_size (size, 1).else_blk ();
5830 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5831 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5832
5833 if (save_mode == BLKmode)
5834 {
5835 arg->save_area
5836 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5837 preserve_temp_slots (arg->save_area);
5838 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5839 stack_area,
5840 (gen_int_mode
5841 (arg->locate.size.constant, Pmode)),
5842 BLOCK_OP_CALL_PARM);
5843 }
5844 else
5845 {
5846 arg->save_area = gen_reg_rtx (save_mode);
5847 emit_move_insn (arg->save_area, stack_area);
5848 }
5849 }
5850 }
5851 }
5852
5853 /* If this isn't going to be placed on both the stack and in registers,
5854 set up the register and number of words. */
5855 if (! arg->pass_on_stack)
5856 {
5857 if (flags & ECF_SIBCALL)
5858 reg = arg->tail_call_reg;
5859 else
5860 reg = arg->reg;
5861 partial = arg->partial;
5862 }
5863
5864 /* Being passed entirely in a register. We shouldn't be called in
5865 this case. */
5866 gcc_assert (reg == 0 || partial != 0);
5867
5868 /* If this arg needs special alignment, don't load the registers
5869 here. */
5870 if (arg->n_aligned_regs != 0)
5871 reg = 0;
5872
5873 /* If this is being passed partially in a register, we can't evaluate
5874 it directly into its stack slot. Otherwise, we can. */
5875 if (arg->value == 0)
5876 {
5877 /* stack_arg_under_construction is nonzero if a function argument is
5878 being evaluated directly into the outgoing argument list and
5879 expand_call must take special action to preserve the argument list
5880 if it is called recursively.
5881
5882 For scalar function arguments stack_usage_map is sufficient to
5883 determine which stack slots must be saved and restored. Scalar
5884 arguments in general have pass_on_stack == 0.
5885
5886 If this argument is initialized by a function which takes the
5887 address of the argument (a C++ constructor or a C function
5888 returning a BLKmode structure), then stack_usage_map is
5889 insufficient and expand_call must push the stack around the
5890 function call. Such arguments have pass_on_stack == 1.
5891
5892 Note that it is always safe to set stack_arg_under_construction,
5893 but this generates suboptimal code if set when not needed. */
5894
5895 if (arg->pass_on_stack)
5896 stack_arg_under_construction++;
5897
5898 arg->value = expand_expr (pval,
5899 (partial
5900 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5901 ? NULL_RTX : arg->stack,
5902 VOIDmode, EXPAND_STACK_PARM);
5903
5904 /* If we are promoting object (or for any other reason) the mode
5905 doesn't agree, convert the mode. */
5906
5907 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5908 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5909 arg->value, arg->unsignedp);
5910
5911 if (arg->pass_on_stack)
5912 stack_arg_under_construction--;
5913 }
5914
5915 /* Check for overlap with already clobbered argument area. */
5916 if ((flags & ECF_SIBCALL)
5917 && MEM_P (arg->value)
5918 && mem_might_overlap_already_clobbered_arg_p (XEXP (arg->value, 0),
5919 arg->locate.size.constant))
5920 sibcall_failure = 1;
5921
5922 /* Don't allow anything left on stack from computation
5923 of argument to alloca. */
5924 if (flags & ECF_MAY_BE_ALLOCA)
5925 do_pending_stack_adjust ();
5926
5927 if (arg->value == arg->stack)
5928 /* If the value is already in the stack slot, we are done. */
5929 ;
5930 else if (arg->mode != BLKmode)
5931 {
5932 unsigned int parm_align;
5933
5934 /* Argument is a scalar, not entirely passed in registers.
5935 (If part is passed in registers, arg->partial says how much
5936 and emit_push_insn will take care of putting it there.)
5937
5938 Push it, and if its size is less than the
5939 amount of space allocated to it,
5940 also bump stack pointer by the additional space.
5941 Note that in C the default argument promotions
5942 will prevent such mismatches. */
5943
5944 poly_int64 size = (TYPE_EMPTY_P (TREE_TYPE (pval))
5945 ? 0 : GET_MODE_SIZE (arg->mode));
5946
5947 /* Compute how much space the push instruction will push.
5948 On many machines, pushing a byte will advance the stack
5949 pointer by a halfword. */
5950 #ifdef PUSH_ROUNDING
5951 size = PUSH_ROUNDING (size);
5952 #endif
5953 used = size;
5954
5955 /* Compute how much space the argument should get:
5956 round up to a multiple of the alignment for arguments. */
5957 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5958 != PAD_NONE)
5959 /* At the moment we don't (need to) support ABIs for which the
5960 padding isn't known at compile time. In principle it should
5961 be easy to add though. */
5962 used = force_align_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
5963
5964 /* Compute the alignment of the pushed argument. */
5965 parm_align = arg->locate.boundary;
5966 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5967 == PAD_DOWNWARD)
5968 {
5969 poly_int64 pad = used - size;
5970 unsigned int pad_align = known_alignment (pad) * BITS_PER_UNIT;
5971 if (pad_align != 0)
5972 parm_align = MIN (parm_align, pad_align);
5973 }
5974
5975 /* This isn't already where we want it on the stack, so put it there.
5976 This can either be done with push or copy insns. */
5977 if (maybe_ne (used, 0)
5978 && !emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval),
5979 NULL_RTX, parm_align, partial, reg, used - size,
5980 argblock, ARGS_SIZE_RTX (arg->locate.offset),
5981 reg_parm_stack_space,
5982 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5983 sibcall_failure = 1;
5984
5985 /* Unless this is a partially-in-register argument, the argument is now
5986 in the stack. */
5987 if (partial == 0)
5988 arg->value = arg->stack;
5989 }
5990 else
5991 {
5992 /* BLKmode, at least partly to be pushed. */
5993
5994 unsigned int parm_align;
5995 poly_int64 excess;
5996 rtx size_rtx;
5997
5998 /* Pushing a nonscalar.
5999 If part is passed in registers, PARTIAL says how much
6000 and emit_push_insn will take care of putting it there. */
6001
6002 /* Round its size up to a multiple
6003 of the allocation unit for arguments. */
6004
6005 if (arg->locate.size.var != 0)
6006 {
6007 excess = 0;
6008 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
6009 }
6010 else
6011 {
6012 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
6013 for BLKmode is careful to avoid it. */
6014 excess = (arg->locate.size.constant
6015 - arg_int_size_in_bytes (TREE_TYPE (pval))
6016 + partial);
6017 size_rtx = expand_expr (arg_size_in_bytes (TREE_TYPE (pval)),
6018 NULL_RTX, TYPE_MODE (sizetype),
6019 EXPAND_NORMAL);
6020 }
6021
6022 parm_align = arg->locate.boundary;
6023
6024 /* When an argument is padded down, the block is aligned to
6025 PARM_BOUNDARY, but the actual argument isn't. */
6026 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
6027 == PAD_DOWNWARD)
6028 {
6029 if (arg->locate.size.var)
6030 parm_align = BITS_PER_UNIT;
6031 else
6032 {
6033 unsigned int excess_align
6034 = known_alignment (excess) * BITS_PER_UNIT;
6035 if (excess_align != 0)
6036 parm_align = MIN (parm_align, excess_align);
6037 }
6038 }
6039
6040 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
6041 {
6042 /* emit_push_insn might not work properly if arg->value and
6043 argblock + arg->locate.offset areas overlap. */
6044 rtx x = arg->value;
6045 poly_int64 i = 0;
6046
6047 if (strip_offset (XEXP (x, 0), &i)
6048 == crtl->args.internal_arg_pointer)
6049 {
6050 /* arg.locate doesn't contain the pretend_args_size offset,
6051 it's part of argblock. Ensure we don't count it in I. */
6052 if (STACK_GROWS_DOWNWARD)
6053 i -= crtl->args.pretend_args_size;
6054 else
6055 i += crtl->args.pretend_args_size;
6056
6057 /* expand_call should ensure this. */
6058 gcc_assert (!arg->locate.offset.var
6059 && arg->locate.size.var == 0);
6060 poly_int64 size_val = rtx_to_poly_int64 (size_rtx);
6061
6062 if (known_eq (arg->locate.offset.constant, i))
6063 {
6064 /* Even though they appear to be at the same location,
6065 if part of the outgoing argument is in registers,
6066 they aren't really at the same location. Check for
6067 this by making sure that the incoming size is the
6068 same as the outgoing size. */
6069 if (maybe_ne (arg->locate.size.constant, size_val))
6070 sibcall_failure = 1;
6071 }
6072 else if (maybe_in_range_p (arg->locate.offset.constant,
6073 i, size_val))
6074 sibcall_failure = 1;
6075 /* Use arg->locate.size.constant instead of size_rtx
6076 because we only care about the part of the argument
6077 on the stack. */
6078 else if (maybe_in_range_p (i, arg->locate.offset.constant,
6079 arg->locate.size.constant))
6080 sibcall_failure = 1;
6081 }
6082 }
6083
6084 if (!CONST_INT_P (size_rtx) || INTVAL (size_rtx) != 0)
6085 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
6086 parm_align, partial, reg, excess, argblock,
6087 ARGS_SIZE_RTX (arg->locate.offset),
6088 reg_parm_stack_space,
6089 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
6090
6091 /* Unless this is a partially-in-register argument, the argument is now
6092 in the stack.
6093
6094 ??? Unlike the case above, in which we want the actual
6095 address of the data, so that we can load it directly into a
6096 register, here we want the address of the stack slot, so that
6097 it's properly aligned for word-by-word copying or something
6098 like that. It's not clear that this is always correct. */
6099 if (partial == 0)
6100 arg->value = arg->stack_slot;
6101 }
6102
6103 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
6104 {
6105 tree type = TREE_TYPE (arg->tree_value);
6106 arg->parallel_value
6107 = emit_group_load_into_temps (arg->reg, arg->value, type,
6108 int_size_in_bytes (type));
6109 }
6110
6111 /* Mark all slots this store used. */
6112 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
6113 && argblock && ! variable_size && arg->stack)
6114 mark_stack_region_used (lower_bound, upper_bound);
6115
6116 /* Once we have pushed something, pops can't safely
6117 be deferred during the rest of the arguments. */
6118 NO_DEFER_POP;
6119
6120 /* Free any temporary slots made in processing this argument. */
6121 pop_temp_slots ();
6122
6123 return sibcall_failure;
6124 }
6125
6126 /* Nonzero if we do not know how to pass ARG solely in registers. */
6127
6128 bool
6129 must_pass_in_stack_var_size (const function_arg_info &arg)
6130 {
6131 if (!arg.type)
6132 return false;
6133
6134 /* If the type has variable size... */
6135 if (!poly_int_tree_p (TYPE_SIZE (arg.type)))
6136 return true;
6137
6138 /* If the type is marked as addressable (it is required
6139 to be constructed into the stack)... */
6140 if (TREE_ADDRESSABLE (arg.type))
6141 return true;
6142
6143 return false;
6144 }
6145
6146 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
6147 takes trailing padding of a structure into account. */
6148 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
6149
6150 bool
6151 must_pass_in_stack_var_size_or_pad (const function_arg_info &arg)
6152 {
6153 if (!arg.type)
6154 return false;
6155
6156 /* If the type has variable size... */
6157 if (TREE_CODE (TYPE_SIZE (arg.type)) != INTEGER_CST)
6158 return true;
6159
6160 /* If the type is marked as addressable (it is required
6161 to be constructed into the stack)... */
6162 if (TREE_ADDRESSABLE (arg.type))
6163 return true;
6164
6165 if (TYPE_EMPTY_P (arg.type))
6166 return false;
6167
6168 /* If the padding and mode of the type is such that a copy into
6169 a register would put it into the wrong part of the register. */
6170 if (arg.mode == BLKmode
6171 && int_size_in_bytes (arg.type) % (PARM_BOUNDARY / BITS_PER_UNIT)
6172 && (targetm.calls.function_arg_padding (arg.mode, arg.type)
6173 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
6174 return true;
6175
6176 return false;
6177 }
6178
6179 /* Return true if TYPE must be passed on the stack when passed to
6180 the "..." arguments of a function. */
6181
6182 bool
6183 must_pass_va_arg_in_stack (tree type)
6184 {
6185 function_arg_info arg (type, /*named=*/false);
6186 return targetm.calls.must_pass_in_stack (arg);
6187 }
6188
6189 /* Return true if FIELD is the C++17 empty base field that should
6190 be ignored for ABI calling convention decisions in order to
6191 maintain ABI compatibility between C++14 and earlier, which doesn't
6192 add this FIELD to classes with empty bases, and C++17 and later
6193 which does. */
6194
6195 bool
6196 cxx17_empty_base_field_p (const_tree field)
6197 {
6198 return (DECL_FIELD_ABI_IGNORED (field)
6199 && DECL_ARTIFICIAL (field)
6200 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (field))
6201 && !lookup_attribute ("no_unique_address", DECL_ATTRIBUTES (field)));
6202 }
6203
6204 /* Tell the garbage collector about GTY markers in this source file. */
6205 #include "gt-calls.h"