]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
Use function_arg_info for TARGET_PASS_BY_REFERENCE
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-vrp.h"
51 #include "tree-ssanames.h"
52 #include "tree-ssa-strlen.h"
53 #include "intl.h"
54 #include "stringpool.h"
55 #include "attribs.h"
56 #include "builtins.h"
57 #include "gimple-fold.h"
58
59 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
60 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
61
62 /* Data structure and subroutines used within expand_call. */
63
64 struct arg_data
65 {
66 /* Tree node for this argument. */
67 tree tree_value;
68 /* Mode for value; TYPE_MODE unless promoted. */
69 machine_mode mode;
70 /* Current RTL value for argument, or 0 if it isn't precomputed. */
71 rtx value;
72 /* Initially-compute RTL value for argument; only for const functions. */
73 rtx initial_value;
74 /* Register to pass this argument in, 0 if passed on stack, or an
75 PARALLEL if the arg is to be copied into multiple non-contiguous
76 registers. */
77 rtx reg;
78 /* Register to pass this argument in when generating tail call sequence.
79 This is not the same register as for normal calls on machines with
80 register windows. */
81 rtx tail_call_reg;
82 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
83 form for emit_group_move. */
84 rtx parallel_value;
85 /* If REG was promoted from the actual mode of the argument expression,
86 indicates whether the promotion is sign- or zero-extended. */
87 int unsignedp;
88 /* Number of bytes to put in registers. 0 means put the whole arg
89 in registers. Also 0 if not passed in registers. */
90 int partial;
91 /* Nonzero if argument must be passed on stack.
92 Note that some arguments may be passed on the stack
93 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
94 pass_on_stack identifies arguments that *cannot* go in registers. */
95 int pass_on_stack;
96 /* Some fields packaged up for locate_and_pad_parm. */
97 struct locate_and_pad_arg_data locate;
98 /* Location on the stack at which parameter should be stored. The store
99 has already been done if STACK == VALUE. */
100 rtx stack;
101 /* Location on the stack of the start of this argument slot. This can
102 differ from STACK if this arg pads downward. This location is known
103 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
104 rtx stack_slot;
105 /* Place that this stack area has been saved, if needed. */
106 rtx save_area;
107 /* If an argument's alignment does not permit direct copying into registers,
108 copy in smaller-sized pieces into pseudos. These are stored in a
109 block pointed to by this field. The next field says how many
110 word-sized pseudos we made. */
111 rtx *aligned_regs;
112 int n_aligned_regs;
113 };
114
115 /* A vector of one char per byte of stack space. A byte if nonzero if
116 the corresponding stack location has been used.
117 This vector is used to prevent a function call within an argument from
118 clobbering any stack already set up. */
119 static char *stack_usage_map;
120
121 /* Size of STACK_USAGE_MAP. */
122 static unsigned int highest_outgoing_arg_in_use;
123
124 /* Assume that any stack location at this byte index is used,
125 without checking the contents of stack_usage_map. */
126 static unsigned HOST_WIDE_INT stack_usage_watermark = HOST_WIDE_INT_M1U;
127
128 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
129 stack location's tail call argument has been already stored into the stack.
130 This bitmap is used to prevent sibling call optimization if function tries
131 to use parent's incoming argument slots when they have been already
132 overwritten with tail call arguments. */
133 static sbitmap stored_args_map;
134
135 /* Assume that any virtual-incoming location at this byte index has been
136 stored, without checking the contents of stored_args_map. */
137 static unsigned HOST_WIDE_INT stored_args_watermark;
138
139 /* stack_arg_under_construction is nonzero when an argument may be
140 initialized with a constructor call (including a C function that
141 returns a BLKmode struct) and expand_call must take special action
142 to make sure the object being constructed does not overlap the
143 argument list for the constructor call. */
144 static int stack_arg_under_construction;
145
146 static void precompute_register_parameters (int, struct arg_data *, int *);
147 static int store_one_arg (struct arg_data *, rtx, int, int, int);
148 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
149 static int finalize_must_preallocate (int, int, struct arg_data *,
150 struct args_size *);
151 static void precompute_arguments (int, struct arg_data *);
152 static void compute_argument_addresses (struct arg_data *, rtx, int);
153 static rtx rtx_for_function_call (tree, tree);
154 static void load_register_parameters (struct arg_data *, int, rtx *, int,
155 int, int *);
156 static int special_function_p (const_tree, int);
157 static int check_sibcall_argument_overlap_1 (rtx);
158 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
159
160 static tree split_complex_types (tree);
161
162 #ifdef REG_PARM_STACK_SPACE
163 static rtx save_fixed_argument_area (int, rtx, int *, int *);
164 static void restore_fixed_argument_area (rtx, rtx, int, int);
165 #endif
166 \f
167 /* Return true if bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
168 stack region might already be in use. */
169
170 static bool
171 stack_region_maybe_used_p (poly_uint64 lower_bound, poly_uint64 upper_bound,
172 unsigned int reg_parm_stack_space)
173 {
174 unsigned HOST_WIDE_INT const_lower, const_upper;
175 const_lower = constant_lower_bound (lower_bound);
176 if (!upper_bound.is_constant (&const_upper))
177 const_upper = HOST_WIDE_INT_M1U;
178
179 if (const_upper > stack_usage_watermark)
180 return true;
181
182 /* Don't worry about things in the fixed argument area;
183 it has already been saved. */
184 const_lower = MAX (const_lower, reg_parm_stack_space);
185 const_upper = MIN (const_upper, highest_outgoing_arg_in_use);
186 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
187 if (stack_usage_map[i])
188 return true;
189 return false;
190 }
191
192 /* Record that bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
193 stack region are now in use. */
194
195 static void
196 mark_stack_region_used (poly_uint64 lower_bound, poly_uint64 upper_bound)
197 {
198 unsigned HOST_WIDE_INT const_lower, const_upper;
199 const_lower = constant_lower_bound (lower_bound);
200 if (upper_bound.is_constant (&const_upper))
201 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
202 stack_usage_map[i] = 1;
203 else
204 stack_usage_watermark = MIN (stack_usage_watermark, const_lower);
205 }
206
207 /* Force FUNEXP into a form suitable for the address of a CALL,
208 and return that as an rtx. Also load the static chain register
209 if FNDECL is a nested function.
210
211 CALL_FUSAGE points to a variable holding the prospective
212 CALL_INSN_FUNCTION_USAGE information. */
213
214 rtx
215 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
216 rtx *call_fusage, int reg_parm_seen, int flags)
217 {
218 /* Make a valid memory address and copy constants through pseudo-regs,
219 but not for a constant address if -fno-function-cse. */
220 if (GET_CODE (funexp) != SYMBOL_REF)
221 {
222 /* If it's an indirect call by descriptor, generate code to perform
223 runtime identification of the pointer and load the descriptor. */
224 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
225 {
226 const int bit_val = targetm.calls.custom_function_descriptors;
227 rtx call_lab = gen_label_rtx ();
228
229 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
230 fndecl_or_type
231 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
232 fndecl_or_type);
233 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
234 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
235
236 if (GET_MODE (funexp) != Pmode)
237 funexp = convert_memory_address (Pmode, funexp);
238
239 /* Avoid long live ranges around function calls. */
240 funexp = copy_to_mode_reg (Pmode, funexp);
241
242 if (REG_P (chain))
243 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
244
245 /* Emit the runtime identification pattern. */
246 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
247 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
248 call_lab);
249
250 /* Statically predict the branch to very likely taken. */
251 rtx_insn *insn = get_last_insn ();
252 if (JUMP_P (insn))
253 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
254
255 /* Load the descriptor. */
256 rtx mem = gen_rtx_MEM (ptr_mode,
257 plus_constant (Pmode, funexp, - bit_val));
258 MEM_NOTRAP_P (mem) = 1;
259 mem = convert_memory_address (Pmode, mem);
260 emit_move_insn (chain, mem);
261
262 mem = gen_rtx_MEM (ptr_mode,
263 plus_constant (Pmode, funexp,
264 POINTER_SIZE / BITS_PER_UNIT
265 - bit_val));
266 MEM_NOTRAP_P (mem) = 1;
267 mem = convert_memory_address (Pmode, mem);
268 emit_move_insn (funexp, mem);
269
270 emit_label (call_lab);
271
272 if (REG_P (chain))
273 {
274 use_reg (call_fusage, chain);
275 STATIC_CHAIN_REG_P (chain) = 1;
276 }
277
278 /* Make sure we're not going to be overwritten below. */
279 gcc_assert (!static_chain_value);
280 }
281
282 /* If we are using registers for parameters, force the
283 function address into a register now. */
284 funexp = ((reg_parm_seen
285 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
286 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
287 : memory_address (FUNCTION_MODE, funexp));
288 }
289 else
290 {
291 /* funexp could be a SYMBOL_REF represents a function pointer which is
292 of ptr_mode. In this case, it should be converted into address mode
293 to be a valid address for memory rtx pattern. See PR 64971. */
294 if (GET_MODE (funexp) != Pmode)
295 funexp = convert_memory_address (Pmode, funexp);
296
297 if (!(flags & ECF_SIBCALL))
298 {
299 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
300 funexp = force_reg (Pmode, funexp);
301 }
302 }
303
304 if (static_chain_value != 0
305 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
306 || DECL_STATIC_CHAIN (fndecl_or_type)))
307 {
308 rtx chain;
309
310 chain = targetm.calls.static_chain (fndecl_or_type, false);
311 static_chain_value = convert_memory_address (Pmode, static_chain_value);
312
313 emit_move_insn (chain, static_chain_value);
314 if (REG_P (chain))
315 {
316 use_reg (call_fusage, chain);
317 STATIC_CHAIN_REG_P (chain) = 1;
318 }
319 }
320
321 return funexp;
322 }
323
324 /* Generate instructions to call function FUNEXP,
325 and optionally pop the results.
326 The CALL_INSN is the first insn generated.
327
328 FNDECL is the declaration node of the function. This is given to the
329 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
330 its own args.
331
332 FUNTYPE is the data type of the function. This is given to the hook
333 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
334 own args. We used to allow an identifier for library functions, but
335 that doesn't work when the return type is an aggregate type and the
336 calling convention says that the pointer to this aggregate is to be
337 popped by the callee.
338
339 STACK_SIZE is the number of bytes of arguments on the stack,
340 ROUNDED_STACK_SIZE is that number rounded up to
341 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
342 both to put into the call insn and to generate explicit popping
343 code if necessary.
344
345 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
346 It is zero if this call doesn't want a structure value.
347
348 NEXT_ARG_REG is the rtx that results from executing
349 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
350 just after all the args have had their registers assigned.
351 This could be whatever you like, but normally it is the first
352 arg-register beyond those used for args in this call,
353 or 0 if all the arg-registers are used in this call.
354 It is passed on to `gen_call' so you can put this info in the call insn.
355
356 VALREG is a hard register in which a value is returned,
357 or 0 if the call does not return a value.
358
359 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
360 the args to this call were processed.
361 We restore `inhibit_defer_pop' to that value.
362
363 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
364 denote registers used by the called function. */
365
366 static void
367 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
368 tree funtype ATTRIBUTE_UNUSED,
369 poly_int64 stack_size ATTRIBUTE_UNUSED,
370 poly_int64 rounded_stack_size,
371 poly_int64 struct_value_size ATTRIBUTE_UNUSED,
372 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
373 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
374 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
375 {
376 rtx rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
377 rtx call, funmem, pat;
378 int already_popped = 0;
379 poly_int64 n_popped = 0;
380
381 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
382 patterns exist). Any popping that the callee does on return will
383 be from our caller's frame rather than ours. */
384 if (!(ecf_flags & ECF_SIBCALL))
385 {
386 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
387
388 #ifdef CALL_POPS_ARGS
389 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
390 #endif
391 }
392
393 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
394 and we don't want to load it into a register as an optimization,
395 because prepare_call_address already did it if it should be done. */
396 if (GET_CODE (funexp) != SYMBOL_REF)
397 funexp = memory_address (FUNCTION_MODE, funexp);
398
399 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
400 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
401 {
402 tree t = fndecl;
403
404 /* Although a built-in FUNCTION_DECL and its non-__builtin
405 counterpart compare equal and get a shared mem_attrs, they
406 produce different dump output in compare-debug compilations,
407 if an entry gets garbage collected in one compilation, then
408 adds a different (but equivalent) entry, while the other
409 doesn't run the garbage collector at the same spot and then
410 shares the mem_attr with the equivalent entry. */
411 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
412 {
413 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
414 if (t2)
415 t = t2;
416 }
417
418 set_mem_expr (funmem, t);
419 }
420 else if (fntree)
421 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
422
423 if (ecf_flags & ECF_SIBCALL)
424 {
425 if (valreg)
426 pat = targetm.gen_sibcall_value (valreg, funmem,
427 rounded_stack_size_rtx,
428 next_arg_reg, NULL_RTX);
429 else
430 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
431 next_arg_reg,
432 gen_int_mode (struct_value_size, Pmode));
433 }
434 /* If the target has "call" or "call_value" insns, then prefer them
435 if no arguments are actually popped. If the target does not have
436 "call" or "call_value" insns, then we must use the popping versions
437 even if the call has no arguments to pop. */
438 else if (maybe_ne (n_popped, 0)
439 || !(valreg
440 ? targetm.have_call_value ()
441 : targetm.have_call ()))
442 {
443 rtx n_pop = gen_int_mode (n_popped, Pmode);
444
445 /* If this subroutine pops its own args, record that in the call insn
446 if possible, for the sake of frame pointer elimination. */
447
448 if (valreg)
449 pat = targetm.gen_call_value_pop (valreg, funmem,
450 rounded_stack_size_rtx,
451 next_arg_reg, n_pop);
452 else
453 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
454 next_arg_reg, n_pop);
455
456 already_popped = 1;
457 }
458 else
459 {
460 if (valreg)
461 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
462 next_arg_reg, NULL_RTX);
463 else
464 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
465 gen_int_mode (struct_value_size, Pmode));
466 }
467 emit_insn (pat);
468
469 /* Find the call we just emitted. */
470 rtx_call_insn *call_insn = last_call_insn ();
471
472 /* Some target create a fresh MEM instead of reusing the one provided
473 above. Set its MEM_EXPR. */
474 call = get_call_rtx_from (call_insn);
475 if (call
476 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
477 && MEM_EXPR (funmem) != NULL_TREE)
478 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
479
480 /* Put the register usage information there. */
481 add_function_usage_to (call_insn, call_fusage);
482
483 /* If this is a const call, then set the insn's unchanging bit. */
484 if (ecf_flags & ECF_CONST)
485 RTL_CONST_CALL_P (call_insn) = 1;
486
487 /* If this is a pure call, then set the insn's unchanging bit. */
488 if (ecf_flags & ECF_PURE)
489 RTL_PURE_CALL_P (call_insn) = 1;
490
491 /* If this is a const call, then set the insn's unchanging bit. */
492 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
493 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
494
495 /* Create a nothrow REG_EH_REGION note, if needed. */
496 make_reg_eh_region_note (call_insn, ecf_flags, 0);
497
498 if (ecf_flags & ECF_NORETURN)
499 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
500
501 if (ecf_flags & ECF_RETURNS_TWICE)
502 {
503 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
504 cfun->calls_setjmp = 1;
505 }
506
507 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
508
509 /* Restore this now, so that we do defer pops for this call's args
510 if the context of the call as a whole permits. */
511 inhibit_defer_pop = old_inhibit_defer_pop;
512
513 if (maybe_ne (n_popped, 0))
514 {
515 if (!already_popped)
516 CALL_INSN_FUNCTION_USAGE (call_insn)
517 = gen_rtx_EXPR_LIST (VOIDmode,
518 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
519 CALL_INSN_FUNCTION_USAGE (call_insn));
520 rounded_stack_size -= n_popped;
521 rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
522 stack_pointer_delta -= n_popped;
523
524 add_args_size_note (call_insn, stack_pointer_delta);
525
526 /* If popup is needed, stack realign must use DRAP */
527 if (SUPPORTS_STACK_ALIGNMENT)
528 crtl->need_drap = true;
529 }
530 /* For noreturn calls when not accumulating outgoing args force
531 REG_ARGS_SIZE note to prevent crossjumping of calls with different
532 args sizes. */
533 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
534 add_args_size_note (call_insn, stack_pointer_delta);
535
536 if (!ACCUMULATE_OUTGOING_ARGS)
537 {
538 /* If returning from the subroutine does not automatically pop the args,
539 we need an instruction to pop them sooner or later.
540 Perhaps do it now; perhaps just record how much space to pop later.
541
542 If returning from the subroutine does pop the args, indicate that the
543 stack pointer will be changed. */
544
545 if (maybe_ne (rounded_stack_size, 0))
546 {
547 if (ecf_flags & ECF_NORETURN)
548 /* Just pretend we did the pop. */
549 stack_pointer_delta -= rounded_stack_size;
550 else if (flag_defer_pop && inhibit_defer_pop == 0
551 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
552 pending_stack_adjust += rounded_stack_size;
553 else
554 adjust_stack (rounded_stack_size_rtx);
555 }
556 }
557 /* When we accumulate outgoing args, we must avoid any stack manipulations.
558 Restore the stack pointer to its original value now. Usually
559 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
560 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
561 popping variants of functions exist as well.
562
563 ??? We may optimize similar to defer_pop above, but it is
564 probably not worthwhile.
565
566 ??? It will be worthwhile to enable combine_stack_adjustments even for
567 such machines. */
568 else if (maybe_ne (n_popped, 0))
569 anti_adjust_stack (gen_int_mode (n_popped, Pmode));
570 }
571
572 /* Determine if the function identified by FNDECL is one with
573 special properties we wish to know about. Modify FLAGS accordingly.
574
575 For example, if the function might return more than one time (setjmp), then
576 set ECF_RETURNS_TWICE.
577
578 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
579 space from the stack such as alloca. */
580
581 static int
582 special_function_p (const_tree fndecl, int flags)
583 {
584 tree name_decl = DECL_NAME (fndecl);
585
586 if (fndecl && name_decl
587 && IDENTIFIER_LENGTH (name_decl) <= 11
588 /* Exclude functions not at the file scope, or not `extern',
589 since they are not the magic functions we would otherwise
590 think they are.
591 FIXME: this should be handled with attributes, not with this
592 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
593 because you can declare fork() inside a function if you
594 wish. */
595 && (DECL_CONTEXT (fndecl) == NULL_TREE
596 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
597 && TREE_PUBLIC (fndecl))
598 {
599 const char *name = IDENTIFIER_POINTER (name_decl);
600 const char *tname = name;
601
602 /* We assume that alloca will always be called by name. It
603 makes no sense to pass it as a pointer-to-function to
604 anything that does not understand its behavior. */
605 if (IDENTIFIER_LENGTH (name_decl) == 6
606 && name[0] == 'a'
607 && ! strcmp (name, "alloca"))
608 flags |= ECF_MAY_BE_ALLOCA;
609
610 /* Disregard prefix _ or __. */
611 if (name[0] == '_')
612 {
613 if (name[1] == '_')
614 tname += 2;
615 else
616 tname += 1;
617 }
618
619 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
620 if (! strcmp (tname, "setjmp")
621 || ! strcmp (tname, "sigsetjmp")
622 || ! strcmp (name, "savectx")
623 || ! strcmp (name, "vfork")
624 || ! strcmp (name, "getcontext"))
625 flags |= ECF_RETURNS_TWICE;
626 }
627
628 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
629 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
630 flags |= ECF_MAY_BE_ALLOCA;
631
632 return flags;
633 }
634
635 /* Similar to special_function_p; return a set of ERF_ flags for the
636 function FNDECL. */
637 static int
638 decl_return_flags (tree fndecl)
639 {
640 tree attr;
641 tree type = TREE_TYPE (fndecl);
642 if (!type)
643 return 0;
644
645 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
646 if (!attr)
647 return 0;
648
649 attr = TREE_VALUE (TREE_VALUE (attr));
650 if (!attr || TREE_STRING_LENGTH (attr) < 1)
651 return 0;
652
653 switch (TREE_STRING_POINTER (attr)[0])
654 {
655 case '1':
656 case '2':
657 case '3':
658 case '4':
659 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
660
661 case 'm':
662 return ERF_NOALIAS;
663
664 case '.':
665 default:
666 return 0;
667 }
668 }
669
670 /* Return nonzero when FNDECL represents a call to setjmp. */
671
672 int
673 setjmp_call_p (const_tree fndecl)
674 {
675 if (DECL_IS_RETURNS_TWICE (fndecl))
676 return ECF_RETURNS_TWICE;
677 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
678 }
679
680
681 /* Return true if STMT may be an alloca call. */
682
683 bool
684 gimple_maybe_alloca_call_p (const gimple *stmt)
685 {
686 tree fndecl;
687
688 if (!is_gimple_call (stmt))
689 return false;
690
691 fndecl = gimple_call_fndecl (stmt);
692 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
693 return true;
694
695 return false;
696 }
697
698 /* Return true if STMT is a builtin alloca call. */
699
700 bool
701 gimple_alloca_call_p (const gimple *stmt)
702 {
703 tree fndecl;
704
705 if (!is_gimple_call (stmt))
706 return false;
707
708 fndecl = gimple_call_fndecl (stmt);
709 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
710 switch (DECL_FUNCTION_CODE (fndecl))
711 {
712 CASE_BUILT_IN_ALLOCA:
713 return gimple_call_num_args (stmt) > 0;
714 default:
715 break;
716 }
717
718 return false;
719 }
720
721 /* Return true when exp contains a builtin alloca call. */
722
723 bool
724 alloca_call_p (const_tree exp)
725 {
726 tree fndecl;
727 if (TREE_CODE (exp) == CALL_EXPR
728 && (fndecl = get_callee_fndecl (exp))
729 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
730 switch (DECL_FUNCTION_CODE (fndecl))
731 {
732 CASE_BUILT_IN_ALLOCA:
733 return true;
734 default:
735 break;
736 }
737
738 return false;
739 }
740
741 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
742 function. Return FALSE otherwise. */
743
744 static bool
745 is_tm_builtin (const_tree fndecl)
746 {
747 if (fndecl == NULL)
748 return false;
749
750 if (decl_is_tm_clone (fndecl))
751 return true;
752
753 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
754 {
755 switch (DECL_FUNCTION_CODE (fndecl))
756 {
757 case BUILT_IN_TM_COMMIT:
758 case BUILT_IN_TM_COMMIT_EH:
759 case BUILT_IN_TM_ABORT:
760 case BUILT_IN_TM_IRREVOCABLE:
761 case BUILT_IN_TM_GETTMCLONE_IRR:
762 case BUILT_IN_TM_MEMCPY:
763 case BUILT_IN_TM_MEMMOVE:
764 case BUILT_IN_TM_MEMSET:
765 CASE_BUILT_IN_TM_STORE (1):
766 CASE_BUILT_IN_TM_STORE (2):
767 CASE_BUILT_IN_TM_STORE (4):
768 CASE_BUILT_IN_TM_STORE (8):
769 CASE_BUILT_IN_TM_STORE (FLOAT):
770 CASE_BUILT_IN_TM_STORE (DOUBLE):
771 CASE_BUILT_IN_TM_STORE (LDOUBLE):
772 CASE_BUILT_IN_TM_STORE (M64):
773 CASE_BUILT_IN_TM_STORE (M128):
774 CASE_BUILT_IN_TM_STORE (M256):
775 CASE_BUILT_IN_TM_LOAD (1):
776 CASE_BUILT_IN_TM_LOAD (2):
777 CASE_BUILT_IN_TM_LOAD (4):
778 CASE_BUILT_IN_TM_LOAD (8):
779 CASE_BUILT_IN_TM_LOAD (FLOAT):
780 CASE_BUILT_IN_TM_LOAD (DOUBLE):
781 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
782 CASE_BUILT_IN_TM_LOAD (M64):
783 CASE_BUILT_IN_TM_LOAD (M128):
784 CASE_BUILT_IN_TM_LOAD (M256):
785 case BUILT_IN_TM_LOG:
786 case BUILT_IN_TM_LOG_1:
787 case BUILT_IN_TM_LOG_2:
788 case BUILT_IN_TM_LOG_4:
789 case BUILT_IN_TM_LOG_8:
790 case BUILT_IN_TM_LOG_FLOAT:
791 case BUILT_IN_TM_LOG_DOUBLE:
792 case BUILT_IN_TM_LOG_LDOUBLE:
793 case BUILT_IN_TM_LOG_M64:
794 case BUILT_IN_TM_LOG_M128:
795 case BUILT_IN_TM_LOG_M256:
796 return true;
797 default:
798 break;
799 }
800 }
801 return false;
802 }
803
804 /* Detect flags (function attributes) from the function decl or type node. */
805
806 int
807 flags_from_decl_or_type (const_tree exp)
808 {
809 int flags = 0;
810
811 if (DECL_P (exp))
812 {
813 /* The function exp may have the `malloc' attribute. */
814 if (DECL_IS_MALLOC (exp))
815 flags |= ECF_MALLOC;
816
817 /* The function exp may have the `returns_twice' attribute. */
818 if (DECL_IS_RETURNS_TWICE (exp))
819 flags |= ECF_RETURNS_TWICE;
820
821 /* Process the pure and const attributes. */
822 if (TREE_READONLY (exp))
823 flags |= ECF_CONST;
824 if (DECL_PURE_P (exp))
825 flags |= ECF_PURE;
826 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
827 flags |= ECF_LOOPING_CONST_OR_PURE;
828
829 if (DECL_IS_NOVOPS (exp))
830 flags |= ECF_NOVOPS;
831 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
832 flags |= ECF_LEAF;
833 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
834 flags |= ECF_COLD;
835
836 if (TREE_NOTHROW (exp))
837 flags |= ECF_NOTHROW;
838
839 if (flag_tm)
840 {
841 if (is_tm_builtin (exp))
842 flags |= ECF_TM_BUILTIN;
843 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
844 || lookup_attribute ("transaction_pure",
845 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
846 flags |= ECF_TM_PURE;
847 }
848
849 flags = special_function_p (exp, flags);
850 }
851 else if (TYPE_P (exp))
852 {
853 if (TYPE_READONLY (exp))
854 flags |= ECF_CONST;
855
856 if (flag_tm
857 && ((flags & ECF_CONST) != 0
858 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
859 flags |= ECF_TM_PURE;
860 }
861 else
862 gcc_unreachable ();
863
864 if (TREE_THIS_VOLATILE (exp))
865 {
866 flags |= ECF_NORETURN;
867 if (flags & (ECF_CONST|ECF_PURE))
868 flags |= ECF_LOOPING_CONST_OR_PURE;
869 }
870
871 return flags;
872 }
873
874 /* Detect flags from a CALL_EXPR. */
875
876 int
877 call_expr_flags (const_tree t)
878 {
879 int flags;
880 tree decl = get_callee_fndecl (t);
881
882 if (decl)
883 flags = flags_from_decl_or_type (decl);
884 else if (CALL_EXPR_FN (t) == NULL_TREE)
885 flags = internal_fn_flags (CALL_EXPR_IFN (t));
886 else
887 {
888 tree type = TREE_TYPE (CALL_EXPR_FN (t));
889 if (type && TREE_CODE (type) == POINTER_TYPE)
890 flags = flags_from_decl_or_type (TREE_TYPE (type));
891 else
892 flags = 0;
893 if (CALL_EXPR_BY_DESCRIPTOR (t))
894 flags |= ECF_BY_DESCRIPTOR;
895 }
896
897 return flags;
898 }
899
900 /* Return true if ARG should be passed by invisible reference. */
901
902 bool
903 pass_by_reference (CUMULATIVE_ARGS *ca, function_arg_info arg)
904 {
905 if (tree type = arg.type)
906 {
907 /* If this type contains non-trivial constructors, then it is
908 forbidden for the middle-end to create any new copies. */
909 if (TREE_ADDRESSABLE (type))
910 return true;
911
912 /* GCC post 3.4 passes *all* variable sized types by reference. */
913 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
914 return true;
915
916 /* If a record type should be passed the same as its first (and only)
917 member, use the type and mode of that member. */
918 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
919 {
920 arg.type = TREE_TYPE (first_field (type));
921 arg.mode = TYPE_MODE (arg.type);
922 }
923 }
924
925 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), arg);
926 }
927
928 /* Return true if TYPE should be passed by reference when passed to
929 the "..." arguments of a function. */
930
931 bool
932 pass_va_arg_by_reference (tree type)
933 {
934 return pass_by_reference (NULL, function_arg_info (type, /*named=*/false));
935 }
936
937 /* Return true if TYPE, which is passed by reference, should be callee
938 copied instead of caller copied. */
939
940 bool
941 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
942 tree type, bool named_arg)
943 {
944 if (type && TREE_ADDRESSABLE (type))
945 return false;
946 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
947 named_arg);
948 }
949
950
951 /* Precompute all register parameters as described by ARGS, storing values
952 into fields within the ARGS array.
953
954 NUM_ACTUALS indicates the total number elements in the ARGS array.
955
956 Set REG_PARM_SEEN if we encounter a register parameter. */
957
958 static void
959 precompute_register_parameters (int num_actuals, struct arg_data *args,
960 int *reg_parm_seen)
961 {
962 int i;
963
964 *reg_parm_seen = 0;
965
966 for (i = 0; i < num_actuals; i++)
967 if (args[i].reg != 0 && ! args[i].pass_on_stack)
968 {
969 *reg_parm_seen = 1;
970
971 if (args[i].value == 0)
972 {
973 push_temp_slots ();
974 args[i].value = expand_normal (args[i].tree_value);
975 preserve_temp_slots (args[i].value);
976 pop_temp_slots ();
977 }
978
979 /* If we are to promote the function arg to a wider mode,
980 do it now. */
981
982 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
983 args[i].value
984 = convert_modes (args[i].mode,
985 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
986 args[i].value, args[i].unsignedp);
987
988 /* If the value is a non-legitimate constant, force it into a
989 pseudo now. TLS symbols sometimes need a call to resolve. */
990 if (CONSTANT_P (args[i].value)
991 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
992 args[i].value = force_reg (args[i].mode, args[i].value);
993
994 /* If we're going to have to load the value by parts, pull the
995 parts into pseudos. The part extraction process can involve
996 non-trivial computation. */
997 if (GET_CODE (args[i].reg) == PARALLEL)
998 {
999 tree type = TREE_TYPE (args[i].tree_value);
1000 args[i].parallel_value
1001 = emit_group_load_into_temps (args[i].reg, args[i].value,
1002 type, int_size_in_bytes (type));
1003 }
1004
1005 /* If the value is expensive, and we are inside an appropriately
1006 short loop, put the value into a pseudo and then put the pseudo
1007 into the hard reg.
1008
1009 For small register classes, also do this if this call uses
1010 register parameters. This is to avoid reload conflicts while
1011 loading the parameters registers. */
1012
1013 else if ((! (REG_P (args[i].value)
1014 || (GET_CODE (args[i].value) == SUBREG
1015 && REG_P (SUBREG_REG (args[i].value)))))
1016 && args[i].mode != BLKmode
1017 && (set_src_cost (args[i].value, args[i].mode,
1018 optimize_insn_for_speed_p ())
1019 > COSTS_N_INSNS (1))
1020 && ((*reg_parm_seen
1021 && targetm.small_register_classes_for_mode_p (args[i].mode))
1022 || optimize))
1023 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1024 }
1025 }
1026
1027 #ifdef REG_PARM_STACK_SPACE
1028
1029 /* The argument list is the property of the called routine and it
1030 may clobber it. If the fixed area has been used for previous
1031 parameters, we must save and restore it. */
1032
1033 static rtx
1034 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1035 {
1036 unsigned int low;
1037 unsigned int high;
1038
1039 /* Compute the boundary of the area that needs to be saved, if any. */
1040 high = reg_parm_stack_space;
1041 if (ARGS_GROW_DOWNWARD)
1042 high += 1;
1043
1044 if (high > highest_outgoing_arg_in_use)
1045 high = highest_outgoing_arg_in_use;
1046
1047 for (low = 0; low < high; low++)
1048 if (stack_usage_map[low] != 0 || low >= stack_usage_watermark)
1049 {
1050 int num_to_save;
1051 machine_mode save_mode;
1052 int delta;
1053 rtx addr;
1054 rtx stack_area;
1055 rtx save_area;
1056
1057 while (stack_usage_map[--high] == 0)
1058 ;
1059
1060 *low_to_save = low;
1061 *high_to_save = high;
1062
1063 num_to_save = high - low + 1;
1064
1065 /* If we don't have the required alignment, must do this
1066 in BLKmode. */
1067 scalar_int_mode imode;
1068 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1069 && (low & (MIN (GET_MODE_SIZE (imode),
1070 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1071 save_mode = imode;
1072 else
1073 save_mode = BLKmode;
1074
1075 if (ARGS_GROW_DOWNWARD)
1076 delta = -high;
1077 else
1078 delta = low;
1079
1080 addr = plus_constant (Pmode, argblock, delta);
1081 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1082
1083 set_mem_align (stack_area, PARM_BOUNDARY);
1084 if (save_mode == BLKmode)
1085 {
1086 save_area = assign_stack_temp (BLKmode, num_to_save);
1087 emit_block_move (validize_mem (save_area), stack_area,
1088 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1089 }
1090 else
1091 {
1092 save_area = gen_reg_rtx (save_mode);
1093 emit_move_insn (save_area, stack_area);
1094 }
1095
1096 return save_area;
1097 }
1098
1099 return NULL_RTX;
1100 }
1101
1102 static void
1103 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1104 {
1105 machine_mode save_mode = GET_MODE (save_area);
1106 int delta;
1107 rtx addr, stack_area;
1108
1109 if (ARGS_GROW_DOWNWARD)
1110 delta = -high_to_save;
1111 else
1112 delta = low_to_save;
1113
1114 addr = plus_constant (Pmode, argblock, delta);
1115 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1116 set_mem_align (stack_area, PARM_BOUNDARY);
1117
1118 if (save_mode != BLKmode)
1119 emit_move_insn (stack_area, save_area);
1120 else
1121 emit_block_move (stack_area, validize_mem (save_area),
1122 GEN_INT (high_to_save - low_to_save + 1),
1123 BLOCK_OP_CALL_PARM);
1124 }
1125 #endif /* REG_PARM_STACK_SPACE */
1126
1127 /* If any elements in ARGS refer to parameters that are to be passed in
1128 registers, but not in memory, and whose alignment does not permit a
1129 direct copy into registers. Copy the values into a group of pseudos
1130 which we will later copy into the appropriate hard registers.
1131
1132 Pseudos for each unaligned argument will be stored into the array
1133 args[argnum].aligned_regs. The caller is responsible for deallocating
1134 the aligned_regs array if it is nonzero. */
1135
1136 static void
1137 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1138 {
1139 int i, j;
1140
1141 for (i = 0; i < num_actuals; i++)
1142 if (args[i].reg != 0 && ! args[i].pass_on_stack
1143 && GET_CODE (args[i].reg) != PARALLEL
1144 && args[i].mode == BLKmode
1145 && MEM_P (args[i].value)
1146 && (MEM_ALIGN (args[i].value)
1147 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1148 {
1149 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1150 int endian_correction = 0;
1151
1152 if (args[i].partial)
1153 {
1154 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1155 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1156 }
1157 else
1158 {
1159 args[i].n_aligned_regs
1160 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1161 }
1162
1163 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1164
1165 /* Structures smaller than a word are normally aligned to the
1166 least significant byte. On a BYTES_BIG_ENDIAN machine,
1167 this means we must skip the empty high order bytes when
1168 calculating the bit offset. */
1169 if (bytes < UNITS_PER_WORD
1170 #ifdef BLOCK_REG_PADDING
1171 && (BLOCK_REG_PADDING (args[i].mode,
1172 TREE_TYPE (args[i].tree_value), 1)
1173 == PAD_DOWNWARD)
1174 #else
1175 && BYTES_BIG_ENDIAN
1176 #endif
1177 )
1178 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1179
1180 for (j = 0; j < args[i].n_aligned_regs; j++)
1181 {
1182 rtx reg = gen_reg_rtx (word_mode);
1183 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1184 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1185
1186 args[i].aligned_regs[j] = reg;
1187 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1188 word_mode, word_mode, false, NULL);
1189
1190 /* There is no need to restrict this code to loading items
1191 in TYPE_ALIGN sized hunks. The bitfield instructions can
1192 load up entire word sized registers efficiently.
1193
1194 ??? This may not be needed anymore.
1195 We use to emit a clobber here but that doesn't let later
1196 passes optimize the instructions we emit. By storing 0 into
1197 the register later passes know the first AND to zero out the
1198 bitfield being set in the register is unnecessary. The store
1199 of 0 will be deleted as will at least the first AND. */
1200
1201 emit_move_insn (reg, const0_rtx);
1202
1203 bytes -= bitsize / BITS_PER_UNIT;
1204 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1205 word_mode, word, false);
1206 }
1207 }
1208 }
1209
1210 /* The limit set by -Walloc-larger-than=. */
1211 static GTY(()) tree alloc_object_size_limit;
1212
1213 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1214 setting if the option is specified, or to the maximum object size if it
1215 is not. Return the initialized value. */
1216
1217 static tree
1218 alloc_max_size (void)
1219 {
1220 if (alloc_object_size_limit)
1221 return alloc_object_size_limit;
1222
1223 HOST_WIDE_INT limit = warn_alloc_size_limit;
1224 if (limit == HOST_WIDE_INT_MAX)
1225 limit = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
1226
1227 alloc_object_size_limit = build_int_cst (size_type_node, limit);
1228
1229 return alloc_object_size_limit;
1230 }
1231
1232 /* Return true when EXP's range can be determined and set RANGE[] to it
1233 after adjusting it if necessary to make EXP a represents a valid size
1234 of object, or a valid size argument to an allocation function declared
1235 with attribute alloc_size (whose argument may be signed), or to a string
1236 manipulation function like memset. When ALLOW_ZERO is true, allow
1237 returning a range of [0, 0] for a size in an anti-range [1, N] where
1238 N > PTRDIFF_MAX. A zero range is a (nearly) invalid argument to
1239 allocation functions like malloc but it is a valid argument to
1240 functions like memset. */
1241
1242 bool
1243 get_size_range (tree exp, tree range[2], bool allow_zero /* = false */)
1244 {
1245 if (tree_fits_uhwi_p (exp))
1246 {
1247 /* EXP is a constant. */
1248 range[0] = range[1] = exp;
1249 return true;
1250 }
1251
1252 tree exptype = TREE_TYPE (exp);
1253 bool integral = INTEGRAL_TYPE_P (exptype);
1254
1255 wide_int min, max;
1256 enum value_range_kind range_type;
1257
1258 if (integral)
1259 range_type = determine_value_range (exp, &min, &max);
1260 else
1261 range_type = VR_VARYING;
1262
1263 if (range_type == VR_VARYING)
1264 {
1265 if (integral)
1266 {
1267 /* Use the full range of the type of the expression when
1268 no value range information is available. */
1269 range[0] = TYPE_MIN_VALUE (exptype);
1270 range[1] = TYPE_MAX_VALUE (exptype);
1271 return true;
1272 }
1273
1274 range[0] = NULL_TREE;
1275 range[1] = NULL_TREE;
1276 return false;
1277 }
1278
1279 unsigned expprec = TYPE_PRECISION (exptype);
1280
1281 bool signed_p = !TYPE_UNSIGNED (exptype);
1282
1283 if (range_type == VR_ANTI_RANGE)
1284 {
1285 if (signed_p)
1286 {
1287 if (wi::les_p (max, 0))
1288 {
1289 /* EXP is not in a strictly negative range. That means
1290 it must be in some (not necessarily strictly) positive
1291 range which includes zero. Since in signed to unsigned
1292 conversions negative values end up converted to large
1293 positive values, and otherwise they are not valid sizes,
1294 the resulting range is in both cases [0, TYPE_MAX]. */
1295 min = wi::zero (expprec);
1296 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1297 }
1298 else if (wi::les_p (min - 1, 0))
1299 {
1300 /* EXP is not in a negative-positive range. That means EXP
1301 is either negative, or greater than max. Since negative
1302 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1303 min = max + 1;
1304 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1305 }
1306 else
1307 {
1308 max = min - 1;
1309 min = wi::zero (expprec);
1310 }
1311 }
1312 else if (wi::eq_p (0, min - 1))
1313 {
1314 /* EXP is unsigned and not in the range [1, MAX]. That means
1315 it's either zero or greater than MAX. Even though 0 would
1316 normally be detected by -Walloc-zero, unless ALLOW_ZERO
1317 is true, set the range to [MAX, TYPE_MAX] so that when MAX
1318 is greater than the limit the whole range is diagnosed. */
1319 if (allow_zero)
1320 min = max = wi::zero (expprec);
1321 else
1322 {
1323 min = max + 1;
1324 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1325 }
1326 }
1327 else
1328 {
1329 max = min - 1;
1330 min = wi::zero (expprec);
1331 }
1332 }
1333
1334 range[0] = wide_int_to_tree (exptype, min);
1335 range[1] = wide_int_to_tree (exptype, max);
1336
1337 return true;
1338 }
1339
1340 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1341 whose argument numbers given by IDX with values given by ARGS exceed
1342 the maximum object size or cause an unsigned oveflow (wrapping) when
1343 multiplied. FN is null when EXP is a call via a function pointer.
1344 When ARGS[0] is null the function does nothing. ARGS[1] may be null
1345 for functions like malloc, and non-null for those like calloc that
1346 are decorated with a two-argument attribute alloc_size. */
1347
1348 void
1349 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1350 {
1351 /* The range each of the (up to) two arguments is known to be in. */
1352 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1353
1354 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1355 tree maxobjsize = alloc_max_size ();
1356
1357 location_t loc = EXPR_LOCATION (exp);
1358
1359 tree fntype = fn ? TREE_TYPE (fn) : TREE_TYPE (TREE_TYPE (exp));
1360 bool warned = false;
1361
1362 /* Validate each argument individually. */
1363 for (unsigned i = 0; i != 2 && args[i]; ++i)
1364 {
1365 if (TREE_CODE (args[i]) == INTEGER_CST)
1366 {
1367 argrange[i][0] = args[i];
1368 argrange[i][1] = args[i];
1369
1370 if (tree_int_cst_lt (args[i], integer_zero_node))
1371 {
1372 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1373 "%Kargument %i value %qE is negative",
1374 exp, idx[i] + 1, args[i]);
1375 }
1376 else if (integer_zerop (args[i]))
1377 {
1378 /* Avoid issuing -Walloc-zero for allocation functions other
1379 than __builtin_alloca that are declared with attribute
1380 returns_nonnull because there's no portability risk. This
1381 avoids warning for such calls to libiberty's xmalloc and
1382 friends.
1383 Also avoid issuing the warning for calls to function named
1384 "alloca". */
1385 if (fn && fndecl_built_in_p (fn, BUILT_IN_ALLOCA)
1386 ? IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6
1387 : !lookup_attribute ("returns_nonnull",
1388 TYPE_ATTRIBUTES (fntype)))
1389 warned = warning_at (loc, OPT_Walloc_zero,
1390 "%Kargument %i value is zero",
1391 exp, idx[i] + 1);
1392 }
1393 else if (tree_int_cst_lt (maxobjsize, args[i]))
1394 {
1395 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1396 mode and with -fno-exceptions as a way to indicate array
1397 size overflow. There's no good way to detect C++98 here
1398 so avoid diagnosing these calls for all C++ modes. */
1399 if (i == 0
1400 && fn
1401 && !args[1]
1402 && lang_GNU_CXX ()
1403 && DECL_IS_OPERATOR_NEW_P (fn)
1404 && integer_all_onesp (args[i]))
1405 continue;
1406
1407 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1408 "%Kargument %i value %qE exceeds "
1409 "maximum object size %E",
1410 exp, idx[i] + 1, args[i], maxobjsize);
1411 }
1412 }
1413 else if (TREE_CODE (args[i]) == SSA_NAME
1414 && get_size_range (args[i], argrange[i]))
1415 {
1416 /* Verify that the argument's range is not negative (including
1417 upper bound of zero). */
1418 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1419 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1420 {
1421 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1422 "%Kargument %i range [%E, %E] is negative",
1423 exp, idx[i] + 1,
1424 argrange[i][0], argrange[i][1]);
1425 }
1426 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1427 {
1428 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1429 "%Kargument %i range [%E, %E] exceeds "
1430 "maximum object size %E",
1431 exp, idx[i] + 1,
1432 argrange[i][0], argrange[i][1],
1433 maxobjsize);
1434 }
1435 }
1436 }
1437
1438 if (!argrange[0])
1439 return;
1440
1441 /* For a two-argument alloc_size, validate the product of the two
1442 arguments if both of their values or ranges are known. */
1443 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1444 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1445 && !integer_onep (argrange[0][0])
1446 && !integer_onep (argrange[1][0]))
1447 {
1448 /* Check for overflow in the product of a function decorated with
1449 attribute alloc_size (X, Y). */
1450 unsigned szprec = TYPE_PRECISION (size_type_node);
1451 wide_int x = wi::to_wide (argrange[0][0], szprec);
1452 wide_int y = wi::to_wide (argrange[1][0], szprec);
1453
1454 wi::overflow_type vflow;
1455 wide_int prod = wi::umul (x, y, &vflow);
1456
1457 if (vflow)
1458 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1459 "%Kproduct %<%E * %E%> of arguments %i and %i "
1460 "exceeds %<SIZE_MAX%>",
1461 exp, argrange[0][0], argrange[1][0],
1462 idx[0] + 1, idx[1] + 1);
1463 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1464 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1465 "%Kproduct %<%E * %E%> of arguments %i and %i "
1466 "exceeds maximum object size %E",
1467 exp, argrange[0][0], argrange[1][0],
1468 idx[0] + 1, idx[1] + 1,
1469 maxobjsize);
1470
1471 if (warned)
1472 {
1473 /* Print the full range of each of the two arguments to make
1474 it clear when it is, in fact, in a range and not constant. */
1475 if (argrange[0][0] != argrange [0][1])
1476 inform (loc, "argument %i in the range [%E, %E]",
1477 idx[0] + 1, argrange[0][0], argrange[0][1]);
1478 if (argrange[1][0] != argrange [1][1])
1479 inform (loc, "argument %i in the range [%E, %E]",
1480 idx[1] + 1, argrange[1][0], argrange[1][1]);
1481 }
1482 }
1483
1484 if (warned && fn)
1485 {
1486 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1487
1488 if (DECL_IS_BUILTIN (fn))
1489 inform (loc,
1490 "in a call to built-in allocation function %qD", fn);
1491 else
1492 inform (fnloc,
1493 "in a call to allocation function %qD declared here", fn);
1494 }
1495 }
1496
1497 /* If EXPR refers to a character array or pointer declared attribute
1498 nonstring return a decl for that array or pointer and set *REF to
1499 the referenced enclosing object or pointer. Otherwise returns
1500 null. */
1501
1502 tree
1503 get_attr_nonstring_decl (tree expr, tree *ref)
1504 {
1505 tree decl = expr;
1506 tree var = NULL_TREE;
1507 if (TREE_CODE (decl) == SSA_NAME)
1508 {
1509 gimple *def = SSA_NAME_DEF_STMT (decl);
1510
1511 if (is_gimple_assign (def))
1512 {
1513 tree_code code = gimple_assign_rhs_code (def);
1514 if (code == ADDR_EXPR
1515 || code == COMPONENT_REF
1516 || code == VAR_DECL)
1517 decl = gimple_assign_rhs1 (def);
1518 }
1519 else
1520 var = SSA_NAME_VAR (decl);
1521 }
1522
1523 if (TREE_CODE (decl) == ADDR_EXPR)
1524 decl = TREE_OPERAND (decl, 0);
1525
1526 /* To simplify calling code, store the referenced DECL regardless of
1527 the attribute determined below, but avoid storing the SSA_NAME_VAR
1528 obtained above (it's not useful for dataflow purposes). */
1529 if (ref)
1530 *ref = decl;
1531
1532 /* Use the SSA_NAME_VAR that was determined above to see if it's
1533 declared nonstring. Otherwise drill down into the referenced
1534 DECL. */
1535 if (var)
1536 decl = var;
1537 else if (TREE_CODE (decl) == ARRAY_REF)
1538 decl = TREE_OPERAND (decl, 0);
1539 else if (TREE_CODE (decl) == COMPONENT_REF)
1540 decl = TREE_OPERAND (decl, 1);
1541 else if (TREE_CODE (decl) == MEM_REF)
1542 return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
1543
1544 if (DECL_P (decl)
1545 && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
1546 return decl;
1547
1548 return NULL_TREE;
1549 }
1550
1551 /* Warn about passing a non-string array/pointer to a function that
1552 expects a nul-terminated string argument. */
1553
1554 void
1555 maybe_warn_nonstring_arg (tree fndecl, tree exp)
1556 {
1557 if (!fndecl || !fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
1558 return;
1559
1560 if (TREE_NO_WARNING (exp) || !warn_stringop_overflow)
1561 return;
1562
1563 /* Avoid clearly invalid calls (more checking done below). */
1564 unsigned nargs = call_expr_nargs (exp);
1565 if (!nargs)
1566 return;
1567
1568 /* The bound argument to a bounded string function like strncpy. */
1569 tree bound = NULL_TREE;
1570
1571 /* The longest known or possible string argument to one of the comparison
1572 functions. If the length is less than the bound it is used instead.
1573 Since the length is only used for warning and not for code generation
1574 disable strict mode in the calls to get_range_strlen below. */
1575 tree maxlen = NULL_TREE;
1576
1577 /* It's safe to call "bounded" string functions with a non-string
1578 argument since the functions provide an explicit bound for this
1579 purpose. The exception is strncat where the bound may refer to
1580 either the destination or the source. */
1581 int fncode = DECL_FUNCTION_CODE (fndecl);
1582 switch (fncode)
1583 {
1584 case BUILT_IN_STRCMP:
1585 case BUILT_IN_STRNCMP:
1586 case BUILT_IN_STRNCASECMP:
1587 {
1588 /* For these, if one argument refers to one or more of a set
1589 of string constants or arrays of known size, determine
1590 the range of their known or possible lengths and use it
1591 conservatively as the bound for the unbounded function,
1592 and to adjust the range of the bound of the bounded ones. */
1593 for (unsigned argno = 0;
1594 argno < MIN (nargs, 2)
1595 && !(maxlen && TREE_CODE (maxlen) == INTEGER_CST); argno++)
1596 {
1597 tree arg = CALL_EXPR_ARG (exp, argno);
1598 if (!get_attr_nonstring_decl (arg))
1599 {
1600 c_strlen_data lendata = { };
1601 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1602 maxlen = lendata.maxbound;
1603 }
1604 }
1605 }
1606 /* Fall through. */
1607
1608 case BUILT_IN_STRNCAT:
1609 case BUILT_IN_STPNCPY:
1610 case BUILT_IN_STRNCPY:
1611 if (nargs > 2)
1612 bound = CALL_EXPR_ARG (exp, 2);
1613 break;
1614
1615 case BUILT_IN_STRNDUP:
1616 if (nargs > 1)
1617 bound = CALL_EXPR_ARG (exp, 1);
1618 break;
1619
1620 case BUILT_IN_STRNLEN:
1621 {
1622 tree arg = CALL_EXPR_ARG (exp, 0);
1623 if (!get_attr_nonstring_decl (arg))
1624 {
1625 c_strlen_data lendata = { };
1626 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1627 maxlen = lendata.maxbound;
1628 }
1629 if (nargs > 1)
1630 bound = CALL_EXPR_ARG (exp, 1);
1631 break;
1632 }
1633
1634 default:
1635 break;
1636 }
1637
1638 /* Determine the range of the bound argument (if specified). */
1639 tree bndrng[2] = { NULL_TREE, NULL_TREE };
1640 if (bound)
1641 {
1642 STRIP_NOPS (bound);
1643 get_size_range (bound, bndrng);
1644 }
1645
1646 location_t loc = EXPR_LOCATION (exp);
1647
1648 if (bndrng[0])
1649 {
1650 /* Diagnose excessive bound prior the adjustment below and
1651 regardless of attribute nonstring. */
1652 tree maxobjsize = max_object_size ();
1653 if (tree_int_cst_lt (maxobjsize, bndrng[0]))
1654 {
1655 if (tree_int_cst_equal (bndrng[0], bndrng[1]))
1656 warning_at (loc, OPT_Wstringop_overflow_,
1657 "%K%qD specified bound %E "
1658 "exceeds maximum object size %E",
1659 exp, fndecl, bndrng[0], maxobjsize);
1660 else
1661 warning_at (loc, OPT_Wstringop_overflow_,
1662 "%K%qD specified bound [%E, %E] "
1663 "exceeds maximum object size %E",
1664 exp, fndecl, bndrng[0], bndrng[1], maxobjsize);
1665 return;
1666 }
1667 }
1668
1669 if (maxlen && !integer_all_onesp (maxlen))
1670 {
1671 /* Add one for the nul. */
1672 maxlen = const_binop (PLUS_EXPR, TREE_TYPE (maxlen), maxlen,
1673 size_one_node);
1674
1675 if (!bndrng[0])
1676 {
1677 /* Conservatively use the upper bound of the lengths for
1678 both the lower and the upper bound of the operation. */
1679 bndrng[0] = maxlen;
1680 bndrng[1] = maxlen;
1681 bound = void_type_node;
1682 }
1683 else if (maxlen)
1684 {
1685 /* Replace the bound on the operation with the upper bound
1686 of the length of the string if the latter is smaller. */
1687 if (tree_int_cst_lt (maxlen, bndrng[0]))
1688 bndrng[0] = maxlen;
1689 else if (tree_int_cst_lt (maxlen, bndrng[1]))
1690 bndrng[1] = maxlen;
1691 }
1692 }
1693
1694 /* Iterate over the built-in function's formal arguments and check
1695 each const char* against the actual argument. If the actual
1696 argument is declared attribute non-string issue a warning unless
1697 the argument's maximum length is bounded. */
1698 function_args_iterator it;
1699 function_args_iter_init (&it, TREE_TYPE (fndecl));
1700
1701 for (unsigned argno = 0; ; ++argno, function_args_iter_next (&it))
1702 {
1703 /* Avoid iterating past the declared argument in a call
1704 to function declared without a prototype. */
1705 if (argno >= nargs)
1706 break;
1707
1708 tree argtype = function_args_iter_cond (&it);
1709 if (!argtype)
1710 break;
1711
1712 if (TREE_CODE (argtype) != POINTER_TYPE)
1713 continue;
1714
1715 argtype = TREE_TYPE (argtype);
1716
1717 if (TREE_CODE (argtype) != INTEGER_TYPE
1718 || !TYPE_READONLY (argtype))
1719 continue;
1720
1721 argtype = TYPE_MAIN_VARIANT (argtype);
1722 if (argtype != char_type_node)
1723 continue;
1724
1725 tree callarg = CALL_EXPR_ARG (exp, argno);
1726 if (TREE_CODE (callarg) == ADDR_EXPR)
1727 callarg = TREE_OPERAND (callarg, 0);
1728
1729 /* See if the destination is declared with attribute "nonstring". */
1730 tree decl = get_attr_nonstring_decl (callarg);
1731 if (!decl)
1732 continue;
1733
1734 /* The maximum number of array elements accessed. */
1735 offset_int wibnd = 0;
1736
1737 if (argno && fncode == BUILT_IN_STRNCAT)
1738 {
1739 /* See if the bound in strncat is derived from the length
1740 of the strlen of the destination (as it's expected to be).
1741 If so, reset BOUND and FNCODE to trigger a warning. */
1742 tree dstarg = CALL_EXPR_ARG (exp, 0);
1743 if (is_strlen_related_p (dstarg, bound))
1744 {
1745 /* The bound applies to the destination, not to the source,
1746 so reset these to trigger a warning without mentioning
1747 the bound. */
1748 bound = NULL;
1749 fncode = 0;
1750 }
1751 else if (bndrng[1])
1752 /* Use the upper bound of the range for strncat. */
1753 wibnd = wi::to_offset (bndrng[1]);
1754 }
1755 else if (bndrng[0])
1756 /* Use the lower bound of the range for functions other than
1757 strncat. */
1758 wibnd = wi::to_offset (bndrng[0]);
1759
1760 /* Determine the size of the argument array if it is one. */
1761 offset_int asize = wibnd;
1762 bool known_size = false;
1763 tree type = TREE_TYPE (decl);
1764
1765 /* Determine the array size. For arrays of unknown bound and
1766 pointers reset BOUND to trigger the appropriate warning. */
1767 if (TREE_CODE (type) == ARRAY_TYPE)
1768 {
1769 if (tree arrbnd = TYPE_DOMAIN (type))
1770 {
1771 if ((arrbnd = TYPE_MAX_VALUE (arrbnd)))
1772 {
1773 asize = wi::to_offset (arrbnd) + 1;
1774 known_size = true;
1775 }
1776 }
1777 else if (bound == void_type_node)
1778 bound = NULL_TREE;
1779 }
1780 else if (bound == void_type_node)
1781 bound = NULL_TREE;
1782
1783 /* In a call to strncat with a bound in a range whose lower but
1784 not upper bound is less than the array size, reset ASIZE to
1785 be the same as the bound and the other variable to trigger
1786 the apprpriate warning below. */
1787 if (fncode == BUILT_IN_STRNCAT
1788 && bndrng[0] != bndrng[1]
1789 && wi::ltu_p (wi::to_offset (bndrng[0]), asize)
1790 && (!known_size
1791 || wi::ltu_p (asize, wibnd)))
1792 {
1793 asize = wibnd;
1794 bound = NULL_TREE;
1795 fncode = 0;
1796 }
1797
1798 bool warned = false;
1799
1800 auto_diagnostic_group d;
1801 if (wi::ltu_p (asize, wibnd))
1802 {
1803 if (bndrng[0] == bndrng[1])
1804 warned = warning_at (loc, OPT_Wstringop_overflow_,
1805 "%qD argument %i declared attribute "
1806 "%<nonstring%> is smaller than the specified "
1807 "bound %wu",
1808 fndecl, argno + 1, wibnd.to_uhwi ());
1809 else if (wi::ltu_p (asize, wi::to_offset (bndrng[0])))
1810 warned = warning_at (loc, OPT_Wstringop_overflow_,
1811 "%qD argument %i declared attribute "
1812 "%<nonstring%> is smaller than "
1813 "the specified bound [%E, %E]",
1814 fndecl, argno + 1, bndrng[0], bndrng[1]);
1815 else
1816 warned = warning_at (loc, OPT_Wstringop_overflow_,
1817 "%qD argument %i declared attribute "
1818 "%<nonstring%> may be smaller than "
1819 "the specified bound [%E, %E]",
1820 fndecl, argno + 1, bndrng[0], bndrng[1]);
1821 }
1822 else if (fncode == BUILT_IN_STRNCAT)
1823 ; /* Avoid warning for calls to strncat() when the bound
1824 is equal to the size of the non-string argument. */
1825 else if (!bound)
1826 warned = warning_at (loc, OPT_Wstringop_overflow_,
1827 "%qD argument %i declared attribute %<nonstring%>",
1828 fndecl, argno + 1);
1829
1830 if (warned)
1831 inform (DECL_SOURCE_LOCATION (decl),
1832 "argument %qD declared here", decl);
1833 }
1834 }
1835
1836 /* Issue an error if CALL_EXPR was flagged as requiring
1837 tall-call optimization. */
1838
1839 static void
1840 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1841 {
1842 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1843 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1844 return;
1845
1846 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1847 }
1848
1849 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1850 CALL_EXPR EXP.
1851
1852 NUM_ACTUALS is the total number of parameters.
1853
1854 N_NAMED_ARGS is the total number of named arguments.
1855
1856 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1857 value, or null.
1858
1859 FNDECL is the tree code for the target of this call (if known)
1860
1861 ARGS_SO_FAR holds state needed by the target to know where to place
1862 the next argument.
1863
1864 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1865 for arguments which are passed in registers.
1866
1867 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1868 and may be modified by this routine.
1869
1870 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1871 flags which may be modified by this routine.
1872
1873 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1874 that requires allocation of stack space.
1875
1876 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1877 the thunked-to function. */
1878
1879 static void
1880 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1881 struct arg_data *args,
1882 struct args_size *args_size,
1883 int n_named_args ATTRIBUTE_UNUSED,
1884 tree exp, tree struct_value_addr_value,
1885 tree fndecl, tree fntype,
1886 cumulative_args_t args_so_far,
1887 int reg_parm_stack_space,
1888 rtx *old_stack_level,
1889 poly_int64_pod *old_pending_adj,
1890 int *must_preallocate, int *ecf_flags,
1891 bool *may_tailcall, bool call_from_thunk_p)
1892 {
1893 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1894 location_t loc = EXPR_LOCATION (exp);
1895
1896 /* Count arg position in order args appear. */
1897 int argpos;
1898
1899 int i;
1900
1901 args_size->constant = 0;
1902 args_size->var = 0;
1903
1904 bitmap_obstack_initialize (NULL);
1905
1906 /* In this loop, we consider args in the order they are written.
1907 We fill up ARGS from the back. */
1908
1909 i = num_actuals - 1;
1910 {
1911 int j = i;
1912 call_expr_arg_iterator iter;
1913 tree arg;
1914 bitmap slots = NULL;
1915
1916 if (struct_value_addr_value)
1917 {
1918 args[j].tree_value = struct_value_addr_value;
1919 j--;
1920 }
1921 argpos = 0;
1922 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1923 {
1924 tree argtype = TREE_TYPE (arg);
1925
1926 if (targetm.calls.split_complex_arg
1927 && argtype
1928 && TREE_CODE (argtype) == COMPLEX_TYPE
1929 && targetm.calls.split_complex_arg (argtype))
1930 {
1931 tree subtype = TREE_TYPE (argtype);
1932 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1933 j--;
1934 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1935 }
1936 else
1937 args[j].tree_value = arg;
1938 j--;
1939 argpos++;
1940 }
1941
1942 if (slots)
1943 BITMAP_FREE (slots);
1944 }
1945
1946 bitmap_obstack_release (NULL);
1947
1948 /* Extract attribute alloc_size from the type of the called expression
1949 (which could be a function or a function pointer) and if set, store
1950 the indices of the corresponding arguments in ALLOC_IDX, and then
1951 the actual argument(s) at those indices in ALLOC_ARGS. */
1952 int alloc_idx[2] = { -1, -1 };
1953 if (tree alloc_size = lookup_attribute ("alloc_size",
1954 TYPE_ATTRIBUTES (fntype)))
1955 {
1956 tree args = TREE_VALUE (alloc_size);
1957 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
1958 if (TREE_CHAIN (args))
1959 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
1960 }
1961
1962 /* Array for up to the two attribute alloc_size arguments. */
1963 tree alloc_args[] = { NULL_TREE, NULL_TREE };
1964
1965 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1966 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1967 {
1968 tree type = TREE_TYPE (args[i].tree_value);
1969 int unsignedp;
1970 machine_mode mode;
1971
1972 /* Replace erroneous argument with constant zero. */
1973 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1974 args[i].tree_value = integer_zero_node, type = integer_type_node;
1975
1976 /* If TYPE is a transparent union or record, pass things the way
1977 we would pass the first field of the union or record. We have
1978 already verified that the modes are the same. */
1979 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1980 && TYPE_TRANSPARENT_AGGR (type))
1981 type = TREE_TYPE (first_field (type));
1982
1983 /* Decide where to pass this arg.
1984
1985 args[i].reg is nonzero if all or part is passed in registers.
1986
1987 args[i].partial is nonzero if part but not all is passed in registers,
1988 and the exact value says how many bytes are passed in registers.
1989
1990 args[i].pass_on_stack is nonzero if the argument must at least be
1991 computed on the stack. It may then be loaded back into registers
1992 if args[i].reg is nonzero.
1993
1994 These decisions are driven by the FUNCTION_... macros and must agree
1995 with those made by function.c. */
1996
1997 /* See if this argument should be passed by invisible reference. */
1998 function_arg_info orig_arg (type, argpos < n_named_args);
1999 if (pass_by_reference (args_so_far_pnt, orig_arg))
2000 {
2001 bool callee_copies;
2002 tree base = NULL_TREE;
2003
2004 callee_copies
2005 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
2006 type, argpos < n_named_args);
2007
2008 /* If we're compiling a thunk, pass through invisible references
2009 instead of making a copy. */
2010 if (call_from_thunk_p
2011 || (callee_copies
2012 && !TREE_ADDRESSABLE (type)
2013 && (base = get_base_address (args[i].tree_value))
2014 && TREE_CODE (base) != SSA_NAME
2015 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
2016 {
2017 /* We may have turned the parameter value into an SSA name.
2018 Go back to the original parameter so we can take the
2019 address. */
2020 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
2021 {
2022 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
2023 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
2024 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
2025 }
2026 /* Argument setup code may have copied the value to register. We
2027 revert that optimization now because the tail call code must
2028 use the original location. */
2029 if (TREE_CODE (args[i].tree_value) == PARM_DECL
2030 && !MEM_P (DECL_RTL (args[i].tree_value))
2031 && DECL_INCOMING_RTL (args[i].tree_value)
2032 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
2033 set_decl_rtl (args[i].tree_value,
2034 DECL_INCOMING_RTL (args[i].tree_value));
2035
2036 mark_addressable (args[i].tree_value);
2037
2038 /* We can't use sibcalls if a callee-copied argument is
2039 stored in the current function's frame. */
2040 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
2041 {
2042 *may_tailcall = false;
2043 maybe_complain_about_tail_call (exp,
2044 "a callee-copied argument is"
2045 " stored in the current"
2046 " function's frame");
2047 }
2048
2049 args[i].tree_value = build_fold_addr_expr_loc (loc,
2050 args[i].tree_value);
2051 type = TREE_TYPE (args[i].tree_value);
2052
2053 if (*ecf_flags & ECF_CONST)
2054 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
2055 }
2056 else
2057 {
2058 /* We make a copy of the object and pass the address to the
2059 function being called. */
2060 rtx copy;
2061
2062 if (!COMPLETE_TYPE_P (type)
2063 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
2064 || (flag_stack_check == GENERIC_STACK_CHECK
2065 && compare_tree_int (TYPE_SIZE_UNIT (type),
2066 STACK_CHECK_MAX_VAR_SIZE) > 0))
2067 {
2068 /* This is a variable-sized object. Make space on the stack
2069 for it. */
2070 rtx size_rtx = expr_size (args[i].tree_value);
2071
2072 if (*old_stack_level == 0)
2073 {
2074 emit_stack_save (SAVE_BLOCK, old_stack_level);
2075 *old_pending_adj = pending_stack_adjust;
2076 pending_stack_adjust = 0;
2077 }
2078
2079 /* We can pass TRUE as the 4th argument because we just
2080 saved the stack pointer and will restore it right after
2081 the call. */
2082 copy = allocate_dynamic_stack_space (size_rtx,
2083 TYPE_ALIGN (type),
2084 TYPE_ALIGN (type),
2085 max_int_size_in_bytes
2086 (type),
2087 true);
2088 copy = gen_rtx_MEM (BLKmode, copy);
2089 set_mem_attributes (copy, type, 1);
2090 }
2091 else
2092 copy = assign_temp (type, 1, 0);
2093
2094 store_expr (args[i].tree_value, copy, 0, false, false);
2095
2096 /* Just change the const function to pure and then let
2097 the next test clear the pure based on
2098 callee_copies. */
2099 if (*ecf_flags & ECF_CONST)
2100 {
2101 *ecf_flags &= ~ECF_CONST;
2102 *ecf_flags |= ECF_PURE;
2103 }
2104
2105 if (!callee_copies && *ecf_flags & ECF_PURE)
2106 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2107
2108 args[i].tree_value
2109 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
2110 type = TREE_TYPE (args[i].tree_value);
2111 *may_tailcall = false;
2112 maybe_complain_about_tail_call (exp,
2113 "argument must be passed"
2114 " by copying");
2115 }
2116 }
2117
2118 unsignedp = TYPE_UNSIGNED (type);
2119 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
2120 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
2121
2122 args[i].unsignedp = unsignedp;
2123 args[i].mode = mode;
2124
2125 targetm.calls.warn_parameter_passing_abi (args_so_far, type);
2126
2127 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
2128 argpos < n_named_args);
2129
2130 if (args[i].reg && CONST_INT_P (args[i].reg))
2131 args[i].reg = NULL;
2132
2133 /* If this is a sibling call and the machine has register windows, the
2134 register window has to be unwinded before calling the routine, so
2135 arguments have to go into the incoming registers. */
2136 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
2137 args[i].tail_call_reg
2138 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
2139 argpos < n_named_args);
2140 else
2141 args[i].tail_call_reg = args[i].reg;
2142
2143 function_arg_info arg (type, mode, argpos < n_named_args);
2144 if (args[i].reg)
2145 args[i].partial = targetm.calls.arg_partial_bytes (args_so_far, arg);
2146
2147 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
2148
2149 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
2150 it means that we are to pass this arg in the register(s) designated
2151 by the PARALLEL, but also to pass it in the stack. */
2152 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
2153 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
2154 args[i].pass_on_stack = 1;
2155
2156 /* If this is an addressable type, we must preallocate the stack
2157 since we must evaluate the object into its final location.
2158
2159 If this is to be passed in both registers and the stack, it is simpler
2160 to preallocate. */
2161 if (TREE_ADDRESSABLE (type)
2162 || (args[i].pass_on_stack && args[i].reg != 0))
2163 *must_preallocate = 1;
2164
2165 /* Compute the stack-size of this argument. */
2166 if (args[i].reg == 0 || args[i].partial != 0
2167 || reg_parm_stack_space > 0
2168 || args[i].pass_on_stack)
2169 locate_and_pad_parm (mode, type,
2170 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2171 1,
2172 #else
2173 args[i].reg != 0,
2174 #endif
2175 reg_parm_stack_space,
2176 args[i].pass_on_stack ? 0 : args[i].partial,
2177 fndecl, args_size, &args[i].locate);
2178 #ifdef BLOCK_REG_PADDING
2179 else
2180 /* The argument is passed entirely in registers. See at which
2181 end it should be padded. */
2182 args[i].locate.where_pad =
2183 BLOCK_REG_PADDING (mode, type,
2184 int_size_in_bytes (type) <= UNITS_PER_WORD);
2185 #endif
2186
2187 /* Update ARGS_SIZE, the total stack space for args so far. */
2188
2189 args_size->constant += args[i].locate.size.constant;
2190 if (args[i].locate.size.var)
2191 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
2192
2193 /* Increment ARGS_SO_FAR, which has info about which arg-registers
2194 have been used, etc. */
2195
2196 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
2197 type, argpos < n_named_args);
2198
2199 /* Store argument values for functions decorated with attribute
2200 alloc_size. */
2201 if (argpos == alloc_idx[0])
2202 alloc_args[0] = args[i].tree_value;
2203 else if (argpos == alloc_idx[1])
2204 alloc_args[1] = args[i].tree_value;
2205 }
2206
2207 if (alloc_args[0])
2208 {
2209 /* Check the arguments of functions decorated with attribute
2210 alloc_size. */
2211 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
2212 }
2213
2214 /* Detect passing non-string arguments to functions expecting
2215 nul-terminated strings. */
2216 maybe_warn_nonstring_arg (fndecl, exp);
2217 }
2218
2219 /* Update ARGS_SIZE to contain the total size for the argument block.
2220 Return the original constant component of the argument block's size.
2221
2222 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
2223 for arguments passed in registers. */
2224
2225 static poly_int64
2226 compute_argument_block_size (int reg_parm_stack_space,
2227 struct args_size *args_size,
2228 tree fndecl ATTRIBUTE_UNUSED,
2229 tree fntype ATTRIBUTE_UNUSED,
2230 int preferred_stack_boundary ATTRIBUTE_UNUSED)
2231 {
2232 poly_int64 unadjusted_args_size = args_size->constant;
2233
2234 /* For accumulate outgoing args mode we don't need to align, since the frame
2235 will be already aligned. Align to STACK_BOUNDARY in order to prevent
2236 backends from generating misaligned frame sizes. */
2237 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
2238 preferred_stack_boundary = STACK_BOUNDARY;
2239
2240 /* Compute the actual size of the argument block required. The variable
2241 and constant sizes must be combined, the size may have to be rounded,
2242 and there may be a minimum required size. */
2243
2244 if (args_size->var)
2245 {
2246 args_size->var = ARGS_SIZE_TREE (*args_size);
2247 args_size->constant = 0;
2248
2249 preferred_stack_boundary /= BITS_PER_UNIT;
2250 if (preferred_stack_boundary > 1)
2251 {
2252 /* We don't handle this case yet. To handle it correctly we have
2253 to add the delta, round and subtract the delta.
2254 Currently no machine description requires this support. */
2255 gcc_assert (multiple_p (stack_pointer_delta,
2256 preferred_stack_boundary));
2257 args_size->var = round_up (args_size->var, preferred_stack_boundary);
2258 }
2259
2260 if (reg_parm_stack_space > 0)
2261 {
2262 args_size->var
2263 = size_binop (MAX_EXPR, args_size->var,
2264 ssize_int (reg_parm_stack_space));
2265
2266 /* The area corresponding to register parameters is not to count in
2267 the size of the block we need. So make the adjustment. */
2268 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2269 args_size->var
2270 = size_binop (MINUS_EXPR, args_size->var,
2271 ssize_int (reg_parm_stack_space));
2272 }
2273 }
2274 else
2275 {
2276 preferred_stack_boundary /= BITS_PER_UNIT;
2277 if (preferred_stack_boundary < 1)
2278 preferred_stack_boundary = 1;
2279 args_size->constant = (aligned_upper_bound (args_size->constant
2280 + stack_pointer_delta,
2281 preferred_stack_boundary)
2282 - stack_pointer_delta);
2283
2284 args_size->constant = upper_bound (args_size->constant,
2285 reg_parm_stack_space);
2286
2287 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2288 args_size->constant -= reg_parm_stack_space;
2289 }
2290 return unadjusted_args_size;
2291 }
2292
2293 /* Precompute parameters as needed for a function call.
2294
2295 FLAGS is mask of ECF_* constants.
2296
2297 NUM_ACTUALS is the number of arguments.
2298
2299 ARGS is an array containing information for each argument; this
2300 routine fills in the INITIAL_VALUE and VALUE fields for each
2301 precomputed argument. */
2302
2303 static void
2304 precompute_arguments (int num_actuals, struct arg_data *args)
2305 {
2306 int i;
2307
2308 /* If this is a libcall, then precompute all arguments so that we do not
2309 get extraneous instructions emitted as part of the libcall sequence. */
2310
2311 /* If we preallocated the stack space, and some arguments must be passed
2312 on the stack, then we must precompute any parameter which contains a
2313 function call which will store arguments on the stack.
2314 Otherwise, evaluating the parameter may clobber previous parameters
2315 which have already been stored into the stack. (we have code to avoid
2316 such case by saving the outgoing stack arguments, but it results in
2317 worse code) */
2318 if (!ACCUMULATE_OUTGOING_ARGS)
2319 return;
2320
2321 for (i = 0; i < num_actuals; i++)
2322 {
2323 tree type;
2324 machine_mode mode;
2325
2326 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2327 continue;
2328
2329 /* If this is an addressable type, we cannot pre-evaluate it. */
2330 type = TREE_TYPE (args[i].tree_value);
2331 gcc_assert (!TREE_ADDRESSABLE (type));
2332
2333 args[i].initial_value = args[i].value
2334 = expand_normal (args[i].tree_value);
2335
2336 mode = TYPE_MODE (type);
2337 if (mode != args[i].mode)
2338 {
2339 int unsignedp = args[i].unsignedp;
2340 args[i].value
2341 = convert_modes (args[i].mode, mode,
2342 args[i].value, args[i].unsignedp);
2343
2344 /* CSE will replace this only if it contains args[i].value
2345 pseudo, so convert it down to the declared mode using
2346 a SUBREG. */
2347 if (REG_P (args[i].value)
2348 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2349 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2350 {
2351 args[i].initial_value
2352 = gen_lowpart_SUBREG (mode, args[i].value);
2353 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2354 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2355 }
2356 }
2357 }
2358 }
2359
2360 /* Given the current state of MUST_PREALLOCATE and information about
2361 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2362 compute and return the final value for MUST_PREALLOCATE. */
2363
2364 static int
2365 finalize_must_preallocate (int must_preallocate, int num_actuals,
2366 struct arg_data *args, struct args_size *args_size)
2367 {
2368 /* See if we have or want to preallocate stack space.
2369
2370 If we would have to push a partially-in-regs parm
2371 before other stack parms, preallocate stack space instead.
2372
2373 If the size of some parm is not a multiple of the required stack
2374 alignment, we must preallocate.
2375
2376 If the total size of arguments that would otherwise create a copy in
2377 a temporary (such as a CALL) is more than half the total argument list
2378 size, preallocation is faster.
2379
2380 Another reason to preallocate is if we have a machine (like the m88k)
2381 where stack alignment is required to be maintained between every
2382 pair of insns, not just when the call is made. However, we assume here
2383 that such machines either do not have push insns (and hence preallocation
2384 would occur anyway) or the problem is taken care of with
2385 PUSH_ROUNDING. */
2386
2387 if (! must_preallocate)
2388 {
2389 int partial_seen = 0;
2390 poly_int64 copy_to_evaluate_size = 0;
2391 int i;
2392
2393 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2394 {
2395 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2396 partial_seen = 1;
2397 else if (partial_seen && args[i].reg == 0)
2398 must_preallocate = 1;
2399
2400 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2401 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2402 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2403 || TREE_CODE (args[i].tree_value) == COND_EXPR
2404 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2405 copy_to_evaluate_size
2406 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2407 }
2408
2409 if (maybe_ne (args_size->constant, 0)
2410 && maybe_ge (copy_to_evaluate_size * 2, args_size->constant))
2411 must_preallocate = 1;
2412 }
2413 return must_preallocate;
2414 }
2415
2416 /* If we preallocated stack space, compute the address of each argument
2417 and store it into the ARGS array.
2418
2419 We need not ensure it is a valid memory address here; it will be
2420 validized when it is used.
2421
2422 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2423
2424 static void
2425 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2426 {
2427 if (argblock)
2428 {
2429 rtx arg_reg = argblock;
2430 int i;
2431 poly_int64 arg_offset = 0;
2432
2433 if (GET_CODE (argblock) == PLUS)
2434 {
2435 arg_reg = XEXP (argblock, 0);
2436 arg_offset = rtx_to_poly_int64 (XEXP (argblock, 1));
2437 }
2438
2439 for (i = 0; i < num_actuals; i++)
2440 {
2441 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2442 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2443 rtx addr;
2444 unsigned int align, boundary;
2445 poly_uint64 units_on_stack = 0;
2446 machine_mode partial_mode = VOIDmode;
2447
2448 /* Skip this parm if it will not be passed on the stack. */
2449 if (! args[i].pass_on_stack
2450 && args[i].reg != 0
2451 && args[i].partial == 0)
2452 continue;
2453
2454 if (TYPE_EMPTY_P (TREE_TYPE (args[i].tree_value)))
2455 continue;
2456
2457 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
2458 addr = plus_constant (Pmode, addr, arg_offset);
2459
2460 if (args[i].partial != 0)
2461 {
2462 /* Only part of the parameter is being passed on the stack.
2463 Generate a simple memory reference of the correct size. */
2464 units_on_stack = args[i].locate.size.constant;
2465 poly_uint64 bits_on_stack = units_on_stack * BITS_PER_UNIT;
2466 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
2467 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2468 set_mem_size (args[i].stack, units_on_stack);
2469 }
2470 else
2471 {
2472 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2473 set_mem_attributes (args[i].stack,
2474 TREE_TYPE (args[i].tree_value), 1);
2475 }
2476 align = BITS_PER_UNIT;
2477 boundary = args[i].locate.boundary;
2478 poly_int64 offset_val;
2479 if (args[i].locate.where_pad != PAD_DOWNWARD)
2480 align = boundary;
2481 else if (poly_int_rtx_p (offset, &offset_val))
2482 {
2483 align = least_bit_hwi (boundary);
2484 unsigned int offset_align
2485 = known_alignment (offset_val) * BITS_PER_UNIT;
2486 if (offset_align != 0)
2487 align = MIN (align, offset_align);
2488 }
2489 set_mem_align (args[i].stack, align);
2490
2491 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
2492 addr = plus_constant (Pmode, addr, arg_offset);
2493
2494 if (args[i].partial != 0)
2495 {
2496 /* Only part of the parameter is being passed on the stack.
2497 Generate a simple memory reference of the correct size.
2498 */
2499 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2500 set_mem_size (args[i].stack_slot, units_on_stack);
2501 }
2502 else
2503 {
2504 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2505 set_mem_attributes (args[i].stack_slot,
2506 TREE_TYPE (args[i].tree_value), 1);
2507 }
2508 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2509
2510 /* Function incoming arguments may overlap with sibling call
2511 outgoing arguments and we cannot allow reordering of reads
2512 from function arguments with stores to outgoing arguments
2513 of sibling calls. */
2514 set_mem_alias_set (args[i].stack, 0);
2515 set_mem_alias_set (args[i].stack_slot, 0);
2516 }
2517 }
2518 }
2519
2520 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2521 in a call instruction.
2522
2523 FNDECL is the tree node for the target function. For an indirect call
2524 FNDECL will be NULL_TREE.
2525
2526 ADDR is the operand 0 of CALL_EXPR for this call. */
2527
2528 static rtx
2529 rtx_for_function_call (tree fndecl, tree addr)
2530 {
2531 rtx funexp;
2532
2533 /* Get the function to call, in the form of RTL. */
2534 if (fndecl)
2535 {
2536 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2537 TREE_USED (fndecl) = 1;
2538
2539 /* Get a SYMBOL_REF rtx for the function address. */
2540 funexp = XEXP (DECL_RTL (fndecl), 0);
2541 }
2542 else
2543 /* Generate an rtx (probably a pseudo-register) for the address. */
2544 {
2545 push_temp_slots ();
2546 funexp = expand_normal (addr);
2547 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2548 }
2549 return funexp;
2550 }
2551
2552 /* Return the static chain for this function, if any. */
2553
2554 rtx
2555 rtx_for_static_chain (const_tree fndecl_or_type, bool incoming_p)
2556 {
2557 if (DECL_P (fndecl_or_type) && !DECL_STATIC_CHAIN (fndecl_or_type))
2558 return NULL;
2559
2560 return targetm.calls.static_chain (fndecl_or_type, incoming_p);
2561 }
2562
2563 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2564 static struct
2565 {
2566 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2567 or NULL_RTX if none has been scanned yet. */
2568 rtx_insn *scan_start;
2569 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2570 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2571 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2572 with fixed offset, or PC if this is with variable or unknown offset. */
2573 vec<rtx> cache;
2574 } internal_arg_pointer_exp_state;
2575
2576 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2577
2578 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2579 the tail call sequence, starting with first insn that hasn't been
2580 scanned yet, and note for each pseudo on the LHS whether it is based
2581 on crtl->args.internal_arg_pointer or not, and what offset from that
2582 that pointer it has. */
2583
2584 static void
2585 internal_arg_pointer_based_exp_scan (void)
2586 {
2587 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2588
2589 if (scan_start == NULL_RTX)
2590 insn = get_insns ();
2591 else
2592 insn = NEXT_INSN (scan_start);
2593
2594 while (insn)
2595 {
2596 rtx set = single_set (insn);
2597 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2598 {
2599 rtx val = NULL_RTX;
2600 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2601 /* Punt on pseudos set multiple times. */
2602 if (idx < internal_arg_pointer_exp_state.cache.length ()
2603 && (internal_arg_pointer_exp_state.cache[idx]
2604 != NULL_RTX))
2605 val = pc_rtx;
2606 else
2607 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2608 if (val != NULL_RTX)
2609 {
2610 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2611 internal_arg_pointer_exp_state.cache
2612 .safe_grow_cleared (idx + 1);
2613 internal_arg_pointer_exp_state.cache[idx] = val;
2614 }
2615 }
2616 if (NEXT_INSN (insn) == NULL_RTX)
2617 scan_start = insn;
2618 insn = NEXT_INSN (insn);
2619 }
2620
2621 internal_arg_pointer_exp_state.scan_start = scan_start;
2622 }
2623
2624 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2625 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2626 it with fixed offset, or PC if this is with variable or unknown offset.
2627 TOPLEVEL is true if the function is invoked at the topmost level. */
2628
2629 static rtx
2630 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2631 {
2632 if (CONSTANT_P (rtl))
2633 return NULL_RTX;
2634
2635 if (rtl == crtl->args.internal_arg_pointer)
2636 return const0_rtx;
2637
2638 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2639 return NULL_RTX;
2640
2641 poly_int64 offset;
2642 if (GET_CODE (rtl) == PLUS && poly_int_rtx_p (XEXP (rtl, 1), &offset))
2643 {
2644 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2645 if (val == NULL_RTX || val == pc_rtx)
2646 return val;
2647 return plus_constant (Pmode, val, offset);
2648 }
2649
2650 /* When called at the topmost level, scan pseudo assignments in between the
2651 last scanned instruction in the tail call sequence and the latest insn
2652 in that sequence. */
2653 if (toplevel)
2654 internal_arg_pointer_based_exp_scan ();
2655
2656 if (REG_P (rtl))
2657 {
2658 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2659 if (idx < internal_arg_pointer_exp_state.cache.length ())
2660 return internal_arg_pointer_exp_state.cache[idx];
2661
2662 return NULL_RTX;
2663 }
2664
2665 subrtx_iterator::array_type array;
2666 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2667 {
2668 const_rtx x = *iter;
2669 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2670 return pc_rtx;
2671 if (MEM_P (x))
2672 iter.skip_subrtxes ();
2673 }
2674
2675 return NULL_RTX;
2676 }
2677
2678 /* Return true if SIZE bytes starting from address ADDR might overlap an
2679 already-clobbered argument area. This function is used to determine
2680 if we should give up a sibcall. */
2681
2682 static bool
2683 mem_might_overlap_already_clobbered_arg_p (rtx addr, poly_uint64 size)
2684 {
2685 poly_int64 i;
2686 unsigned HOST_WIDE_INT start, end;
2687 rtx val;
2688
2689 if (bitmap_empty_p (stored_args_map)
2690 && stored_args_watermark == HOST_WIDE_INT_M1U)
2691 return false;
2692 val = internal_arg_pointer_based_exp (addr, true);
2693 if (val == NULL_RTX)
2694 return false;
2695 else if (!poly_int_rtx_p (val, &i))
2696 return true;
2697
2698 if (known_eq (size, 0U))
2699 return false;
2700
2701 if (STACK_GROWS_DOWNWARD)
2702 i -= crtl->args.pretend_args_size;
2703 else
2704 i += crtl->args.pretend_args_size;
2705
2706 if (ARGS_GROW_DOWNWARD)
2707 i = -i - size;
2708
2709 /* We can ignore any references to the function's pretend args,
2710 which at this point would manifest as negative values of I. */
2711 if (known_le (i, 0) && known_le (size, poly_uint64 (-i)))
2712 return false;
2713
2714 start = maybe_lt (i, 0) ? 0 : constant_lower_bound (i);
2715 if (!(i + size).is_constant (&end))
2716 end = HOST_WIDE_INT_M1U;
2717
2718 if (end > stored_args_watermark)
2719 return true;
2720
2721 end = MIN (end, SBITMAP_SIZE (stored_args_map));
2722 for (unsigned HOST_WIDE_INT k = start; k < end; ++k)
2723 if (bitmap_bit_p (stored_args_map, k))
2724 return true;
2725
2726 return false;
2727 }
2728
2729 /* Do the register loads required for any wholly-register parms or any
2730 parms which are passed both on the stack and in a register. Their
2731 expressions were already evaluated.
2732
2733 Mark all register-parms as living through the call, putting these USE
2734 insns in the CALL_INSN_FUNCTION_USAGE field.
2735
2736 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2737 checking, setting *SIBCALL_FAILURE if appropriate. */
2738
2739 static void
2740 load_register_parameters (struct arg_data *args, int num_actuals,
2741 rtx *call_fusage, int flags, int is_sibcall,
2742 int *sibcall_failure)
2743 {
2744 int i, j;
2745
2746 for (i = 0; i < num_actuals; i++)
2747 {
2748 rtx reg = ((flags & ECF_SIBCALL)
2749 ? args[i].tail_call_reg : args[i].reg);
2750 if (reg)
2751 {
2752 int partial = args[i].partial;
2753 int nregs;
2754 poly_int64 size = 0;
2755 HOST_WIDE_INT const_size = 0;
2756 rtx_insn *before_arg = get_last_insn ();
2757 /* Set non-negative if we must move a word at a time, even if
2758 just one word (e.g, partial == 4 && mode == DFmode). Set
2759 to -1 if we just use a normal move insn. This value can be
2760 zero if the argument is a zero size structure. */
2761 nregs = -1;
2762 if (GET_CODE (reg) == PARALLEL)
2763 ;
2764 else if (partial)
2765 {
2766 gcc_assert (partial % UNITS_PER_WORD == 0);
2767 nregs = partial / UNITS_PER_WORD;
2768 }
2769 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
2770 {
2771 /* Variable-sized parameters should be described by a
2772 PARALLEL instead. */
2773 const_size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2774 gcc_assert (const_size >= 0);
2775 nregs = (const_size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2776 size = const_size;
2777 }
2778 else
2779 size = GET_MODE_SIZE (args[i].mode);
2780
2781 /* Handle calls that pass values in multiple non-contiguous
2782 locations. The Irix 6 ABI has examples of this. */
2783
2784 if (GET_CODE (reg) == PARALLEL)
2785 emit_group_move (reg, args[i].parallel_value);
2786
2787 /* If simple case, just do move. If normal partial, store_one_arg
2788 has already loaded the register for us. In all other cases,
2789 load the register(s) from memory. */
2790
2791 else if (nregs == -1)
2792 {
2793 emit_move_insn (reg, args[i].value);
2794 #ifdef BLOCK_REG_PADDING
2795 /* Handle case where we have a value that needs shifting
2796 up to the msb. eg. a QImode value and we're padding
2797 upward on a BYTES_BIG_ENDIAN machine. */
2798 if (args[i].locate.where_pad
2799 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))
2800 {
2801 gcc_checking_assert (ordered_p (size, UNITS_PER_WORD));
2802 if (maybe_lt (size, UNITS_PER_WORD))
2803 {
2804 rtx x;
2805 poly_int64 shift
2806 = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2807
2808 /* Assigning REG here rather than a temp makes
2809 CALL_FUSAGE report the whole reg as used.
2810 Strictly speaking, the call only uses SIZE
2811 bytes at the msb end, but it doesn't seem worth
2812 generating rtl to say that. */
2813 reg = gen_rtx_REG (word_mode, REGNO (reg));
2814 x = expand_shift (LSHIFT_EXPR, word_mode,
2815 reg, shift, reg, 1);
2816 if (x != reg)
2817 emit_move_insn (reg, x);
2818 }
2819 }
2820 #endif
2821 }
2822
2823 /* If we have pre-computed the values to put in the registers in
2824 the case of non-aligned structures, copy them in now. */
2825
2826 else if (args[i].n_aligned_regs != 0)
2827 for (j = 0; j < args[i].n_aligned_regs; j++)
2828 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2829 args[i].aligned_regs[j]);
2830
2831 else if (partial == 0 || args[i].pass_on_stack)
2832 {
2833 /* SIZE and CONST_SIZE are 0 for partial arguments and
2834 the size of a BLKmode type otherwise. */
2835 gcc_checking_assert (known_eq (size, const_size));
2836 rtx mem = validize_mem (copy_rtx (args[i].value));
2837
2838 /* Check for overlap with already clobbered argument area,
2839 providing that this has non-zero size. */
2840 if (is_sibcall
2841 && const_size != 0
2842 && (mem_might_overlap_already_clobbered_arg_p
2843 (XEXP (args[i].value, 0), const_size)))
2844 *sibcall_failure = 1;
2845
2846 if (const_size % UNITS_PER_WORD == 0
2847 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2848 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2849 else
2850 {
2851 if (nregs > 1)
2852 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2853 args[i].mode);
2854 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2855 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2856 unsigned int bitsize = const_size * BITS_PER_UNIT - bitoff;
2857 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
2858 word_mode, word_mode, false,
2859 NULL);
2860 if (BYTES_BIG_ENDIAN)
2861 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2862 BITS_PER_WORD - bitsize, dest, 1);
2863 if (x != dest)
2864 emit_move_insn (dest, x);
2865 }
2866
2867 /* Handle a BLKmode that needs shifting. */
2868 if (nregs == 1 && const_size < UNITS_PER_WORD
2869 #ifdef BLOCK_REG_PADDING
2870 && args[i].locate.where_pad == PAD_DOWNWARD
2871 #else
2872 && BYTES_BIG_ENDIAN
2873 #endif
2874 )
2875 {
2876 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2877 int shift = (UNITS_PER_WORD - const_size) * BITS_PER_UNIT;
2878 enum tree_code dir = (BYTES_BIG_ENDIAN
2879 ? RSHIFT_EXPR : LSHIFT_EXPR);
2880 rtx x;
2881
2882 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2883 if (x != dest)
2884 emit_move_insn (dest, x);
2885 }
2886 }
2887
2888 /* When a parameter is a block, and perhaps in other cases, it is
2889 possible that it did a load from an argument slot that was
2890 already clobbered. */
2891 if (is_sibcall
2892 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
2893 *sibcall_failure = 1;
2894
2895 /* Handle calls that pass values in multiple non-contiguous
2896 locations. The Irix 6 ABI has examples of this. */
2897 if (GET_CODE (reg) == PARALLEL)
2898 use_group_regs (call_fusage, reg);
2899 else if (nregs == -1)
2900 use_reg_mode (call_fusage, reg,
2901 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2902 else if (nregs > 0)
2903 use_regs (call_fusage, REGNO (reg), nregs);
2904 }
2905 }
2906 }
2907
2908 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2909 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2910 bytes, then we would need to push some additional bytes to pad the
2911 arguments. So, we try to compute an adjust to the stack pointer for an
2912 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2913 bytes. Then, when the arguments are pushed the stack will be perfectly
2914 aligned.
2915
2916 Return true if this optimization is possible, storing the adjustment
2917 in ADJUSTMENT_OUT and setting ARGS_SIZE->CONSTANT to the number of
2918 bytes that should be popped after the call. */
2919
2920 static bool
2921 combine_pending_stack_adjustment_and_call (poly_int64_pod *adjustment_out,
2922 poly_int64 unadjusted_args_size,
2923 struct args_size *args_size,
2924 unsigned int preferred_unit_stack_boundary)
2925 {
2926 /* The number of bytes to pop so that the stack will be
2927 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2928 poly_int64 adjustment;
2929 /* The alignment of the stack after the arguments are pushed, if we
2930 just pushed the arguments without adjust the stack here. */
2931 unsigned HOST_WIDE_INT unadjusted_alignment;
2932
2933 if (!known_misalignment (stack_pointer_delta + unadjusted_args_size,
2934 preferred_unit_stack_boundary,
2935 &unadjusted_alignment))
2936 return false;
2937
2938 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2939 as possible -- leaving just enough left to cancel out the
2940 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2941 PENDING_STACK_ADJUST is non-negative, and congruent to
2942 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2943
2944 /* Begin by trying to pop all the bytes. */
2945 unsigned HOST_WIDE_INT tmp_misalignment;
2946 if (!known_misalignment (pending_stack_adjust,
2947 preferred_unit_stack_boundary,
2948 &tmp_misalignment))
2949 return false;
2950 unadjusted_alignment -= tmp_misalignment;
2951 adjustment = pending_stack_adjust;
2952 /* Push enough additional bytes that the stack will be aligned
2953 after the arguments are pushed. */
2954 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
2955 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2956
2957 /* We need to know whether the adjusted argument size
2958 (UNADJUSTED_ARGS_SIZE - ADJUSTMENT) constitutes an allocation
2959 or a deallocation. */
2960 if (!ordered_p (adjustment, unadjusted_args_size))
2961 return false;
2962
2963 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2964 bytes after the call. The right number is the entire
2965 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2966 by the arguments in the first place. */
2967 args_size->constant
2968 = pending_stack_adjust - adjustment + unadjusted_args_size;
2969
2970 *adjustment_out = adjustment;
2971 return true;
2972 }
2973
2974 /* Scan X expression if it does not dereference any argument slots
2975 we already clobbered by tail call arguments (as noted in stored_args_map
2976 bitmap).
2977 Return nonzero if X expression dereferences such argument slots,
2978 zero otherwise. */
2979
2980 static int
2981 check_sibcall_argument_overlap_1 (rtx x)
2982 {
2983 RTX_CODE code;
2984 int i, j;
2985 const char *fmt;
2986
2987 if (x == NULL_RTX)
2988 return 0;
2989
2990 code = GET_CODE (x);
2991
2992 /* We need not check the operands of the CALL expression itself. */
2993 if (code == CALL)
2994 return 0;
2995
2996 if (code == MEM)
2997 return (mem_might_overlap_already_clobbered_arg_p
2998 (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x))));
2999
3000 /* Scan all subexpressions. */
3001 fmt = GET_RTX_FORMAT (code);
3002 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3003 {
3004 if (*fmt == 'e')
3005 {
3006 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
3007 return 1;
3008 }
3009 else if (*fmt == 'E')
3010 {
3011 for (j = 0; j < XVECLEN (x, i); j++)
3012 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
3013 return 1;
3014 }
3015 }
3016 return 0;
3017 }
3018
3019 /* Scan sequence after INSN if it does not dereference any argument slots
3020 we already clobbered by tail call arguments (as noted in stored_args_map
3021 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
3022 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
3023 should be 0). Return nonzero if sequence after INSN dereferences such argument
3024 slots, zero otherwise. */
3025
3026 static int
3027 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
3028 int mark_stored_args_map)
3029 {
3030 poly_uint64 low, high;
3031 unsigned HOST_WIDE_INT const_low, const_high;
3032
3033 if (insn == NULL_RTX)
3034 insn = get_insns ();
3035 else
3036 insn = NEXT_INSN (insn);
3037
3038 for (; insn; insn = NEXT_INSN (insn))
3039 if (INSN_P (insn)
3040 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
3041 break;
3042
3043 if (mark_stored_args_map)
3044 {
3045 if (ARGS_GROW_DOWNWARD)
3046 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
3047 else
3048 low = arg->locate.slot_offset.constant;
3049 high = low + arg->locate.size.constant;
3050
3051 const_low = constant_lower_bound (low);
3052 if (high.is_constant (&const_high))
3053 for (unsigned HOST_WIDE_INT i = const_low; i < const_high; ++i)
3054 bitmap_set_bit (stored_args_map, i);
3055 else
3056 stored_args_watermark = MIN (stored_args_watermark, const_low);
3057 }
3058 return insn != NULL_RTX;
3059 }
3060
3061 /* Given that a function returns a value of mode MODE at the most
3062 significant end of hard register VALUE, shift VALUE left or right
3063 as specified by LEFT_P. Return true if some action was needed. */
3064
3065 bool
3066 shift_return_value (machine_mode mode, bool left_p, rtx value)
3067 {
3068 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
3069 machine_mode value_mode = GET_MODE (value);
3070 poly_int64 shift = GET_MODE_BITSIZE (value_mode) - GET_MODE_BITSIZE (mode);
3071
3072 if (known_eq (shift, 0))
3073 return false;
3074
3075 /* Use ashr rather than lshr for right shifts. This is for the benefit
3076 of the MIPS port, which requires SImode values to be sign-extended
3077 when stored in 64-bit registers. */
3078 if (!force_expand_binop (value_mode, left_p ? ashl_optab : ashr_optab,
3079 value, gen_int_shift_amount (value_mode, shift),
3080 value, 1, OPTAB_WIDEN))
3081 gcc_unreachable ();
3082 return true;
3083 }
3084
3085 /* If X is a likely-spilled register value, copy it to a pseudo
3086 register and return that register. Return X otherwise. */
3087
3088 static rtx
3089 avoid_likely_spilled_reg (rtx x)
3090 {
3091 rtx new_rtx;
3092
3093 if (REG_P (x)
3094 && HARD_REGISTER_P (x)
3095 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
3096 {
3097 /* Make sure that we generate a REG rather than a CONCAT.
3098 Moves into CONCATs can need nontrivial instructions,
3099 and the whole point of this function is to avoid
3100 using the hard register directly in such a situation. */
3101 generating_concat_p = 0;
3102 new_rtx = gen_reg_rtx (GET_MODE (x));
3103 generating_concat_p = 1;
3104 emit_move_insn (new_rtx, x);
3105 return new_rtx;
3106 }
3107 return x;
3108 }
3109
3110 /* Helper function for expand_call.
3111 Return false is EXP is not implementable as a sibling call. */
3112
3113 static bool
3114 can_implement_as_sibling_call_p (tree exp,
3115 rtx structure_value_addr,
3116 tree funtype,
3117 int reg_parm_stack_space ATTRIBUTE_UNUSED,
3118 tree fndecl,
3119 int flags,
3120 tree addr,
3121 const args_size &args_size)
3122 {
3123 if (!targetm.have_sibcall_epilogue ())
3124 {
3125 maybe_complain_about_tail_call
3126 (exp,
3127 "machine description does not have"
3128 " a sibcall_epilogue instruction pattern");
3129 return false;
3130 }
3131
3132 /* Doing sibling call optimization needs some work, since
3133 structure_value_addr can be allocated on the stack.
3134 It does not seem worth the effort since few optimizable
3135 sibling calls will return a structure. */
3136 if (structure_value_addr != NULL_RTX)
3137 {
3138 maybe_complain_about_tail_call (exp, "callee returns a structure");
3139 return false;
3140 }
3141
3142 #ifdef REG_PARM_STACK_SPACE
3143 /* If outgoing reg parm stack space changes, we cannot do sibcall. */
3144 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
3145 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
3146 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
3147 {
3148 maybe_complain_about_tail_call (exp,
3149 "inconsistent size of stack space"
3150 " allocated for arguments which are"
3151 " passed in registers");
3152 return false;
3153 }
3154 #endif
3155
3156 /* Check whether the target is able to optimize the call
3157 into a sibcall. */
3158 if (!targetm.function_ok_for_sibcall (fndecl, exp))
3159 {
3160 maybe_complain_about_tail_call (exp,
3161 "target is not able to optimize the"
3162 " call into a sibling call");
3163 return false;
3164 }
3165
3166 /* Functions that do not return exactly once may not be sibcall
3167 optimized. */
3168 if (flags & ECF_RETURNS_TWICE)
3169 {
3170 maybe_complain_about_tail_call (exp, "callee returns twice");
3171 return false;
3172 }
3173 if (flags & ECF_NORETURN)
3174 {
3175 maybe_complain_about_tail_call (exp, "callee does not return");
3176 return false;
3177 }
3178
3179 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
3180 {
3181 maybe_complain_about_tail_call (exp, "volatile function type");
3182 return false;
3183 }
3184
3185 /* If the called function is nested in the current one, it might access
3186 some of the caller's arguments, but could clobber them beforehand if
3187 the argument areas are shared. */
3188 if (fndecl && decl_function_context (fndecl) == current_function_decl)
3189 {
3190 maybe_complain_about_tail_call (exp, "nested function");
3191 return false;
3192 }
3193
3194 /* If this function requires more stack slots than the current
3195 function, we cannot change it into a sibling call.
3196 crtl->args.pretend_args_size is not part of the
3197 stack allocated by our caller. */
3198 if (maybe_gt (args_size.constant,
3199 crtl->args.size - crtl->args.pretend_args_size))
3200 {
3201 maybe_complain_about_tail_call (exp,
3202 "callee required more stack slots"
3203 " than the caller");
3204 return false;
3205 }
3206
3207 /* If the callee pops its own arguments, then it must pop exactly
3208 the same number of arguments as the current function. */
3209 if (maybe_ne (targetm.calls.return_pops_args (fndecl, funtype,
3210 args_size.constant),
3211 targetm.calls.return_pops_args (current_function_decl,
3212 TREE_TYPE
3213 (current_function_decl),
3214 crtl->args.size)))
3215 {
3216 maybe_complain_about_tail_call (exp,
3217 "inconsistent number of"
3218 " popped arguments");
3219 return false;
3220 }
3221
3222 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
3223 {
3224 maybe_complain_about_tail_call (exp, "frontend does not support"
3225 " sibling call");
3226 return false;
3227 }
3228
3229 /* All checks passed. */
3230 return true;
3231 }
3232
3233 /* Update stack alignment when the parameter is passed in the stack
3234 since the outgoing parameter requires extra alignment on the calling
3235 function side. */
3236
3237 static void
3238 update_stack_alignment_for_call (struct locate_and_pad_arg_data *locate)
3239 {
3240 if (crtl->stack_alignment_needed < locate->boundary)
3241 crtl->stack_alignment_needed = locate->boundary;
3242 if (crtl->preferred_stack_boundary < locate->boundary)
3243 crtl->preferred_stack_boundary = locate->boundary;
3244 }
3245
3246 /* Generate all the code for a CALL_EXPR exp
3247 and return an rtx for its value.
3248 Store the value in TARGET (specified as an rtx) if convenient.
3249 If the value is stored in TARGET then TARGET is returned.
3250 If IGNORE is nonzero, then we ignore the value of the function call. */
3251
3252 rtx
3253 expand_call (tree exp, rtx target, int ignore)
3254 {
3255 /* Nonzero if we are currently expanding a call. */
3256 static int currently_expanding_call = 0;
3257
3258 /* RTX for the function to be called. */
3259 rtx funexp;
3260 /* Sequence of insns to perform a normal "call". */
3261 rtx_insn *normal_call_insns = NULL;
3262 /* Sequence of insns to perform a tail "call". */
3263 rtx_insn *tail_call_insns = NULL;
3264 /* Data type of the function. */
3265 tree funtype;
3266 tree type_arg_types;
3267 tree rettype;
3268 /* Declaration of the function being called,
3269 or 0 if the function is computed (not known by name). */
3270 tree fndecl = 0;
3271 /* The type of the function being called. */
3272 tree fntype;
3273 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
3274 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
3275 int pass;
3276
3277 /* Register in which non-BLKmode value will be returned,
3278 or 0 if no value or if value is BLKmode. */
3279 rtx valreg;
3280 /* Address where we should return a BLKmode value;
3281 0 if value not BLKmode. */
3282 rtx structure_value_addr = 0;
3283 /* Nonzero if that address is being passed by treating it as
3284 an extra, implicit first parameter. Otherwise,
3285 it is passed by being copied directly into struct_value_rtx. */
3286 int structure_value_addr_parm = 0;
3287 /* Holds the value of implicit argument for the struct value. */
3288 tree structure_value_addr_value = NULL_TREE;
3289 /* Size of aggregate value wanted, or zero if none wanted
3290 or if we are using the non-reentrant PCC calling convention
3291 or expecting the value in registers. */
3292 poly_int64 struct_value_size = 0;
3293 /* Nonzero if called function returns an aggregate in memory PCC style,
3294 by returning the address of where to find it. */
3295 int pcc_struct_value = 0;
3296 rtx struct_value = 0;
3297
3298 /* Number of actual parameters in this call, including struct value addr. */
3299 int num_actuals;
3300 /* Number of named args. Args after this are anonymous ones
3301 and they must all go on the stack. */
3302 int n_named_args;
3303 /* Number of complex actual arguments that need to be split. */
3304 int num_complex_actuals = 0;
3305
3306 /* Vector of information about each argument.
3307 Arguments are numbered in the order they will be pushed,
3308 not the order they are written. */
3309 struct arg_data *args;
3310
3311 /* Total size in bytes of all the stack-parms scanned so far. */
3312 struct args_size args_size;
3313 struct args_size adjusted_args_size;
3314 /* Size of arguments before any adjustments (such as rounding). */
3315 poly_int64 unadjusted_args_size;
3316 /* Data on reg parms scanned so far. */
3317 CUMULATIVE_ARGS args_so_far_v;
3318 cumulative_args_t args_so_far;
3319 /* Nonzero if a reg parm has been scanned. */
3320 int reg_parm_seen;
3321 /* Nonzero if this is an indirect function call. */
3322
3323 /* Nonzero if we must avoid push-insns in the args for this call.
3324 If stack space is allocated for register parameters, but not by the
3325 caller, then it is preallocated in the fixed part of the stack frame.
3326 So the entire argument block must then be preallocated (i.e., we
3327 ignore PUSH_ROUNDING in that case). */
3328
3329 int must_preallocate = !PUSH_ARGS;
3330
3331 /* Size of the stack reserved for parameter registers. */
3332 int reg_parm_stack_space = 0;
3333
3334 /* Address of space preallocated for stack parms
3335 (on machines that lack push insns), or 0 if space not preallocated. */
3336 rtx argblock = 0;
3337
3338 /* Mask of ECF_ and ERF_ flags. */
3339 int flags = 0;
3340 int return_flags = 0;
3341 #ifdef REG_PARM_STACK_SPACE
3342 /* Define the boundary of the register parm stack space that needs to be
3343 saved, if any. */
3344 int low_to_save, high_to_save;
3345 rtx save_area = 0; /* Place that it is saved */
3346 #endif
3347
3348 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3349 char *initial_stack_usage_map = stack_usage_map;
3350 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
3351 char *stack_usage_map_buf = NULL;
3352
3353 poly_int64 old_stack_allocated;
3354
3355 /* State variables to track stack modifications. */
3356 rtx old_stack_level = 0;
3357 int old_stack_arg_under_construction = 0;
3358 poly_int64 old_pending_adj = 0;
3359 int old_inhibit_defer_pop = inhibit_defer_pop;
3360
3361 /* Some stack pointer alterations we make are performed via
3362 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3363 which we then also need to save/restore along the way. */
3364 poly_int64 old_stack_pointer_delta = 0;
3365
3366 rtx call_fusage;
3367 tree addr = CALL_EXPR_FN (exp);
3368 int i;
3369 /* The alignment of the stack, in bits. */
3370 unsigned HOST_WIDE_INT preferred_stack_boundary;
3371 /* The alignment of the stack, in bytes. */
3372 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3373 /* The static chain value to use for this call. */
3374 rtx static_chain_value;
3375 /* See if this is "nothrow" function call. */
3376 if (TREE_NOTHROW (exp))
3377 flags |= ECF_NOTHROW;
3378
3379 /* See if we can find a DECL-node for the actual function, and get the
3380 function attributes (flags) from the function decl or type node. */
3381 fndecl = get_callee_fndecl (exp);
3382 if (fndecl)
3383 {
3384 fntype = TREE_TYPE (fndecl);
3385 flags |= flags_from_decl_or_type (fndecl);
3386 return_flags |= decl_return_flags (fndecl);
3387 }
3388 else
3389 {
3390 fntype = TREE_TYPE (TREE_TYPE (addr));
3391 flags |= flags_from_decl_or_type (fntype);
3392 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3393 flags |= ECF_BY_DESCRIPTOR;
3394 }
3395 rettype = TREE_TYPE (exp);
3396
3397 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3398
3399 /* Warn if this value is an aggregate type,
3400 regardless of which calling convention we are using for it. */
3401 if (AGGREGATE_TYPE_P (rettype))
3402 warning (OPT_Waggregate_return, "function call has aggregate value");
3403
3404 /* If the result of a non looping pure or const function call is
3405 ignored (or void), and none of its arguments are volatile, we can
3406 avoid expanding the call and just evaluate the arguments for
3407 side-effects. */
3408 if ((flags & (ECF_CONST | ECF_PURE))
3409 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3410 && (ignore || target == const0_rtx
3411 || TYPE_MODE (rettype) == VOIDmode))
3412 {
3413 bool volatilep = false;
3414 tree arg;
3415 call_expr_arg_iterator iter;
3416
3417 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3418 if (TREE_THIS_VOLATILE (arg))
3419 {
3420 volatilep = true;
3421 break;
3422 }
3423
3424 if (! volatilep)
3425 {
3426 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3427 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3428 return const0_rtx;
3429 }
3430 }
3431
3432 #ifdef REG_PARM_STACK_SPACE
3433 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3434 #endif
3435
3436 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3437 && reg_parm_stack_space > 0 && PUSH_ARGS)
3438 must_preallocate = 1;
3439
3440 /* Set up a place to return a structure. */
3441
3442 /* Cater to broken compilers. */
3443 if (aggregate_value_p (exp, fntype))
3444 {
3445 /* This call returns a big structure. */
3446 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3447
3448 #ifdef PCC_STATIC_STRUCT_RETURN
3449 {
3450 pcc_struct_value = 1;
3451 }
3452 #else /* not PCC_STATIC_STRUCT_RETURN */
3453 {
3454 if (!poly_int_tree_p (TYPE_SIZE_UNIT (rettype), &struct_value_size))
3455 struct_value_size = -1;
3456
3457 /* Even if it is semantically safe to use the target as the return
3458 slot, it may be not sufficiently aligned for the return type. */
3459 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3460 && target
3461 && MEM_P (target)
3462 /* If rettype is addressable, we may not create a temporary.
3463 If target is properly aligned at runtime and the compiler
3464 just doesn't know about it, it will work fine, otherwise it
3465 will be UB. */
3466 && (TREE_ADDRESSABLE (rettype)
3467 || !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3468 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
3469 MEM_ALIGN (target)))))
3470 structure_value_addr = XEXP (target, 0);
3471 else
3472 {
3473 /* For variable-sized objects, we must be called with a target
3474 specified. If we were to allocate space on the stack here,
3475 we would have no way of knowing when to free it. */
3476 rtx d = assign_temp (rettype, 1, 1);
3477 structure_value_addr = XEXP (d, 0);
3478 target = 0;
3479 }
3480 }
3481 #endif /* not PCC_STATIC_STRUCT_RETURN */
3482 }
3483
3484 /* Figure out the amount to which the stack should be aligned. */
3485 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3486 if (fndecl)
3487 {
3488 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3489 /* Without automatic stack alignment, we can't increase preferred
3490 stack boundary. With automatic stack alignment, it is
3491 unnecessary since unless we can guarantee that all callers will
3492 align the outgoing stack properly, callee has to align its
3493 stack anyway. */
3494 if (i
3495 && i->preferred_incoming_stack_boundary
3496 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3497 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3498 }
3499
3500 /* Operand 0 is a pointer-to-function; get the type of the function. */
3501 funtype = TREE_TYPE (addr);
3502 gcc_assert (POINTER_TYPE_P (funtype));
3503 funtype = TREE_TYPE (funtype);
3504
3505 /* Count whether there are actual complex arguments that need to be split
3506 into their real and imaginary parts. Munge the type_arg_types
3507 appropriately here as well. */
3508 if (targetm.calls.split_complex_arg)
3509 {
3510 call_expr_arg_iterator iter;
3511 tree arg;
3512 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3513 {
3514 tree type = TREE_TYPE (arg);
3515 if (type && TREE_CODE (type) == COMPLEX_TYPE
3516 && targetm.calls.split_complex_arg (type))
3517 num_complex_actuals++;
3518 }
3519 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3520 }
3521 else
3522 type_arg_types = TYPE_ARG_TYPES (funtype);
3523
3524 if (flags & ECF_MAY_BE_ALLOCA)
3525 cfun->calls_alloca = 1;
3526
3527 /* If struct_value_rtx is 0, it means pass the address
3528 as if it were an extra parameter. Put the argument expression
3529 in structure_value_addr_value. */
3530 if (structure_value_addr && struct_value == 0)
3531 {
3532 /* If structure_value_addr is a REG other than
3533 virtual_outgoing_args_rtx, we can use always use it. If it
3534 is not a REG, we must always copy it into a register.
3535 If it is virtual_outgoing_args_rtx, we must copy it to another
3536 register in some cases. */
3537 rtx temp = (!REG_P (structure_value_addr)
3538 || (ACCUMULATE_OUTGOING_ARGS
3539 && stack_arg_under_construction
3540 && structure_value_addr == virtual_outgoing_args_rtx)
3541 ? copy_addr_to_reg (convert_memory_address
3542 (Pmode, structure_value_addr))
3543 : structure_value_addr);
3544
3545 structure_value_addr_value =
3546 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3547 structure_value_addr_parm = 1;
3548 }
3549
3550 /* Count the arguments and set NUM_ACTUALS. */
3551 num_actuals =
3552 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3553
3554 /* Compute number of named args.
3555 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3556
3557 if (type_arg_types != 0)
3558 n_named_args
3559 = (list_length (type_arg_types)
3560 /* Count the struct value address, if it is passed as a parm. */
3561 + structure_value_addr_parm);
3562 else
3563 /* If we know nothing, treat all args as named. */
3564 n_named_args = num_actuals;
3565
3566 /* Start updating where the next arg would go.
3567
3568 On some machines (such as the PA) indirect calls have a different
3569 calling convention than normal calls. The fourth argument in
3570 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3571 or not. */
3572 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3573 args_so_far = pack_cumulative_args (&args_so_far_v);
3574
3575 /* Now possibly adjust the number of named args.
3576 Normally, don't include the last named arg if anonymous args follow.
3577 We do include the last named arg if
3578 targetm.calls.strict_argument_naming() returns nonzero.
3579 (If no anonymous args follow, the result of list_length is actually
3580 one too large. This is harmless.)
3581
3582 If targetm.calls.pretend_outgoing_varargs_named() returns
3583 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3584 this machine will be able to place unnamed args that were passed
3585 in registers into the stack. So treat all args as named. This
3586 allows the insns emitting for a specific argument list to be
3587 independent of the function declaration.
3588
3589 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3590 we do not have any reliable way to pass unnamed args in
3591 registers, so we must force them into memory. */
3592
3593 if (type_arg_types != 0
3594 && targetm.calls.strict_argument_naming (args_so_far))
3595 ;
3596 else if (type_arg_types != 0
3597 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3598 /* Don't include the last named arg. */
3599 --n_named_args;
3600 else
3601 /* Treat all args as named. */
3602 n_named_args = num_actuals;
3603
3604 /* Make a vector to hold all the information about each arg. */
3605 args = XCNEWVEC (struct arg_data, num_actuals);
3606
3607 /* Build up entries in the ARGS array, compute the size of the
3608 arguments into ARGS_SIZE, etc. */
3609 initialize_argument_information (num_actuals, args, &args_size,
3610 n_named_args, exp,
3611 structure_value_addr_value, fndecl, fntype,
3612 args_so_far, reg_parm_stack_space,
3613 &old_stack_level, &old_pending_adj,
3614 &must_preallocate, &flags,
3615 &try_tail_call, CALL_FROM_THUNK_P (exp));
3616
3617 if (args_size.var)
3618 must_preallocate = 1;
3619
3620 /* Now make final decision about preallocating stack space. */
3621 must_preallocate = finalize_must_preallocate (must_preallocate,
3622 num_actuals, args,
3623 &args_size);
3624
3625 /* If the structure value address will reference the stack pointer, we
3626 must stabilize it. We don't need to do this if we know that we are
3627 not going to adjust the stack pointer in processing this call. */
3628
3629 if (structure_value_addr
3630 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3631 || reg_mentioned_p (virtual_outgoing_args_rtx,
3632 structure_value_addr))
3633 && (args_size.var
3634 || (!ACCUMULATE_OUTGOING_ARGS
3635 && maybe_ne (args_size.constant, 0))))
3636 structure_value_addr = copy_to_reg (structure_value_addr);
3637
3638 /* Tail calls can make things harder to debug, and we've traditionally
3639 pushed these optimizations into -O2. Don't try if we're already
3640 expanding a call, as that means we're an argument. Don't try if
3641 there's cleanups, as we know there's code to follow the call. */
3642 if (currently_expanding_call++ != 0
3643 || (!flag_optimize_sibling_calls && !CALL_FROM_THUNK_P (exp))
3644 || args_size.var
3645 || dbg_cnt (tail_call) == false)
3646 try_tail_call = 0;
3647
3648 /* Workaround buggy C/C++ wrappers around Fortran routines with
3649 character(len=constant) arguments if the hidden string length arguments
3650 are passed on the stack; if the callers forget to pass those arguments,
3651 attempting to tail call in such routines leads to stack corruption.
3652 Avoid tail calls in functions where at least one such hidden string
3653 length argument is passed (partially or fully) on the stack in the
3654 caller and the callee needs to pass any arguments on the stack.
3655 See PR90329. */
3656 if (try_tail_call && maybe_ne (args_size.constant, 0))
3657 for (tree arg = DECL_ARGUMENTS (current_function_decl);
3658 arg; arg = DECL_CHAIN (arg))
3659 if (DECL_HIDDEN_STRING_LENGTH (arg) && DECL_INCOMING_RTL (arg))
3660 {
3661 subrtx_iterator::array_type array;
3662 FOR_EACH_SUBRTX (iter, array, DECL_INCOMING_RTL (arg), NONCONST)
3663 if (MEM_P (*iter))
3664 {
3665 try_tail_call = 0;
3666 break;
3667 }
3668 }
3669
3670 /* If the user has marked the function as requiring tail-call
3671 optimization, attempt it. */
3672 if (must_tail_call)
3673 try_tail_call = 1;
3674
3675 /* Rest of purposes for tail call optimizations to fail. */
3676 if (try_tail_call)
3677 try_tail_call = can_implement_as_sibling_call_p (exp,
3678 structure_value_addr,
3679 funtype,
3680 reg_parm_stack_space,
3681 fndecl,
3682 flags, addr, args_size);
3683
3684 /* Check if caller and callee disagree in promotion of function
3685 return value. */
3686 if (try_tail_call)
3687 {
3688 machine_mode caller_mode, caller_promoted_mode;
3689 machine_mode callee_mode, callee_promoted_mode;
3690 int caller_unsignedp, callee_unsignedp;
3691 tree caller_res = DECL_RESULT (current_function_decl);
3692
3693 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3694 caller_mode = DECL_MODE (caller_res);
3695 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3696 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3697 caller_promoted_mode
3698 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3699 &caller_unsignedp,
3700 TREE_TYPE (current_function_decl), 1);
3701 callee_promoted_mode
3702 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3703 &callee_unsignedp,
3704 funtype, 1);
3705 if (caller_mode != VOIDmode
3706 && (caller_promoted_mode != callee_promoted_mode
3707 || ((caller_mode != caller_promoted_mode
3708 || callee_mode != callee_promoted_mode)
3709 && (caller_unsignedp != callee_unsignedp
3710 || partial_subreg_p (caller_mode, callee_mode)))))
3711 {
3712 try_tail_call = 0;
3713 maybe_complain_about_tail_call (exp,
3714 "caller and callee disagree in"
3715 " promotion of function"
3716 " return value");
3717 }
3718 }
3719
3720 /* Ensure current function's preferred stack boundary is at least
3721 what we need. Stack alignment may also increase preferred stack
3722 boundary. */
3723 for (i = 0; i < num_actuals; i++)
3724 if (reg_parm_stack_space > 0
3725 || args[i].reg == 0
3726 || args[i].partial != 0
3727 || args[i].pass_on_stack)
3728 update_stack_alignment_for_call (&args[i].locate);
3729 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
3730 crtl->preferred_stack_boundary = preferred_stack_boundary;
3731 else
3732 preferred_stack_boundary = crtl->preferred_stack_boundary;
3733
3734 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
3735
3736 /* We want to make two insn chains; one for a sibling call, the other
3737 for a normal call. We will select one of the two chains after
3738 initial RTL generation is complete. */
3739 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
3740 {
3741 int sibcall_failure = 0;
3742 /* We want to emit any pending stack adjustments before the tail
3743 recursion "call". That way we know any adjustment after the tail
3744 recursion call can be ignored if we indeed use the tail
3745 call expansion. */
3746 saved_pending_stack_adjust save;
3747 rtx_insn *insns, *before_call, *after_args;
3748 rtx next_arg_reg;
3749
3750 if (pass == 0)
3751 {
3752 /* State variables we need to save and restore between
3753 iterations. */
3754 save_pending_stack_adjust (&save);
3755 }
3756 if (pass)
3757 flags &= ~ECF_SIBCALL;
3758 else
3759 flags |= ECF_SIBCALL;
3760
3761 /* Other state variables that we must reinitialize each time
3762 through the loop (that are not initialized by the loop itself). */
3763 argblock = 0;
3764 call_fusage = 0;
3765
3766 /* Start a new sequence for the normal call case.
3767
3768 From this point on, if the sibling call fails, we want to set
3769 sibcall_failure instead of continuing the loop. */
3770 start_sequence ();
3771
3772 /* Don't let pending stack adjusts add up to too much.
3773 Also, do all pending adjustments now if there is any chance
3774 this might be a call to alloca or if we are expanding a sibling
3775 call sequence.
3776 Also do the adjustments before a throwing call, otherwise
3777 exception handling can fail; PR 19225. */
3778 if (maybe_ge (pending_stack_adjust, 32)
3779 || (maybe_ne (pending_stack_adjust, 0)
3780 && (flags & ECF_MAY_BE_ALLOCA))
3781 || (maybe_ne (pending_stack_adjust, 0)
3782 && flag_exceptions && !(flags & ECF_NOTHROW))
3783 || pass == 0)
3784 do_pending_stack_adjust ();
3785
3786 /* Precompute any arguments as needed. */
3787 if (pass)
3788 precompute_arguments (num_actuals, args);
3789
3790 /* Now we are about to start emitting insns that can be deleted
3791 if a libcall is deleted. */
3792 if (pass && (flags & ECF_MALLOC))
3793 start_sequence ();
3794
3795 if (pass == 0
3796 && crtl->stack_protect_guard
3797 && targetm.stack_protect_runtime_enabled_p ())
3798 stack_protect_epilogue ();
3799
3800 adjusted_args_size = args_size;
3801 /* Compute the actual size of the argument block required. The variable
3802 and constant sizes must be combined, the size may have to be rounded,
3803 and there may be a minimum required size. When generating a sibcall
3804 pattern, do not round up, since we'll be re-using whatever space our
3805 caller provided. */
3806 unadjusted_args_size
3807 = compute_argument_block_size (reg_parm_stack_space,
3808 &adjusted_args_size,
3809 fndecl, fntype,
3810 (pass == 0 ? 0
3811 : preferred_stack_boundary));
3812
3813 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3814
3815 /* The argument block when performing a sibling call is the
3816 incoming argument block. */
3817 if (pass == 0)
3818 {
3819 argblock = crtl->args.internal_arg_pointer;
3820 if (STACK_GROWS_DOWNWARD)
3821 argblock
3822 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
3823 else
3824 argblock
3825 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
3826
3827 HOST_WIDE_INT map_size = constant_lower_bound (args_size.constant);
3828 stored_args_map = sbitmap_alloc (map_size);
3829 bitmap_clear (stored_args_map);
3830 stored_args_watermark = HOST_WIDE_INT_M1U;
3831 }
3832
3833 /* If we have no actual push instructions, or shouldn't use them,
3834 make space for all args right now. */
3835 else if (adjusted_args_size.var != 0)
3836 {
3837 if (old_stack_level == 0)
3838 {
3839 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3840 old_stack_pointer_delta = stack_pointer_delta;
3841 old_pending_adj = pending_stack_adjust;
3842 pending_stack_adjust = 0;
3843 /* stack_arg_under_construction says whether a stack arg is
3844 being constructed at the old stack level. Pushing the stack
3845 gets a clean outgoing argument block. */
3846 old_stack_arg_under_construction = stack_arg_under_construction;
3847 stack_arg_under_construction = 0;
3848 }
3849 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
3850 if (flag_stack_usage_info)
3851 current_function_has_unbounded_dynamic_stack_size = 1;
3852 }
3853 else
3854 {
3855 /* Note that we must go through the motions of allocating an argument
3856 block even if the size is zero because we may be storing args
3857 in the area reserved for register arguments, which may be part of
3858 the stack frame. */
3859
3860 poly_int64 needed = adjusted_args_size.constant;
3861
3862 /* Store the maximum argument space used. It will be pushed by
3863 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
3864 checking). */
3865
3866 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
3867 needed);
3868
3869 if (must_preallocate)
3870 {
3871 if (ACCUMULATE_OUTGOING_ARGS)
3872 {
3873 /* Since the stack pointer will never be pushed, it is
3874 possible for the evaluation of a parm to clobber
3875 something we have already written to the stack.
3876 Since most function calls on RISC machines do not use
3877 the stack, this is uncommon, but must work correctly.
3878
3879 Therefore, we save any area of the stack that was already
3880 written and that we are using. Here we set up to do this
3881 by making a new stack usage map from the old one. The
3882 actual save will be done by store_one_arg.
3883
3884 Another approach might be to try to reorder the argument
3885 evaluations to avoid this conflicting stack usage. */
3886
3887 /* Since we will be writing into the entire argument area,
3888 the map must be allocated for its entire size, not just
3889 the part that is the responsibility of the caller. */
3890 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3891 needed += reg_parm_stack_space;
3892
3893 poly_int64 limit = needed;
3894 if (ARGS_GROW_DOWNWARD)
3895 limit += 1;
3896
3897 /* For polynomial sizes, this is the maximum possible
3898 size needed for arguments with a constant size
3899 and offset. */
3900 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
3901 highest_outgoing_arg_in_use
3902 = MAX (initial_highest_arg_in_use, const_limit);
3903
3904 free (stack_usage_map_buf);
3905 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3906 stack_usage_map = stack_usage_map_buf;
3907
3908 if (initial_highest_arg_in_use)
3909 memcpy (stack_usage_map, initial_stack_usage_map,
3910 initial_highest_arg_in_use);
3911
3912 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3913 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3914 (highest_outgoing_arg_in_use
3915 - initial_highest_arg_in_use));
3916 needed = 0;
3917
3918 /* The address of the outgoing argument list must not be
3919 copied to a register here, because argblock would be left
3920 pointing to the wrong place after the call to
3921 allocate_dynamic_stack_space below. */
3922
3923 argblock = virtual_outgoing_args_rtx;
3924 }
3925 else
3926 {
3927 /* Try to reuse some or all of the pending_stack_adjust
3928 to get this space. */
3929 if (inhibit_defer_pop == 0
3930 && (combine_pending_stack_adjustment_and_call
3931 (&needed,
3932 unadjusted_args_size,
3933 &adjusted_args_size,
3934 preferred_unit_stack_boundary)))
3935 {
3936 /* combine_pending_stack_adjustment_and_call computes
3937 an adjustment before the arguments are allocated.
3938 Account for them and see whether or not the stack
3939 needs to go up or down. */
3940 needed = unadjusted_args_size - needed;
3941
3942 /* Checked by
3943 combine_pending_stack_adjustment_and_call. */
3944 gcc_checking_assert (ordered_p (needed, 0));
3945 if (maybe_lt (needed, 0))
3946 {
3947 /* We're releasing stack space. */
3948 /* ??? We can avoid any adjustment at all if we're
3949 already aligned. FIXME. */
3950 pending_stack_adjust = -needed;
3951 do_pending_stack_adjust ();
3952 needed = 0;
3953 }
3954 else
3955 /* We need to allocate space. We'll do that in
3956 push_block below. */
3957 pending_stack_adjust = 0;
3958 }
3959
3960 /* Special case this because overhead of `push_block' in
3961 this case is non-trivial. */
3962 if (known_eq (needed, 0))
3963 argblock = virtual_outgoing_args_rtx;
3964 else
3965 {
3966 rtx needed_rtx = gen_int_mode (needed, Pmode);
3967 argblock = push_block (needed_rtx, 0, 0);
3968 if (ARGS_GROW_DOWNWARD)
3969 argblock = plus_constant (Pmode, argblock, needed);
3970 }
3971
3972 /* We only really need to call `copy_to_reg' in the case
3973 where push insns are going to be used to pass ARGBLOCK
3974 to a function call in ARGS. In that case, the stack
3975 pointer changes value from the allocation point to the
3976 call point, and hence the value of
3977 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3978 as well always do it. */
3979 argblock = copy_to_reg (argblock);
3980 }
3981 }
3982 }
3983
3984 if (ACCUMULATE_OUTGOING_ARGS)
3985 {
3986 /* The save/restore code in store_one_arg handles all
3987 cases except one: a constructor call (including a C
3988 function returning a BLKmode struct) to initialize
3989 an argument. */
3990 if (stack_arg_under_construction)
3991 {
3992 rtx push_size
3993 = (gen_int_mode
3994 (adjusted_args_size.constant
3995 + (OUTGOING_REG_PARM_STACK_SPACE (!fndecl ? fntype
3996 : TREE_TYPE (fndecl))
3997 ? 0 : reg_parm_stack_space), Pmode));
3998 if (old_stack_level == 0)
3999 {
4000 emit_stack_save (SAVE_BLOCK, &old_stack_level);
4001 old_stack_pointer_delta = stack_pointer_delta;
4002 old_pending_adj = pending_stack_adjust;
4003 pending_stack_adjust = 0;
4004 /* stack_arg_under_construction says whether a stack
4005 arg is being constructed at the old stack level.
4006 Pushing the stack gets a clean outgoing argument
4007 block. */
4008 old_stack_arg_under_construction
4009 = stack_arg_under_construction;
4010 stack_arg_under_construction = 0;
4011 /* Make a new map for the new argument list. */
4012 free (stack_usage_map_buf);
4013 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
4014 stack_usage_map = stack_usage_map_buf;
4015 highest_outgoing_arg_in_use = 0;
4016 stack_usage_watermark = HOST_WIDE_INT_M1U;
4017 }
4018 /* We can pass TRUE as the 4th argument because we just
4019 saved the stack pointer and will restore it right after
4020 the call. */
4021 allocate_dynamic_stack_space (push_size, 0, BIGGEST_ALIGNMENT,
4022 -1, true);
4023 }
4024
4025 /* If argument evaluation might modify the stack pointer,
4026 copy the address of the argument list to a register. */
4027 for (i = 0; i < num_actuals; i++)
4028 if (args[i].pass_on_stack)
4029 {
4030 argblock = copy_addr_to_reg (argblock);
4031 break;
4032 }
4033 }
4034
4035 compute_argument_addresses (args, argblock, num_actuals);
4036
4037 /* Stack is properly aligned, pops can't safely be deferred during
4038 the evaluation of the arguments. */
4039 NO_DEFER_POP;
4040
4041 /* Precompute all register parameters. It isn't safe to compute
4042 anything once we have started filling any specific hard regs.
4043 TLS symbols sometimes need a call to resolve. Precompute
4044 register parameters before any stack pointer manipulation
4045 to avoid unaligned stack in the called function. */
4046 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
4047
4048 OK_DEFER_POP;
4049
4050 /* Perform stack alignment before the first push (the last arg). */
4051 if (argblock == 0
4052 && maybe_gt (adjusted_args_size.constant, reg_parm_stack_space)
4053 && maybe_ne (adjusted_args_size.constant, unadjusted_args_size))
4054 {
4055 /* When the stack adjustment is pending, we get better code
4056 by combining the adjustments. */
4057 if (maybe_ne (pending_stack_adjust, 0)
4058 && ! inhibit_defer_pop
4059 && (combine_pending_stack_adjustment_and_call
4060 (&pending_stack_adjust,
4061 unadjusted_args_size,
4062 &adjusted_args_size,
4063 preferred_unit_stack_boundary)))
4064 do_pending_stack_adjust ();
4065 else if (argblock == 0)
4066 anti_adjust_stack (gen_int_mode (adjusted_args_size.constant
4067 - unadjusted_args_size,
4068 Pmode));
4069 }
4070 /* Now that the stack is properly aligned, pops can't safely
4071 be deferred during the evaluation of the arguments. */
4072 NO_DEFER_POP;
4073
4074 /* Record the maximum pushed stack space size. We need to delay
4075 doing it this far to take into account the optimization done
4076 by combine_pending_stack_adjustment_and_call. */
4077 if (flag_stack_usage_info
4078 && !ACCUMULATE_OUTGOING_ARGS
4079 && pass
4080 && adjusted_args_size.var == 0)
4081 {
4082 poly_int64 pushed = (adjusted_args_size.constant
4083 + pending_stack_adjust);
4084 current_function_pushed_stack_size
4085 = upper_bound (current_function_pushed_stack_size, pushed);
4086 }
4087
4088 funexp = rtx_for_function_call (fndecl, addr);
4089
4090 if (CALL_EXPR_STATIC_CHAIN (exp))
4091 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
4092 else
4093 static_chain_value = 0;
4094
4095 #ifdef REG_PARM_STACK_SPACE
4096 /* Save the fixed argument area if it's part of the caller's frame and
4097 is clobbered by argument setup for this call. */
4098 if (ACCUMULATE_OUTGOING_ARGS && pass)
4099 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4100 &low_to_save, &high_to_save);
4101 #endif
4102
4103 /* Now store (and compute if necessary) all non-register parms.
4104 These come before register parms, since they can require block-moves,
4105 which could clobber the registers used for register parms.
4106 Parms which have partial registers are not stored here,
4107 but we do preallocate space here if they want that. */
4108
4109 for (i = 0; i < num_actuals; i++)
4110 {
4111 if (args[i].reg == 0 || args[i].pass_on_stack)
4112 {
4113 rtx_insn *before_arg = get_last_insn ();
4114
4115 /* We don't allow passing huge (> 2^30 B) arguments
4116 by value. It would cause an overflow later on. */
4117 if (constant_lower_bound (adjusted_args_size.constant)
4118 >= (1 << (HOST_BITS_PER_INT - 2)))
4119 {
4120 sorry ("passing too large argument on stack");
4121 continue;
4122 }
4123
4124 if (store_one_arg (&args[i], argblock, flags,
4125 adjusted_args_size.var != 0,
4126 reg_parm_stack_space)
4127 || (pass == 0
4128 && check_sibcall_argument_overlap (before_arg,
4129 &args[i], 1)))
4130 sibcall_failure = 1;
4131 }
4132
4133 if (args[i].stack)
4134 call_fusage
4135 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
4136 gen_rtx_USE (VOIDmode, args[i].stack),
4137 call_fusage);
4138 }
4139
4140 /* If we have a parm that is passed in registers but not in memory
4141 and whose alignment does not permit a direct copy into registers,
4142 make a group of pseudos that correspond to each register that we
4143 will later fill. */
4144 if (STRICT_ALIGNMENT)
4145 store_unaligned_arguments_into_pseudos (args, num_actuals);
4146
4147 /* Now store any partially-in-registers parm.
4148 This is the last place a block-move can happen. */
4149 if (reg_parm_seen)
4150 for (i = 0; i < num_actuals; i++)
4151 if (args[i].partial != 0 && ! args[i].pass_on_stack)
4152 {
4153 rtx_insn *before_arg = get_last_insn ();
4154
4155 /* On targets with weird calling conventions (e.g. PA) it's
4156 hard to ensure that all cases of argument overlap between
4157 stack and registers work. Play it safe and bail out. */
4158 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
4159 {
4160 sibcall_failure = 1;
4161 break;
4162 }
4163
4164 if (store_one_arg (&args[i], argblock, flags,
4165 adjusted_args_size.var != 0,
4166 reg_parm_stack_space)
4167 || (pass == 0
4168 && check_sibcall_argument_overlap (before_arg,
4169 &args[i], 1)))
4170 sibcall_failure = 1;
4171 }
4172
4173 bool any_regs = false;
4174 for (i = 0; i < num_actuals; i++)
4175 if (args[i].reg != NULL_RTX)
4176 {
4177 any_regs = true;
4178 targetm.calls.call_args (args[i].reg, funtype);
4179 }
4180 if (!any_regs)
4181 targetm.calls.call_args (pc_rtx, funtype);
4182
4183 /* Figure out the register where the value, if any, will come back. */
4184 valreg = 0;
4185 if (TYPE_MODE (rettype) != VOIDmode
4186 && ! structure_value_addr)
4187 {
4188 if (pcc_struct_value)
4189 valreg = hard_function_value (build_pointer_type (rettype),
4190 fndecl, NULL, (pass == 0));
4191 else
4192 valreg = hard_function_value (rettype, fndecl, fntype,
4193 (pass == 0));
4194
4195 /* If VALREG is a PARALLEL whose first member has a zero
4196 offset, use that. This is for targets such as m68k that
4197 return the same value in multiple places. */
4198 if (GET_CODE (valreg) == PARALLEL)
4199 {
4200 rtx elem = XVECEXP (valreg, 0, 0);
4201 rtx where = XEXP (elem, 0);
4202 rtx offset = XEXP (elem, 1);
4203 if (offset == const0_rtx
4204 && GET_MODE (where) == GET_MODE (valreg))
4205 valreg = where;
4206 }
4207 }
4208
4209 /* If register arguments require space on the stack and stack space
4210 was not preallocated, allocate stack space here for arguments
4211 passed in registers. */
4212 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
4213 && !ACCUMULATE_OUTGOING_ARGS
4214 && must_preallocate == 0 && reg_parm_stack_space > 0)
4215 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
4216
4217 /* Pass the function the address in which to return a
4218 structure value. */
4219 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
4220 {
4221 structure_value_addr
4222 = convert_memory_address (Pmode, structure_value_addr);
4223 emit_move_insn (struct_value,
4224 force_reg (Pmode,
4225 force_operand (structure_value_addr,
4226 NULL_RTX)));
4227
4228 if (REG_P (struct_value))
4229 use_reg (&call_fusage, struct_value);
4230 }
4231
4232 after_args = get_last_insn ();
4233 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
4234 static_chain_value, &call_fusage,
4235 reg_parm_seen, flags);
4236
4237 load_register_parameters (args, num_actuals, &call_fusage, flags,
4238 pass == 0, &sibcall_failure);
4239
4240 /* Save a pointer to the last insn before the call, so that we can
4241 later safely search backwards to find the CALL_INSN. */
4242 before_call = get_last_insn ();
4243
4244 /* Set up next argument register. For sibling calls on machines
4245 with register windows this should be the incoming register. */
4246 if (pass == 0)
4247 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
4248 VOIDmode,
4249 void_type_node,
4250 true);
4251 else
4252 next_arg_reg = targetm.calls.function_arg (args_so_far,
4253 VOIDmode, void_type_node,
4254 true);
4255
4256 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
4257 {
4258 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
4259 arg_nr = num_actuals - arg_nr - 1;
4260 if (arg_nr >= 0
4261 && arg_nr < num_actuals
4262 && args[arg_nr].reg
4263 && valreg
4264 && REG_P (valreg)
4265 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
4266 call_fusage
4267 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
4268 gen_rtx_SET (valreg, args[arg_nr].reg),
4269 call_fusage);
4270 }
4271 /* All arguments and registers used for the call must be set up by
4272 now! */
4273
4274 /* Stack must be properly aligned now. */
4275 gcc_assert (!pass
4276 || multiple_p (stack_pointer_delta,
4277 preferred_unit_stack_boundary));
4278
4279 /* Generate the actual call instruction. */
4280 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
4281 adjusted_args_size.constant, struct_value_size,
4282 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
4283 flags, args_so_far);
4284
4285 if (flag_ipa_ra)
4286 {
4287 rtx_call_insn *last;
4288 rtx datum = NULL_RTX;
4289 if (fndecl != NULL_TREE)
4290 {
4291 datum = XEXP (DECL_RTL (fndecl), 0);
4292 gcc_assert (datum != NULL_RTX
4293 && GET_CODE (datum) == SYMBOL_REF);
4294 }
4295 last = last_call_insn ();
4296 add_reg_note (last, REG_CALL_DECL, datum);
4297 }
4298
4299 /* If the call setup or the call itself overlaps with anything
4300 of the argument setup we probably clobbered our call address.
4301 In that case we can't do sibcalls. */
4302 if (pass == 0
4303 && check_sibcall_argument_overlap (after_args, 0, 0))
4304 sibcall_failure = 1;
4305
4306 /* If a non-BLKmode value is returned at the most significant end
4307 of a register, shift the register right by the appropriate amount
4308 and update VALREG accordingly. BLKmode values are handled by the
4309 group load/store machinery below. */
4310 if (!structure_value_addr
4311 && !pcc_struct_value
4312 && TYPE_MODE (rettype) != VOIDmode
4313 && TYPE_MODE (rettype) != BLKmode
4314 && REG_P (valreg)
4315 && targetm.calls.return_in_msb (rettype))
4316 {
4317 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
4318 sibcall_failure = 1;
4319 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
4320 }
4321
4322 if (pass && (flags & ECF_MALLOC))
4323 {
4324 rtx temp = gen_reg_rtx (GET_MODE (valreg));
4325 rtx_insn *last, *insns;
4326
4327 /* The return value from a malloc-like function is a pointer. */
4328 if (TREE_CODE (rettype) == POINTER_TYPE)
4329 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
4330
4331 emit_move_insn (temp, valreg);
4332
4333 /* The return value from a malloc-like function cannot alias
4334 anything else. */
4335 last = get_last_insn ();
4336 add_reg_note (last, REG_NOALIAS, temp);
4337
4338 /* Write out the sequence. */
4339 insns = get_insns ();
4340 end_sequence ();
4341 emit_insn (insns);
4342 valreg = temp;
4343 }
4344
4345 /* For calls to `setjmp', etc., inform
4346 function.c:setjmp_warnings that it should complain if
4347 nonvolatile values are live. For functions that cannot
4348 return, inform flow that control does not fall through. */
4349
4350 if ((flags & ECF_NORETURN) || pass == 0)
4351 {
4352 /* The barrier must be emitted
4353 immediately after the CALL_INSN. Some ports emit more
4354 than just a CALL_INSN above, so we must search for it here. */
4355
4356 rtx_insn *last = get_last_insn ();
4357 while (!CALL_P (last))
4358 {
4359 last = PREV_INSN (last);
4360 /* There was no CALL_INSN? */
4361 gcc_assert (last != before_call);
4362 }
4363
4364 emit_barrier_after (last);
4365
4366 /* Stack adjustments after a noreturn call are dead code.
4367 However when NO_DEFER_POP is in effect, we must preserve
4368 stack_pointer_delta. */
4369 if (inhibit_defer_pop == 0)
4370 {
4371 stack_pointer_delta = old_stack_allocated;
4372 pending_stack_adjust = 0;
4373 }
4374 }
4375
4376 /* If value type not void, return an rtx for the value. */
4377
4378 if (TYPE_MODE (rettype) == VOIDmode
4379 || ignore)
4380 target = const0_rtx;
4381 else if (structure_value_addr)
4382 {
4383 if (target == 0 || !MEM_P (target))
4384 {
4385 target
4386 = gen_rtx_MEM (TYPE_MODE (rettype),
4387 memory_address (TYPE_MODE (rettype),
4388 structure_value_addr));
4389 set_mem_attributes (target, rettype, 1);
4390 }
4391 }
4392 else if (pcc_struct_value)
4393 {
4394 /* This is the special C++ case where we need to
4395 know what the true target was. We take care to
4396 never use this value more than once in one expression. */
4397 target = gen_rtx_MEM (TYPE_MODE (rettype),
4398 copy_to_reg (valreg));
4399 set_mem_attributes (target, rettype, 1);
4400 }
4401 /* Handle calls that return values in multiple non-contiguous locations.
4402 The Irix 6 ABI has examples of this. */
4403 else if (GET_CODE (valreg) == PARALLEL)
4404 {
4405 if (target == 0)
4406 target = emit_group_move_into_temps (valreg);
4407 else if (rtx_equal_p (target, valreg))
4408 ;
4409 else if (GET_CODE (target) == PARALLEL)
4410 /* Handle the result of a emit_group_move_into_temps
4411 call in the previous pass. */
4412 emit_group_move (target, valreg);
4413 else
4414 emit_group_store (target, valreg, rettype,
4415 int_size_in_bytes (rettype));
4416 }
4417 else if (target
4418 && GET_MODE (target) == TYPE_MODE (rettype)
4419 && GET_MODE (target) == GET_MODE (valreg))
4420 {
4421 bool may_overlap = false;
4422
4423 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4424 reg to a plain register. */
4425 if (!REG_P (target) || HARD_REGISTER_P (target))
4426 valreg = avoid_likely_spilled_reg (valreg);
4427
4428 /* If TARGET is a MEM in the argument area, and we have
4429 saved part of the argument area, then we can't store
4430 directly into TARGET as it may get overwritten when we
4431 restore the argument save area below. Don't work too
4432 hard though and simply force TARGET to a register if it
4433 is a MEM; the optimizer is quite likely to sort it out. */
4434 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4435 for (i = 0; i < num_actuals; i++)
4436 if (args[i].save_area)
4437 {
4438 may_overlap = true;
4439 break;
4440 }
4441
4442 if (may_overlap)
4443 target = copy_to_reg (valreg);
4444 else
4445 {
4446 /* TARGET and VALREG cannot be equal at this point
4447 because the latter would not have
4448 REG_FUNCTION_VALUE_P true, while the former would if
4449 it were referring to the same register.
4450
4451 If they refer to the same register, this move will be
4452 a no-op, except when function inlining is being
4453 done. */
4454 emit_move_insn (target, valreg);
4455
4456 /* If we are setting a MEM, this code must be executed.
4457 Since it is emitted after the call insn, sibcall
4458 optimization cannot be performed in that case. */
4459 if (MEM_P (target))
4460 sibcall_failure = 1;
4461 }
4462 }
4463 else
4464 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4465
4466 /* If we promoted this return value, make the proper SUBREG.
4467 TARGET might be const0_rtx here, so be careful. */
4468 if (REG_P (target)
4469 && TYPE_MODE (rettype) != BLKmode
4470 && GET_MODE (target) != TYPE_MODE (rettype))
4471 {
4472 tree type = rettype;
4473 int unsignedp = TYPE_UNSIGNED (type);
4474 machine_mode pmode;
4475
4476 /* Ensure we promote as expected, and get the new unsignedness. */
4477 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4478 funtype, 1);
4479 gcc_assert (GET_MODE (target) == pmode);
4480
4481 poly_uint64 offset = subreg_lowpart_offset (TYPE_MODE (type),
4482 GET_MODE (target));
4483 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4484 SUBREG_PROMOTED_VAR_P (target) = 1;
4485 SUBREG_PROMOTED_SET (target, unsignedp);
4486 }
4487
4488 /* If size of args is variable or this was a constructor call for a stack
4489 argument, restore saved stack-pointer value. */
4490
4491 if (old_stack_level)
4492 {
4493 rtx_insn *prev = get_last_insn ();
4494
4495 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4496 stack_pointer_delta = old_stack_pointer_delta;
4497
4498 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4499
4500 pending_stack_adjust = old_pending_adj;
4501 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4502 stack_arg_under_construction = old_stack_arg_under_construction;
4503 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4504 stack_usage_map = initial_stack_usage_map;
4505 stack_usage_watermark = initial_stack_usage_watermark;
4506 sibcall_failure = 1;
4507 }
4508 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4509 {
4510 #ifdef REG_PARM_STACK_SPACE
4511 if (save_area)
4512 restore_fixed_argument_area (save_area, argblock,
4513 high_to_save, low_to_save);
4514 #endif
4515
4516 /* If we saved any argument areas, restore them. */
4517 for (i = 0; i < num_actuals; i++)
4518 if (args[i].save_area)
4519 {
4520 machine_mode save_mode = GET_MODE (args[i].save_area);
4521 rtx stack_area
4522 = gen_rtx_MEM (save_mode,
4523 memory_address (save_mode,
4524 XEXP (args[i].stack_slot, 0)));
4525
4526 if (save_mode != BLKmode)
4527 emit_move_insn (stack_area, args[i].save_area);
4528 else
4529 emit_block_move (stack_area, args[i].save_area,
4530 (gen_int_mode
4531 (args[i].locate.size.constant, Pmode)),
4532 BLOCK_OP_CALL_PARM);
4533 }
4534
4535 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4536 stack_usage_map = initial_stack_usage_map;
4537 stack_usage_watermark = initial_stack_usage_watermark;
4538 }
4539
4540 /* If this was alloca, record the new stack level. */
4541 if (flags & ECF_MAY_BE_ALLOCA)
4542 record_new_stack_level ();
4543
4544 /* Free up storage we no longer need. */
4545 for (i = 0; i < num_actuals; ++i)
4546 free (args[i].aligned_regs);
4547
4548 targetm.calls.end_call_args ();
4549
4550 insns = get_insns ();
4551 end_sequence ();
4552
4553 if (pass == 0)
4554 {
4555 tail_call_insns = insns;
4556
4557 /* Restore the pending stack adjustment now that we have
4558 finished generating the sibling call sequence. */
4559
4560 restore_pending_stack_adjust (&save);
4561
4562 /* Prepare arg structure for next iteration. */
4563 for (i = 0; i < num_actuals; i++)
4564 {
4565 args[i].value = 0;
4566 args[i].aligned_regs = 0;
4567 args[i].stack = 0;
4568 }
4569
4570 sbitmap_free (stored_args_map);
4571 internal_arg_pointer_exp_state.scan_start = NULL;
4572 internal_arg_pointer_exp_state.cache.release ();
4573 }
4574 else
4575 {
4576 normal_call_insns = insns;
4577
4578 /* Verify that we've deallocated all the stack we used. */
4579 gcc_assert ((flags & ECF_NORETURN)
4580 || known_eq (old_stack_allocated,
4581 stack_pointer_delta
4582 - pending_stack_adjust));
4583 }
4584
4585 /* If something prevents making this a sibling call,
4586 zero out the sequence. */
4587 if (sibcall_failure)
4588 tail_call_insns = NULL;
4589 else
4590 break;
4591 }
4592
4593 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4594 arguments too, as argument area is now clobbered by the call. */
4595 if (tail_call_insns)
4596 {
4597 emit_insn (tail_call_insns);
4598 crtl->tail_call_emit = true;
4599 }
4600 else
4601 {
4602 emit_insn (normal_call_insns);
4603 if (try_tail_call)
4604 /* Ideally we'd emit a message for all of the ways that it could
4605 have failed. */
4606 maybe_complain_about_tail_call (exp, "tail call production failed");
4607 }
4608
4609 currently_expanding_call--;
4610
4611 free (stack_usage_map_buf);
4612 free (args);
4613 return target;
4614 }
4615
4616 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4617 this function's incoming arguments.
4618
4619 At the start of RTL generation we know the only REG_EQUIV notes
4620 in the rtl chain are those for incoming arguments, so we can look
4621 for REG_EQUIV notes between the start of the function and the
4622 NOTE_INSN_FUNCTION_BEG.
4623
4624 This is (slight) overkill. We could keep track of the highest
4625 argument we clobber and be more selective in removing notes, but it
4626 does not seem to be worth the effort. */
4627
4628 void
4629 fixup_tail_calls (void)
4630 {
4631 rtx_insn *insn;
4632
4633 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4634 {
4635 rtx note;
4636
4637 /* There are never REG_EQUIV notes for the incoming arguments
4638 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4639 if (NOTE_P (insn)
4640 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4641 break;
4642
4643 note = find_reg_note (insn, REG_EQUIV, 0);
4644 if (note)
4645 remove_note (insn, note);
4646 note = find_reg_note (insn, REG_EQUIV, 0);
4647 gcc_assert (!note);
4648 }
4649 }
4650
4651 /* Traverse a list of TYPES and expand all complex types into their
4652 components. */
4653 static tree
4654 split_complex_types (tree types)
4655 {
4656 tree p;
4657
4658 /* Before allocating memory, check for the common case of no complex. */
4659 for (p = types; p; p = TREE_CHAIN (p))
4660 {
4661 tree type = TREE_VALUE (p);
4662 if (TREE_CODE (type) == COMPLEX_TYPE
4663 && targetm.calls.split_complex_arg (type))
4664 goto found;
4665 }
4666 return types;
4667
4668 found:
4669 types = copy_list (types);
4670
4671 for (p = types; p; p = TREE_CHAIN (p))
4672 {
4673 tree complex_type = TREE_VALUE (p);
4674
4675 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4676 && targetm.calls.split_complex_arg (complex_type))
4677 {
4678 tree next, imag;
4679
4680 /* Rewrite complex type with component type. */
4681 TREE_VALUE (p) = TREE_TYPE (complex_type);
4682 next = TREE_CHAIN (p);
4683
4684 /* Add another component type for the imaginary part. */
4685 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4686 TREE_CHAIN (p) = imag;
4687 TREE_CHAIN (imag) = next;
4688
4689 /* Skip the newly created node. */
4690 p = TREE_CHAIN (p);
4691 }
4692 }
4693
4694 return types;
4695 }
4696 \f
4697 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
4698 for a value of mode OUTMODE,
4699 with NARGS different arguments, passed as ARGS.
4700 Store the return value if RETVAL is nonzero: store it in VALUE if
4701 VALUE is nonnull, otherwise pick a convenient location. In either
4702 case return the location of the stored value.
4703
4704 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4705 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
4706 other types of library calls. */
4707
4708 rtx
4709 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4710 enum libcall_type fn_type,
4711 machine_mode outmode, int nargs, rtx_mode_t *args)
4712 {
4713 /* Total size in bytes of all the stack-parms scanned so far. */
4714 struct args_size args_size;
4715 /* Size of arguments before any adjustments (such as rounding). */
4716 struct args_size original_args_size;
4717 int argnum;
4718 rtx fun;
4719 /* Todo, choose the correct decl type of orgfun. Sadly this information
4720 isn't present here, so we default to native calling abi here. */
4721 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4722 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4723 int count;
4724 rtx argblock = 0;
4725 CUMULATIVE_ARGS args_so_far_v;
4726 cumulative_args_t args_so_far;
4727 struct arg
4728 {
4729 rtx value;
4730 machine_mode mode;
4731 rtx reg;
4732 int partial;
4733 struct locate_and_pad_arg_data locate;
4734 rtx save_area;
4735 };
4736 struct arg *argvec;
4737 int old_inhibit_defer_pop = inhibit_defer_pop;
4738 rtx call_fusage = 0;
4739 rtx mem_value = 0;
4740 rtx valreg;
4741 int pcc_struct_value = 0;
4742 poly_int64 struct_value_size = 0;
4743 int flags;
4744 int reg_parm_stack_space = 0;
4745 poly_int64 needed;
4746 rtx_insn *before_call;
4747 bool have_push_fusage;
4748 tree tfom; /* type_for_mode (outmode, 0) */
4749
4750 #ifdef REG_PARM_STACK_SPACE
4751 /* Define the boundary of the register parm stack space that needs to be
4752 save, if any. */
4753 int low_to_save = 0, high_to_save = 0;
4754 rtx save_area = 0; /* Place that it is saved. */
4755 #endif
4756
4757 /* Size of the stack reserved for parameter registers. */
4758 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
4759 char *initial_stack_usage_map = stack_usage_map;
4760 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
4761 char *stack_usage_map_buf = NULL;
4762
4763 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
4764
4765 #ifdef REG_PARM_STACK_SPACE
4766 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
4767 #endif
4768
4769 /* By default, library functions cannot throw. */
4770 flags = ECF_NOTHROW;
4771
4772 switch (fn_type)
4773 {
4774 case LCT_NORMAL:
4775 break;
4776 case LCT_CONST:
4777 flags |= ECF_CONST;
4778 break;
4779 case LCT_PURE:
4780 flags |= ECF_PURE;
4781 break;
4782 case LCT_NORETURN:
4783 flags |= ECF_NORETURN;
4784 break;
4785 case LCT_THROW:
4786 flags &= ~ECF_NOTHROW;
4787 break;
4788 case LCT_RETURNS_TWICE:
4789 flags = ECF_RETURNS_TWICE;
4790 break;
4791 }
4792 fun = orgfun;
4793
4794 /* Ensure current function's preferred stack boundary is at least
4795 what we need. */
4796 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
4797 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
4798
4799 /* If this kind of value comes back in memory,
4800 decide where in memory it should come back. */
4801 if (outmode != VOIDmode)
4802 {
4803 tfom = lang_hooks.types.type_for_mode (outmode, 0);
4804 if (aggregate_value_p (tfom, 0))
4805 {
4806 #ifdef PCC_STATIC_STRUCT_RETURN
4807 rtx pointer_reg
4808 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
4809 mem_value = gen_rtx_MEM (outmode, pointer_reg);
4810 pcc_struct_value = 1;
4811 if (value == 0)
4812 value = gen_reg_rtx (outmode);
4813 #else /* not PCC_STATIC_STRUCT_RETURN */
4814 struct_value_size = GET_MODE_SIZE (outmode);
4815 if (value != 0 && MEM_P (value))
4816 mem_value = value;
4817 else
4818 mem_value = assign_temp (tfom, 1, 1);
4819 #endif
4820 /* This call returns a big structure. */
4821 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
4822 }
4823 }
4824 else
4825 tfom = void_type_node;
4826
4827 /* ??? Unfinished: must pass the memory address as an argument. */
4828
4829 /* Copy all the libcall-arguments out of the varargs data
4830 and into a vector ARGVEC.
4831
4832 Compute how to pass each argument. We only support a very small subset
4833 of the full argument passing conventions to limit complexity here since
4834 library functions shouldn't have many args. */
4835
4836 argvec = XALLOCAVEC (struct arg, nargs + 1);
4837 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
4838
4839 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
4840 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
4841 #else
4842 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
4843 #endif
4844 args_so_far = pack_cumulative_args (&args_so_far_v);
4845
4846 args_size.constant = 0;
4847 args_size.var = 0;
4848
4849 count = 0;
4850
4851 push_temp_slots ();
4852
4853 /* If there's a structure value address to be passed,
4854 either pass it in the special place, or pass it as an extra argument. */
4855 if (mem_value && struct_value == 0 && ! pcc_struct_value)
4856 {
4857 rtx addr = XEXP (mem_value, 0);
4858
4859 nargs++;
4860
4861 /* Make sure it is a reasonable operand for a move or push insn. */
4862 if (!REG_P (addr) && !MEM_P (addr)
4863 && !(CONSTANT_P (addr)
4864 && targetm.legitimate_constant_p (Pmode, addr)))
4865 addr = force_operand (addr, NULL_RTX);
4866
4867 argvec[count].value = addr;
4868 argvec[count].mode = Pmode;
4869 argvec[count].partial = 0;
4870
4871 function_arg_info ptr_arg (Pmode, /*named=*/true);
4872 argvec[count].reg = targetm.calls.function_arg (args_so_far,
4873 Pmode, NULL_TREE, true);
4874 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, ptr_arg) == 0);
4875
4876 locate_and_pad_parm (Pmode, NULL_TREE,
4877 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4878 1,
4879 #else
4880 argvec[count].reg != 0,
4881 #endif
4882 reg_parm_stack_space, 0,
4883 NULL_TREE, &args_size, &argvec[count].locate);
4884
4885 if (argvec[count].reg == 0 || argvec[count].partial != 0
4886 || reg_parm_stack_space > 0)
4887 args_size.constant += argvec[count].locate.size.constant;
4888
4889 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
4890
4891 count++;
4892 }
4893
4894 for (unsigned int i = 0; count < nargs; i++, count++)
4895 {
4896 rtx val = args[i].first;
4897 machine_mode mode = args[i].second;
4898 int unsigned_p = 0;
4899
4900 /* We cannot convert the arg value to the mode the library wants here;
4901 must do it earlier where we know the signedness of the arg. */
4902 gcc_assert (mode != BLKmode
4903 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
4904
4905 /* Make sure it is a reasonable operand for a move or push insn. */
4906 if (!REG_P (val) && !MEM_P (val)
4907 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
4908 val = force_operand (val, NULL_RTX);
4909
4910 function_arg_info orig_arg (mode, /*named=*/true);
4911 if (pass_by_reference (&args_so_far_v, orig_arg))
4912 {
4913 rtx slot;
4914 int must_copy
4915 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
4916
4917 /* If this was a CONST function, it is now PURE since it now
4918 reads memory. */
4919 if (flags & ECF_CONST)
4920 {
4921 flags &= ~ECF_CONST;
4922 flags |= ECF_PURE;
4923 }
4924
4925 if (MEM_P (val) && !must_copy)
4926 {
4927 tree val_expr = MEM_EXPR (val);
4928 if (val_expr)
4929 mark_addressable (val_expr);
4930 slot = val;
4931 }
4932 else
4933 {
4934 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
4935 1, 1);
4936 emit_move_insn (slot, val);
4937 }
4938
4939 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4940 gen_rtx_USE (VOIDmode, slot),
4941 call_fusage);
4942 if (must_copy)
4943 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4944 gen_rtx_CLOBBER (VOIDmode,
4945 slot),
4946 call_fusage);
4947
4948 mode = Pmode;
4949 val = force_operand (XEXP (slot, 0), NULL_RTX);
4950 }
4951
4952 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
4953 function_arg_info arg (mode, /*named=*/true);
4954 argvec[count].mode = mode;
4955 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
4956 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
4957 NULL_TREE, true);
4958
4959 argvec[count].partial
4960 = targetm.calls.arg_partial_bytes (args_so_far, arg);
4961
4962 if (argvec[count].reg == 0
4963 || argvec[count].partial != 0
4964 || reg_parm_stack_space > 0)
4965 {
4966 locate_and_pad_parm (mode, NULL_TREE,
4967 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4968 1,
4969 #else
4970 argvec[count].reg != 0,
4971 #endif
4972 reg_parm_stack_space, argvec[count].partial,
4973 NULL_TREE, &args_size, &argvec[count].locate);
4974 args_size.constant += argvec[count].locate.size.constant;
4975 gcc_assert (!argvec[count].locate.size.var);
4976 }
4977 #ifdef BLOCK_REG_PADDING
4978 else
4979 /* The argument is passed entirely in registers. See at which
4980 end it should be padded. */
4981 argvec[count].locate.where_pad =
4982 BLOCK_REG_PADDING (mode, NULL_TREE,
4983 known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4984 #endif
4985
4986 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
4987 }
4988
4989 for (int i = 0; i < nargs; i++)
4990 if (reg_parm_stack_space > 0
4991 || argvec[i].reg == 0
4992 || argvec[i].partial != 0)
4993 update_stack_alignment_for_call (&argvec[i].locate);
4994
4995 /* If this machine requires an external definition for library
4996 functions, write one out. */
4997 assemble_external_libcall (fun);
4998
4999 original_args_size = args_size;
5000 args_size.constant = (aligned_upper_bound (args_size.constant
5001 + stack_pointer_delta,
5002 STACK_BYTES)
5003 - stack_pointer_delta);
5004
5005 args_size.constant = upper_bound (args_size.constant,
5006 reg_parm_stack_space);
5007
5008 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5009 args_size.constant -= reg_parm_stack_space;
5010
5011 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
5012 args_size.constant);
5013
5014 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
5015 {
5016 poly_int64 pushed = args_size.constant + pending_stack_adjust;
5017 current_function_pushed_stack_size
5018 = upper_bound (current_function_pushed_stack_size, pushed);
5019 }
5020
5021 if (ACCUMULATE_OUTGOING_ARGS)
5022 {
5023 /* Since the stack pointer will never be pushed, it is possible for
5024 the evaluation of a parm to clobber something we have already
5025 written to the stack. Since most function calls on RISC machines
5026 do not use the stack, this is uncommon, but must work correctly.
5027
5028 Therefore, we save any area of the stack that was already written
5029 and that we are using. Here we set up to do this by making a new
5030 stack usage map from the old one.
5031
5032 Another approach might be to try to reorder the argument
5033 evaluations to avoid this conflicting stack usage. */
5034
5035 needed = args_size.constant;
5036
5037 /* Since we will be writing into the entire argument area, the
5038 map must be allocated for its entire size, not just the part that
5039 is the responsibility of the caller. */
5040 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5041 needed += reg_parm_stack_space;
5042
5043 poly_int64 limit = needed;
5044 if (ARGS_GROW_DOWNWARD)
5045 limit += 1;
5046
5047 /* For polynomial sizes, this is the maximum possible size needed
5048 for arguments with a constant size and offset. */
5049 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
5050 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
5051 const_limit);
5052
5053 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
5054 stack_usage_map = stack_usage_map_buf;
5055
5056 if (initial_highest_arg_in_use)
5057 memcpy (stack_usage_map, initial_stack_usage_map,
5058 initial_highest_arg_in_use);
5059
5060 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
5061 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
5062 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
5063 needed = 0;
5064
5065 /* We must be careful to use virtual regs before they're instantiated,
5066 and real regs afterwards. Loop optimization, for example, can create
5067 new libcalls after we've instantiated the virtual regs, and if we
5068 use virtuals anyway, they won't match the rtl patterns. */
5069
5070 if (virtuals_instantiated)
5071 argblock = plus_constant (Pmode, stack_pointer_rtx,
5072 STACK_POINTER_OFFSET);
5073 else
5074 argblock = virtual_outgoing_args_rtx;
5075 }
5076 else
5077 {
5078 if (!PUSH_ARGS)
5079 argblock = push_block (gen_int_mode (args_size.constant, Pmode), 0, 0);
5080 }
5081
5082 /* We push args individually in reverse order, perform stack alignment
5083 before the first push (the last arg). */
5084 if (argblock == 0)
5085 anti_adjust_stack (gen_int_mode (args_size.constant
5086 - original_args_size.constant,
5087 Pmode));
5088
5089 argnum = nargs - 1;
5090
5091 #ifdef REG_PARM_STACK_SPACE
5092 if (ACCUMULATE_OUTGOING_ARGS)
5093 {
5094 /* The argument list is the property of the called routine and it
5095 may clobber it. If the fixed area has been used for previous
5096 parameters, we must save and restore it. */
5097 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
5098 &low_to_save, &high_to_save);
5099 }
5100 #endif
5101
5102 /* When expanding a normal call, args are stored in push order,
5103 which is the reverse of what we have here. */
5104 bool any_regs = false;
5105 for (int i = nargs; i-- > 0; )
5106 if (argvec[i].reg != NULL_RTX)
5107 {
5108 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
5109 any_regs = true;
5110 }
5111 if (!any_regs)
5112 targetm.calls.call_args (pc_rtx, NULL_TREE);
5113
5114 /* Push the args that need to be pushed. */
5115
5116 have_push_fusage = false;
5117
5118 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5119 are to be pushed. */
5120 for (count = 0; count < nargs; count++, argnum--)
5121 {
5122 machine_mode mode = argvec[argnum].mode;
5123 rtx val = argvec[argnum].value;
5124 rtx reg = argvec[argnum].reg;
5125 int partial = argvec[argnum].partial;
5126 unsigned int parm_align = argvec[argnum].locate.boundary;
5127 poly_int64 lower_bound = 0, upper_bound = 0;
5128
5129 if (! (reg != 0 && partial == 0))
5130 {
5131 rtx use;
5132
5133 if (ACCUMULATE_OUTGOING_ARGS)
5134 {
5135 /* If this is being stored into a pre-allocated, fixed-size,
5136 stack area, save any previous data at that location. */
5137
5138 if (ARGS_GROW_DOWNWARD)
5139 {
5140 /* stack_slot is negative, but we want to index stack_usage_map
5141 with positive values. */
5142 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
5143 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
5144 }
5145 else
5146 {
5147 lower_bound = argvec[argnum].locate.slot_offset.constant;
5148 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
5149 }
5150
5151 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5152 reg_parm_stack_space))
5153 {
5154 /* We need to make a save area. */
5155 poly_uint64 size
5156 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
5157 machine_mode save_mode
5158 = int_mode_for_size (size, 1).else_blk ();
5159 rtx adr
5160 = plus_constant (Pmode, argblock,
5161 argvec[argnum].locate.offset.constant);
5162 rtx stack_area
5163 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
5164
5165 if (save_mode == BLKmode)
5166 {
5167 argvec[argnum].save_area
5168 = assign_stack_temp (BLKmode,
5169 argvec[argnum].locate.size.constant
5170 );
5171
5172 emit_block_move (validize_mem
5173 (copy_rtx (argvec[argnum].save_area)),
5174 stack_area,
5175 (gen_int_mode
5176 (argvec[argnum].locate.size.constant,
5177 Pmode)),
5178 BLOCK_OP_CALL_PARM);
5179 }
5180 else
5181 {
5182 argvec[argnum].save_area = gen_reg_rtx (save_mode);
5183
5184 emit_move_insn (argvec[argnum].save_area, stack_area);
5185 }
5186 }
5187 }
5188
5189 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
5190 partial, reg, 0, argblock,
5191 (gen_int_mode
5192 (argvec[argnum].locate.offset.constant, Pmode)),
5193 reg_parm_stack_space,
5194 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
5195
5196 /* Now mark the segment we just used. */
5197 if (ACCUMULATE_OUTGOING_ARGS)
5198 mark_stack_region_used (lower_bound, upper_bound);
5199
5200 NO_DEFER_POP;
5201
5202 /* Indicate argument access so that alias.c knows that these
5203 values are live. */
5204 if (argblock)
5205 use = plus_constant (Pmode, argblock,
5206 argvec[argnum].locate.offset.constant);
5207 else if (have_push_fusage)
5208 continue;
5209 else
5210 {
5211 /* When arguments are pushed, trying to tell alias.c where
5212 exactly this argument is won't work, because the
5213 auto-increment causes confusion. So we merely indicate
5214 that we access something with a known mode somewhere on
5215 the stack. */
5216 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
5217 gen_rtx_SCRATCH (Pmode));
5218 have_push_fusage = true;
5219 }
5220 use = gen_rtx_MEM (argvec[argnum].mode, use);
5221 use = gen_rtx_USE (VOIDmode, use);
5222 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
5223 }
5224 }
5225
5226 argnum = nargs - 1;
5227
5228 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
5229
5230 /* Now load any reg parms into their regs. */
5231
5232 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5233 are to be pushed. */
5234 for (count = 0; count < nargs; count++, argnum--)
5235 {
5236 machine_mode mode = argvec[argnum].mode;
5237 rtx val = argvec[argnum].value;
5238 rtx reg = argvec[argnum].reg;
5239 int partial = argvec[argnum].partial;
5240
5241 /* Handle calls that pass values in multiple non-contiguous
5242 locations. The PA64 has examples of this for library calls. */
5243 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5244 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
5245 else if (reg != 0 && partial == 0)
5246 {
5247 emit_move_insn (reg, val);
5248 #ifdef BLOCK_REG_PADDING
5249 poly_int64 size = GET_MODE_SIZE (argvec[argnum].mode);
5250
5251 /* Copied from load_register_parameters. */
5252
5253 /* Handle case where we have a value that needs shifting
5254 up to the msb. eg. a QImode value and we're padding
5255 upward on a BYTES_BIG_ENDIAN machine. */
5256 if (known_lt (size, UNITS_PER_WORD)
5257 && (argvec[argnum].locate.where_pad
5258 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5259 {
5260 rtx x;
5261 poly_int64 shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
5262
5263 /* Assigning REG here rather than a temp makes CALL_FUSAGE
5264 report the whole reg as used. Strictly speaking, the
5265 call only uses SIZE bytes at the msb end, but it doesn't
5266 seem worth generating rtl to say that. */
5267 reg = gen_rtx_REG (word_mode, REGNO (reg));
5268 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
5269 if (x != reg)
5270 emit_move_insn (reg, x);
5271 }
5272 #endif
5273 }
5274
5275 NO_DEFER_POP;
5276 }
5277
5278 /* Any regs containing parms remain in use through the call. */
5279 for (count = 0; count < nargs; count++)
5280 {
5281 rtx reg = argvec[count].reg;
5282 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5283 use_group_regs (&call_fusage, reg);
5284 else if (reg != 0)
5285 {
5286 int partial = argvec[count].partial;
5287 if (partial)
5288 {
5289 int nregs;
5290 gcc_assert (partial % UNITS_PER_WORD == 0);
5291 nregs = partial / UNITS_PER_WORD;
5292 use_regs (&call_fusage, REGNO (reg), nregs);
5293 }
5294 else
5295 use_reg (&call_fusage, reg);
5296 }
5297 }
5298
5299 /* Pass the function the address in which to return a structure value. */
5300 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
5301 {
5302 emit_move_insn (struct_value,
5303 force_reg (Pmode,
5304 force_operand (XEXP (mem_value, 0),
5305 NULL_RTX)));
5306 if (REG_P (struct_value))
5307 use_reg (&call_fusage, struct_value);
5308 }
5309
5310 /* Don't allow popping to be deferred, since then
5311 cse'ing of library calls could delete a call and leave the pop. */
5312 NO_DEFER_POP;
5313 valreg = (mem_value == 0 && outmode != VOIDmode
5314 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
5315
5316 /* Stack must be properly aligned now. */
5317 gcc_assert (multiple_p (stack_pointer_delta,
5318 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
5319
5320 before_call = get_last_insn ();
5321
5322 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
5323 will set inhibit_defer_pop to that value. */
5324 /* The return type is needed to decide how many bytes the function pops.
5325 Signedness plays no role in that, so for simplicity, we pretend it's
5326 always signed. We also assume that the list of arguments passed has
5327 no impact, so we pretend it is unknown. */
5328
5329 emit_call_1 (fun, NULL,
5330 get_identifier (XSTR (orgfun, 0)),
5331 build_function_type (tfom, NULL_TREE),
5332 original_args_size.constant, args_size.constant,
5333 struct_value_size,
5334 targetm.calls.function_arg (args_so_far,
5335 VOIDmode, void_type_node, true),
5336 valreg,
5337 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
5338
5339 if (flag_ipa_ra)
5340 {
5341 rtx datum = orgfun;
5342 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
5343 rtx_call_insn *last = last_call_insn ();
5344 add_reg_note (last, REG_CALL_DECL, datum);
5345 }
5346
5347 /* Right-shift returned value if necessary. */
5348 if (!pcc_struct_value
5349 && TYPE_MODE (tfom) != BLKmode
5350 && targetm.calls.return_in_msb (tfom))
5351 {
5352 shift_return_value (TYPE_MODE (tfom), false, valreg);
5353 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5354 }
5355
5356 targetm.calls.end_call_args ();
5357
5358 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5359 that it should complain if nonvolatile values are live. For
5360 functions that cannot return, inform flow that control does not
5361 fall through. */
5362 if (flags & ECF_NORETURN)
5363 {
5364 /* The barrier note must be emitted
5365 immediately after the CALL_INSN. Some ports emit more than
5366 just a CALL_INSN above, so we must search for it here. */
5367 rtx_insn *last = get_last_insn ();
5368 while (!CALL_P (last))
5369 {
5370 last = PREV_INSN (last);
5371 /* There was no CALL_INSN? */
5372 gcc_assert (last != before_call);
5373 }
5374
5375 emit_barrier_after (last);
5376 }
5377
5378 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5379 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5380 if (flags & ECF_NOTHROW)
5381 {
5382 rtx_insn *last = get_last_insn ();
5383 while (!CALL_P (last))
5384 {
5385 last = PREV_INSN (last);
5386 /* There was no CALL_INSN? */
5387 gcc_assert (last != before_call);
5388 }
5389
5390 make_reg_eh_region_note_nothrow_nononlocal (last);
5391 }
5392
5393 /* Now restore inhibit_defer_pop to its actual original value. */
5394 OK_DEFER_POP;
5395
5396 pop_temp_slots ();
5397
5398 /* Copy the value to the right place. */
5399 if (outmode != VOIDmode && retval)
5400 {
5401 if (mem_value)
5402 {
5403 if (value == 0)
5404 value = mem_value;
5405 if (value != mem_value)
5406 emit_move_insn (value, mem_value);
5407 }
5408 else if (GET_CODE (valreg) == PARALLEL)
5409 {
5410 if (value == 0)
5411 value = gen_reg_rtx (outmode);
5412 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5413 }
5414 else
5415 {
5416 /* Convert to the proper mode if a promotion has been active. */
5417 if (GET_MODE (valreg) != outmode)
5418 {
5419 int unsignedp = TYPE_UNSIGNED (tfom);
5420
5421 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5422 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5423 == GET_MODE (valreg));
5424 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5425 }
5426
5427 if (value != 0)
5428 emit_move_insn (value, valreg);
5429 else
5430 value = valreg;
5431 }
5432 }
5433
5434 if (ACCUMULATE_OUTGOING_ARGS)
5435 {
5436 #ifdef REG_PARM_STACK_SPACE
5437 if (save_area)
5438 restore_fixed_argument_area (save_area, argblock,
5439 high_to_save, low_to_save);
5440 #endif
5441
5442 /* If we saved any argument areas, restore them. */
5443 for (count = 0; count < nargs; count++)
5444 if (argvec[count].save_area)
5445 {
5446 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5447 rtx adr = plus_constant (Pmode, argblock,
5448 argvec[count].locate.offset.constant);
5449 rtx stack_area = gen_rtx_MEM (save_mode,
5450 memory_address (save_mode, adr));
5451
5452 if (save_mode == BLKmode)
5453 emit_block_move (stack_area,
5454 validize_mem
5455 (copy_rtx (argvec[count].save_area)),
5456 (gen_int_mode
5457 (argvec[count].locate.size.constant, Pmode)),
5458 BLOCK_OP_CALL_PARM);
5459 else
5460 emit_move_insn (stack_area, argvec[count].save_area);
5461 }
5462
5463 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5464 stack_usage_map = initial_stack_usage_map;
5465 stack_usage_watermark = initial_stack_usage_watermark;
5466 }
5467
5468 free (stack_usage_map_buf);
5469
5470 return value;
5471
5472 }
5473 \f
5474
5475 /* Store a single argument for a function call
5476 into the register or memory area where it must be passed.
5477 *ARG describes the argument value and where to pass it.
5478
5479 ARGBLOCK is the address of the stack-block for all the arguments,
5480 or 0 on a machine where arguments are pushed individually.
5481
5482 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5483 so must be careful about how the stack is used.
5484
5485 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5486 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5487 that we need not worry about saving and restoring the stack.
5488
5489 FNDECL is the declaration of the function we are calling.
5490
5491 Return nonzero if this arg should cause sibcall failure,
5492 zero otherwise. */
5493
5494 static int
5495 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5496 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5497 {
5498 tree pval = arg->tree_value;
5499 rtx reg = 0;
5500 int partial = 0;
5501 poly_int64 used = 0;
5502 poly_int64 lower_bound = 0, upper_bound = 0;
5503 int sibcall_failure = 0;
5504
5505 if (TREE_CODE (pval) == ERROR_MARK)
5506 return 1;
5507
5508 /* Push a new temporary level for any temporaries we make for
5509 this argument. */
5510 push_temp_slots ();
5511
5512 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5513 {
5514 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5515 save any previous data at that location. */
5516 if (argblock && ! variable_size && arg->stack)
5517 {
5518 if (ARGS_GROW_DOWNWARD)
5519 {
5520 /* stack_slot is negative, but we want to index stack_usage_map
5521 with positive values. */
5522 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5523 {
5524 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5525 upper_bound = -rtx_to_poly_int64 (offset) + 1;
5526 }
5527 else
5528 upper_bound = 0;
5529
5530 lower_bound = upper_bound - arg->locate.size.constant;
5531 }
5532 else
5533 {
5534 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5535 {
5536 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5537 lower_bound = rtx_to_poly_int64 (offset);
5538 }
5539 else
5540 lower_bound = 0;
5541
5542 upper_bound = lower_bound + arg->locate.size.constant;
5543 }
5544
5545 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5546 reg_parm_stack_space))
5547 {
5548 /* We need to make a save area. */
5549 poly_uint64 size = arg->locate.size.constant * BITS_PER_UNIT;
5550 machine_mode save_mode
5551 = int_mode_for_size (size, 1).else_blk ();
5552 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5553 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5554
5555 if (save_mode == BLKmode)
5556 {
5557 arg->save_area
5558 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5559 preserve_temp_slots (arg->save_area);
5560 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5561 stack_area,
5562 (gen_int_mode
5563 (arg->locate.size.constant, Pmode)),
5564 BLOCK_OP_CALL_PARM);
5565 }
5566 else
5567 {
5568 arg->save_area = gen_reg_rtx (save_mode);
5569 emit_move_insn (arg->save_area, stack_area);
5570 }
5571 }
5572 }
5573 }
5574
5575 /* If this isn't going to be placed on both the stack and in registers,
5576 set up the register and number of words. */
5577 if (! arg->pass_on_stack)
5578 {
5579 if (flags & ECF_SIBCALL)
5580 reg = arg->tail_call_reg;
5581 else
5582 reg = arg->reg;
5583 partial = arg->partial;
5584 }
5585
5586 /* Being passed entirely in a register. We shouldn't be called in
5587 this case. */
5588 gcc_assert (reg == 0 || partial != 0);
5589
5590 /* If this arg needs special alignment, don't load the registers
5591 here. */
5592 if (arg->n_aligned_regs != 0)
5593 reg = 0;
5594
5595 /* If this is being passed partially in a register, we can't evaluate
5596 it directly into its stack slot. Otherwise, we can. */
5597 if (arg->value == 0)
5598 {
5599 /* stack_arg_under_construction is nonzero if a function argument is
5600 being evaluated directly into the outgoing argument list and
5601 expand_call must take special action to preserve the argument list
5602 if it is called recursively.
5603
5604 For scalar function arguments stack_usage_map is sufficient to
5605 determine which stack slots must be saved and restored. Scalar
5606 arguments in general have pass_on_stack == 0.
5607
5608 If this argument is initialized by a function which takes the
5609 address of the argument (a C++ constructor or a C function
5610 returning a BLKmode structure), then stack_usage_map is
5611 insufficient and expand_call must push the stack around the
5612 function call. Such arguments have pass_on_stack == 1.
5613
5614 Note that it is always safe to set stack_arg_under_construction,
5615 but this generates suboptimal code if set when not needed. */
5616
5617 if (arg->pass_on_stack)
5618 stack_arg_under_construction++;
5619
5620 arg->value = expand_expr (pval,
5621 (partial
5622 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5623 ? NULL_RTX : arg->stack,
5624 VOIDmode, EXPAND_STACK_PARM);
5625
5626 /* If we are promoting object (or for any other reason) the mode
5627 doesn't agree, convert the mode. */
5628
5629 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5630 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5631 arg->value, arg->unsignedp);
5632
5633 if (arg->pass_on_stack)
5634 stack_arg_under_construction--;
5635 }
5636
5637 /* Check for overlap with already clobbered argument area. */
5638 if ((flags & ECF_SIBCALL)
5639 && MEM_P (arg->value)
5640 && mem_might_overlap_already_clobbered_arg_p (XEXP (arg->value, 0),
5641 arg->locate.size.constant))
5642 sibcall_failure = 1;
5643
5644 /* Don't allow anything left on stack from computation
5645 of argument to alloca. */
5646 if (flags & ECF_MAY_BE_ALLOCA)
5647 do_pending_stack_adjust ();
5648
5649 if (arg->value == arg->stack)
5650 /* If the value is already in the stack slot, we are done. */
5651 ;
5652 else if (arg->mode != BLKmode)
5653 {
5654 unsigned int parm_align;
5655
5656 /* Argument is a scalar, not entirely passed in registers.
5657 (If part is passed in registers, arg->partial says how much
5658 and emit_push_insn will take care of putting it there.)
5659
5660 Push it, and if its size is less than the
5661 amount of space allocated to it,
5662 also bump stack pointer by the additional space.
5663 Note that in C the default argument promotions
5664 will prevent such mismatches. */
5665
5666 poly_int64 size = (TYPE_EMPTY_P (TREE_TYPE (pval))
5667 ? 0 : GET_MODE_SIZE (arg->mode));
5668
5669 /* Compute how much space the push instruction will push.
5670 On many machines, pushing a byte will advance the stack
5671 pointer by a halfword. */
5672 #ifdef PUSH_ROUNDING
5673 size = PUSH_ROUNDING (size);
5674 #endif
5675 used = size;
5676
5677 /* Compute how much space the argument should get:
5678 round up to a multiple of the alignment for arguments. */
5679 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5680 != PAD_NONE)
5681 /* At the moment we don't (need to) support ABIs for which the
5682 padding isn't known at compile time. In principle it should
5683 be easy to add though. */
5684 used = force_align_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
5685
5686 /* Compute the alignment of the pushed argument. */
5687 parm_align = arg->locate.boundary;
5688 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5689 == PAD_DOWNWARD)
5690 {
5691 poly_int64 pad = used - size;
5692 unsigned int pad_align = known_alignment (pad) * BITS_PER_UNIT;
5693 if (pad_align != 0)
5694 parm_align = MIN (parm_align, pad_align);
5695 }
5696
5697 /* This isn't already where we want it on the stack, so put it there.
5698 This can either be done with push or copy insns. */
5699 if (maybe_ne (used, 0)
5700 && !emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval),
5701 NULL_RTX, parm_align, partial, reg, used - size,
5702 argblock, ARGS_SIZE_RTX (arg->locate.offset),
5703 reg_parm_stack_space,
5704 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5705 sibcall_failure = 1;
5706
5707 /* Unless this is a partially-in-register argument, the argument is now
5708 in the stack. */
5709 if (partial == 0)
5710 arg->value = arg->stack;
5711 }
5712 else
5713 {
5714 /* BLKmode, at least partly to be pushed. */
5715
5716 unsigned int parm_align;
5717 poly_int64 excess;
5718 rtx size_rtx;
5719
5720 /* Pushing a nonscalar.
5721 If part is passed in registers, PARTIAL says how much
5722 and emit_push_insn will take care of putting it there. */
5723
5724 /* Round its size up to a multiple
5725 of the allocation unit for arguments. */
5726
5727 if (arg->locate.size.var != 0)
5728 {
5729 excess = 0;
5730 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
5731 }
5732 else
5733 {
5734 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
5735 for BLKmode is careful to avoid it. */
5736 excess = (arg->locate.size.constant
5737 - arg_int_size_in_bytes (TREE_TYPE (pval))
5738 + partial);
5739 size_rtx = expand_expr (arg_size_in_bytes (TREE_TYPE (pval)),
5740 NULL_RTX, TYPE_MODE (sizetype),
5741 EXPAND_NORMAL);
5742 }
5743
5744 parm_align = arg->locate.boundary;
5745
5746 /* When an argument is padded down, the block is aligned to
5747 PARM_BOUNDARY, but the actual argument isn't. */
5748 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5749 == PAD_DOWNWARD)
5750 {
5751 if (arg->locate.size.var)
5752 parm_align = BITS_PER_UNIT;
5753 else
5754 {
5755 unsigned int excess_align
5756 = known_alignment (excess) * BITS_PER_UNIT;
5757 if (excess_align != 0)
5758 parm_align = MIN (parm_align, excess_align);
5759 }
5760 }
5761
5762 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
5763 {
5764 /* emit_push_insn might not work properly if arg->value and
5765 argblock + arg->locate.offset areas overlap. */
5766 rtx x = arg->value;
5767 poly_int64 i = 0;
5768
5769 if (strip_offset (XEXP (x, 0), &i)
5770 == crtl->args.internal_arg_pointer)
5771 {
5772 /* arg.locate doesn't contain the pretend_args_size offset,
5773 it's part of argblock. Ensure we don't count it in I. */
5774 if (STACK_GROWS_DOWNWARD)
5775 i -= crtl->args.pretend_args_size;
5776 else
5777 i += crtl->args.pretend_args_size;
5778
5779 /* expand_call should ensure this. */
5780 gcc_assert (!arg->locate.offset.var
5781 && arg->locate.size.var == 0);
5782 poly_int64 size_val = rtx_to_poly_int64 (size_rtx);
5783
5784 if (known_eq (arg->locate.offset.constant, i))
5785 {
5786 /* Even though they appear to be at the same location,
5787 if part of the outgoing argument is in registers,
5788 they aren't really at the same location. Check for
5789 this by making sure that the incoming size is the
5790 same as the outgoing size. */
5791 if (maybe_ne (arg->locate.size.constant, size_val))
5792 sibcall_failure = 1;
5793 }
5794 else if (maybe_in_range_p (arg->locate.offset.constant,
5795 i, size_val))
5796 sibcall_failure = 1;
5797 /* Use arg->locate.size.constant instead of size_rtx
5798 because we only care about the part of the argument
5799 on the stack. */
5800 else if (maybe_in_range_p (i, arg->locate.offset.constant,
5801 arg->locate.size.constant))
5802 sibcall_failure = 1;
5803 }
5804 }
5805
5806 if (!CONST_INT_P (size_rtx) || INTVAL (size_rtx) != 0)
5807 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5808 parm_align, partial, reg, excess, argblock,
5809 ARGS_SIZE_RTX (arg->locate.offset),
5810 reg_parm_stack_space,
5811 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5812
5813 /* Unless this is a partially-in-register argument, the argument is now
5814 in the stack.
5815
5816 ??? Unlike the case above, in which we want the actual
5817 address of the data, so that we can load it directly into a
5818 register, here we want the address of the stack slot, so that
5819 it's properly aligned for word-by-word copying or something
5820 like that. It's not clear that this is always correct. */
5821 if (partial == 0)
5822 arg->value = arg->stack_slot;
5823 }
5824
5825 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5826 {
5827 tree type = TREE_TYPE (arg->tree_value);
5828 arg->parallel_value
5829 = emit_group_load_into_temps (arg->reg, arg->value, type,
5830 int_size_in_bytes (type));
5831 }
5832
5833 /* Mark all slots this store used. */
5834 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5835 && argblock && ! variable_size && arg->stack)
5836 mark_stack_region_used (lower_bound, upper_bound);
5837
5838 /* Once we have pushed something, pops can't safely
5839 be deferred during the rest of the arguments. */
5840 NO_DEFER_POP;
5841
5842 /* Free any temporary slots made in processing this argument. */
5843 pop_temp_slots ();
5844
5845 return sibcall_failure;
5846 }
5847
5848 /* Nonzero if we do not know how to pass TYPE solely in registers. */
5849
5850 bool
5851 must_pass_in_stack_var_size (machine_mode mode ATTRIBUTE_UNUSED,
5852 const_tree type)
5853 {
5854 if (!type)
5855 return false;
5856
5857 /* If the type has variable size... */
5858 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5859 return true;
5860
5861 /* If the type is marked as addressable (it is required
5862 to be constructed into the stack)... */
5863 if (TREE_ADDRESSABLE (type))
5864 return true;
5865
5866 return false;
5867 }
5868
5869 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5870 takes trailing padding of a structure into account. */
5871 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5872
5873 bool
5874 must_pass_in_stack_var_size_or_pad (machine_mode mode, const_tree type)
5875 {
5876 if (!type)
5877 return false;
5878
5879 /* If the type has variable size... */
5880 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5881 return true;
5882
5883 /* If the type is marked as addressable (it is required
5884 to be constructed into the stack)... */
5885 if (TREE_ADDRESSABLE (type))
5886 return true;
5887
5888 if (TYPE_EMPTY_P (type))
5889 return false;
5890
5891 /* If the padding and mode of the type is such that a copy into
5892 a register would put it into the wrong part of the register. */
5893 if (mode == BLKmode
5894 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5895 && (targetm.calls.function_arg_padding (mode, type)
5896 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5897 return true;
5898
5899 return false;
5900 }
5901
5902 /* Return true if TYPE must be passed on the stack when passed to
5903 the "..." arguments of a function. */
5904
5905 bool
5906 must_pass_va_arg_in_stack (tree type)
5907 {
5908 return targetm.calls.must_pass_in_stack (TYPE_MODE (type), type);
5909 }
5910
5911 /* Tell the garbage collector about GTY markers in this source file. */
5912 #include "gt-calls.h"