]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
PR other/16615 [1/5]
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-vrp.h"
51 #include "tree-ssanames.h"
52 #include "tree-ssa-strlen.h"
53 #include "intl.h"
54 #include "stringpool.h"
55 #include "attribs.h"
56 #include "builtins.h"
57 #include "gimple-fold.h"
58
59 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
60 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
61
62 /* Data structure and subroutines used within expand_call. */
63
64 struct arg_data
65 {
66 /* Tree node for this argument. */
67 tree tree_value;
68 /* Mode for value; TYPE_MODE unless promoted. */
69 machine_mode mode;
70 /* Current RTL value for argument, or 0 if it isn't precomputed. */
71 rtx value;
72 /* Initially-compute RTL value for argument; only for const functions. */
73 rtx initial_value;
74 /* Register to pass this argument in, 0 if passed on stack, or an
75 PARALLEL if the arg is to be copied into multiple non-contiguous
76 registers. */
77 rtx reg;
78 /* Register to pass this argument in when generating tail call sequence.
79 This is not the same register as for normal calls on machines with
80 register windows. */
81 rtx tail_call_reg;
82 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
83 form for emit_group_move. */
84 rtx parallel_value;
85 /* If value is passed in neither reg nor stack, this field holds a number
86 of a special slot to be used. */
87 rtx special_slot;
88 /* For pointer bounds hold an index of parm bounds are bound to. -1 if
89 there is no such pointer. */
90 int pointer_arg;
91 /* If pointer_arg refers a structure, then pointer_offset holds an offset
92 of a pointer in this structure. */
93 int pointer_offset;
94 /* If REG was promoted from the actual mode of the argument expression,
95 indicates whether the promotion is sign- or zero-extended. */
96 int unsignedp;
97 /* Number of bytes to put in registers. 0 means put the whole arg
98 in registers. Also 0 if not passed in registers. */
99 int partial;
100 /* Nonzero if argument must be passed on stack.
101 Note that some arguments may be passed on the stack
102 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
103 pass_on_stack identifies arguments that *cannot* go in registers. */
104 int pass_on_stack;
105 /* Some fields packaged up for locate_and_pad_parm. */
106 struct locate_and_pad_arg_data locate;
107 /* Location on the stack at which parameter should be stored. The store
108 has already been done if STACK == VALUE. */
109 rtx stack;
110 /* Location on the stack of the start of this argument slot. This can
111 differ from STACK if this arg pads downward. This location is known
112 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
113 rtx stack_slot;
114 /* Place that this stack area has been saved, if needed. */
115 rtx save_area;
116 /* If an argument's alignment does not permit direct copying into registers,
117 copy in smaller-sized pieces into pseudos. These are stored in a
118 block pointed to by this field. The next field says how many
119 word-sized pseudos we made. */
120 rtx *aligned_regs;
121 int n_aligned_regs;
122 };
123
124 /* A vector of one char per byte of stack space. A byte if nonzero if
125 the corresponding stack location has been used.
126 This vector is used to prevent a function call within an argument from
127 clobbering any stack already set up. */
128 static char *stack_usage_map;
129
130 /* Size of STACK_USAGE_MAP. */
131 static unsigned int highest_outgoing_arg_in_use;
132
133 /* Assume that any stack location at this byte index is used,
134 without checking the contents of stack_usage_map. */
135 static unsigned HOST_WIDE_INT stack_usage_watermark = HOST_WIDE_INT_M1U;
136
137 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
138 stack location's tail call argument has been already stored into the stack.
139 This bitmap is used to prevent sibling call optimization if function tries
140 to use parent's incoming argument slots when they have been already
141 overwritten with tail call arguments. */
142 static sbitmap stored_args_map;
143
144 /* Assume that any virtual-incoming location at this byte index has been
145 stored, without checking the contents of stored_args_map. */
146 static unsigned HOST_WIDE_INT stored_args_watermark;
147
148 /* stack_arg_under_construction is nonzero when an argument may be
149 initialized with a constructor call (including a C function that
150 returns a BLKmode struct) and expand_call must take special action
151 to make sure the object being constructed does not overlap the
152 argument list for the constructor call. */
153 static int stack_arg_under_construction;
154
155 static void precompute_register_parameters (int, struct arg_data *, int *);
156 static int store_one_arg (struct arg_data *, rtx, int, int, int);
157 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
158 static int finalize_must_preallocate (int, int, struct arg_data *,
159 struct args_size *);
160 static void precompute_arguments (int, struct arg_data *);
161 static void compute_argument_addresses (struct arg_data *, rtx, int);
162 static rtx rtx_for_function_call (tree, tree);
163 static void load_register_parameters (struct arg_data *, int, rtx *, int,
164 int, int *);
165 static int special_function_p (const_tree, int);
166 static int check_sibcall_argument_overlap_1 (rtx);
167 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
168
169 static tree split_complex_types (tree);
170
171 #ifdef REG_PARM_STACK_SPACE
172 static rtx save_fixed_argument_area (int, rtx, int *, int *);
173 static void restore_fixed_argument_area (rtx, rtx, int, int);
174 #endif
175 \f
176 /* Return true if bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
177 stack region might already be in use. */
178
179 static bool
180 stack_region_maybe_used_p (poly_uint64 lower_bound, poly_uint64 upper_bound,
181 unsigned int reg_parm_stack_space)
182 {
183 unsigned HOST_WIDE_INT const_lower, const_upper;
184 const_lower = constant_lower_bound (lower_bound);
185 if (!upper_bound.is_constant (&const_upper))
186 const_upper = HOST_WIDE_INT_M1U;
187
188 if (const_upper > stack_usage_watermark)
189 return true;
190
191 /* Don't worry about things in the fixed argument area;
192 it has already been saved. */
193 const_lower = MAX (const_lower, reg_parm_stack_space);
194 const_upper = MIN (const_upper, highest_outgoing_arg_in_use);
195 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
196 if (stack_usage_map[i])
197 return true;
198 return false;
199 }
200
201 /* Record that bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
202 stack region are now in use. */
203
204 static void
205 mark_stack_region_used (poly_uint64 lower_bound, poly_uint64 upper_bound)
206 {
207 unsigned HOST_WIDE_INT const_lower, const_upper;
208 const_lower = constant_lower_bound (lower_bound);
209 if (upper_bound.is_constant (&const_upper))
210 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
211 stack_usage_map[i] = 1;
212 else
213 stack_usage_watermark = MIN (stack_usage_watermark, const_lower);
214 }
215
216 /* Force FUNEXP into a form suitable for the address of a CALL,
217 and return that as an rtx. Also load the static chain register
218 if FNDECL is a nested function.
219
220 CALL_FUSAGE points to a variable holding the prospective
221 CALL_INSN_FUNCTION_USAGE information. */
222
223 rtx
224 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
225 rtx *call_fusage, int reg_parm_seen, int flags)
226 {
227 /* Make a valid memory address and copy constants through pseudo-regs,
228 but not for a constant address if -fno-function-cse. */
229 if (GET_CODE (funexp) != SYMBOL_REF)
230 {
231 /* If it's an indirect call by descriptor, generate code to perform
232 runtime identification of the pointer and load the descriptor. */
233 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
234 {
235 const int bit_val = targetm.calls.custom_function_descriptors;
236 rtx call_lab = gen_label_rtx ();
237
238 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
239 fndecl_or_type
240 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
241 fndecl_or_type);
242 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
243 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
244
245 if (GET_MODE (funexp) != Pmode)
246 funexp = convert_memory_address (Pmode, funexp);
247
248 /* Avoid long live ranges around function calls. */
249 funexp = copy_to_mode_reg (Pmode, funexp);
250
251 if (REG_P (chain))
252 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
253
254 /* Emit the runtime identification pattern. */
255 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
256 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
257 call_lab);
258
259 /* Statically predict the branch to very likely taken. */
260 rtx_insn *insn = get_last_insn ();
261 if (JUMP_P (insn))
262 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
263
264 /* Load the descriptor. */
265 rtx mem = gen_rtx_MEM (ptr_mode,
266 plus_constant (Pmode, funexp, - bit_val));
267 MEM_NOTRAP_P (mem) = 1;
268 mem = convert_memory_address (Pmode, mem);
269 emit_move_insn (chain, mem);
270
271 mem = gen_rtx_MEM (ptr_mode,
272 plus_constant (Pmode, funexp,
273 POINTER_SIZE / BITS_PER_UNIT
274 - bit_val));
275 MEM_NOTRAP_P (mem) = 1;
276 mem = convert_memory_address (Pmode, mem);
277 emit_move_insn (funexp, mem);
278
279 emit_label (call_lab);
280
281 if (REG_P (chain))
282 {
283 use_reg (call_fusage, chain);
284 STATIC_CHAIN_REG_P (chain) = 1;
285 }
286
287 /* Make sure we're not going to be overwritten below. */
288 gcc_assert (!static_chain_value);
289 }
290
291 /* If we are using registers for parameters, force the
292 function address into a register now. */
293 funexp = ((reg_parm_seen
294 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
295 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
296 : memory_address (FUNCTION_MODE, funexp));
297 }
298 else
299 {
300 /* funexp could be a SYMBOL_REF represents a function pointer which is
301 of ptr_mode. In this case, it should be converted into address mode
302 to be a valid address for memory rtx pattern. See PR 64971. */
303 if (GET_MODE (funexp) != Pmode)
304 funexp = convert_memory_address (Pmode, funexp);
305
306 if (!(flags & ECF_SIBCALL))
307 {
308 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
309 funexp = force_reg (Pmode, funexp);
310 }
311 }
312
313 if (static_chain_value != 0
314 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
315 || DECL_STATIC_CHAIN (fndecl_or_type)))
316 {
317 rtx chain;
318
319 chain = targetm.calls.static_chain (fndecl_or_type, false);
320 static_chain_value = convert_memory_address (Pmode, static_chain_value);
321
322 emit_move_insn (chain, static_chain_value);
323 if (REG_P (chain))
324 {
325 use_reg (call_fusage, chain);
326 STATIC_CHAIN_REG_P (chain) = 1;
327 }
328 }
329
330 return funexp;
331 }
332
333 /* Generate instructions to call function FUNEXP,
334 and optionally pop the results.
335 The CALL_INSN is the first insn generated.
336
337 FNDECL is the declaration node of the function. This is given to the
338 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
339 its own args.
340
341 FUNTYPE is the data type of the function. This is given to the hook
342 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
343 own args. We used to allow an identifier for library functions, but
344 that doesn't work when the return type is an aggregate type and the
345 calling convention says that the pointer to this aggregate is to be
346 popped by the callee.
347
348 STACK_SIZE is the number of bytes of arguments on the stack,
349 ROUNDED_STACK_SIZE is that number rounded up to
350 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
351 both to put into the call insn and to generate explicit popping
352 code if necessary.
353
354 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
355 It is zero if this call doesn't want a structure value.
356
357 NEXT_ARG_REG is the rtx that results from executing
358 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
359 just after all the args have had their registers assigned.
360 This could be whatever you like, but normally it is the first
361 arg-register beyond those used for args in this call,
362 or 0 if all the arg-registers are used in this call.
363 It is passed on to `gen_call' so you can put this info in the call insn.
364
365 VALREG is a hard register in which a value is returned,
366 or 0 if the call does not return a value.
367
368 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
369 the args to this call were processed.
370 We restore `inhibit_defer_pop' to that value.
371
372 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
373 denote registers used by the called function. */
374
375 static void
376 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
377 tree funtype ATTRIBUTE_UNUSED,
378 poly_int64 stack_size ATTRIBUTE_UNUSED,
379 poly_int64 rounded_stack_size,
380 poly_int64 struct_value_size ATTRIBUTE_UNUSED,
381 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
382 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
383 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
384 {
385 rtx rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
386 rtx call, funmem, pat;
387 int already_popped = 0;
388 poly_int64 n_popped = 0;
389
390 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
391 patterns exist). Any popping that the callee does on return will
392 be from our caller's frame rather than ours. */
393 if (!(ecf_flags & ECF_SIBCALL))
394 {
395 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
396
397 #ifdef CALL_POPS_ARGS
398 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
399 #endif
400 }
401
402 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
403 and we don't want to load it into a register as an optimization,
404 because prepare_call_address already did it if it should be done. */
405 if (GET_CODE (funexp) != SYMBOL_REF)
406 funexp = memory_address (FUNCTION_MODE, funexp);
407
408 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
409 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
410 {
411 tree t = fndecl;
412
413 /* Although a built-in FUNCTION_DECL and its non-__builtin
414 counterpart compare equal and get a shared mem_attrs, they
415 produce different dump output in compare-debug compilations,
416 if an entry gets garbage collected in one compilation, then
417 adds a different (but equivalent) entry, while the other
418 doesn't run the garbage collector at the same spot and then
419 shares the mem_attr with the equivalent entry. */
420 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
421 {
422 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
423 if (t2)
424 t = t2;
425 }
426
427 set_mem_expr (funmem, t);
428 }
429 else if (fntree)
430 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
431
432 if (ecf_flags & ECF_SIBCALL)
433 {
434 if (valreg)
435 pat = targetm.gen_sibcall_value (valreg, funmem,
436 rounded_stack_size_rtx,
437 next_arg_reg, NULL_RTX);
438 else
439 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
440 next_arg_reg,
441 gen_int_mode (struct_value_size, Pmode));
442 }
443 /* If the target has "call" or "call_value" insns, then prefer them
444 if no arguments are actually popped. If the target does not have
445 "call" or "call_value" insns, then we must use the popping versions
446 even if the call has no arguments to pop. */
447 else if (maybe_ne (n_popped, 0)
448 || !(valreg
449 ? targetm.have_call_value ()
450 : targetm.have_call ()))
451 {
452 rtx n_pop = gen_int_mode (n_popped, Pmode);
453
454 /* If this subroutine pops its own args, record that in the call insn
455 if possible, for the sake of frame pointer elimination. */
456
457 if (valreg)
458 pat = targetm.gen_call_value_pop (valreg, funmem,
459 rounded_stack_size_rtx,
460 next_arg_reg, n_pop);
461 else
462 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
463 next_arg_reg, n_pop);
464
465 already_popped = 1;
466 }
467 else
468 {
469 if (valreg)
470 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
471 next_arg_reg, NULL_RTX);
472 else
473 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
474 gen_int_mode (struct_value_size, Pmode));
475 }
476 emit_insn (pat);
477
478 /* Find the call we just emitted. */
479 rtx_call_insn *call_insn = last_call_insn ();
480
481 /* Some target create a fresh MEM instead of reusing the one provided
482 above. Set its MEM_EXPR. */
483 call = get_call_rtx_from (call_insn);
484 if (call
485 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
486 && MEM_EXPR (funmem) != NULL_TREE)
487 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
488
489 /* Put the register usage information there. */
490 add_function_usage_to (call_insn, call_fusage);
491
492 /* If this is a const call, then set the insn's unchanging bit. */
493 if (ecf_flags & ECF_CONST)
494 RTL_CONST_CALL_P (call_insn) = 1;
495
496 /* If this is a pure call, then set the insn's unchanging bit. */
497 if (ecf_flags & ECF_PURE)
498 RTL_PURE_CALL_P (call_insn) = 1;
499
500 /* If this is a const call, then set the insn's unchanging bit. */
501 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
502 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
503
504 /* Create a nothrow REG_EH_REGION note, if needed. */
505 make_reg_eh_region_note (call_insn, ecf_flags, 0);
506
507 if (ecf_flags & ECF_NORETURN)
508 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
509
510 if (ecf_flags & ECF_RETURNS_TWICE)
511 {
512 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
513 cfun->calls_setjmp = 1;
514 }
515
516 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
517
518 /* Restore this now, so that we do defer pops for this call's args
519 if the context of the call as a whole permits. */
520 inhibit_defer_pop = old_inhibit_defer_pop;
521
522 if (maybe_ne (n_popped, 0))
523 {
524 if (!already_popped)
525 CALL_INSN_FUNCTION_USAGE (call_insn)
526 = gen_rtx_EXPR_LIST (VOIDmode,
527 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
528 CALL_INSN_FUNCTION_USAGE (call_insn));
529 rounded_stack_size -= n_popped;
530 rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
531 stack_pointer_delta -= n_popped;
532
533 add_args_size_note (call_insn, stack_pointer_delta);
534
535 /* If popup is needed, stack realign must use DRAP */
536 if (SUPPORTS_STACK_ALIGNMENT)
537 crtl->need_drap = true;
538 }
539 /* For noreturn calls when not accumulating outgoing args force
540 REG_ARGS_SIZE note to prevent crossjumping of calls with different
541 args sizes. */
542 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
543 add_args_size_note (call_insn, stack_pointer_delta);
544
545 if (!ACCUMULATE_OUTGOING_ARGS)
546 {
547 /* If returning from the subroutine does not automatically pop the args,
548 we need an instruction to pop them sooner or later.
549 Perhaps do it now; perhaps just record how much space to pop later.
550
551 If returning from the subroutine does pop the args, indicate that the
552 stack pointer will be changed. */
553
554 if (maybe_ne (rounded_stack_size, 0))
555 {
556 if (ecf_flags & ECF_NORETURN)
557 /* Just pretend we did the pop. */
558 stack_pointer_delta -= rounded_stack_size;
559 else if (flag_defer_pop && inhibit_defer_pop == 0
560 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
561 pending_stack_adjust += rounded_stack_size;
562 else
563 adjust_stack (rounded_stack_size_rtx);
564 }
565 }
566 /* When we accumulate outgoing args, we must avoid any stack manipulations.
567 Restore the stack pointer to its original value now. Usually
568 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
569 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
570 popping variants of functions exist as well.
571
572 ??? We may optimize similar to defer_pop above, but it is
573 probably not worthwhile.
574
575 ??? It will be worthwhile to enable combine_stack_adjustments even for
576 such machines. */
577 else if (maybe_ne (n_popped, 0))
578 anti_adjust_stack (gen_int_mode (n_popped, Pmode));
579 }
580
581 /* Determine if the function identified by FNDECL is one with
582 special properties we wish to know about. Modify FLAGS accordingly.
583
584 For example, if the function might return more than one time (setjmp), then
585 set ECF_RETURNS_TWICE.
586
587 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
588 space from the stack such as alloca. */
589
590 static int
591 special_function_p (const_tree fndecl, int flags)
592 {
593 tree name_decl = DECL_NAME (fndecl);
594
595 if (fndecl && name_decl
596 && IDENTIFIER_LENGTH (name_decl) <= 11
597 /* Exclude functions not at the file scope, or not `extern',
598 since they are not the magic functions we would otherwise
599 think they are.
600 FIXME: this should be handled with attributes, not with this
601 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
602 because you can declare fork() inside a function if you
603 wish. */
604 && (DECL_CONTEXT (fndecl) == NULL_TREE
605 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
606 && TREE_PUBLIC (fndecl))
607 {
608 const char *name = IDENTIFIER_POINTER (name_decl);
609 const char *tname = name;
610
611 /* We assume that alloca will always be called by name. It
612 makes no sense to pass it as a pointer-to-function to
613 anything that does not understand its behavior. */
614 if (IDENTIFIER_LENGTH (name_decl) == 6
615 && name[0] == 'a'
616 && ! strcmp (name, "alloca"))
617 flags |= ECF_MAY_BE_ALLOCA;
618
619 /* Disregard prefix _ or __. */
620 if (name[0] == '_')
621 {
622 if (name[1] == '_')
623 tname += 2;
624 else
625 tname += 1;
626 }
627
628 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
629 if (! strcmp (tname, "setjmp")
630 || ! strcmp (tname, "sigsetjmp")
631 || ! strcmp (name, "savectx")
632 || ! strcmp (name, "vfork")
633 || ! strcmp (name, "getcontext"))
634 flags |= ECF_RETURNS_TWICE;
635 }
636
637 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
638 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
639 flags |= ECF_MAY_BE_ALLOCA;
640
641 return flags;
642 }
643
644 /* Similar to special_function_p; return a set of ERF_ flags for the
645 function FNDECL. */
646 static int
647 decl_return_flags (tree fndecl)
648 {
649 tree attr;
650 tree type = TREE_TYPE (fndecl);
651 if (!type)
652 return 0;
653
654 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
655 if (!attr)
656 return 0;
657
658 attr = TREE_VALUE (TREE_VALUE (attr));
659 if (!attr || TREE_STRING_LENGTH (attr) < 1)
660 return 0;
661
662 switch (TREE_STRING_POINTER (attr)[0])
663 {
664 case '1':
665 case '2':
666 case '3':
667 case '4':
668 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
669
670 case 'm':
671 return ERF_NOALIAS;
672
673 case '.':
674 default:
675 return 0;
676 }
677 }
678
679 /* Return nonzero when FNDECL represents a call to setjmp. */
680
681 int
682 setjmp_call_p (const_tree fndecl)
683 {
684 if (DECL_IS_RETURNS_TWICE (fndecl))
685 return ECF_RETURNS_TWICE;
686 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
687 }
688
689
690 /* Return true if STMT may be an alloca call. */
691
692 bool
693 gimple_maybe_alloca_call_p (const gimple *stmt)
694 {
695 tree fndecl;
696
697 if (!is_gimple_call (stmt))
698 return false;
699
700 fndecl = gimple_call_fndecl (stmt);
701 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
702 return true;
703
704 return false;
705 }
706
707 /* Return true if STMT is a builtin alloca call. */
708
709 bool
710 gimple_alloca_call_p (const gimple *stmt)
711 {
712 tree fndecl;
713
714 if (!is_gimple_call (stmt))
715 return false;
716
717 fndecl = gimple_call_fndecl (stmt);
718 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
719 switch (DECL_FUNCTION_CODE (fndecl))
720 {
721 CASE_BUILT_IN_ALLOCA:
722 return gimple_call_num_args (stmt) > 0;
723 default:
724 break;
725 }
726
727 return false;
728 }
729
730 /* Return true when exp contains a builtin alloca call. */
731
732 bool
733 alloca_call_p (const_tree exp)
734 {
735 tree fndecl;
736 if (TREE_CODE (exp) == CALL_EXPR
737 && (fndecl = get_callee_fndecl (exp))
738 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
739 switch (DECL_FUNCTION_CODE (fndecl))
740 {
741 CASE_BUILT_IN_ALLOCA:
742 return true;
743 default:
744 break;
745 }
746
747 return false;
748 }
749
750 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
751 function. Return FALSE otherwise. */
752
753 static bool
754 is_tm_builtin (const_tree fndecl)
755 {
756 if (fndecl == NULL)
757 return false;
758
759 if (decl_is_tm_clone (fndecl))
760 return true;
761
762 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
763 {
764 switch (DECL_FUNCTION_CODE (fndecl))
765 {
766 case BUILT_IN_TM_COMMIT:
767 case BUILT_IN_TM_COMMIT_EH:
768 case BUILT_IN_TM_ABORT:
769 case BUILT_IN_TM_IRREVOCABLE:
770 case BUILT_IN_TM_GETTMCLONE_IRR:
771 case BUILT_IN_TM_MEMCPY:
772 case BUILT_IN_TM_MEMMOVE:
773 case BUILT_IN_TM_MEMSET:
774 CASE_BUILT_IN_TM_STORE (1):
775 CASE_BUILT_IN_TM_STORE (2):
776 CASE_BUILT_IN_TM_STORE (4):
777 CASE_BUILT_IN_TM_STORE (8):
778 CASE_BUILT_IN_TM_STORE (FLOAT):
779 CASE_BUILT_IN_TM_STORE (DOUBLE):
780 CASE_BUILT_IN_TM_STORE (LDOUBLE):
781 CASE_BUILT_IN_TM_STORE (M64):
782 CASE_BUILT_IN_TM_STORE (M128):
783 CASE_BUILT_IN_TM_STORE (M256):
784 CASE_BUILT_IN_TM_LOAD (1):
785 CASE_BUILT_IN_TM_LOAD (2):
786 CASE_BUILT_IN_TM_LOAD (4):
787 CASE_BUILT_IN_TM_LOAD (8):
788 CASE_BUILT_IN_TM_LOAD (FLOAT):
789 CASE_BUILT_IN_TM_LOAD (DOUBLE):
790 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
791 CASE_BUILT_IN_TM_LOAD (M64):
792 CASE_BUILT_IN_TM_LOAD (M128):
793 CASE_BUILT_IN_TM_LOAD (M256):
794 case BUILT_IN_TM_LOG:
795 case BUILT_IN_TM_LOG_1:
796 case BUILT_IN_TM_LOG_2:
797 case BUILT_IN_TM_LOG_4:
798 case BUILT_IN_TM_LOG_8:
799 case BUILT_IN_TM_LOG_FLOAT:
800 case BUILT_IN_TM_LOG_DOUBLE:
801 case BUILT_IN_TM_LOG_LDOUBLE:
802 case BUILT_IN_TM_LOG_M64:
803 case BUILT_IN_TM_LOG_M128:
804 case BUILT_IN_TM_LOG_M256:
805 return true;
806 default:
807 break;
808 }
809 }
810 return false;
811 }
812
813 /* Detect flags (function attributes) from the function decl or type node. */
814
815 int
816 flags_from_decl_or_type (const_tree exp)
817 {
818 int flags = 0;
819
820 if (DECL_P (exp))
821 {
822 /* The function exp may have the `malloc' attribute. */
823 if (DECL_IS_MALLOC (exp))
824 flags |= ECF_MALLOC;
825
826 /* The function exp may have the `returns_twice' attribute. */
827 if (DECL_IS_RETURNS_TWICE (exp))
828 flags |= ECF_RETURNS_TWICE;
829
830 /* Process the pure and const attributes. */
831 if (TREE_READONLY (exp))
832 flags |= ECF_CONST;
833 if (DECL_PURE_P (exp))
834 flags |= ECF_PURE;
835 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
836 flags |= ECF_LOOPING_CONST_OR_PURE;
837
838 if (DECL_IS_NOVOPS (exp))
839 flags |= ECF_NOVOPS;
840 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
841 flags |= ECF_LEAF;
842 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
843 flags |= ECF_COLD;
844
845 if (TREE_NOTHROW (exp))
846 flags |= ECF_NOTHROW;
847
848 if (flag_tm)
849 {
850 if (is_tm_builtin (exp))
851 flags |= ECF_TM_BUILTIN;
852 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
853 || lookup_attribute ("transaction_pure",
854 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
855 flags |= ECF_TM_PURE;
856 }
857
858 flags = special_function_p (exp, flags);
859 }
860 else if (TYPE_P (exp))
861 {
862 if (TYPE_READONLY (exp))
863 flags |= ECF_CONST;
864
865 if (flag_tm
866 && ((flags & ECF_CONST) != 0
867 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
868 flags |= ECF_TM_PURE;
869 }
870 else
871 gcc_unreachable ();
872
873 if (TREE_THIS_VOLATILE (exp))
874 {
875 flags |= ECF_NORETURN;
876 if (flags & (ECF_CONST|ECF_PURE))
877 flags |= ECF_LOOPING_CONST_OR_PURE;
878 }
879
880 return flags;
881 }
882
883 /* Detect flags from a CALL_EXPR. */
884
885 int
886 call_expr_flags (const_tree t)
887 {
888 int flags;
889 tree decl = get_callee_fndecl (t);
890
891 if (decl)
892 flags = flags_from_decl_or_type (decl);
893 else if (CALL_EXPR_FN (t) == NULL_TREE)
894 flags = internal_fn_flags (CALL_EXPR_IFN (t));
895 else
896 {
897 tree type = TREE_TYPE (CALL_EXPR_FN (t));
898 if (type && TREE_CODE (type) == POINTER_TYPE)
899 flags = flags_from_decl_or_type (TREE_TYPE (type));
900 else
901 flags = 0;
902 if (CALL_EXPR_BY_DESCRIPTOR (t))
903 flags |= ECF_BY_DESCRIPTOR;
904 }
905
906 return flags;
907 }
908
909 /* Return true if TYPE should be passed by invisible reference. */
910
911 bool
912 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
913 tree type, bool named_arg)
914 {
915 if (type)
916 {
917 /* If this type contains non-trivial constructors, then it is
918 forbidden for the middle-end to create any new copies. */
919 if (TREE_ADDRESSABLE (type))
920 return true;
921
922 /* GCC post 3.4 passes *all* variable sized types by reference. */
923 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
924 return true;
925
926 /* If a record type should be passed the same as its first (and only)
927 member, use the type and mode of that member. */
928 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
929 {
930 type = TREE_TYPE (first_field (type));
931 mode = TYPE_MODE (type);
932 }
933 }
934
935 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
936 type, named_arg);
937 }
938
939 /* Return true if TYPE, which is passed by reference, should be callee
940 copied instead of caller copied. */
941
942 bool
943 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
944 tree type, bool named_arg)
945 {
946 if (type && TREE_ADDRESSABLE (type))
947 return false;
948 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
949 named_arg);
950 }
951
952
953 /* Precompute all register parameters as described by ARGS, storing values
954 into fields within the ARGS array.
955
956 NUM_ACTUALS indicates the total number elements in the ARGS array.
957
958 Set REG_PARM_SEEN if we encounter a register parameter. */
959
960 static void
961 precompute_register_parameters (int num_actuals, struct arg_data *args,
962 int *reg_parm_seen)
963 {
964 int i;
965
966 *reg_parm_seen = 0;
967
968 for (i = 0; i < num_actuals; i++)
969 if (args[i].reg != 0 && ! args[i].pass_on_stack)
970 {
971 *reg_parm_seen = 1;
972
973 if (args[i].value == 0)
974 {
975 push_temp_slots ();
976 args[i].value = expand_normal (args[i].tree_value);
977 preserve_temp_slots (args[i].value);
978 pop_temp_slots ();
979 }
980
981 /* If we are to promote the function arg to a wider mode,
982 do it now. */
983
984 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
985 args[i].value
986 = convert_modes (args[i].mode,
987 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
988 args[i].value, args[i].unsignedp);
989
990 /* If the value is a non-legitimate constant, force it into a
991 pseudo now. TLS symbols sometimes need a call to resolve. */
992 if (CONSTANT_P (args[i].value)
993 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
994 args[i].value = force_reg (args[i].mode, args[i].value);
995
996 /* If we're going to have to load the value by parts, pull the
997 parts into pseudos. The part extraction process can involve
998 non-trivial computation. */
999 if (GET_CODE (args[i].reg) == PARALLEL)
1000 {
1001 tree type = TREE_TYPE (args[i].tree_value);
1002 args[i].parallel_value
1003 = emit_group_load_into_temps (args[i].reg, args[i].value,
1004 type, int_size_in_bytes (type));
1005 }
1006
1007 /* If the value is expensive, and we are inside an appropriately
1008 short loop, put the value into a pseudo and then put the pseudo
1009 into the hard reg.
1010
1011 For small register classes, also do this if this call uses
1012 register parameters. This is to avoid reload conflicts while
1013 loading the parameters registers. */
1014
1015 else if ((! (REG_P (args[i].value)
1016 || (GET_CODE (args[i].value) == SUBREG
1017 && REG_P (SUBREG_REG (args[i].value)))))
1018 && args[i].mode != BLKmode
1019 && (set_src_cost (args[i].value, args[i].mode,
1020 optimize_insn_for_speed_p ())
1021 > COSTS_N_INSNS (1))
1022 && ((*reg_parm_seen
1023 && targetm.small_register_classes_for_mode_p (args[i].mode))
1024 || optimize))
1025 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1026 }
1027 }
1028
1029 #ifdef REG_PARM_STACK_SPACE
1030
1031 /* The argument list is the property of the called routine and it
1032 may clobber it. If the fixed area has been used for previous
1033 parameters, we must save and restore it. */
1034
1035 static rtx
1036 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1037 {
1038 unsigned int low;
1039 unsigned int high;
1040
1041 /* Compute the boundary of the area that needs to be saved, if any. */
1042 high = reg_parm_stack_space;
1043 if (ARGS_GROW_DOWNWARD)
1044 high += 1;
1045
1046 if (high > highest_outgoing_arg_in_use)
1047 high = highest_outgoing_arg_in_use;
1048
1049 for (low = 0; low < high; low++)
1050 if (stack_usage_map[low] != 0 || low >= stack_usage_watermark)
1051 {
1052 int num_to_save;
1053 machine_mode save_mode;
1054 int delta;
1055 rtx addr;
1056 rtx stack_area;
1057 rtx save_area;
1058
1059 while (stack_usage_map[--high] == 0)
1060 ;
1061
1062 *low_to_save = low;
1063 *high_to_save = high;
1064
1065 num_to_save = high - low + 1;
1066
1067 /* If we don't have the required alignment, must do this
1068 in BLKmode. */
1069 scalar_int_mode imode;
1070 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1071 && (low & (MIN (GET_MODE_SIZE (imode),
1072 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1073 save_mode = imode;
1074 else
1075 save_mode = BLKmode;
1076
1077 if (ARGS_GROW_DOWNWARD)
1078 delta = -high;
1079 else
1080 delta = low;
1081
1082 addr = plus_constant (Pmode, argblock, delta);
1083 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1084
1085 set_mem_align (stack_area, PARM_BOUNDARY);
1086 if (save_mode == BLKmode)
1087 {
1088 save_area = assign_stack_temp (BLKmode, num_to_save);
1089 emit_block_move (validize_mem (save_area), stack_area,
1090 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1091 }
1092 else
1093 {
1094 save_area = gen_reg_rtx (save_mode);
1095 emit_move_insn (save_area, stack_area);
1096 }
1097
1098 return save_area;
1099 }
1100
1101 return NULL_RTX;
1102 }
1103
1104 static void
1105 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1106 {
1107 machine_mode save_mode = GET_MODE (save_area);
1108 int delta;
1109 rtx addr, stack_area;
1110
1111 if (ARGS_GROW_DOWNWARD)
1112 delta = -high_to_save;
1113 else
1114 delta = low_to_save;
1115
1116 addr = plus_constant (Pmode, argblock, delta);
1117 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1118 set_mem_align (stack_area, PARM_BOUNDARY);
1119
1120 if (save_mode != BLKmode)
1121 emit_move_insn (stack_area, save_area);
1122 else
1123 emit_block_move (stack_area, validize_mem (save_area),
1124 GEN_INT (high_to_save - low_to_save + 1),
1125 BLOCK_OP_CALL_PARM);
1126 }
1127 #endif /* REG_PARM_STACK_SPACE */
1128
1129 /* If any elements in ARGS refer to parameters that are to be passed in
1130 registers, but not in memory, and whose alignment does not permit a
1131 direct copy into registers. Copy the values into a group of pseudos
1132 which we will later copy into the appropriate hard registers.
1133
1134 Pseudos for each unaligned argument will be stored into the array
1135 args[argnum].aligned_regs. The caller is responsible for deallocating
1136 the aligned_regs array if it is nonzero. */
1137
1138 static void
1139 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1140 {
1141 int i, j;
1142
1143 for (i = 0; i < num_actuals; i++)
1144 if (args[i].reg != 0 && ! args[i].pass_on_stack
1145 && GET_CODE (args[i].reg) != PARALLEL
1146 && args[i].mode == BLKmode
1147 && MEM_P (args[i].value)
1148 && (MEM_ALIGN (args[i].value)
1149 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1150 {
1151 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1152 int endian_correction = 0;
1153
1154 if (args[i].partial)
1155 {
1156 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1157 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1158 }
1159 else
1160 {
1161 args[i].n_aligned_regs
1162 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1163 }
1164
1165 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1166
1167 /* Structures smaller than a word are normally aligned to the
1168 least significant byte. On a BYTES_BIG_ENDIAN machine,
1169 this means we must skip the empty high order bytes when
1170 calculating the bit offset. */
1171 if (bytes < UNITS_PER_WORD
1172 #ifdef BLOCK_REG_PADDING
1173 && (BLOCK_REG_PADDING (args[i].mode,
1174 TREE_TYPE (args[i].tree_value), 1)
1175 == PAD_DOWNWARD)
1176 #else
1177 && BYTES_BIG_ENDIAN
1178 #endif
1179 )
1180 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1181
1182 for (j = 0; j < args[i].n_aligned_regs; j++)
1183 {
1184 rtx reg = gen_reg_rtx (word_mode);
1185 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1186 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1187
1188 args[i].aligned_regs[j] = reg;
1189 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1190 word_mode, word_mode, false, NULL);
1191
1192 /* There is no need to restrict this code to loading items
1193 in TYPE_ALIGN sized hunks. The bitfield instructions can
1194 load up entire word sized registers efficiently.
1195
1196 ??? This may not be needed anymore.
1197 We use to emit a clobber here but that doesn't let later
1198 passes optimize the instructions we emit. By storing 0 into
1199 the register later passes know the first AND to zero out the
1200 bitfield being set in the register is unnecessary. The store
1201 of 0 will be deleted as will at least the first AND. */
1202
1203 emit_move_insn (reg, const0_rtx);
1204
1205 bytes -= bitsize / BITS_PER_UNIT;
1206 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1207 word_mode, word, false);
1208 }
1209 }
1210 }
1211
1212 /* The limit set by -Walloc-larger-than=. */
1213 static GTY(()) tree alloc_object_size_limit;
1214
1215 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1216 setting if the option is specified, or to the maximum object size if it
1217 is not. Return the initialized value. */
1218
1219 static tree
1220 alloc_max_size (void)
1221 {
1222 if (alloc_object_size_limit)
1223 return alloc_object_size_limit;
1224
1225 HOST_WIDE_INT limit = warn_alloc_size_limit;
1226 if (limit == HOST_WIDE_INT_MAX)
1227 limit = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
1228
1229 alloc_object_size_limit = build_int_cst (size_type_node, limit);
1230
1231 return alloc_object_size_limit;
1232 }
1233
1234 /* Return true when EXP's range can be determined and set RANGE[] to it
1235 after adjusting it if necessary to make EXP a represents a valid size
1236 of object, or a valid size argument to an allocation function declared
1237 with attribute alloc_size (whose argument may be signed), or to a string
1238 manipulation function like memset. When ALLOW_ZERO is true, allow
1239 returning a range of [0, 0] for a size in an anti-range [1, N] where
1240 N > PTRDIFF_MAX. A zero range is a (nearly) invalid argument to
1241 allocation functions like malloc but it is a valid argument to
1242 functions like memset. */
1243
1244 bool
1245 get_size_range (tree exp, tree range[2], bool allow_zero /* = false */)
1246 {
1247 if (tree_fits_uhwi_p (exp))
1248 {
1249 /* EXP is a constant. */
1250 range[0] = range[1] = exp;
1251 return true;
1252 }
1253
1254 tree exptype = TREE_TYPE (exp);
1255 bool integral = INTEGRAL_TYPE_P (exptype);
1256
1257 wide_int min, max;
1258 enum value_range_kind range_type;
1259
1260 if (integral)
1261 range_type = determine_value_range (exp, &min, &max);
1262 else
1263 range_type = VR_VARYING;
1264
1265 if (range_type == VR_VARYING)
1266 {
1267 if (integral)
1268 {
1269 /* Use the full range of the type of the expression when
1270 no value range information is available. */
1271 range[0] = TYPE_MIN_VALUE (exptype);
1272 range[1] = TYPE_MAX_VALUE (exptype);
1273 return true;
1274 }
1275
1276 range[0] = NULL_TREE;
1277 range[1] = NULL_TREE;
1278 return false;
1279 }
1280
1281 unsigned expprec = TYPE_PRECISION (exptype);
1282
1283 bool signed_p = !TYPE_UNSIGNED (exptype);
1284
1285 if (range_type == VR_ANTI_RANGE)
1286 {
1287 if (signed_p)
1288 {
1289 if (wi::les_p (max, 0))
1290 {
1291 /* EXP is not in a strictly negative range. That means
1292 it must be in some (not necessarily strictly) positive
1293 range which includes zero. Since in signed to unsigned
1294 conversions negative values end up converted to large
1295 positive values, and otherwise they are not valid sizes,
1296 the resulting range is in both cases [0, TYPE_MAX]. */
1297 min = wi::zero (expprec);
1298 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1299 }
1300 else if (wi::les_p (min - 1, 0))
1301 {
1302 /* EXP is not in a negative-positive range. That means EXP
1303 is either negative, or greater than max. Since negative
1304 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1305 min = max + 1;
1306 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1307 }
1308 else
1309 {
1310 max = min - 1;
1311 min = wi::zero (expprec);
1312 }
1313 }
1314 else if (wi::eq_p (0, min - 1))
1315 {
1316 /* EXP is unsigned and not in the range [1, MAX]. That means
1317 it's either zero or greater than MAX. Even though 0 would
1318 normally be detected by -Walloc-zero, unless ALLOW_ZERO
1319 is true, set the range to [MAX, TYPE_MAX] so that when MAX
1320 is greater than the limit the whole range is diagnosed. */
1321 if (allow_zero)
1322 min = max = wi::zero (expprec);
1323 else
1324 {
1325 min = max + 1;
1326 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1327 }
1328 }
1329 else
1330 {
1331 max = min - 1;
1332 min = wi::zero (expprec);
1333 }
1334 }
1335
1336 range[0] = wide_int_to_tree (exptype, min);
1337 range[1] = wide_int_to_tree (exptype, max);
1338
1339 return true;
1340 }
1341
1342 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1343 whose argument numbers given by IDX with values given by ARGS exceed
1344 the maximum object size or cause an unsigned oveflow (wrapping) when
1345 multiplied. FN is null when EXP is a call via a function pointer.
1346 When ARGS[0] is null the function does nothing. ARGS[1] may be null
1347 for functions like malloc, and non-null for those like calloc that
1348 are decorated with a two-argument attribute alloc_size. */
1349
1350 void
1351 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1352 {
1353 /* The range each of the (up to) two arguments is known to be in. */
1354 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1355
1356 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1357 tree maxobjsize = alloc_max_size ();
1358
1359 location_t loc = EXPR_LOCATION (exp);
1360
1361 tree fntype = fn ? TREE_TYPE (fn) : TREE_TYPE (TREE_TYPE (exp));
1362 built_in_function fncode = fn ? DECL_FUNCTION_CODE (fn) : BUILT_IN_NONE;
1363 bool warned = false;
1364
1365 /* Validate each argument individually. */
1366 for (unsigned i = 0; i != 2 && args[i]; ++i)
1367 {
1368 if (TREE_CODE (args[i]) == INTEGER_CST)
1369 {
1370 argrange[i][0] = args[i];
1371 argrange[i][1] = args[i];
1372
1373 if (tree_int_cst_lt (args[i], integer_zero_node))
1374 {
1375 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1376 "%Kargument %i value %qE is negative",
1377 exp, idx[i] + 1, args[i]);
1378 }
1379 else if (integer_zerop (args[i]))
1380 {
1381 /* Avoid issuing -Walloc-zero for allocation functions other
1382 than __builtin_alloca that are declared with attribute
1383 returns_nonnull because there's no portability risk. This
1384 avoids warning for such calls to libiberty's xmalloc and
1385 friends.
1386 Also avoid issuing the warning for calls to function named
1387 "alloca". */
1388 if ((fncode == BUILT_IN_ALLOCA
1389 && IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6)
1390 || (fncode != BUILT_IN_ALLOCA
1391 && !lookup_attribute ("returns_nonnull",
1392 TYPE_ATTRIBUTES (fntype))))
1393 warned = warning_at (loc, OPT_Walloc_zero,
1394 "%Kargument %i value is zero",
1395 exp, idx[i] + 1);
1396 }
1397 else if (tree_int_cst_lt (maxobjsize, args[i]))
1398 {
1399 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1400 mode and with -fno-exceptions as a way to indicate array
1401 size overflow. There's no good way to detect C++98 here
1402 so avoid diagnosing these calls for all C++ modes. */
1403 if (i == 0
1404 && fn
1405 && !args[1]
1406 && lang_GNU_CXX ()
1407 && DECL_IS_OPERATOR_NEW (fn)
1408 && integer_all_onesp (args[i]))
1409 continue;
1410
1411 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1412 "%Kargument %i value %qE exceeds "
1413 "maximum object size %E",
1414 exp, idx[i] + 1, args[i], maxobjsize);
1415 }
1416 }
1417 else if (TREE_CODE (args[i]) == SSA_NAME
1418 && get_size_range (args[i], argrange[i]))
1419 {
1420 /* Verify that the argument's range is not negative (including
1421 upper bound of zero). */
1422 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1423 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1424 {
1425 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1426 "%Kargument %i range [%E, %E] is negative",
1427 exp, idx[i] + 1,
1428 argrange[i][0], argrange[i][1]);
1429 }
1430 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1431 {
1432 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1433 "%Kargument %i range [%E, %E] exceeds "
1434 "maximum object size %E",
1435 exp, idx[i] + 1,
1436 argrange[i][0], argrange[i][1],
1437 maxobjsize);
1438 }
1439 }
1440 }
1441
1442 if (!argrange[0])
1443 return;
1444
1445 /* For a two-argument alloc_size, validate the product of the two
1446 arguments if both of their values or ranges are known. */
1447 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1448 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1449 && !integer_onep (argrange[0][0])
1450 && !integer_onep (argrange[1][0]))
1451 {
1452 /* Check for overflow in the product of a function decorated with
1453 attribute alloc_size (X, Y). */
1454 unsigned szprec = TYPE_PRECISION (size_type_node);
1455 wide_int x = wi::to_wide (argrange[0][0], szprec);
1456 wide_int y = wi::to_wide (argrange[1][0], szprec);
1457
1458 wi::overflow_type vflow;
1459 wide_int prod = wi::umul (x, y, &vflow);
1460
1461 if (vflow)
1462 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1463 "%Kproduct %<%E * %E%> of arguments %i and %i "
1464 "exceeds %<SIZE_MAX%>",
1465 exp, argrange[0][0], argrange[1][0],
1466 idx[0] + 1, idx[1] + 1);
1467 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1468 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1469 "%Kproduct %<%E * %E%> of arguments %i and %i "
1470 "exceeds maximum object size %E",
1471 exp, argrange[0][0], argrange[1][0],
1472 idx[0] + 1, idx[1] + 1,
1473 maxobjsize);
1474
1475 if (warned)
1476 {
1477 /* Print the full range of each of the two arguments to make
1478 it clear when it is, in fact, in a range and not constant. */
1479 if (argrange[0][0] != argrange [0][1])
1480 inform (loc, "argument %i in the range [%E, %E]",
1481 idx[0] + 1, argrange[0][0], argrange[0][1]);
1482 if (argrange[1][0] != argrange [1][1])
1483 inform (loc, "argument %i in the range [%E, %E]",
1484 idx[1] + 1, argrange[1][0], argrange[1][1]);
1485 }
1486 }
1487
1488 if (warned && fn)
1489 {
1490 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1491
1492 if (DECL_IS_BUILTIN (fn))
1493 inform (loc,
1494 "in a call to built-in allocation function %qD", fn);
1495 else
1496 inform (fnloc,
1497 "in a call to allocation function %qD declared here", fn);
1498 }
1499 }
1500
1501 /* If EXPR refers to a character array or pointer declared attribute
1502 nonstring return a decl for that array or pointer and set *REF to
1503 the referenced enclosing object or pointer. Otherwise returns
1504 null. */
1505
1506 tree
1507 get_attr_nonstring_decl (tree expr, tree *ref)
1508 {
1509 tree decl = expr;
1510 tree var = NULL_TREE;
1511 if (TREE_CODE (decl) == SSA_NAME)
1512 {
1513 gimple *def = SSA_NAME_DEF_STMT (decl);
1514
1515 if (is_gimple_assign (def))
1516 {
1517 tree_code code = gimple_assign_rhs_code (def);
1518 if (code == ADDR_EXPR
1519 || code == COMPONENT_REF
1520 || code == VAR_DECL)
1521 decl = gimple_assign_rhs1 (def);
1522 }
1523 else
1524 var = SSA_NAME_VAR (decl);
1525 }
1526
1527 if (TREE_CODE (decl) == ADDR_EXPR)
1528 decl = TREE_OPERAND (decl, 0);
1529
1530 /* To simplify calling code, store the referenced DECL regardless of
1531 the attribute determined below, but avoid storing the SSA_NAME_VAR
1532 obtained above (it's not useful for dataflow purposes). */
1533 if (ref)
1534 *ref = decl;
1535
1536 /* Use the SSA_NAME_VAR that was determined above to see if it's
1537 declared nonstring. Otherwise drill down into the referenced
1538 DECL. */
1539 if (var)
1540 decl = var;
1541 else if (TREE_CODE (decl) == ARRAY_REF)
1542 decl = TREE_OPERAND (decl, 0);
1543 else if (TREE_CODE (decl) == COMPONENT_REF)
1544 decl = TREE_OPERAND (decl, 1);
1545 else if (TREE_CODE (decl) == MEM_REF)
1546 return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
1547
1548 if (DECL_P (decl)
1549 && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
1550 return decl;
1551
1552 return NULL_TREE;
1553 }
1554
1555 /* Warn about passing a non-string array/pointer to a function that
1556 expects a nul-terminated string argument. */
1557
1558 void
1559 maybe_warn_nonstring_arg (tree fndecl, tree exp)
1560 {
1561 if (!fndecl || !fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
1562 return;
1563
1564 if (TREE_NO_WARNING (exp) || !warn_stringop_overflow)
1565 return;
1566
1567 unsigned nargs = call_expr_nargs (exp);
1568
1569 /* The bound argument to a bounded string function like strncpy. */
1570 tree bound = NULL_TREE;
1571
1572 /* The longest known or possible string argument to one of the comparison
1573 functions. If the length is less than the bound it is used instead.
1574 Since the length is only used for warning and not for code generation
1575 disable strict mode in the calls to get_range_strlen below. */
1576 tree maxlen = NULL_TREE;
1577
1578 /* It's safe to call "bounded" string functions with a non-string
1579 argument since the functions provide an explicit bound for this
1580 purpose. The exception is strncat where the bound may refer to
1581 either the destination or the source. */
1582 int fncode = DECL_FUNCTION_CODE (fndecl);
1583 switch (fncode)
1584 {
1585 case BUILT_IN_STRCMP:
1586 case BUILT_IN_STRNCMP:
1587 case BUILT_IN_STRNCASECMP:
1588 {
1589 /* For these, if one argument refers to one or more of a set
1590 of string constants or arrays of known size, determine
1591 the range of their known or possible lengths and use it
1592 conservatively as the bound for the unbounded function,
1593 and to adjust the range of the bound of the bounded ones. */
1594 for (unsigned argno = 0;
1595 argno < MIN (nargs, 2)
1596 && !(maxlen && TREE_CODE (maxlen) == INTEGER_CST); argno++)
1597 {
1598 tree arg = CALL_EXPR_ARG (exp, argno);
1599 if (!get_attr_nonstring_decl (arg))
1600 {
1601 c_strlen_data lendata = { };
1602 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1603 maxlen = lendata.maxbound;
1604 }
1605 }
1606 }
1607 /* Fall through. */
1608
1609 case BUILT_IN_STRNCAT:
1610 case BUILT_IN_STPNCPY:
1611 case BUILT_IN_STRNCPY:
1612 if (nargs > 2)
1613 bound = CALL_EXPR_ARG (exp, 2);
1614 break;
1615
1616 case BUILT_IN_STRNDUP:
1617 if (nargs > 1)
1618 bound = CALL_EXPR_ARG (exp, 1);
1619 break;
1620
1621 case BUILT_IN_STRNLEN:
1622 {
1623 tree arg = CALL_EXPR_ARG (exp, 0);
1624 if (!get_attr_nonstring_decl (arg))
1625 {
1626 c_strlen_data lendata = { };
1627 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1628 maxlen = lendata.maxbound;
1629 }
1630 if (nargs > 1)
1631 bound = CALL_EXPR_ARG (exp, 1);
1632 break;
1633 }
1634
1635 default:
1636 break;
1637 }
1638
1639 /* Determine the range of the bound argument (if specified). */
1640 tree bndrng[2] = { NULL_TREE, NULL_TREE };
1641 if (bound)
1642 {
1643 STRIP_NOPS (bound);
1644 get_size_range (bound, bndrng);
1645 }
1646
1647 location_t loc = EXPR_LOCATION (exp);
1648
1649 if (bndrng[0])
1650 {
1651 /* Diagnose excessive bound prior the adjustment below and
1652 regardless of attribute nonstring. */
1653 tree maxobjsize = max_object_size ();
1654 if (tree_int_cst_lt (maxobjsize, bndrng[0]))
1655 {
1656 if (tree_int_cst_equal (bndrng[0], bndrng[1]))
1657 warning_at (loc, OPT_Wstringop_overflow_,
1658 "%K%qD specified bound %E "
1659 "exceeds maximum object size %E",
1660 exp, fndecl, bndrng[0], maxobjsize);
1661 else
1662 warning_at (loc, OPT_Wstringop_overflow_,
1663 "%K%qD specified bound [%E, %E] "
1664 "exceeds maximum object size %E",
1665 exp, fndecl, bndrng[0], bndrng[1], maxobjsize);
1666 return;
1667 }
1668 }
1669
1670 if (maxlen && !integer_all_onesp (maxlen))
1671 {
1672 /* Add one for the nul. */
1673 maxlen = const_binop (PLUS_EXPR, TREE_TYPE (maxlen), maxlen,
1674 size_one_node);
1675
1676 if (!bndrng[0])
1677 {
1678 /* Conservatively use the upper bound of the lengths for
1679 both the lower and the upper bound of the operation. */
1680 bndrng[0] = maxlen;
1681 bndrng[1] = maxlen;
1682 bound = void_type_node;
1683 }
1684 else if (maxlen)
1685 {
1686 /* Replace the bound on the operation with the upper bound
1687 of the length of the string if the latter is smaller. */
1688 if (tree_int_cst_lt (maxlen, bndrng[0]))
1689 bndrng[0] = maxlen;
1690 else if (tree_int_cst_lt (maxlen, bndrng[1]))
1691 bndrng[1] = maxlen;
1692 }
1693 }
1694
1695 /* Iterate over the built-in function's formal arguments and check
1696 each const char* against the actual argument. If the actual
1697 argument is declared attribute non-string issue a warning unless
1698 the argument's maximum length is bounded. */
1699 function_args_iterator it;
1700 function_args_iter_init (&it, TREE_TYPE (fndecl));
1701
1702 for (unsigned argno = 0; ; ++argno, function_args_iter_next (&it))
1703 {
1704 /* Avoid iterating past the declared argument in a call
1705 to function declared without a prototype. */
1706 if (argno >= nargs)
1707 break;
1708
1709 tree argtype = function_args_iter_cond (&it);
1710 if (!argtype)
1711 break;
1712
1713 if (TREE_CODE (argtype) != POINTER_TYPE)
1714 continue;
1715
1716 argtype = TREE_TYPE (argtype);
1717
1718 if (TREE_CODE (argtype) != INTEGER_TYPE
1719 || !TYPE_READONLY (argtype))
1720 continue;
1721
1722 argtype = TYPE_MAIN_VARIANT (argtype);
1723 if (argtype != char_type_node)
1724 continue;
1725
1726 tree callarg = CALL_EXPR_ARG (exp, argno);
1727 if (TREE_CODE (callarg) == ADDR_EXPR)
1728 callarg = TREE_OPERAND (callarg, 0);
1729
1730 /* See if the destination is declared with attribute "nonstring". */
1731 tree decl = get_attr_nonstring_decl (callarg);
1732 if (!decl)
1733 continue;
1734
1735 /* The maximum number of array elements accessed. */
1736 offset_int wibnd = 0;
1737
1738 if (argno && fncode == BUILT_IN_STRNCAT)
1739 {
1740 /* See if the bound in strncat is derived from the length
1741 of the strlen of the destination (as it's expected to be).
1742 If so, reset BOUND and FNCODE to trigger a warning. */
1743 tree dstarg = CALL_EXPR_ARG (exp, 0);
1744 if (is_strlen_related_p (dstarg, bound))
1745 {
1746 /* The bound applies to the destination, not to the source,
1747 so reset these to trigger a warning without mentioning
1748 the bound. */
1749 bound = NULL;
1750 fncode = 0;
1751 }
1752 else if (bndrng[1])
1753 /* Use the upper bound of the range for strncat. */
1754 wibnd = wi::to_offset (bndrng[1]);
1755 }
1756 else if (bndrng[0])
1757 /* Use the lower bound of the range for functions other than
1758 strncat. */
1759 wibnd = wi::to_offset (bndrng[0]);
1760
1761 /* Determine the size of the argument array if it is one. */
1762 offset_int asize = wibnd;
1763 bool known_size = false;
1764 tree type = TREE_TYPE (decl);
1765
1766 /* Determine the array size. For arrays of unknown bound and
1767 pointers reset BOUND to trigger the appropriate warning. */
1768 if (TREE_CODE (type) == ARRAY_TYPE)
1769 {
1770 if (tree arrbnd = TYPE_DOMAIN (type))
1771 {
1772 if ((arrbnd = TYPE_MAX_VALUE (arrbnd)))
1773 {
1774 asize = wi::to_offset (arrbnd) + 1;
1775 known_size = true;
1776 }
1777 }
1778 else if (bound == void_type_node)
1779 bound = NULL_TREE;
1780 }
1781 else if (bound == void_type_node)
1782 bound = NULL_TREE;
1783
1784 /* In a call to strncat with a bound in a range whose lower but
1785 not upper bound is less than the array size, reset ASIZE to
1786 be the same as the bound and the other variable to trigger
1787 the apprpriate warning below. */
1788 if (fncode == BUILT_IN_STRNCAT
1789 && bndrng[0] != bndrng[1]
1790 && wi::ltu_p (wi::to_offset (bndrng[0]), asize)
1791 && (!known_size
1792 || wi::ltu_p (asize, wibnd)))
1793 {
1794 asize = wibnd;
1795 bound = NULL_TREE;
1796 fncode = 0;
1797 }
1798
1799 bool warned = false;
1800
1801 auto_diagnostic_group d;
1802 if (wi::ltu_p (asize, wibnd))
1803 {
1804 if (bndrng[0] == bndrng[1])
1805 warned = warning_at (loc, OPT_Wstringop_overflow_,
1806 "%qD argument %i declared attribute "
1807 "%<nonstring%> is smaller than the specified "
1808 "bound %wu",
1809 fndecl, argno + 1, wibnd.to_uhwi ());
1810 else if (wi::ltu_p (asize, wi::to_offset (bndrng[0])))
1811 warned = warning_at (loc, OPT_Wstringop_overflow_,
1812 "%qD argument %i declared attribute "
1813 "%<nonstring%> is smaller than "
1814 "the specified bound [%E, %E]",
1815 fndecl, argno + 1, bndrng[0], bndrng[1]);
1816 else
1817 warned = warning_at (loc, OPT_Wstringop_overflow_,
1818 "%qD argument %i declared attribute "
1819 "%<nonstring%> may be smaller than "
1820 "the specified bound [%E, %E]",
1821 fndecl, argno + 1, bndrng[0], bndrng[1]);
1822 }
1823 else if (fncode == BUILT_IN_STRNCAT)
1824 ; /* Avoid warning for calls to strncat() when the bound
1825 is equal to the size of the non-string argument. */
1826 else if (!bound)
1827 warned = warning_at (loc, OPT_Wstringop_overflow_,
1828 "%qD argument %i declared attribute %<nonstring%>",
1829 fndecl, argno + 1);
1830
1831 if (warned)
1832 inform (DECL_SOURCE_LOCATION (decl),
1833 "argument %qD declared here", decl);
1834 }
1835 }
1836
1837 /* Issue an error if CALL_EXPR was flagged as requiring
1838 tall-call optimization. */
1839
1840 static void
1841 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1842 {
1843 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1844 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1845 return;
1846
1847 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1848 }
1849
1850 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1851 CALL_EXPR EXP.
1852
1853 NUM_ACTUALS is the total number of parameters.
1854
1855 N_NAMED_ARGS is the total number of named arguments.
1856
1857 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1858 value, or null.
1859
1860 FNDECL is the tree code for the target of this call (if known)
1861
1862 ARGS_SO_FAR holds state needed by the target to know where to place
1863 the next argument.
1864
1865 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1866 for arguments which are passed in registers.
1867
1868 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1869 and may be modified by this routine.
1870
1871 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1872 flags which may be modified by this routine.
1873
1874 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1875 that requires allocation of stack space.
1876
1877 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1878 the thunked-to function. */
1879
1880 static void
1881 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1882 struct arg_data *args,
1883 struct args_size *args_size,
1884 int n_named_args ATTRIBUTE_UNUSED,
1885 tree exp, tree struct_value_addr_value,
1886 tree fndecl, tree fntype,
1887 cumulative_args_t args_so_far,
1888 int reg_parm_stack_space,
1889 rtx *old_stack_level,
1890 poly_int64_pod *old_pending_adj,
1891 int *must_preallocate, int *ecf_flags,
1892 bool *may_tailcall, bool call_from_thunk_p)
1893 {
1894 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1895 location_t loc = EXPR_LOCATION (exp);
1896
1897 /* Count arg position in order args appear. */
1898 int argpos;
1899
1900 int i;
1901
1902 args_size->constant = 0;
1903 args_size->var = 0;
1904
1905 bitmap_obstack_initialize (NULL);
1906
1907 /* In this loop, we consider args in the order they are written.
1908 We fill up ARGS from the back. */
1909
1910 i = num_actuals - 1;
1911 {
1912 int j = i;
1913 call_expr_arg_iterator iter;
1914 tree arg;
1915 bitmap slots = NULL;
1916
1917 if (struct_value_addr_value)
1918 {
1919 args[j].tree_value = struct_value_addr_value;
1920 j--;
1921 }
1922 argpos = 0;
1923 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1924 {
1925 tree argtype = TREE_TYPE (arg);
1926
1927 if (targetm.calls.split_complex_arg
1928 && argtype
1929 && TREE_CODE (argtype) == COMPLEX_TYPE
1930 && targetm.calls.split_complex_arg (argtype))
1931 {
1932 tree subtype = TREE_TYPE (argtype);
1933 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1934 j--;
1935 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1936 }
1937 else
1938 args[j].tree_value = arg;
1939 j--;
1940 argpos++;
1941 }
1942
1943 if (slots)
1944 BITMAP_FREE (slots);
1945 }
1946
1947 bitmap_obstack_release (NULL);
1948
1949 /* Extract attribute alloc_size from the type of the called expression
1950 (which could be a function or a function pointer) and if set, store
1951 the indices of the corresponding arguments in ALLOC_IDX, and then
1952 the actual argument(s) at those indices in ALLOC_ARGS. */
1953 int alloc_idx[2] = { -1, -1 };
1954 if (tree alloc_size = lookup_attribute ("alloc_size",
1955 TYPE_ATTRIBUTES (fntype)))
1956 {
1957 tree args = TREE_VALUE (alloc_size);
1958 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
1959 if (TREE_CHAIN (args))
1960 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
1961 }
1962
1963 /* Array for up to the two attribute alloc_size arguments. */
1964 tree alloc_args[] = { NULL_TREE, NULL_TREE };
1965
1966 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1967 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1968 {
1969 tree type = TREE_TYPE (args[i].tree_value);
1970 int unsignedp;
1971 machine_mode mode;
1972
1973 /* Replace erroneous argument with constant zero. */
1974 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1975 args[i].tree_value = integer_zero_node, type = integer_type_node;
1976
1977 /* If TYPE is a transparent union or record, pass things the way
1978 we would pass the first field of the union or record. We have
1979 already verified that the modes are the same. */
1980 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1981 && TYPE_TRANSPARENT_AGGR (type))
1982 type = TREE_TYPE (first_field (type));
1983
1984 /* Decide where to pass this arg.
1985
1986 args[i].reg is nonzero if all or part is passed in registers.
1987
1988 args[i].partial is nonzero if part but not all is passed in registers,
1989 and the exact value says how many bytes are passed in registers.
1990
1991 args[i].pass_on_stack is nonzero if the argument must at least be
1992 computed on the stack. It may then be loaded back into registers
1993 if args[i].reg is nonzero.
1994
1995 These decisions are driven by the FUNCTION_... macros and must agree
1996 with those made by function.c. */
1997
1998 /* See if this argument should be passed by invisible reference. */
1999 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
2000 type, argpos < n_named_args))
2001 {
2002 bool callee_copies;
2003 tree base = NULL_TREE;
2004
2005 callee_copies
2006 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
2007 type, argpos < n_named_args);
2008
2009 /* If we're compiling a thunk, pass through invisible references
2010 instead of making a copy. */
2011 if (call_from_thunk_p
2012 || (callee_copies
2013 && !TREE_ADDRESSABLE (type)
2014 && (base = get_base_address (args[i].tree_value))
2015 && TREE_CODE (base) != SSA_NAME
2016 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
2017 {
2018 /* We may have turned the parameter value into an SSA name.
2019 Go back to the original parameter so we can take the
2020 address. */
2021 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
2022 {
2023 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
2024 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
2025 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
2026 }
2027 /* Argument setup code may have copied the value to register. We
2028 revert that optimization now because the tail call code must
2029 use the original location. */
2030 if (TREE_CODE (args[i].tree_value) == PARM_DECL
2031 && !MEM_P (DECL_RTL (args[i].tree_value))
2032 && DECL_INCOMING_RTL (args[i].tree_value)
2033 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
2034 set_decl_rtl (args[i].tree_value,
2035 DECL_INCOMING_RTL (args[i].tree_value));
2036
2037 mark_addressable (args[i].tree_value);
2038
2039 /* We can't use sibcalls if a callee-copied argument is
2040 stored in the current function's frame. */
2041 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
2042 {
2043 *may_tailcall = false;
2044 maybe_complain_about_tail_call (exp,
2045 "a callee-copied argument is"
2046 " stored in the current"
2047 " function's frame");
2048 }
2049
2050 args[i].tree_value = build_fold_addr_expr_loc (loc,
2051 args[i].tree_value);
2052 type = TREE_TYPE (args[i].tree_value);
2053
2054 if (*ecf_flags & ECF_CONST)
2055 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
2056 }
2057 else
2058 {
2059 /* We make a copy of the object and pass the address to the
2060 function being called. */
2061 rtx copy;
2062
2063 if (!COMPLETE_TYPE_P (type)
2064 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
2065 || (flag_stack_check == GENERIC_STACK_CHECK
2066 && compare_tree_int (TYPE_SIZE_UNIT (type),
2067 STACK_CHECK_MAX_VAR_SIZE) > 0))
2068 {
2069 /* This is a variable-sized object. Make space on the stack
2070 for it. */
2071 rtx size_rtx = expr_size (args[i].tree_value);
2072
2073 if (*old_stack_level == 0)
2074 {
2075 emit_stack_save (SAVE_BLOCK, old_stack_level);
2076 *old_pending_adj = pending_stack_adjust;
2077 pending_stack_adjust = 0;
2078 }
2079
2080 /* We can pass TRUE as the 4th argument because we just
2081 saved the stack pointer and will restore it right after
2082 the call. */
2083 copy = allocate_dynamic_stack_space (size_rtx,
2084 TYPE_ALIGN (type),
2085 TYPE_ALIGN (type),
2086 max_int_size_in_bytes
2087 (type),
2088 true);
2089 copy = gen_rtx_MEM (BLKmode, copy);
2090 set_mem_attributes (copy, type, 1);
2091 }
2092 else
2093 copy = assign_temp (type, 1, 0);
2094
2095 store_expr (args[i].tree_value, copy, 0, false, false);
2096
2097 /* Just change the const function to pure and then let
2098 the next test clear the pure based on
2099 callee_copies. */
2100 if (*ecf_flags & ECF_CONST)
2101 {
2102 *ecf_flags &= ~ECF_CONST;
2103 *ecf_flags |= ECF_PURE;
2104 }
2105
2106 if (!callee_copies && *ecf_flags & ECF_PURE)
2107 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2108
2109 args[i].tree_value
2110 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
2111 type = TREE_TYPE (args[i].tree_value);
2112 *may_tailcall = false;
2113 maybe_complain_about_tail_call (exp,
2114 "argument must be passed"
2115 " by copying");
2116 }
2117 }
2118
2119 unsignedp = TYPE_UNSIGNED (type);
2120 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
2121 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
2122
2123 args[i].unsignedp = unsignedp;
2124 args[i].mode = mode;
2125
2126 targetm.calls.warn_parameter_passing_abi (args_so_far, type);
2127
2128 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
2129 argpos < n_named_args);
2130
2131 if (args[i].reg && CONST_INT_P (args[i].reg))
2132 {
2133 args[i].special_slot = args[i].reg;
2134 args[i].reg = NULL;
2135 }
2136
2137 /* If this is a sibling call and the machine has register windows, the
2138 register window has to be unwinded before calling the routine, so
2139 arguments have to go into the incoming registers. */
2140 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
2141 args[i].tail_call_reg
2142 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
2143 argpos < n_named_args);
2144 else
2145 args[i].tail_call_reg = args[i].reg;
2146
2147 if (args[i].reg)
2148 args[i].partial
2149 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
2150 argpos < n_named_args);
2151
2152 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
2153
2154 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
2155 it means that we are to pass this arg in the register(s) designated
2156 by the PARALLEL, but also to pass it in the stack. */
2157 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
2158 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
2159 args[i].pass_on_stack = 1;
2160
2161 /* If this is an addressable type, we must preallocate the stack
2162 since we must evaluate the object into its final location.
2163
2164 If this is to be passed in both registers and the stack, it is simpler
2165 to preallocate. */
2166 if (TREE_ADDRESSABLE (type)
2167 || (args[i].pass_on_stack && args[i].reg != 0))
2168 *must_preallocate = 1;
2169
2170 /* Compute the stack-size of this argument. */
2171 if (args[i].reg == 0 || args[i].partial != 0
2172 || reg_parm_stack_space > 0
2173 || args[i].pass_on_stack)
2174 locate_and_pad_parm (mode, type,
2175 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2176 1,
2177 #else
2178 args[i].reg != 0,
2179 #endif
2180 reg_parm_stack_space,
2181 args[i].pass_on_stack ? 0 : args[i].partial,
2182 fndecl, args_size, &args[i].locate);
2183 #ifdef BLOCK_REG_PADDING
2184 else
2185 /* The argument is passed entirely in registers. See at which
2186 end it should be padded. */
2187 args[i].locate.where_pad =
2188 BLOCK_REG_PADDING (mode, type,
2189 int_size_in_bytes (type) <= UNITS_PER_WORD);
2190 #endif
2191
2192 /* Update ARGS_SIZE, the total stack space for args so far. */
2193
2194 args_size->constant += args[i].locate.size.constant;
2195 if (args[i].locate.size.var)
2196 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
2197
2198 /* Increment ARGS_SO_FAR, which has info about which arg-registers
2199 have been used, etc. */
2200
2201 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
2202 type, argpos < n_named_args);
2203
2204 /* Store argument values for functions decorated with attribute
2205 alloc_size. */
2206 if (argpos == alloc_idx[0])
2207 alloc_args[0] = args[i].tree_value;
2208 else if (argpos == alloc_idx[1])
2209 alloc_args[1] = args[i].tree_value;
2210 }
2211
2212 if (alloc_args[0])
2213 {
2214 /* Check the arguments of functions decorated with attribute
2215 alloc_size. */
2216 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
2217 }
2218
2219 /* Detect passing non-string arguments to functions expecting
2220 nul-terminated strings. */
2221 maybe_warn_nonstring_arg (fndecl, exp);
2222 }
2223
2224 /* Update ARGS_SIZE to contain the total size for the argument block.
2225 Return the original constant component of the argument block's size.
2226
2227 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
2228 for arguments passed in registers. */
2229
2230 static poly_int64
2231 compute_argument_block_size (int reg_parm_stack_space,
2232 struct args_size *args_size,
2233 tree fndecl ATTRIBUTE_UNUSED,
2234 tree fntype ATTRIBUTE_UNUSED,
2235 int preferred_stack_boundary ATTRIBUTE_UNUSED)
2236 {
2237 poly_int64 unadjusted_args_size = args_size->constant;
2238
2239 /* For accumulate outgoing args mode we don't need to align, since the frame
2240 will be already aligned. Align to STACK_BOUNDARY in order to prevent
2241 backends from generating misaligned frame sizes. */
2242 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
2243 preferred_stack_boundary = STACK_BOUNDARY;
2244
2245 /* Compute the actual size of the argument block required. The variable
2246 and constant sizes must be combined, the size may have to be rounded,
2247 and there may be a minimum required size. */
2248
2249 if (args_size->var)
2250 {
2251 args_size->var = ARGS_SIZE_TREE (*args_size);
2252 args_size->constant = 0;
2253
2254 preferred_stack_boundary /= BITS_PER_UNIT;
2255 if (preferred_stack_boundary > 1)
2256 {
2257 /* We don't handle this case yet. To handle it correctly we have
2258 to add the delta, round and subtract the delta.
2259 Currently no machine description requires this support. */
2260 gcc_assert (multiple_p (stack_pointer_delta,
2261 preferred_stack_boundary));
2262 args_size->var = round_up (args_size->var, preferred_stack_boundary);
2263 }
2264
2265 if (reg_parm_stack_space > 0)
2266 {
2267 args_size->var
2268 = size_binop (MAX_EXPR, args_size->var,
2269 ssize_int (reg_parm_stack_space));
2270
2271 /* The area corresponding to register parameters is not to count in
2272 the size of the block we need. So make the adjustment. */
2273 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2274 args_size->var
2275 = size_binop (MINUS_EXPR, args_size->var,
2276 ssize_int (reg_parm_stack_space));
2277 }
2278 }
2279 else
2280 {
2281 preferred_stack_boundary /= BITS_PER_UNIT;
2282 if (preferred_stack_boundary < 1)
2283 preferred_stack_boundary = 1;
2284 args_size->constant = (aligned_upper_bound (args_size->constant
2285 + stack_pointer_delta,
2286 preferred_stack_boundary)
2287 - stack_pointer_delta);
2288
2289 args_size->constant = upper_bound (args_size->constant,
2290 reg_parm_stack_space);
2291
2292 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2293 args_size->constant -= reg_parm_stack_space;
2294 }
2295 return unadjusted_args_size;
2296 }
2297
2298 /* Precompute parameters as needed for a function call.
2299
2300 FLAGS is mask of ECF_* constants.
2301
2302 NUM_ACTUALS is the number of arguments.
2303
2304 ARGS is an array containing information for each argument; this
2305 routine fills in the INITIAL_VALUE and VALUE fields for each
2306 precomputed argument. */
2307
2308 static void
2309 precompute_arguments (int num_actuals, struct arg_data *args)
2310 {
2311 int i;
2312
2313 /* If this is a libcall, then precompute all arguments so that we do not
2314 get extraneous instructions emitted as part of the libcall sequence. */
2315
2316 /* If we preallocated the stack space, and some arguments must be passed
2317 on the stack, then we must precompute any parameter which contains a
2318 function call which will store arguments on the stack.
2319 Otherwise, evaluating the parameter may clobber previous parameters
2320 which have already been stored into the stack. (we have code to avoid
2321 such case by saving the outgoing stack arguments, but it results in
2322 worse code) */
2323 if (!ACCUMULATE_OUTGOING_ARGS)
2324 return;
2325
2326 for (i = 0; i < num_actuals; i++)
2327 {
2328 tree type;
2329 machine_mode mode;
2330
2331 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2332 continue;
2333
2334 /* If this is an addressable type, we cannot pre-evaluate it. */
2335 type = TREE_TYPE (args[i].tree_value);
2336 gcc_assert (!TREE_ADDRESSABLE (type));
2337
2338 args[i].initial_value = args[i].value
2339 = expand_normal (args[i].tree_value);
2340
2341 mode = TYPE_MODE (type);
2342 if (mode != args[i].mode)
2343 {
2344 int unsignedp = args[i].unsignedp;
2345 args[i].value
2346 = convert_modes (args[i].mode, mode,
2347 args[i].value, args[i].unsignedp);
2348
2349 /* CSE will replace this only if it contains args[i].value
2350 pseudo, so convert it down to the declared mode using
2351 a SUBREG. */
2352 if (REG_P (args[i].value)
2353 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2354 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2355 {
2356 args[i].initial_value
2357 = gen_lowpart_SUBREG (mode, args[i].value);
2358 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2359 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2360 }
2361 }
2362 }
2363 }
2364
2365 /* Given the current state of MUST_PREALLOCATE and information about
2366 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2367 compute and return the final value for MUST_PREALLOCATE. */
2368
2369 static int
2370 finalize_must_preallocate (int must_preallocate, int num_actuals,
2371 struct arg_data *args, struct args_size *args_size)
2372 {
2373 /* See if we have or want to preallocate stack space.
2374
2375 If we would have to push a partially-in-regs parm
2376 before other stack parms, preallocate stack space instead.
2377
2378 If the size of some parm is not a multiple of the required stack
2379 alignment, we must preallocate.
2380
2381 If the total size of arguments that would otherwise create a copy in
2382 a temporary (such as a CALL) is more than half the total argument list
2383 size, preallocation is faster.
2384
2385 Another reason to preallocate is if we have a machine (like the m88k)
2386 where stack alignment is required to be maintained between every
2387 pair of insns, not just when the call is made. However, we assume here
2388 that such machines either do not have push insns (and hence preallocation
2389 would occur anyway) or the problem is taken care of with
2390 PUSH_ROUNDING. */
2391
2392 if (! must_preallocate)
2393 {
2394 int partial_seen = 0;
2395 poly_int64 copy_to_evaluate_size = 0;
2396 int i;
2397
2398 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2399 {
2400 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2401 partial_seen = 1;
2402 else if (partial_seen && args[i].reg == 0)
2403 must_preallocate = 1;
2404
2405 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2406 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2407 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2408 || TREE_CODE (args[i].tree_value) == COND_EXPR
2409 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2410 copy_to_evaluate_size
2411 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2412 }
2413
2414 if (maybe_ne (args_size->constant, 0)
2415 && maybe_ge (copy_to_evaluate_size * 2, args_size->constant))
2416 must_preallocate = 1;
2417 }
2418 return must_preallocate;
2419 }
2420
2421 /* If we preallocated stack space, compute the address of each argument
2422 and store it into the ARGS array.
2423
2424 We need not ensure it is a valid memory address here; it will be
2425 validized when it is used.
2426
2427 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2428
2429 static void
2430 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2431 {
2432 if (argblock)
2433 {
2434 rtx arg_reg = argblock;
2435 int i;
2436 poly_int64 arg_offset = 0;
2437
2438 if (GET_CODE (argblock) == PLUS)
2439 {
2440 arg_reg = XEXP (argblock, 0);
2441 arg_offset = rtx_to_poly_int64 (XEXP (argblock, 1));
2442 }
2443
2444 for (i = 0; i < num_actuals; i++)
2445 {
2446 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2447 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2448 rtx addr;
2449 unsigned int align, boundary;
2450 poly_uint64 units_on_stack = 0;
2451 machine_mode partial_mode = VOIDmode;
2452
2453 /* Skip this parm if it will not be passed on the stack. */
2454 if (! args[i].pass_on_stack
2455 && args[i].reg != 0
2456 && args[i].partial == 0)
2457 continue;
2458
2459 if (TYPE_EMPTY_P (TREE_TYPE (args[i].tree_value)))
2460 continue;
2461
2462 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
2463 addr = plus_constant (Pmode, addr, arg_offset);
2464
2465 if (args[i].partial != 0)
2466 {
2467 /* Only part of the parameter is being passed on the stack.
2468 Generate a simple memory reference of the correct size. */
2469 units_on_stack = args[i].locate.size.constant;
2470 poly_uint64 bits_on_stack = units_on_stack * BITS_PER_UNIT;
2471 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
2472 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2473 set_mem_size (args[i].stack, units_on_stack);
2474 }
2475 else
2476 {
2477 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2478 set_mem_attributes (args[i].stack,
2479 TREE_TYPE (args[i].tree_value), 1);
2480 }
2481 align = BITS_PER_UNIT;
2482 boundary = args[i].locate.boundary;
2483 poly_int64 offset_val;
2484 if (args[i].locate.where_pad != PAD_DOWNWARD)
2485 align = boundary;
2486 else if (poly_int_rtx_p (offset, &offset_val))
2487 {
2488 align = least_bit_hwi (boundary);
2489 unsigned int offset_align
2490 = known_alignment (offset_val) * BITS_PER_UNIT;
2491 if (offset_align != 0)
2492 align = MIN (align, offset_align);
2493 }
2494 set_mem_align (args[i].stack, align);
2495
2496 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
2497 addr = plus_constant (Pmode, addr, arg_offset);
2498
2499 if (args[i].partial != 0)
2500 {
2501 /* Only part of the parameter is being passed on the stack.
2502 Generate a simple memory reference of the correct size.
2503 */
2504 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2505 set_mem_size (args[i].stack_slot, units_on_stack);
2506 }
2507 else
2508 {
2509 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2510 set_mem_attributes (args[i].stack_slot,
2511 TREE_TYPE (args[i].tree_value), 1);
2512 }
2513 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2514
2515 /* Function incoming arguments may overlap with sibling call
2516 outgoing arguments and we cannot allow reordering of reads
2517 from function arguments with stores to outgoing arguments
2518 of sibling calls. */
2519 set_mem_alias_set (args[i].stack, 0);
2520 set_mem_alias_set (args[i].stack_slot, 0);
2521 }
2522 }
2523 }
2524
2525 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2526 in a call instruction.
2527
2528 FNDECL is the tree node for the target function. For an indirect call
2529 FNDECL will be NULL_TREE.
2530
2531 ADDR is the operand 0 of CALL_EXPR for this call. */
2532
2533 static rtx
2534 rtx_for_function_call (tree fndecl, tree addr)
2535 {
2536 rtx funexp;
2537
2538 /* Get the function to call, in the form of RTL. */
2539 if (fndecl)
2540 {
2541 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2542 TREE_USED (fndecl) = 1;
2543
2544 /* Get a SYMBOL_REF rtx for the function address. */
2545 funexp = XEXP (DECL_RTL (fndecl), 0);
2546 }
2547 else
2548 /* Generate an rtx (probably a pseudo-register) for the address. */
2549 {
2550 push_temp_slots ();
2551 funexp = expand_normal (addr);
2552 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2553 }
2554 return funexp;
2555 }
2556
2557 /* Return the static chain for this function, if any. */
2558
2559 rtx
2560 rtx_for_static_chain (const_tree fndecl_or_type, bool incoming_p)
2561 {
2562 if (DECL_P (fndecl_or_type) && !DECL_STATIC_CHAIN (fndecl_or_type))
2563 return NULL;
2564
2565 return targetm.calls.static_chain (fndecl_or_type, incoming_p);
2566 }
2567
2568 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2569 static struct
2570 {
2571 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2572 or NULL_RTX if none has been scanned yet. */
2573 rtx_insn *scan_start;
2574 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2575 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2576 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2577 with fixed offset, or PC if this is with variable or unknown offset. */
2578 vec<rtx> cache;
2579 } internal_arg_pointer_exp_state;
2580
2581 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2582
2583 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2584 the tail call sequence, starting with first insn that hasn't been
2585 scanned yet, and note for each pseudo on the LHS whether it is based
2586 on crtl->args.internal_arg_pointer or not, and what offset from that
2587 that pointer it has. */
2588
2589 static void
2590 internal_arg_pointer_based_exp_scan (void)
2591 {
2592 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2593
2594 if (scan_start == NULL_RTX)
2595 insn = get_insns ();
2596 else
2597 insn = NEXT_INSN (scan_start);
2598
2599 while (insn)
2600 {
2601 rtx set = single_set (insn);
2602 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2603 {
2604 rtx val = NULL_RTX;
2605 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2606 /* Punt on pseudos set multiple times. */
2607 if (idx < internal_arg_pointer_exp_state.cache.length ()
2608 && (internal_arg_pointer_exp_state.cache[idx]
2609 != NULL_RTX))
2610 val = pc_rtx;
2611 else
2612 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2613 if (val != NULL_RTX)
2614 {
2615 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2616 internal_arg_pointer_exp_state.cache
2617 .safe_grow_cleared (idx + 1);
2618 internal_arg_pointer_exp_state.cache[idx] = val;
2619 }
2620 }
2621 if (NEXT_INSN (insn) == NULL_RTX)
2622 scan_start = insn;
2623 insn = NEXT_INSN (insn);
2624 }
2625
2626 internal_arg_pointer_exp_state.scan_start = scan_start;
2627 }
2628
2629 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2630 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2631 it with fixed offset, or PC if this is with variable or unknown offset.
2632 TOPLEVEL is true if the function is invoked at the topmost level. */
2633
2634 static rtx
2635 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2636 {
2637 if (CONSTANT_P (rtl))
2638 return NULL_RTX;
2639
2640 if (rtl == crtl->args.internal_arg_pointer)
2641 return const0_rtx;
2642
2643 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2644 return NULL_RTX;
2645
2646 poly_int64 offset;
2647 if (GET_CODE (rtl) == PLUS && poly_int_rtx_p (XEXP (rtl, 1), &offset))
2648 {
2649 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2650 if (val == NULL_RTX || val == pc_rtx)
2651 return val;
2652 return plus_constant (Pmode, val, offset);
2653 }
2654
2655 /* When called at the topmost level, scan pseudo assignments in between the
2656 last scanned instruction in the tail call sequence and the latest insn
2657 in that sequence. */
2658 if (toplevel)
2659 internal_arg_pointer_based_exp_scan ();
2660
2661 if (REG_P (rtl))
2662 {
2663 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2664 if (idx < internal_arg_pointer_exp_state.cache.length ())
2665 return internal_arg_pointer_exp_state.cache[idx];
2666
2667 return NULL_RTX;
2668 }
2669
2670 subrtx_iterator::array_type array;
2671 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2672 {
2673 const_rtx x = *iter;
2674 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2675 return pc_rtx;
2676 if (MEM_P (x))
2677 iter.skip_subrtxes ();
2678 }
2679
2680 return NULL_RTX;
2681 }
2682
2683 /* Return true if SIZE bytes starting from address ADDR might overlap an
2684 already-clobbered argument area. This function is used to determine
2685 if we should give up a sibcall. */
2686
2687 static bool
2688 mem_might_overlap_already_clobbered_arg_p (rtx addr, poly_uint64 size)
2689 {
2690 poly_int64 i;
2691 unsigned HOST_WIDE_INT start, end;
2692 rtx val;
2693
2694 if (bitmap_empty_p (stored_args_map)
2695 && stored_args_watermark == HOST_WIDE_INT_M1U)
2696 return false;
2697 val = internal_arg_pointer_based_exp (addr, true);
2698 if (val == NULL_RTX)
2699 return false;
2700 else if (!poly_int_rtx_p (val, &i))
2701 return true;
2702
2703 if (known_eq (size, 0U))
2704 return false;
2705
2706 if (STACK_GROWS_DOWNWARD)
2707 i -= crtl->args.pretend_args_size;
2708 else
2709 i += crtl->args.pretend_args_size;
2710
2711 if (ARGS_GROW_DOWNWARD)
2712 i = -i - size;
2713
2714 /* We can ignore any references to the function's pretend args,
2715 which at this point would manifest as negative values of I. */
2716 if (known_le (i, 0) && known_le (size, poly_uint64 (-i)))
2717 return false;
2718
2719 start = maybe_lt (i, 0) ? 0 : constant_lower_bound (i);
2720 if (!(i + size).is_constant (&end))
2721 end = HOST_WIDE_INT_M1U;
2722
2723 if (end > stored_args_watermark)
2724 return true;
2725
2726 end = MIN (end, SBITMAP_SIZE (stored_args_map));
2727 for (unsigned HOST_WIDE_INT k = start; k < end; ++k)
2728 if (bitmap_bit_p (stored_args_map, k))
2729 return true;
2730
2731 return false;
2732 }
2733
2734 /* Do the register loads required for any wholly-register parms or any
2735 parms which are passed both on the stack and in a register. Their
2736 expressions were already evaluated.
2737
2738 Mark all register-parms as living through the call, putting these USE
2739 insns in the CALL_INSN_FUNCTION_USAGE field.
2740
2741 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2742 checking, setting *SIBCALL_FAILURE if appropriate. */
2743
2744 static void
2745 load_register_parameters (struct arg_data *args, int num_actuals,
2746 rtx *call_fusage, int flags, int is_sibcall,
2747 int *sibcall_failure)
2748 {
2749 int i, j;
2750
2751 for (i = 0; i < num_actuals; i++)
2752 {
2753 rtx reg = ((flags & ECF_SIBCALL)
2754 ? args[i].tail_call_reg : args[i].reg);
2755 if (reg)
2756 {
2757 int partial = args[i].partial;
2758 int nregs;
2759 poly_int64 size = 0;
2760 HOST_WIDE_INT const_size = 0;
2761 rtx_insn *before_arg = get_last_insn ();
2762 /* Set non-negative if we must move a word at a time, even if
2763 just one word (e.g, partial == 4 && mode == DFmode). Set
2764 to -1 if we just use a normal move insn. This value can be
2765 zero if the argument is a zero size structure. */
2766 nregs = -1;
2767 if (GET_CODE (reg) == PARALLEL)
2768 ;
2769 else if (partial)
2770 {
2771 gcc_assert (partial % UNITS_PER_WORD == 0);
2772 nregs = partial / UNITS_PER_WORD;
2773 }
2774 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
2775 {
2776 /* Variable-sized parameters should be described by a
2777 PARALLEL instead. */
2778 const_size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2779 gcc_assert (const_size >= 0);
2780 nregs = (const_size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2781 size = const_size;
2782 }
2783 else
2784 size = GET_MODE_SIZE (args[i].mode);
2785
2786 /* Handle calls that pass values in multiple non-contiguous
2787 locations. The Irix 6 ABI has examples of this. */
2788
2789 if (GET_CODE (reg) == PARALLEL)
2790 emit_group_move (reg, args[i].parallel_value);
2791
2792 /* If simple case, just do move. If normal partial, store_one_arg
2793 has already loaded the register for us. In all other cases,
2794 load the register(s) from memory. */
2795
2796 else if (nregs == -1)
2797 {
2798 emit_move_insn (reg, args[i].value);
2799 #ifdef BLOCK_REG_PADDING
2800 /* Handle case where we have a value that needs shifting
2801 up to the msb. eg. a QImode value and we're padding
2802 upward on a BYTES_BIG_ENDIAN machine. */
2803 if (args[i].locate.where_pad
2804 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))
2805 {
2806 gcc_checking_assert (ordered_p (size, UNITS_PER_WORD));
2807 if (maybe_lt (size, UNITS_PER_WORD))
2808 {
2809 rtx x;
2810 poly_int64 shift
2811 = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2812
2813 /* Assigning REG here rather than a temp makes
2814 CALL_FUSAGE report the whole reg as used.
2815 Strictly speaking, the call only uses SIZE
2816 bytes at the msb end, but it doesn't seem worth
2817 generating rtl to say that. */
2818 reg = gen_rtx_REG (word_mode, REGNO (reg));
2819 x = expand_shift (LSHIFT_EXPR, word_mode,
2820 reg, shift, reg, 1);
2821 if (x != reg)
2822 emit_move_insn (reg, x);
2823 }
2824 }
2825 #endif
2826 }
2827
2828 /* If we have pre-computed the values to put in the registers in
2829 the case of non-aligned structures, copy them in now. */
2830
2831 else if (args[i].n_aligned_regs != 0)
2832 for (j = 0; j < args[i].n_aligned_regs; j++)
2833 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2834 args[i].aligned_regs[j]);
2835
2836 else if (partial == 0 || args[i].pass_on_stack)
2837 {
2838 /* SIZE and CONST_SIZE are 0 for partial arguments and
2839 the size of a BLKmode type otherwise. */
2840 gcc_checking_assert (known_eq (size, const_size));
2841 rtx mem = validize_mem (copy_rtx (args[i].value));
2842
2843 /* Check for overlap with already clobbered argument area,
2844 providing that this has non-zero size. */
2845 if (is_sibcall
2846 && const_size != 0
2847 && (mem_might_overlap_already_clobbered_arg_p
2848 (XEXP (args[i].value, 0), const_size)))
2849 *sibcall_failure = 1;
2850
2851 if (const_size % UNITS_PER_WORD == 0
2852 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2853 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2854 else
2855 {
2856 if (nregs > 1)
2857 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2858 args[i].mode);
2859 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2860 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2861 unsigned int bitsize = const_size * BITS_PER_UNIT - bitoff;
2862 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
2863 word_mode, word_mode, false,
2864 NULL);
2865 if (BYTES_BIG_ENDIAN)
2866 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2867 BITS_PER_WORD - bitsize, dest, 1);
2868 if (x != dest)
2869 emit_move_insn (dest, x);
2870 }
2871
2872 /* Handle a BLKmode that needs shifting. */
2873 if (nregs == 1 && const_size < UNITS_PER_WORD
2874 #ifdef BLOCK_REG_PADDING
2875 && args[i].locate.where_pad == PAD_DOWNWARD
2876 #else
2877 && BYTES_BIG_ENDIAN
2878 #endif
2879 )
2880 {
2881 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2882 int shift = (UNITS_PER_WORD - const_size) * BITS_PER_UNIT;
2883 enum tree_code dir = (BYTES_BIG_ENDIAN
2884 ? RSHIFT_EXPR : LSHIFT_EXPR);
2885 rtx x;
2886
2887 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2888 if (x != dest)
2889 emit_move_insn (dest, x);
2890 }
2891 }
2892
2893 /* When a parameter is a block, and perhaps in other cases, it is
2894 possible that it did a load from an argument slot that was
2895 already clobbered. */
2896 if (is_sibcall
2897 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
2898 *sibcall_failure = 1;
2899
2900 /* Handle calls that pass values in multiple non-contiguous
2901 locations. The Irix 6 ABI has examples of this. */
2902 if (GET_CODE (reg) == PARALLEL)
2903 use_group_regs (call_fusage, reg);
2904 else if (nregs == -1)
2905 use_reg_mode (call_fusage, reg,
2906 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2907 else if (nregs > 0)
2908 use_regs (call_fusage, REGNO (reg), nregs);
2909 }
2910 }
2911 }
2912
2913 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2914 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2915 bytes, then we would need to push some additional bytes to pad the
2916 arguments. So, we try to compute an adjust to the stack pointer for an
2917 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2918 bytes. Then, when the arguments are pushed the stack will be perfectly
2919 aligned.
2920
2921 Return true if this optimization is possible, storing the adjustment
2922 in ADJUSTMENT_OUT and setting ARGS_SIZE->CONSTANT to the number of
2923 bytes that should be popped after the call. */
2924
2925 static bool
2926 combine_pending_stack_adjustment_and_call (poly_int64_pod *adjustment_out,
2927 poly_int64 unadjusted_args_size,
2928 struct args_size *args_size,
2929 unsigned int preferred_unit_stack_boundary)
2930 {
2931 /* The number of bytes to pop so that the stack will be
2932 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2933 poly_int64 adjustment;
2934 /* The alignment of the stack after the arguments are pushed, if we
2935 just pushed the arguments without adjust the stack here. */
2936 unsigned HOST_WIDE_INT unadjusted_alignment;
2937
2938 if (!known_misalignment (stack_pointer_delta + unadjusted_args_size,
2939 preferred_unit_stack_boundary,
2940 &unadjusted_alignment))
2941 return false;
2942
2943 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2944 as possible -- leaving just enough left to cancel out the
2945 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2946 PENDING_STACK_ADJUST is non-negative, and congruent to
2947 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2948
2949 /* Begin by trying to pop all the bytes. */
2950 unsigned HOST_WIDE_INT tmp_misalignment;
2951 if (!known_misalignment (pending_stack_adjust,
2952 preferred_unit_stack_boundary,
2953 &tmp_misalignment))
2954 return false;
2955 unadjusted_alignment -= tmp_misalignment;
2956 adjustment = pending_stack_adjust;
2957 /* Push enough additional bytes that the stack will be aligned
2958 after the arguments are pushed. */
2959 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
2960 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2961
2962 /* We need to know whether the adjusted argument size
2963 (UNADJUSTED_ARGS_SIZE - ADJUSTMENT) constitutes an allocation
2964 or a deallocation. */
2965 if (!ordered_p (adjustment, unadjusted_args_size))
2966 return false;
2967
2968 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2969 bytes after the call. The right number is the entire
2970 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2971 by the arguments in the first place. */
2972 args_size->constant
2973 = pending_stack_adjust - adjustment + unadjusted_args_size;
2974
2975 *adjustment_out = adjustment;
2976 return true;
2977 }
2978
2979 /* Scan X expression if it does not dereference any argument slots
2980 we already clobbered by tail call arguments (as noted in stored_args_map
2981 bitmap).
2982 Return nonzero if X expression dereferences such argument slots,
2983 zero otherwise. */
2984
2985 static int
2986 check_sibcall_argument_overlap_1 (rtx x)
2987 {
2988 RTX_CODE code;
2989 int i, j;
2990 const char *fmt;
2991
2992 if (x == NULL_RTX)
2993 return 0;
2994
2995 code = GET_CODE (x);
2996
2997 /* We need not check the operands of the CALL expression itself. */
2998 if (code == CALL)
2999 return 0;
3000
3001 if (code == MEM)
3002 return (mem_might_overlap_already_clobbered_arg_p
3003 (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x))));
3004
3005 /* Scan all subexpressions. */
3006 fmt = GET_RTX_FORMAT (code);
3007 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3008 {
3009 if (*fmt == 'e')
3010 {
3011 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
3012 return 1;
3013 }
3014 else if (*fmt == 'E')
3015 {
3016 for (j = 0; j < XVECLEN (x, i); j++)
3017 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
3018 return 1;
3019 }
3020 }
3021 return 0;
3022 }
3023
3024 /* Scan sequence after INSN if it does not dereference any argument slots
3025 we already clobbered by tail call arguments (as noted in stored_args_map
3026 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
3027 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
3028 should be 0). Return nonzero if sequence after INSN dereferences such argument
3029 slots, zero otherwise. */
3030
3031 static int
3032 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
3033 int mark_stored_args_map)
3034 {
3035 poly_uint64 low, high;
3036 unsigned HOST_WIDE_INT const_low, const_high;
3037
3038 if (insn == NULL_RTX)
3039 insn = get_insns ();
3040 else
3041 insn = NEXT_INSN (insn);
3042
3043 for (; insn; insn = NEXT_INSN (insn))
3044 if (INSN_P (insn)
3045 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
3046 break;
3047
3048 if (mark_stored_args_map)
3049 {
3050 if (ARGS_GROW_DOWNWARD)
3051 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
3052 else
3053 low = arg->locate.slot_offset.constant;
3054 high = low + arg->locate.size.constant;
3055
3056 const_low = constant_lower_bound (low);
3057 if (high.is_constant (&const_high))
3058 for (unsigned HOST_WIDE_INT i = const_low; i < const_high; ++i)
3059 bitmap_set_bit (stored_args_map, i);
3060 else
3061 stored_args_watermark = MIN (stored_args_watermark, const_low);
3062 }
3063 return insn != NULL_RTX;
3064 }
3065
3066 /* Given that a function returns a value of mode MODE at the most
3067 significant end of hard register VALUE, shift VALUE left or right
3068 as specified by LEFT_P. Return true if some action was needed. */
3069
3070 bool
3071 shift_return_value (machine_mode mode, bool left_p, rtx value)
3072 {
3073 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
3074 machine_mode value_mode = GET_MODE (value);
3075 poly_int64 shift = GET_MODE_BITSIZE (value_mode) - GET_MODE_BITSIZE (mode);
3076
3077 if (known_eq (shift, 0))
3078 return false;
3079
3080 /* Use ashr rather than lshr for right shifts. This is for the benefit
3081 of the MIPS port, which requires SImode values to be sign-extended
3082 when stored in 64-bit registers. */
3083 if (!force_expand_binop (value_mode, left_p ? ashl_optab : ashr_optab,
3084 value, gen_int_shift_amount (value_mode, shift),
3085 value, 1, OPTAB_WIDEN))
3086 gcc_unreachable ();
3087 return true;
3088 }
3089
3090 /* If X is a likely-spilled register value, copy it to a pseudo
3091 register and return that register. Return X otherwise. */
3092
3093 static rtx
3094 avoid_likely_spilled_reg (rtx x)
3095 {
3096 rtx new_rtx;
3097
3098 if (REG_P (x)
3099 && HARD_REGISTER_P (x)
3100 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
3101 {
3102 /* Make sure that we generate a REG rather than a CONCAT.
3103 Moves into CONCATs can need nontrivial instructions,
3104 and the whole point of this function is to avoid
3105 using the hard register directly in such a situation. */
3106 generating_concat_p = 0;
3107 new_rtx = gen_reg_rtx (GET_MODE (x));
3108 generating_concat_p = 1;
3109 emit_move_insn (new_rtx, x);
3110 return new_rtx;
3111 }
3112 return x;
3113 }
3114
3115 /* Helper function for expand_call.
3116 Return false is EXP is not implementable as a sibling call. */
3117
3118 static bool
3119 can_implement_as_sibling_call_p (tree exp,
3120 rtx structure_value_addr,
3121 tree funtype,
3122 int reg_parm_stack_space ATTRIBUTE_UNUSED,
3123 tree fndecl,
3124 int flags,
3125 tree addr,
3126 const args_size &args_size)
3127 {
3128 if (!targetm.have_sibcall_epilogue ())
3129 {
3130 maybe_complain_about_tail_call
3131 (exp,
3132 "machine description does not have"
3133 " a sibcall_epilogue instruction pattern");
3134 return false;
3135 }
3136
3137 /* Doing sibling call optimization needs some work, since
3138 structure_value_addr can be allocated on the stack.
3139 It does not seem worth the effort since few optimizable
3140 sibling calls will return a structure. */
3141 if (structure_value_addr != NULL_RTX)
3142 {
3143 maybe_complain_about_tail_call (exp, "callee returns a structure");
3144 return false;
3145 }
3146
3147 #ifdef REG_PARM_STACK_SPACE
3148 /* If outgoing reg parm stack space changes, we cannot do sibcall. */
3149 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
3150 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
3151 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
3152 {
3153 maybe_complain_about_tail_call (exp,
3154 "inconsistent size of stack space"
3155 " allocated for arguments which are"
3156 " passed in registers");
3157 return false;
3158 }
3159 #endif
3160
3161 /* Check whether the target is able to optimize the call
3162 into a sibcall. */
3163 if (!targetm.function_ok_for_sibcall (fndecl, exp))
3164 {
3165 maybe_complain_about_tail_call (exp,
3166 "target is not able to optimize the"
3167 " call into a sibling call");
3168 return false;
3169 }
3170
3171 /* Functions that do not return exactly once may not be sibcall
3172 optimized. */
3173 if (flags & ECF_RETURNS_TWICE)
3174 {
3175 maybe_complain_about_tail_call (exp, "callee returns twice");
3176 return false;
3177 }
3178 if (flags & ECF_NORETURN)
3179 {
3180 maybe_complain_about_tail_call (exp, "callee does not return");
3181 return false;
3182 }
3183
3184 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
3185 {
3186 maybe_complain_about_tail_call (exp, "volatile function type");
3187 return false;
3188 }
3189
3190 /* If the called function is nested in the current one, it might access
3191 some of the caller's arguments, but could clobber them beforehand if
3192 the argument areas are shared. */
3193 if (fndecl && decl_function_context (fndecl) == current_function_decl)
3194 {
3195 maybe_complain_about_tail_call (exp, "nested function");
3196 return false;
3197 }
3198
3199 /* If this function requires more stack slots than the current
3200 function, we cannot change it into a sibling call.
3201 crtl->args.pretend_args_size is not part of the
3202 stack allocated by our caller. */
3203 if (maybe_gt (args_size.constant,
3204 crtl->args.size - crtl->args.pretend_args_size))
3205 {
3206 maybe_complain_about_tail_call (exp,
3207 "callee required more stack slots"
3208 " than the caller");
3209 return false;
3210 }
3211
3212 /* If the callee pops its own arguments, then it must pop exactly
3213 the same number of arguments as the current function. */
3214 if (maybe_ne (targetm.calls.return_pops_args (fndecl, funtype,
3215 args_size.constant),
3216 targetm.calls.return_pops_args (current_function_decl,
3217 TREE_TYPE
3218 (current_function_decl),
3219 crtl->args.size)))
3220 {
3221 maybe_complain_about_tail_call (exp,
3222 "inconsistent number of"
3223 " popped arguments");
3224 return false;
3225 }
3226
3227 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
3228 {
3229 maybe_complain_about_tail_call (exp, "frontend does not support"
3230 " sibling call");
3231 return false;
3232 }
3233
3234 /* All checks passed. */
3235 return true;
3236 }
3237
3238 /* Generate all the code for a CALL_EXPR exp
3239 and return an rtx for its value.
3240 Store the value in TARGET (specified as an rtx) if convenient.
3241 If the value is stored in TARGET then TARGET is returned.
3242 If IGNORE is nonzero, then we ignore the value of the function call. */
3243
3244 rtx
3245 expand_call (tree exp, rtx target, int ignore)
3246 {
3247 /* Nonzero if we are currently expanding a call. */
3248 static int currently_expanding_call = 0;
3249
3250 /* RTX for the function to be called. */
3251 rtx funexp;
3252 /* Sequence of insns to perform a normal "call". */
3253 rtx_insn *normal_call_insns = NULL;
3254 /* Sequence of insns to perform a tail "call". */
3255 rtx_insn *tail_call_insns = NULL;
3256 /* Data type of the function. */
3257 tree funtype;
3258 tree type_arg_types;
3259 tree rettype;
3260 /* Declaration of the function being called,
3261 or 0 if the function is computed (not known by name). */
3262 tree fndecl = 0;
3263 /* The type of the function being called. */
3264 tree fntype;
3265 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
3266 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
3267 int pass;
3268
3269 /* Register in which non-BLKmode value will be returned,
3270 or 0 if no value or if value is BLKmode. */
3271 rtx valreg;
3272 /* Address where we should return a BLKmode value;
3273 0 if value not BLKmode. */
3274 rtx structure_value_addr = 0;
3275 /* Nonzero if that address is being passed by treating it as
3276 an extra, implicit first parameter. Otherwise,
3277 it is passed by being copied directly into struct_value_rtx. */
3278 int structure_value_addr_parm = 0;
3279 /* Holds the value of implicit argument for the struct value. */
3280 tree structure_value_addr_value = NULL_TREE;
3281 /* Size of aggregate value wanted, or zero if none wanted
3282 or if we are using the non-reentrant PCC calling convention
3283 or expecting the value in registers. */
3284 poly_int64 struct_value_size = 0;
3285 /* Nonzero if called function returns an aggregate in memory PCC style,
3286 by returning the address of where to find it. */
3287 int pcc_struct_value = 0;
3288 rtx struct_value = 0;
3289
3290 /* Number of actual parameters in this call, including struct value addr. */
3291 int num_actuals;
3292 /* Number of named args. Args after this are anonymous ones
3293 and they must all go on the stack. */
3294 int n_named_args;
3295 /* Number of complex actual arguments that need to be split. */
3296 int num_complex_actuals = 0;
3297
3298 /* Vector of information about each argument.
3299 Arguments are numbered in the order they will be pushed,
3300 not the order they are written. */
3301 struct arg_data *args;
3302
3303 /* Total size in bytes of all the stack-parms scanned so far. */
3304 struct args_size args_size;
3305 struct args_size adjusted_args_size;
3306 /* Size of arguments before any adjustments (such as rounding). */
3307 poly_int64 unadjusted_args_size;
3308 /* Data on reg parms scanned so far. */
3309 CUMULATIVE_ARGS args_so_far_v;
3310 cumulative_args_t args_so_far;
3311 /* Nonzero if a reg parm has been scanned. */
3312 int reg_parm_seen;
3313 /* Nonzero if this is an indirect function call. */
3314
3315 /* Nonzero if we must avoid push-insns in the args for this call.
3316 If stack space is allocated for register parameters, but not by the
3317 caller, then it is preallocated in the fixed part of the stack frame.
3318 So the entire argument block must then be preallocated (i.e., we
3319 ignore PUSH_ROUNDING in that case). */
3320
3321 int must_preallocate = !PUSH_ARGS;
3322
3323 /* Size of the stack reserved for parameter registers. */
3324 int reg_parm_stack_space = 0;
3325
3326 /* Address of space preallocated for stack parms
3327 (on machines that lack push insns), or 0 if space not preallocated. */
3328 rtx argblock = 0;
3329
3330 /* Mask of ECF_ and ERF_ flags. */
3331 int flags = 0;
3332 int return_flags = 0;
3333 #ifdef REG_PARM_STACK_SPACE
3334 /* Define the boundary of the register parm stack space that needs to be
3335 saved, if any. */
3336 int low_to_save, high_to_save;
3337 rtx save_area = 0; /* Place that it is saved */
3338 #endif
3339
3340 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3341 char *initial_stack_usage_map = stack_usage_map;
3342 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
3343 char *stack_usage_map_buf = NULL;
3344
3345 poly_int64 old_stack_allocated;
3346
3347 /* State variables to track stack modifications. */
3348 rtx old_stack_level = 0;
3349 int old_stack_arg_under_construction = 0;
3350 poly_int64 old_pending_adj = 0;
3351 int old_inhibit_defer_pop = inhibit_defer_pop;
3352
3353 /* Some stack pointer alterations we make are performed via
3354 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3355 which we then also need to save/restore along the way. */
3356 poly_int64 old_stack_pointer_delta = 0;
3357
3358 rtx call_fusage;
3359 tree addr = CALL_EXPR_FN (exp);
3360 int i;
3361 /* The alignment of the stack, in bits. */
3362 unsigned HOST_WIDE_INT preferred_stack_boundary;
3363 /* The alignment of the stack, in bytes. */
3364 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3365 /* The static chain value to use for this call. */
3366 rtx static_chain_value;
3367 /* See if this is "nothrow" function call. */
3368 if (TREE_NOTHROW (exp))
3369 flags |= ECF_NOTHROW;
3370
3371 /* See if we can find a DECL-node for the actual function, and get the
3372 function attributes (flags) from the function decl or type node. */
3373 fndecl = get_callee_fndecl (exp);
3374 if (fndecl)
3375 {
3376 fntype = TREE_TYPE (fndecl);
3377 flags |= flags_from_decl_or_type (fndecl);
3378 return_flags |= decl_return_flags (fndecl);
3379 }
3380 else
3381 {
3382 fntype = TREE_TYPE (TREE_TYPE (addr));
3383 flags |= flags_from_decl_or_type (fntype);
3384 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3385 flags |= ECF_BY_DESCRIPTOR;
3386 }
3387 rettype = TREE_TYPE (exp);
3388
3389 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3390
3391 /* Warn if this value is an aggregate type,
3392 regardless of which calling convention we are using for it. */
3393 if (AGGREGATE_TYPE_P (rettype))
3394 warning (OPT_Waggregate_return, "function call has aggregate value");
3395
3396 /* If the result of a non looping pure or const function call is
3397 ignored (or void), and none of its arguments are volatile, we can
3398 avoid expanding the call and just evaluate the arguments for
3399 side-effects. */
3400 if ((flags & (ECF_CONST | ECF_PURE))
3401 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3402 && (ignore || target == const0_rtx
3403 || TYPE_MODE (rettype) == VOIDmode))
3404 {
3405 bool volatilep = false;
3406 tree arg;
3407 call_expr_arg_iterator iter;
3408
3409 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3410 if (TREE_THIS_VOLATILE (arg))
3411 {
3412 volatilep = true;
3413 break;
3414 }
3415
3416 if (! volatilep)
3417 {
3418 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3419 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3420 return const0_rtx;
3421 }
3422 }
3423
3424 #ifdef REG_PARM_STACK_SPACE
3425 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3426 #endif
3427
3428 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3429 && reg_parm_stack_space > 0 && PUSH_ARGS)
3430 must_preallocate = 1;
3431
3432 /* Set up a place to return a structure. */
3433
3434 /* Cater to broken compilers. */
3435 if (aggregate_value_p (exp, fntype))
3436 {
3437 /* This call returns a big structure. */
3438 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3439
3440 #ifdef PCC_STATIC_STRUCT_RETURN
3441 {
3442 pcc_struct_value = 1;
3443 }
3444 #else /* not PCC_STATIC_STRUCT_RETURN */
3445 {
3446 if (!poly_int_tree_p (TYPE_SIZE_UNIT (rettype), &struct_value_size))
3447 struct_value_size = -1;
3448
3449 /* Even if it is semantically safe to use the target as the return
3450 slot, it may be not sufficiently aligned for the return type. */
3451 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3452 && target
3453 && MEM_P (target)
3454 /* If rettype is addressable, we may not create a temporary.
3455 If target is properly aligned at runtime and the compiler
3456 just doesn't know about it, it will work fine, otherwise it
3457 will be UB. */
3458 && (TREE_ADDRESSABLE (rettype)
3459 || !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3460 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
3461 MEM_ALIGN (target)))))
3462 structure_value_addr = XEXP (target, 0);
3463 else
3464 {
3465 /* For variable-sized objects, we must be called with a target
3466 specified. If we were to allocate space on the stack here,
3467 we would have no way of knowing when to free it. */
3468 rtx d = assign_temp (rettype, 1, 1);
3469 structure_value_addr = XEXP (d, 0);
3470 target = 0;
3471 }
3472 }
3473 #endif /* not PCC_STATIC_STRUCT_RETURN */
3474 }
3475
3476 /* Figure out the amount to which the stack should be aligned. */
3477 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3478 if (fndecl)
3479 {
3480 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3481 /* Without automatic stack alignment, we can't increase preferred
3482 stack boundary. With automatic stack alignment, it is
3483 unnecessary since unless we can guarantee that all callers will
3484 align the outgoing stack properly, callee has to align its
3485 stack anyway. */
3486 if (i
3487 && i->preferred_incoming_stack_boundary
3488 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3489 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3490 }
3491
3492 /* Operand 0 is a pointer-to-function; get the type of the function. */
3493 funtype = TREE_TYPE (addr);
3494 gcc_assert (POINTER_TYPE_P (funtype));
3495 funtype = TREE_TYPE (funtype);
3496
3497 /* Count whether there are actual complex arguments that need to be split
3498 into their real and imaginary parts. Munge the type_arg_types
3499 appropriately here as well. */
3500 if (targetm.calls.split_complex_arg)
3501 {
3502 call_expr_arg_iterator iter;
3503 tree arg;
3504 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3505 {
3506 tree type = TREE_TYPE (arg);
3507 if (type && TREE_CODE (type) == COMPLEX_TYPE
3508 && targetm.calls.split_complex_arg (type))
3509 num_complex_actuals++;
3510 }
3511 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3512 }
3513 else
3514 type_arg_types = TYPE_ARG_TYPES (funtype);
3515
3516 if (flags & ECF_MAY_BE_ALLOCA)
3517 cfun->calls_alloca = 1;
3518
3519 /* If struct_value_rtx is 0, it means pass the address
3520 as if it were an extra parameter. Put the argument expression
3521 in structure_value_addr_value. */
3522 if (structure_value_addr && struct_value == 0)
3523 {
3524 /* If structure_value_addr is a REG other than
3525 virtual_outgoing_args_rtx, we can use always use it. If it
3526 is not a REG, we must always copy it into a register.
3527 If it is virtual_outgoing_args_rtx, we must copy it to another
3528 register in some cases. */
3529 rtx temp = (!REG_P (structure_value_addr)
3530 || (ACCUMULATE_OUTGOING_ARGS
3531 && stack_arg_under_construction
3532 && structure_value_addr == virtual_outgoing_args_rtx)
3533 ? copy_addr_to_reg (convert_memory_address
3534 (Pmode, structure_value_addr))
3535 : structure_value_addr);
3536
3537 structure_value_addr_value =
3538 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3539 structure_value_addr_parm = 1;
3540 }
3541
3542 /* Count the arguments and set NUM_ACTUALS. */
3543 num_actuals =
3544 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3545
3546 /* Compute number of named args.
3547 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3548
3549 if (type_arg_types != 0)
3550 n_named_args
3551 = (list_length (type_arg_types)
3552 /* Count the struct value address, if it is passed as a parm. */
3553 + structure_value_addr_parm);
3554 else
3555 /* If we know nothing, treat all args as named. */
3556 n_named_args = num_actuals;
3557
3558 /* Start updating where the next arg would go.
3559
3560 On some machines (such as the PA) indirect calls have a different
3561 calling convention than normal calls. The fourth argument in
3562 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3563 or not. */
3564 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3565 args_so_far = pack_cumulative_args (&args_so_far_v);
3566
3567 /* Now possibly adjust the number of named args.
3568 Normally, don't include the last named arg if anonymous args follow.
3569 We do include the last named arg if
3570 targetm.calls.strict_argument_naming() returns nonzero.
3571 (If no anonymous args follow, the result of list_length is actually
3572 one too large. This is harmless.)
3573
3574 If targetm.calls.pretend_outgoing_varargs_named() returns
3575 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3576 this machine will be able to place unnamed args that were passed
3577 in registers into the stack. So treat all args as named. This
3578 allows the insns emitting for a specific argument list to be
3579 independent of the function declaration.
3580
3581 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3582 we do not have any reliable way to pass unnamed args in
3583 registers, so we must force them into memory. */
3584
3585 if (type_arg_types != 0
3586 && targetm.calls.strict_argument_naming (args_so_far))
3587 ;
3588 else if (type_arg_types != 0
3589 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3590 /* Don't include the last named arg. */
3591 --n_named_args;
3592 else
3593 /* Treat all args as named. */
3594 n_named_args = num_actuals;
3595
3596 /* Make a vector to hold all the information about each arg. */
3597 args = XCNEWVEC (struct arg_data, num_actuals);
3598
3599 /* Build up entries in the ARGS array, compute the size of the
3600 arguments into ARGS_SIZE, etc. */
3601 initialize_argument_information (num_actuals, args, &args_size,
3602 n_named_args, exp,
3603 structure_value_addr_value, fndecl, fntype,
3604 args_so_far, reg_parm_stack_space,
3605 &old_stack_level, &old_pending_adj,
3606 &must_preallocate, &flags,
3607 &try_tail_call, CALL_FROM_THUNK_P (exp));
3608
3609 if (args_size.var)
3610 must_preallocate = 1;
3611
3612 /* Now make final decision about preallocating stack space. */
3613 must_preallocate = finalize_must_preallocate (must_preallocate,
3614 num_actuals, args,
3615 &args_size);
3616
3617 /* If the structure value address will reference the stack pointer, we
3618 must stabilize it. We don't need to do this if we know that we are
3619 not going to adjust the stack pointer in processing this call. */
3620
3621 if (structure_value_addr
3622 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3623 || reg_mentioned_p (virtual_outgoing_args_rtx,
3624 structure_value_addr))
3625 && (args_size.var
3626 || (!ACCUMULATE_OUTGOING_ARGS
3627 && maybe_ne (args_size.constant, 0))))
3628 structure_value_addr = copy_to_reg (structure_value_addr);
3629
3630 /* Tail calls can make things harder to debug, and we've traditionally
3631 pushed these optimizations into -O2. Don't try if we're already
3632 expanding a call, as that means we're an argument. Don't try if
3633 there's cleanups, as we know there's code to follow the call. */
3634 if (currently_expanding_call++ != 0
3635 || (!flag_optimize_sibling_calls && !CALL_FROM_THUNK_P (exp))
3636 || args_size.var
3637 || dbg_cnt (tail_call) == false)
3638 try_tail_call = 0;
3639
3640 /* If the user has marked the function as requiring tail-call
3641 optimization, attempt it. */
3642 if (must_tail_call)
3643 try_tail_call = 1;
3644
3645 /* Rest of purposes for tail call optimizations to fail. */
3646 if (try_tail_call)
3647 try_tail_call = can_implement_as_sibling_call_p (exp,
3648 structure_value_addr,
3649 funtype,
3650 reg_parm_stack_space,
3651 fndecl,
3652 flags, addr, args_size);
3653
3654 /* Check if caller and callee disagree in promotion of function
3655 return value. */
3656 if (try_tail_call)
3657 {
3658 machine_mode caller_mode, caller_promoted_mode;
3659 machine_mode callee_mode, callee_promoted_mode;
3660 int caller_unsignedp, callee_unsignedp;
3661 tree caller_res = DECL_RESULT (current_function_decl);
3662
3663 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3664 caller_mode = DECL_MODE (caller_res);
3665 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3666 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3667 caller_promoted_mode
3668 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3669 &caller_unsignedp,
3670 TREE_TYPE (current_function_decl), 1);
3671 callee_promoted_mode
3672 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3673 &callee_unsignedp,
3674 funtype, 1);
3675 if (caller_mode != VOIDmode
3676 && (caller_promoted_mode != callee_promoted_mode
3677 || ((caller_mode != caller_promoted_mode
3678 || callee_mode != callee_promoted_mode)
3679 && (caller_unsignedp != callee_unsignedp
3680 || partial_subreg_p (caller_mode, callee_mode)))))
3681 {
3682 try_tail_call = 0;
3683 maybe_complain_about_tail_call (exp,
3684 "caller and callee disagree in"
3685 " promotion of function"
3686 " return value");
3687 }
3688 }
3689
3690 /* Ensure current function's preferred stack boundary is at least
3691 what we need. Stack alignment may also increase preferred stack
3692 boundary. */
3693 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
3694 crtl->preferred_stack_boundary = preferred_stack_boundary;
3695 else
3696 preferred_stack_boundary = crtl->preferred_stack_boundary;
3697
3698 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
3699
3700 /* We want to make two insn chains; one for a sibling call, the other
3701 for a normal call. We will select one of the two chains after
3702 initial RTL generation is complete. */
3703 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
3704 {
3705 int sibcall_failure = 0;
3706 /* We want to emit any pending stack adjustments before the tail
3707 recursion "call". That way we know any adjustment after the tail
3708 recursion call can be ignored if we indeed use the tail
3709 call expansion. */
3710 saved_pending_stack_adjust save;
3711 rtx_insn *insns, *before_call, *after_args;
3712 rtx next_arg_reg;
3713
3714 if (pass == 0)
3715 {
3716 /* State variables we need to save and restore between
3717 iterations. */
3718 save_pending_stack_adjust (&save);
3719 }
3720 if (pass)
3721 flags &= ~ECF_SIBCALL;
3722 else
3723 flags |= ECF_SIBCALL;
3724
3725 /* Other state variables that we must reinitialize each time
3726 through the loop (that are not initialized by the loop itself). */
3727 argblock = 0;
3728 call_fusage = 0;
3729
3730 /* Start a new sequence for the normal call case.
3731
3732 From this point on, if the sibling call fails, we want to set
3733 sibcall_failure instead of continuing the loop. */
3734 start_sequence ();
3735
3736 /* Don't let pending stack adjusts add up to too much.
3737 Also, do all pending adjustments now if there is any chance
3738 this might be a call to alloca or if we are expanding a sibling
3739 call sequence.
3740 Also do the adjustments before a throwing call, otherwise
3741 exception handling can fail; PR 19225. */
3742 if (maybe_ge (pending_stack_adjust, 32)
3743 || (maybe_ne (pending_stack_adjust, 0)
3744 && (flags & ECF_MAY_BE_ALLOCA))
3745 || (maybe_ne (pending_stack_adjust, 0)
3746 && flag_exceptions && !(flags & ECF_NOTHROW))
3747 || pass == 0)
3748 do_pending_stack_adjust ();
3749
3750 /* Precompute any arguments as needed. */
3751 if (pass)
3752 precompute_arguments (num_actuals, args);
3753
3754 /* Now we are about to start emitting insns that can be deleted
3755 if a libcall is deleted. */
3756 if (pass && (flags & ECF_MALLOC))
3757 start_sequence ();
3758
3759 if (pass == 0
3760 && crtl->stack_protect_guard
3761 && targetm.stack_protect_runtime_enabled_p ())
3762 stack_protect_epilogue ();
3763
3764 adjusted_args_size = args_size;
3765 /* Compute the actual size of the argument block required. The variable
3766 and constant sizes must be combined, the size may have to be rounded,
3767 and there may be a minimum required size. When generating a sibcall
3768 pattern, do not round up, since we'll be re-using whatever space our
3769 caller provided. */
3770 unadjusted_args_size
3771 = compute_argument_block_size (reg_parm_stack_space,
3772 &adjusted_args_size,
3773 fndecl, fntype,
3774 (pass == 0 ? 0
3775 : preferred_stack_boundary));
3776
3777 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3778
3779 /* The argument block when performing a sibling call is the
3780 incoming argument block. */
3781 if (pass == 0)
3782 {
3783 argblock = crtl->args.internal_arg_pointer;
3784 if (STACK_GROWS_DOWNWARD)
3785 argblock
3786 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
3787 else
3788 argblock
3789 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
3790
3791 HOST_WIDE_INT map_size = constant_lower_bound (args_size.constant);
3792 stored_args_map = sbitmap_alloc (map_size);
3793 bitmap_clear (stored_args_map);
3794 stored_args_watermark = HOST_WIDE_INT_M1U;
3795 }
3796
3797 /* If we have no actual push instructions, or shouldn't use them,
3798 make space for all args right now. */
3799 else if (adjusted_args_size.var != 0)
3800 {
3801 if (old_stack_level == 0)
3802 {
3803 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3804 old_stack_pointer_delta = stack_pointer_delta;
3805 old_pending_adj = pending_stack_adjust;
3806 pending_stack_adjust = 0;
3807 /* stack_arg_under_construction says whether a stack arg is
3808 being constructed at the old stack level. Pushing the stack
3809 gets a clean outgoing argument block. */
3810 old_stack_arg_under_construction = stack_arg_under_construction;
3811 stack_arg_under_construction = 0;
3812 }
3813 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
3814 if (flag_stack_usage_info)
3815 current_function_has_unbounded_dynamic_stack_size = 1;
3816 }
3817 else
3818 {
3819 /* Note that we must go through the motions of allocating an argument
3820 block even if the size is zero because we may be storing args
3821 in the area reserved for register arguments, which may be part of
3822 the stack frame. */
3823
3824 poly_int64 needed = adjusted_args_size.constant;
3825
3826 /* Store the maximum argument space used. It will be pushed by
3827 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
3828 checking). */
3829
3830 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
3831 needed);
3832
3833 if (must_preallocate)
3834 {
3835 if (ACCUMULATE_OUTGOING_ARGS)
3836 {
3837 /* Since the stack pointer will never be pushed, it is
3838 possible for the evaluation of a parm to clobber
3839 something we have already written to the stack.
3840 Since most function calls on RISC machines do not use
3841 the stack, this is uncommon, but must work correctly.
3842
3843 Therefore, we save any area of the stack that was already
3844 written and that we are using. Here we set up to do this
3845 by making a new stack usage map from the old one. The
3846 actual save will be done by store_one_arg.
3847
3848 Another approach might be to try to reorder the argument
3849 evaluations to avoid this conflicting stack usage. */
3850
3851 /* Since we will be writing into the entire argument area,
3852 the map must be allocated for its entire size, not just
3853 the part that is the responsibility of the caller. */
3854 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3855 needed += reg_parm_stack_space;
3856
3857 poly_int64 limit = needed;
3858 if (ARGS_GROW_DOWNWARD)
3859 limit += 1;
3860
3861 /* For polynomial sizes, this is the maximum possible
3862 size needed for arguments with a constant size
3863 and offset. */
3864 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
3865 highest_outgoing_arg_in_use
3866 = MAX (initial_highest_arg_in_use, const_limit);
3867
3868 free (stack_usage_map_buf);
3869 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3870 stack_usage_map = stack_usage_map_buf;
3871
3872 if (initial_highest_arg_in_use)
3873 memcpy (stack_usage_map, initial_stack_usage_map,
3874 initial_highest_arg_in_use);
3875
3876 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3877 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3878 (highest_outgoing_arg_in_use
3879 - initial_highest_arg_in_use));
3880 needed = 0;
3881
3882 /* The address of the outgoing argument list must not be
3883 copied to a register here, because argblock would be left
3884 pointing to the wrong place after the call to
3885 allocate_dynamic_stack_space below. */
3886
3887 argblock = virtual_outgoing_args_rtx;
3888 }
3889 else
3890 {
3891 /* Try to reuse some or all of the pending_stack_adjust
3892 to get this space. */
3893 if (inhibit_defer_pop == 0
3894 && (combine_pending_stack_adjustment_and_call
3895 (&needed,
3896 unadjusted_args_size,
3897 &adjusted_args_size,
3898 preferred_unit_stack_boundary)))
3899 {
3900 /* combine_pending_stack_adjustment_and_call computes
3901 an adjustment before the arguments are allocated.
3902 Account for them and see whether or not the stack
3903 needs to go up or down. */
3904 needed = unadjusted_args_size - needed;
3905
3906 /* Checked by
3907 combine_pending_stack_adjustment_and_call. */
3908 gcc_checking_assert (ordered_p (needed, 0));
3909 if (maybe_lt (needed, 0))
3910 {
3911 /* We're releasing stack space. */
3912 /* ??? We can avoid any adjustment at all if we're
3913 already aligned. FIXME. */
3914 pending_stack_adjust = -needed;
3915 do_pending_stack_adjust ();
3916 needed = 0;
3917 }
3918 else
3919 /* We need to allocate space. We'll do that in
3920 push_block below. */
3921 pending_stack_adjust = 0;
3922 }
3923
3924 /* Special case this because overhead of `push_block' in
3925 this case is non-trivial. */
3926 if (known_eq (needed, 0))
3927 argblock = virtual_outgoing_args_rtx;
3928 else
3929 {
3930 rtx needed_rtx = gen_int_mode (needed, Pmode);
3931 argblock = push_block (needed_rtx, 0, 0);
3932 if (ARGS_GROW_DOWNWARD)
3933 argblock = plus_constant (Pmode, argblock, needed);
3934 }
3935
3936 /* We only really need to call `copy_to_reg' in the case
3937 where push insns are going to be used to pass ARGBLOCK
3938 to a function call in ARGS. In that case, the stack
3939 pointer changes value from the allocation point to the
3940 call point, and hence the value of
3941 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3942 as well always do it. */
3943 argblock = copy_to_reg (argblock);
3944 }
3945 }
3946 }
3947
3948 if (ACCUMULATE_OUTGOING_ARGS)
3949 {
3950 /* The save/restore code in store_one_arg handles all
3951 cases except one: a constructor call (including a C
3952 function returning a BLKmode struct) to initialize
3953 an argument. */
3954 if (stack_arg_under_construction)
3955 {
3956 rtx push_size
3957 = (gen_int_mode
3958 (adjusted_args_size.constant
3959 + (OUTGOING_REG_PARM_STACK_SPACE (!fndecl ? fntype
3960 : TREE_TYPE (fndecl))
3961 ? 0 : reg_parm_stack_space), Pmode));
3962 if (old_stack_level == 0)
3963 {
3964 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3965 old_stack_pointer_delta = stack_pointer_delta;
3966 old_pending_adj = pending_stack_adjust;
3967 pending_stack_adjust = 0;
3968 /* stack_arg_under_construction says whether a stack
3969 arg is being constructed at the old stack level.
3970 Pushing the stack gets a clean outgoing argument
3971 block. */
3972 old_stack_arg_under_construction
3973 = stack_arg_under_construction;
3974 stack_arg_under_construction = 0;
3975 /* Make a new map for the new argument list. */
3976 free (stack_usage_map_buf);
3977 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
3978 stack_usage_map = stack_usage_map_buf;
3979 highest_outgoing_arg_in_use = 0;
3980 stack_usage_watermark = HOST_WIDE_INT_M1U;
3981 }
3982 /* We can pass TRUE as the 4th argument because we just
3983 saved the stack pointer and will restore it right after
3984 the call. */
3985 allocate_dynamic_stack_space (push_size, 0, BIGGEST_ALIGNMENT,
3986 -1, true);
3987 }
3988
3989 /* If argument evaluation might modify the stack pointer,
3990 copy the address of the argument list to a register. */
3991 for (i = 0; i < num_actuals; i++)
3992 if (args[i].pass_on_stack)
3993 {
3994 argblock = copy_addr_to_reg (argblock);
3995 break;
3996 }
3997 }
3998
3999 compute_argument_addresses (args, argblock, num_actuals);
4000
4001 /* Stack is properly aligned, pops can't safely be deferred during
4002 the evaluation of the arguments. */
4003 NO_DEFER_POP;
4004
4005 /* Precompute all register parameters. It isn't safe to compute
4006 anything once we have started filling any specific hard regs.
4007 TLS symbols sometimes need a call to resolve. Precompute
4008 register parameters before any stack pointer manipulation
4009 to avoid unaligned stack in the called function. */
4010 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
4011
4012 OK_DEFER_POP;
4013
4014 /* Perform stack alignment before the first push (the last arg). */
4015 if (argblock == 0
4016 && maybe_gt (adjusted_args_size.constant, reg_parm_stack_space)
4017 && maybe_ne (adjusted_args_size.constant, unadjusted_args_size))
4018 {
4019 /* When the stack adjustment is pending, we get better code
4020 by combining the adjustments. */
4021 if (maybe_ne (pending_stack_adjust, 0)
4022 && ! inhibit_defer_pop
4023 && (combine_pending_stack_adjustment_and_call
4024 (&pending_stack_adjust,
4025 unadjusted_args_size,
4026 &adjusted_args_size,
4027 preferred_unit_stack_boundary)))
4028 do_pending_stack_adjust ();
4029 else if (argblock == 0)
4030 anti_adjust_stack (gen_int_mode (adjusted_args_size.constant
4031 - unadjusted_args_size,
4032 Pmode));
4033 }
4034 /* Now that the stack is properly aligned, pops can't safely
4035 be deferred during the evaluation of the arguments. */
4036 NO_DEFER_POP;
4037
4038 /* Record the maximum pushed stack space size. We need to delay
4039 doing it this far to take into account the optimization done
4040 by combine_pending_stack_adjustment_and_call. */
4041 if (flag_stack_usage_info
4042 && !ACCUMULATE_OUTGOING_ARGS
4043 && pass
4044 && adjusted_args_size.var == 0)
4045 {
4046 poly_int64 pushed = (adjusted_args_size.constant
4047 + pending_stack_adjust);
4048 current_function_pushed_stack_size
4049 = upper_bound (current_function_pushed_stack_size, pushed);
4050 }
4051
4052 funexp = rtx_for_function_call (fndecl, addr);
4053
4054 if (CALL_EXPR_STATIC_CHAIN (exp))
4055 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
4056 else
4057 static_chain_value = 0;
4058
4059 #ifdef REG_PARM_STACK_SPACE
4060 /* Save the fixed argument area if it's part of the caller's frame and
4061 is clobbered by argument setup for this call. */
4062 if (ACCUMULATE_OUTGOING_ARGS && pass)
4063 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4064 &low_to_save, &high_to_save);
4065 #endif
4066
4067 /* Now store (and compute if necessary) all non-register parms.
4068 These come before register parms, since they can require block-moves,
4069 which could clobber the registers used for register parms.
4070 Parms which have partial registers are not stored here,
4071 but we do preallocate space here if they want that. */
4072
4073 for (i = 0; i < num_actuals; i++)
4074 {
4075 if (args[i].reg == 0 || args[i].pass_on_stack)
4076 {
4077 rtx_insn *before_arg = get_last_insn ();
4078
4079 /* We don't allow passing huge (> 2^30 B) arguments
4080 by value. It would cause an overflow later on. */
4081 if (constant_lower_bound (adjusted_args_size.constant)
4082 >= (1 << (HOST_BITS_PER_INT - 2)))
4083 {
4084 sorry ("passing too large argument on stack");
4085 continue;
4086 }
4087
4088 if (store_one_arg (&args[i], argblock, flags,
4089 adjusted_args_size.var != 0,
4090 reg_parm_stack_space)
4091 || (pass == 0
4092 && check_sibcall_argument_overlap (before_arg,
4093 &args[i], 1)))
4094 sibcall_failure = 1;
4095 }
4096
4097 if (args[i].stack)
4098 call_fusage
4099 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
4100 gen_rtx_USE (VOIDmode, args[i].stack),
4101 call_fusage);
4102 }
4103
4104 /* If we have a parm that is passed in registers but not in memory
4105 and whose alignment does not permit a direct copy into registers,
4106 make a group of pseudos that correspond to each register that we
4107 will later fill. */
4108 if (STRICT_ALIGNMENT)
4109 store_unaligned_arguments_into_pseudos (args, num_actuals);
4110
4111 /* Now store any partially-in-registers parm.
4112 This is the last place a block-move can happen. */
4113 if (reg_parm_seen)
4114 for (i = 0; i < num_actuals; i++)
4115 if (args[i].partial != 0 && ! args[i].pass_on_stack)
4116 {
4117 rtx_insn *before_arg = get_last_insn ();
4118
4119 /* On targets with weird calling conventions (e.g. PA) it's
4120 hard to ensure that all cases of argument overlap between
4121 stack and registers work. Play it safe and bail out. */
4122 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
4123 {
4124 sibcall_failure = 1;
4125 break;
4126 }
4127
4128 if (store_one_arg (&args[i], argblock, flags,
4129 adjusted_args_size.var != 0,
4130 reg_parm_stack_space)
4131 || (pass == 0
4132 && check_sibcall_argument_overlap (before_arg,
4133 &args[i], 1)))
4134 sibcall_failure = 1;
4135 }
4136
4137 bool any_regs = false;
4138 for (i = 0; i < num_actuals; i++)
4139 if (args[i].reg != NULL_RTX)
4140 {
4141 any_regs = true;
4142 targetm.calls.call_args (args[i].reg, funtype);
4143 }
4144 if (!any_regs)
4145 targetm.calls.call_args (pc_rtx, funtype);
4146
4147 /* Figure out the register where the value, if any, will come back. */
4148 valreg = 0;
4149 if (TYPE_MODE (rettype) != VOIDmode
4150 && ! structure_value_addr)
4151 {
4152 if (pcc_struct_value)
4153 valreg = hard_function_value (build_pointer_type (rettype),
4154 fndecl, NULL, (pass == 0));
4155 else
4156 valreg = hard_function_value (rettype, fndecl, fntype,
4157 (pass == 0));
4158
4159 /* If VALREG is a PARALLEL whose first member has a zero
4160 offset, use that. This is for targets such as m68k that
4161 return the same value in multiple places. */
4162 if (GET_CODE (valreg) == PARALLEL)
4163 {
4164 rtx elem = XVECEXP (valreg, 0, 0);
4165 rtx where = XEXP (elem, 0);
4166 rtx offset = XEXP (elem, 1);
4167 if (offset == const0_rtx
4168 && GET_MODE (where) == GET_MODE (valreg))
4169 valreg = where;
4170 }
4171 }
4172
4173 /* If register arguments require space on the stack and stack space
4174 was not preallocated, allocate stack space here for arguments
4175 passed in registers. */
4176 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
4177 && !ACCUMULATE_OUTGOING_ARGS
4178 && must_preallocate == 0 && reg_parm_stack_space > 0)
4179 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
4180
4181 /* Pass the function the address in which to return a
4182 structure value. */
4183 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
4184 {
4185 structure_value_addr
4186 = convert_memory_address (Pmode, structure_value_addr);
4187 emit_move_insn (struct_value,
4188 force_reg (Pmode,
4189 force_operand (structure_value_addr,
4190 NULL_RTX)));
4191
4192 if (REG_P (struct_value))
4193 use_reg (&call_fusage, struct_value);
4194 }
4195
4196 after_args = get_last_insn ();
4197 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
4198 static_chain_value, &call_fusage,
4199 reg_parm_seen, flags);
4200
4201 load_register_parameters (args, num_actuals, &call_fusage, flags,
4202 pass == 0, &sibcall_failure);
4203
4204 /* Save a pointer to the last insn before the call, so that we can
4205 later safely search backwards to find the CALL_INSN. */
4206 before_call = get_last_insn ();
4207
4208 /* Set up next argument register. For sibling calls on machines
4209 with register windows this should be the incoming register. */
4210 if (pass == 0)
4211 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
4212 VOIDmode,
4213 void_type_node,
4214 true);
4215 else
4216 next_arg_reg = targetm.calls.function_arg (args_so_far,
4217 VOIDmode, void_type_node,
4218 true);
4219
4220 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
4221 {
4222 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
4223 arg_nr = num_actuals - arg_nr - 1;
4224 if (arg_nr >= 0
4225 && arg_nr < num_actuals
4226 && args[arg_nr].reg
4227 && valreg
4228 && REG_P (valreg)
4229 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
4230 call_fusage
4231 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
4232 gen_rtx_SET (valreg, args[arg_nr].reg),
4233 call_fusage);
4234 }
4235 /* All arguments and registers used for the call must be set up by
4236 now! */
4237
4238 /* Stack must be properly aligned now. */
4239 gcc_assert (!pass
4240 || multiple_p (stack_pointer_delta,
4241 preferred_unit_stack_boundary));
4242
4243 /* Generate the actual call instruction. */
4244 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
4245 adjusted_args_size.constant, struct_value_size,
4246 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
4247 flags, args_so_far);
4248
4249 if (flag_ipa_ra)
4250 {
4251 rtx_call_insn *last;
4252 rtx datum = NULL_RTX;
4253 if (fndecl != NULL_TREE)
4254 {
4255 datum = XEXP (DECL_RTL (fndecl), 0);
4256 gcc_assert (datum != NULL_RTX
4257 && GET_CODE (datum) == SYMBOL_REF);
4258 }
4259 last = last_call_insn ();
4260 add_reg_note (last, REG_CALL_DECL, datum);
4261 }
4262
4263 /* If the call setup or the call itself overlaps with anything
4264 of the argument setup we probably clobbered our call address.
4265 In that case we can't do sibcalls. */
4266 if (pass == 0
4267 && check_sibcall_argument_overlap (after_args, 0, 0))
4268 sibcall_failure = 1;
4269
4270 /* If a non-BLKmode value is returned at the most significant end
4271 of a register, shift the register right by the appropriate amount
4272 and update VALREG accordingly. BLKmode values are handled by the
4273 group load/store machinery below. */
4274 if (!structure_value_addr
4275 && !pcc_struct_value
4276 && TYPE_MODE (rettype) != VOIDmode
4277 && TYPE_MODE (rettype) != BLKmode
4278 && REG_P (valreg)
4279 && targetm.calls.return_in_msb (rettype))
4280 {
4281 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
4282 sibcall_failure = 1;
4283 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
4284 }
4285
4286 if (pass && (flags & ECF_MALLOC))
4287 {
4288 rtx temp = gen_reg_rtx (GET_MODE (valreg));
4289 rtx_insn *last, *insns;
4290
4291 /* The return value from a malloc-like function is a pointer. */
4292 if (TREE_CODE (rettype) == POINTER_TYPE)
4293 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
4294
4295 emit_move_insn (temp, valreg);
4296
4297 /* The return value from a malloc-like function cannot alias
4298 anything else. */
4299 last = get_last_insn ();
4300 add_reg_note (last, REG_NOALIAS, temp);
4301
4302 /* Write out the sequence. */
4303 insns = get_insns ();
4304 end_sequence ();
4305 emit_insn (insns);
4306 valreg = temp;
4307 }
4308
4309 /* For calls to `setjmp', etc., inform
4310 function.c:setjmp_warnings that it should complain if
4311 nonvolatile values are live. For functions that cannot
4312 return, inform flow that control does not fall through. */
4313
4314 if ((flags & ECF_NORETURN) || pass == 0)
4315 {
4316 /* The barrier must be emitted
4317 immediately after the CALL_INSN. Some ports emit more
4318 than just a CALL_INSN above, so we must search for it here. */
4319
4320 rtx_insn *last = get_last_insn ();
4321 while (!CALL_P (last))
4322 {
4323 last = PREV_INSN (last);
4324 /* There was no CALL_INSN? */
4325 gcc_assert (last != before_call);
4326 }
4327
4328 emit_barrier_after (last);
4329
4330 /* Stack adjustments after a noreturn call are dead code.
4331 However when NO_DEFER_POP is in effect, we must preserve
4332 stack_pointer_delta. */
4333 if (inhibit_defer_pop == 0)
4334 {
4335 stack_pointer_delta = old_stack_allocated;
4336 pending_stack_adjust = 0;
4337 }
4338 }
4339
4340 /* If value type not void, return an rtx for the value. */
4341
4342 if (TYPE_MODE (rettype) == VOIDmode
4343 || ignore)
4344 target = const0_rtx;
4345 else if (structure_value_addr)
4346 {
4347 if (target == 0 || !MEM_P (target))
4348 {
4349 target
4350 = gen_rtx_MEM (TYPE_MODE (rettype),
4351 memory_address (TYPE_MODE (rettype),
4352 structure_value_addr));
4353 set_mem_attributes (target, rettype, 1);
4354 }
4355 }
4356 else if (pcc_struct_value)
4357 {
4358 /* This is the special C++ case where we need to
4359 know what the true target was. We take care to
4360 never use this value more than once in one expression. */
4361 target = gen_rtx_MEM (TYPE_MODE (rettype),
4362 copy_to_reg (valreg));
4363 set_mem_attributes (target, rettype, 1);
4364 }
4365 /* Handle calls that return values in multiple non-contiguous locations.
4366 The Irix 6 ABI has examples of this. */
4367 else if (GET_CODE (valreg) == PARALLEL)
4368 {
4369 if (target == 0)
4370 target = emit_group_move_into_temps (valreg);
4371 else if (rtx_equal_p (target, valreg))
4372 ;
4373 else if (GET_CODE (target) == PARALLEL)
4374 /* Handle the result of a emit_group_move_into_temps
4375 call in the previous pass. */
4376 emit_group_move (target, valreg);
4377 else
4378 emit_group_store (target, valreg, rettype,
4379 int_size_in_bytes (rettype));
4380 }
4381 else if (target
4382 && GET_MODE (target) == TYPE_MODE (rettype)
4383 && GET_MODE (target) == GET_MODE (valreg))
4384 {
4385 bool may_overlap = false;
4386
4387 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4388 reg to a plain register. */
4389 if (!REG_P (target) || HARD_REGISTER_P (target))
4390 valreg = avoid_likely_spilled_reg (valreg);
4391
4392 /* If TARGET is a MEM in the argument area, and we have
4393 saved part of the argument area, then we can't store
4394 directly into TARGET as it may get overwritten when we
4395 restore the argument save area below. Don't work too
4396 hard though and simply force TARGET to a register if it
4397 is a MEM; the optimizer is quite likely to sort it out. */
4398 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4399 for (i = 0; i < num_actuals; i++)
4400 if (args[i].save_area)
4401 {
4402 may_overlap = true;
4403 break;
4404 }
4405
4406 if (may_overlap)
4407 target = copy_to_reg (valreg);
4408 else
4409 {
4410 /* TARGET and VALREG cannot be equal at this point
4411 because the latter would not have
4412 REG_FUNCTION_VALUE_P true, while the former would if
4413 it were referring to the same register.
4414
4415 If they refer to the same register, this move will be
4416 a no-op, except when function inlining is being
4417 done. */
4418 emit_move_insn (target, valreg);
4419
4420 /* If we are setting a MEM, this code must be executed.
4421 Since it is emitted after the call insn, sibcall
4422 optimization cannot be performed in that case. */
4423 if (MEM_P (target))
4424 sibcall_failure = 1;
4425 }
4426 }
4427 else
4428 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4429
4430 /* If we promoted this return value, make the proper SUBREG.
4431 TARGET might be const0_rtx here, so be careful. */
4432 if (REG_P (target)
4433 && TYPE_MODE (rettype) != BLKmode
4434 && GET_MODE (target) != TYPE_MODE (rettype))
4435 {
4436 tree type = rettype;
4437 int unsignedp = TYPE_UNSIGNED (type);
4438 machine_mode pmode;
4439
4440 /* Ensure we promote as expected, and get the new unsignedness. */
4441 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4442 funtype, 1);
4443 gcc_assert (GET_MODE (target) == pmode);
4444
4445 poly_uint64 offset = subreg_lowpart_offset (TYPE_MODE (type),
4446 GET_MODE (target));
4447 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4448 SUBREG_PROMOTED_VAR_P (target) = 1;
4449 SUBREG_PROMOTED_SET (target, unsignedp);
4450 }
4451
4452 /* If size of args is variable or this was a constructor call for a stack
4453 argument, restore saved stack-pointer value. */
4454
4455 if (old_stack_level)
4456 {
4457 rtx_insn *prev = get_last_insn ();
4458
4459 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4460 stack_pointer_delta = old_stack_pointer_delta;
4461
4462 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4463
4464 pending_stack_adjust = old_pending_adj;
4465 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4466 stack_arg_under_construction = old_stack_arg_under_construction;
4467 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4468 stack_usage_map = initial_stack_usage_map;
4469 stack_usage_watermark = initial_stack_usage_watermark;
4470 sibcall_failure = 1;
4471 }
4472 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4473 {
4474 #ifdef REG_PARM_STACK_SPACE
4475 if (save_area)
4476 restore_fixed_argument_area (save_area, argblock,
4477 high_to_save, low_to_save);
4478 #endif
4479
4480 /* If we saved any argument areas, restore them. */
4481 for (i = 0; i < num_actuals; i++)
4482 if (args[i].save_area)
4483 {
4484 machine_mode save_mode = GET_MODE (args[i].save_area);
4485 rtx stack_area
4486 = gen_rtx_MEM (save_mode,
4487 memory_address (save_mode,
4488 XEXP (args[i].stack_slot, 0)));
4489
4490 if (save_mode != BLKmode)
4491 emit_move_insn (stack_area, args[i].save_area);
4492 else
4493 emit_block_move (stack_area, args[i].save_area,
4494 (gen_int_mode
4495 (args[i].locate.size.constant, Pmode)),
4496 BLOCK_OP_CALL_PARM);
4497 }
4498
4499 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4500 stack_usage_map = initial_stack_usage_map;
4501 stack_usage_watermark = initial_stack_usage_watermark;
4502 }
4503
4504 /* If this was alloca, record the new stack level. */
4505 if (flags & ECF_MAY_BE_ALLOCA)
4506 record_new_stack_level ();
4507
4508 /* Free up storage we no longer need. */
4509 for (i = 0; i < num_actuals; ++i)
4510 free (args[i].aligned_regs);
4511
4512 targetm.calls.end_call_args ();
4513
4514 insns = get_insns ();
4515 end_sequence ();
4516
4517 if (pass == 0)
4518 {
4519 tail_call_insns = insns;
4520
4521 /* Restore the pending stack adjustment now that we have
4522 finished generating the sibling call sequence. */
4523
4524 restore_pending_stack_adjust (&save);
4525
4526 /* Prepare arg structure for next iteration. */
4527 for (i = 0; i < num_actuals; i++)
4528 {
4529 args[i].value = 0;
4530 args[i].aligned_regs = 0;
4531 args[i].stack = 0;
4532 }
4533
4534 sbitmap_free (stored_args_map);
4535 internal_arg_pointer_exp_state.scan_start = NULL;
4536 internal_arg_pointer_exp_state.cache.release ();
4537 }
4538 else
4539 {
4540 normal_call_insns = insns;
4541
4542 /* Verify that we've deallocated all the stack we used. */
4543 gcc_assert ((flags & ECF_NORETURN)
4544 || known_eq (old_stack_allocated,
4545 stack_pointer_delta
4546 - pending_stack_adjust));
4547 }
4548
4549 /* If something prevents making this a sibling call,
4550 zero out the sequence. */
4551 if (sibcall_failure)
4552 tail_call_insns = NULL;
4553 else
4554 break;
4555 }
4556
4557 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4558 arguments too, as argument area is now clobbered by the call. */
4559 if (tail_call_insns)
4560 {
4561 emit_insn (tail_call_insns);
4562 crtl->tail_call_emit = true;
4563 }
4564 else
4565 {
4566 emit_insn (normal_call_insns);
4567 if (try_tail_call)
4568 /* Ideally we'd emit a message for all of the ways that it could
4569 have failed. */
4570 maybe_complain_about_tail_call (exp, "tail call production failed");
4571 }
4572
4573 currently_expanding_call--;
4574
4575 free (stack_usage_map_buf);
4576 free (args);
4577 return target;
4578 }
4579
4580 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4581 this function's incoming arguments.
4582
4583 At the start of RTL generation we know the only REG_EQUIV notes
4584 in the rtl chain are those for incoming arguments, so we can look
4585 for REG_EQUIV notes between the start of the function and the
4586 NOTE_INSN_FUNCTION_BEG.
4587
4588 This is (slight) overkill. We could keep track of the highest
4589 argument we clobber and be more selective in removing notes, but it
4590 does not seem to be worth the effort. */
4591
4592 void
4593 fixup_tail_calls (void)
4594 {
4595 rtx_insn *insn;
4596
4597 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4598 {
4599 rtx note;
4600
4601 /* There are never REG_EQUIV notes for the incoming arguments
4602 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4603 if (NOTE_P (insn)
4604 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4605 break;
4606
4607 note = find_reg_note (insn, REG_EQUIV, 0);
4608 if (note)
4609 remove_note (insn, note);
4610 note = find_reg_note (insn, REG_EQUIV, 0);
4611 gcc_assert (!note);
4612 }
4613 }
4614
4615 /* Traverse a list of TYPES and expand all complex types into their
4616 components. */
4617 static tree
4618 split_complex_types (tree types)
4619 {
4620 tree p;
4621
4622 /* Before allocating memory, check for the common case of no complex. */
4623 for (p = types; p; p = TREE_CHAIN (p))
4624 {
4625 tree type = TREE_VALUE (p);
4626 if (TREE_CODE (type) == COMPLEX_TYPE
4627 && targetm.calls.split_complex_arg (type))
4628 goto found;
4629 }
4630 return types;
4631
4632 found:
4633 types = copy_list (types);
4634
4635 for (p = types; p; p = TREE_CHAIN (p))
4636 {
4637 tree complex_type = TREE_VALUE (p);
4638
4639 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4640 && targetm.calls.split_complex_arg (complex_type))
4641 {
4642 tree next, imag;
4643
4644 /* Rewrite complex type with component type. */
4645 TREE_VALUE (p) = TREE_TYPE (complex_type);
4646 next = TREE_CHAIN (p);
4647
4648 /* Add another component type for the imaginary part. */
4649 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4650 TREE_CHAIN (p) = imag;
4651 TREE_CHAIN (imag) = next;
4652
4653 /* Skip the newly created node. */
4654 p = TREE_CHAIN (p);
4655 }
4656 }
4657
4658 return types;
4659 }
4660 \f
4661 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
4662 for a value of mode OUTMODE,
4663 with NARGS different arguments, passed as ARGS.
4664 Store the return value if RETVAL is nonzero: store it in VALUE if
4665 VALUE is nonnull, otherwise pick a convenient location. In either
4666 case return the location of the stored value.
4667
4668 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4669 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
4670 other types of library calls. */
4671
4672 rtx
4673 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4674 enum libcall_type fn_type,
4675 machine_mode outmode, int nargs, rtx_mode_t *args)
4676 {
4677 /* Total size in bytes of all the stack-parms scanned so far. */
4678 struct args_size args_size;
4679 /* Size of arguments before any adjustments (such as rounding). */
4680 struct args_size original_args_size;
4681 int argnum;
4682 rtx fun;
4683 /* Todo, choose the correct decl type of orgfun. Sadly this information
4684 isn't present here, so we default to native calling abi here. */
4685 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4686 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4687 int count;
4688 rtx argblock = 0;
4689 CUMULATIVE_ARGS args_so_far_v;
4690 cumulative_args_t args_so_far;
4691 struct arg
4692 {
4693 rtx value;
4694 machine_mode mode;
4695 rtx reg;
4696 int partial;
4697 struct locate_and_pad_arg_data locate;
4698 rtx save_area;
4699 };
4700 struct arg *argvec;
4701 int old_inhibit_defer_pop = inhibit_defer_pop;
4702 rtx call_fusage = 0;
4703 rtx mem_value = 0;
4704 rtx valreg;
4705 int pcc_struct_value = 0;
4706 poly_int64 struct_value_size = 0;
4707 int flags;
4708 int reg_parm_stack_space = 0;
4709 poly_int64 needed;
4710 rtx_insn *before_call;
4711 bool have_push_fusage;
4712 tree tfom; /* type_for_mode (outmode, 0) */
4713
4714 #ifdef REG_PARM_STACK_SPACE
4715 /* Define the boundary of the register parm stack space that needs to be
4716 save, if any. */
4717 int low_to_save = 0, high_to_save = 0;
4718 rtx save_area = 0; /* Place that it is saved. */
4719 #endif
4720
4721 /* Size of the stack reserved for parameter registers. */
4722 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
4723 char *initial_stack_usage_map = stack_usage_map;
4724 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
4725 char *stack_usage_map_buf = NULL;
4726
4727 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
4728
4729 #ifdef REG_PARM_STACK_SPACE
4730 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
4731 #endif
4732
4733 /* By default, library functions cannot throw. */
4734 flags = ECF_NOTHROW;
4735
4736 switch (fn_type)
4737 {
4738 case LCT_NORMAL:
4739 break;
4740 case LCT_CONST:
4741 flags |= ECF_CONST;
4742 break;
4743 case LCT_PURE:
4744 flags |= ECF_PURE;
4745 break;
4746 case LCT_NORETURN:
4747 flags |= ECF_NORETURN;
4748 break;
4749 case LCT_THROW:
4750 flags &= ~ECF_NOTHROW;
4751 break;
4752 case LCT_RETURNS_TWICE:
4753 flags = ECF_RETURNS_TWICE;
4754 break;
4755 }
4756 fun = orgfun;
4757
4758 /* Ensure current function's preferred stack boundary is at least
4759 what we need. */
4760 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
4761 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
4762
4763 /* If this kind of value comes back in memory,
4764 decide where in memory it should come back. */
4765 if (outmode != VOIDmode)
4766 {
4767 tfom = lang_hooks.types.type_for_mode (outmode, 0);
4768 if (aggregate_value_p (tfom, 0))
4769 {
4770 #ifdef PCC_STATIC_STRUCT_RETURN
4771 rtx pointer_reg
4772 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
4773 mem_value = gen_rtx_MEM (outmode, pointer_reg);
4774 pcc_struct_value = 1;
4775 if (value == 0)
4776 value = gen_reg_rtx (outmode);
4777 #else /* not PCC_STATIC_STRUCT_RETURN */
4778 struct_value_size = GET_MODE_SIZE (outmode);
4779 if (value != 0 && MEM_P (value))
4780 mem_value = value;
4781 else
4782 mem_value = assign_temp (tfom, 1, 1);
4783 #endif
4784 /* This call returns a big structure. */
4785 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
4786 }
4787 }
4788 else
4789 tfom = void_type_node;
4790
4791 /* ??? Unfinished: must pass the memory address as an argument. */
4792
4793 /* Copy all the libcall-arguments out of the varargs data
4794 and into a vector ARGVEC.
4795
4796 Compute how to pass each argument. We only support a very small subset
4797 of the full argument passing conventions to limit complexity here since
4798 library functions shouldn't have many args. */
4799
4800 argvec = XALLOCAVEC (struct arg, nargs + 1);
4801 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
4802
4803 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
4804 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
4805 #else
4806 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
4807 #endif
4808 args_so_far = pack_cumulative_args (&args_so_far_v);
4809
4810 args_size.constant = 0;
4811 args_size.var = 0;
4812
4813 count = 0;
4814
4815 push_temp_slots ();
4816
4817 /* If there's a structure value address to be passed,
4818 either pass it in the special place, or pass it as an extra argument. */
4819 if (mem_value && struct_value == 0 && ! pcc_struct_value)
4820 {
4821 rtx addr = XEXP (mem_value, 0);
4822
4823 nargs++;
4824
4825 /* Make sure it is a reasonable operand for a move or push insn. */
4826 if (!REG_P (addr) && !MEM_P (addr)
4827 && !(CONSTANT_P (addr)
4828 && targetm.legitimate_constant_p (Pmode, addr)))
4829 addr = force_operand (addr, NULL_RTX);
4830
4831 argvec[count].value = addr;
4832 argvec[count].mode = Pmode;
4833 argvec[count].partial = 0;
4834
4835 argvec[count].reg = targetm.calls.function_arg (args_so_far,
4836 Pmode, NULL_TREE, true);
4837 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
4838 NULL_TREE, 1) == 0);
4839
4840 locate_and_pad_parm (Pmode, NULL_TREE,
4841 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4842 1,
4843 #else
4844 argvec[count].reg != 0,
4845 #endif
4846 reg_parm_stack_space, 0,
4847 NULL_TREE, &args_size, &argvec[count].locate);
4848
4849 if (argvec[count].reg == 0 || argvec[count].partial != 0
4850 || reg_parm_stack_space > 0)
4851 args_size.constant += argvec[count].locate.size.constant;
4852
4853 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
4854
4855 count++;
4856 }
4857
4858 for (unsigned int i = 0; count < nargs; i++, count++)
4859 {
4860 rtx val = args[i].first;
4861 machine_mode mode = args[i].second;
4862 int unsigned_p = 0;
4863
4864 /* We cannot convert the arg value to the mode the library wants here;
4865 must do it earlier where we know the signedness of the arg. */
4866 gcc_assert (mode != BLKmode
4867 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
4868
4869 /* Make sure it is a reasonable operand for a move or push insn. */
4870 if (!REG_P (val) && !MEM_P (val)
4871 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
4872 val = force_operand (val, NULL_RTX);
4873
4874 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
4875 {
4876 rtx slot;
4877 int must_copy
4878 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
4879
4880 /* If this was a CONST function, it is now PURE since it now
4881 reads memory. */
4882 if (flags & ECF_CONST)
4883 {
4884 flags &= ~ECF_CONST;
4885 flags |= ECF_PURE;
4886 }
4887
4888 if (MEM_P (val) && !must_copy)
4889 {
4890 tree val_expr = MEM_EXPR (val);
4891 if (val_expr)
4892 mark_addressable (val_expr);
4893 slot = val;
4894 }
4895 else
4896 {
4897 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
4898 1, 1);
4899 emit_move_insn (slot, val);
4900 }
4901
4902 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4903 gen_rtx_USE (VOIDmode, slot),
4904 call_fusage);
4905 if (must_copy)
4906 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4907 gen_rtx_CLOBBER (VOIDmode,
4908 slot),
4909 call_fusage);
4910
4911 mode = Pmode;
4912 val = force_operand (XEXP (slot, 0), NULL_RTX);
4913 }
4914
4915 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
4916 argvec[count].mode = mode;
4917 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
4918 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
4919 NULL_TREE, true);
4920
4921 argvec[count].partial
4922 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
4923
4924 if (argvec[count].reg == 0
4925 || argvec[count].partial != 0
4926 || reg_parm_stack_space > 0)
4927 {
4928 locate_and_pad_parm (mode, NULL_TREE,
4929 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4930 1,
4931 #else
4932 argvec[count].reg != 0,
4933 #endif
4934 reg_parm_stack_space, argvec[count].partial,
4935 NULL_TREE, &args_size, &argvec[count].locate);
4936 args_size.constant += argvec[count].locate.size.constant;
4937 gcc_assert (!argvec[count].locate.size.var);
4938 }
4939 #ifdef BLOCK_REG_PADDING
4940 else
4941 /* The argument is passed entirely in registers. See at which
4942 end it should be padded. */
4943 argvec[count].locate.where_pad =
4944 BLOCK_REG_PADDING (mode, NULL_TREE,
4945 known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4946 #endif
4947
4948 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
4949 }
4950
4951 /* If this machine requires an external definition for library
4952 functions, write one out. */
4953 assemble_external_libcall (fun);
4954
4955 original_args_size = args_size;
4956 args_size.constant = (aligned_upper_bound (args_size.constant
4957 + stack_pointer_delta,
4958 STACK_BYTES)
4959 - stack_pointer_delta);
4960
4961 args_size.constant = upper_bound (args_size.constant,
4962 reg_parm_stack_space);
4963
4964 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4965 args_size.constant -= reg_parm_stack_space;
4966
4967 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
4968 args_size.constant);
4969
4970 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
4971 {
4972 poly_int64 pushed = args_size.constant + pending_stack_adjust;
4973 current_function_pushed_stack_size
4974 = upper_bound (current_function_pushed_stack_size, pushed);
4975 }
4976
4977 if (ACCUMULATE_OUTGOING_ARGS)
4978 {
4979 /* Since the stack pointer will never be pushed, it is possible for
4980 the evaluation of a parm to clobber something we have already
4981 written to the stack. Since most function calls on RISC machines
4982 do not use the stack, this is uncommon, but must work correctly.
4983
4984 Therefore, we save any area of the stack that was already written
4985 and that we are using. Here we set up to do this by making a new
4986 stack usage map from the old one.
4987
4988 Another approach might be to try to reorder the argument
4989 evaluations to avoid this conflicting stack usage. */
4990
4991 needed = args_size.constant;
4992
4993 /* Since we will be writing into the entire argument area, the
4994 map must be allocated for its entire size, not just the part that
4995 is the responsibility of the caller. */
4996 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4997 needed += reg_parm_stack_space;
4998
4999 poly_int64 limit = needed;
5000 if (ARGS_GROW_DOWNWARD)
5001 limit += 1;
5002
5003 /* For polynomial sizes, this is the maximum possible size needed
5004 for arguments with a constant size and offset. */
5005 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
5006 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
5007 const_limit);
5008
5009 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
5010 stack_usage_map = stack_usage_map_buf;
5011
5012 if (initial_highest_arg_in_use)
5013 memcpy (stack_usage_map, initial_stack_usage_map,
5014 initial_highest_arg_in_use);
5015
5016 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
5017 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
5018 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
5019 needed = 0;
5020
5021 /* We must be careful to use virtual regs before they're instantiated,
5022 and real regs afterwards. Loop optimization, for example, can create
5023 new libcalls after we've instantiated the virtual regs, and if we
5024 use virtuals anyway, they won't match the rtl patterns. */
5025
5026 if (virtuals_instantiated)
5027 argblock = plus_constant (Pmode, stack_pointer_rtx,
5028 STACK_POINTER_OFFSET);
5029 else
5030 argblock = virtual_outgoing_args_rtx;
5031 }
5032 else
5033 {
5034 if (!PUSH_ARGS)
5035 argblock = push_block (gen_int_mode (args_size.constant, Pmode), 0, 0);
5036 }
5037
5038 /* We push args individually in reverse order, perform stack alignment
5039 before the first push (the last arg). */
5040 if (argblock == 0)
5041 anti_adjust_stack (gen_int_mode (args_size.constant
5042 - original_args_size.constant,
5043 Pmode));
5044
5045 argnum = nargs - 1;
5046
5047 #ifdef REG_PARM_STACK_SPACE
5048 if (ACCUMULATE_OUTGOING_ARGS)
5049 {
5050 /* The argument list is the property of the called routine and it
5051 may clobber it. If the fixed area has been used for previous
5052 parameters, we must save and restore it. */
5053 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
5054 &low_to_save, &high_to_save);
5055 }
5056 #endif
5057
5058 /* When expanding a normal call, args are stored in push order,
5059 which is the reverse of what we have here. */
5060 bool any_regs = false;
5061 for (int i = nargs; i-- > 0; )
5062 if (argvec[i].reg != NULL_RTX)
5063 {
5064 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
5065 any_regs = true;
5066 }
5067 if (!any_regs)
5068 targetm.calls.call_args (pc_rtx, NULL_TREE);
5069
5070 /* Push the args that need to be pushed. */
5071
5072 have_push_fusage = false;
5073
5074 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5075 are to be pushed. */
5076 for (count = 0; count < nargs; count++, argnum--)
5077 {
5078 machine_mode mode = argvec[argnum].mode;
5079 rtx val = argvec[argnum].value;
5080 rtx reg = argvec[argnum].reg;
5081 int partial = argvec[argnum].partial;
5082 unsigned int parm_align = argvec[argnum].locate.boundary;
5083 poly_int64 lower_bound = 0, upper_bound = 0;
5084
5085 if (! (reg != 0 && partial == 0))
5086 {
5087 rtx use;
5088
5089 if (ACCUMULATE_OUTGOING_ARGS)
5090 {
5091 /* If this is being stored into a pre-allocated, fixed-size,
5092 stack area, save any previous data at that location. */
5093
5094 if (ARGS_GROW_DOWNWARD)
5095 {
5096 /* stack_slot is negative, but we want to index stack_usage_map
5097 with positive values. */
5098 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
5099 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
5100 }
5101 else
5102 {
5103 lower_bound = argvec[argnum].locate.slot_offset.constant;
5104 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
5105 }
5106
5107 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5108 reg_parm_stack_space))
5109 {
5110 /* We need to make a save area. */
5111 poly_uint64 size
5112 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
5113 machine_mode save_mode
5114 = int_mode_for_size (size, 1).else_blk ();
5115 rtx adr
5116 = plus_constant (Pmode, argblock,
5117 argvec[argnum].locate.offset.constant);
5118 rtx stack_area
5119 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
5120
5121 if (save_mode == BLKmode)
5122 {
5123 argvec[argnum].save_area
5124 = assign_stack_temp (BLKmode,
5125 argvec[argnum].locate.size.constant
5126 );
5127
5128 emit_block_move (validize_mem
5129 (copy_rtx (argvec[argnum].save_area)),
5130 stack_area,
5131 (gen_int_mode
5132 (argvec[argnum].locate.size.constant,
5133 Pmode)),
5134 BLOCK_OP_CALL_PARM);
5135 }
5136 else
5137 {
5138 argvec[argnum].save_area = gen_reg_rtx (save_mode);
5139
5140 emit_move_insn (argvec[argnum].save_area, stack_area);
5141 }
5142 }
5143 }
5144
5145 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
5146 partial, reg, 0, argblock,
5147 (gen_int_mode
5148 (argvec[argnum].locate.offset.constant, Pmode)),
5149 reg_parm_stack_space,
5150 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
5151
5152 /* Now mark the segment we just used. */
5153 if (ACCUMULATE_OUTGOING_ARGS)
5154 mark_stack_region_used (lower_bound, upper_bound);
5155
5156 NO_DEFER_POP;
5157
5158 /* Indicate argument access so that alias.c knows that these
5159 values are live. */
5160 if (argblock)
5161 use = plus_constant (Pmode, argblock,
5162 argvec[argnum].locate.offset.constant);
5163 else if (have_push_fusage)
5164 continue;
5165 else
5166 {
5167 /* When arguments are pushed, trying to tell alias.c where
5168 exactly this argument is won't work, because the
5169 auto-increment causes confusion. So we merely indicate
5170 that we access something with a known mode somewhere on
5171 the stack. */
5172 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
5173 gen_rtx_SCRATCH (Pmode));
5174 have_push_fusage = true;
5175 }
5176 use = gen_rtx_MEM (argvec[argnum].mode, use);
5177 use = gen_rtx_USE (VOIDmode, use);
5178 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
5179 }
5180 }
5181
5182 argnum = nargs - 1;
5183
5184 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
5185
5186 /* Now load any reg parms into their regs. */
5187
5188 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5189 are to be pushed. */
5190 for (count = 0; count < nargs; count++, argnum--)
5191 {
5192 machine_mode mode = argvec[argnum].mode;
5193 rtx val = argvec[argnum].value;
5194 rtx reg = argvec[argnum].reg;
5195 int partial = argvec[argnum].partial;
5196
5197 /* Handle calls that pass values in multiple non-contiguous
5198 locations. The PA64 has examples of this for library calls. */
5199 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5200 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
5201 else if (reg != 0 && partial == 0)
5202 {
5203 emit_move_insn (reg, val);
5204 #ifdef BLOCK_REG_PADDING
5205 poly_int64 size = GET_MODE_SIZE (argvec[argnum].mode);
5206
5207 /* Copied from load_register_parameters. */
5208
5209 /* Handle case where we have a value that needs shifting
5210 up to the msb. eg. a QImode value and we're padding
5211 upward on a BYTES_BIG_ENDIAN machine. */
5212 if (known_lt (size, UNITS_PER_WORD)
5213 && (argvec[argnum].locate.where_pad
5214 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5215 {
5216 rtx x;
5217 poly_int64 shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
5218
5219 /* Assigning REG here rather than a temp makes CALL_FUSAGE
5220 report the whole reg as used. Strictly speaking, the
5221 call only uses SIZE bytes at the msb end, but it doesn't
5222 seem worth generating rtl to say that. */
5223 reg = gen_rtx_REG (word_mode, REGNO (reg));
5224 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
5225 if (x != reg)
5226 emit_move_insn (reg, x);
5227 }
5228 #endif
5229 }
5230
5231 NO_DEFER_POP;
5232 }
5233
5234 /* Any regs containing parms remain in use through the call. */
5235 for (count = 0; count < nargs; count++)
5236 {
5237 rtx reg = argvec[count].reg;
5238 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5239 use_group_regs (&call_fusage, reg);
5240 else if (reg != 0)
5241 {
5242 int partial = argvec[count].partial;
5243 if (partial)
5244 {
5245 int nregs;
5246 gcc_assert (partial % UNITS_PER_WORD == 0);
5247 nregs = partial / UNITS_PER_WORD;
5248 use_regs (&call_fusage, REGNO (reg), nregs);
5249 }
5250 else
5251 use_reg (&call_fusage, reg);
5252 }
5253 }
5254
5255 /* Pass the function the address in which to return a structure value. */
5256 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
5257 {
5258 emit_move_insn (struct_value,
5259 force_reg (Pmode,
5260 force_operand (XEXP (mem_value, 0),
5261 NULL_RTX)));
5262 if (REG_P (struct_value))
5263 use_reg (&call_fusage, struct_value);
5264 }
5265
5266 /* Don't allow popping to be deferred, since then
5267 cse'ing of library calls could delete a call and leave the pop. */
5268 NO_DEFER_POP;
5269 valreg = (mem_value == 0 && outmode != VOIDmode
5270 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
5271
5272 /* Stack must be properly aligned now. */
5273 gcc_assert (multiple_p (stack_pointer_delta,
5274 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
5275
5276 before_call = get_last_insn ();
5277
5278 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
5279 will set inhibit_defer_pop to that value. */
5280 /* The return type is needed to decide how many bytes the function pops.
5281 Signedness plays no role in that, so for simplicity, we pretend it's
5282 always signed. We also assume that the list of arguments passed has
5283 no impact, so we pretend it is unknown. */
5284
5285 emit_call_1 (fun, NULL,
5286 get_identifier (XSTR (orgfun, 0)),
5287 build_function_type (tfom, NULL_TREE),
5288 original_args_size.constant, args_size.constant,
5289 struct_value_size,
5290 targetm.calls.function_arg (args_so_far,
5291 VOIDmode, void_type_node, true),
5292 valreg,
5293 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
5294
5295 if (flag_ipa_ra)
5296 {
5297 rtx datum = orgfun;
5298 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
5299 rtx_call_insn *last = last_call_insn ();
5300 add_reg_note (last, REG_CALL_DECL, datum);
5301 }
5302
5303 /* Right-shift returned value if necessary. */
5304 if (!pcc_struct_value
5305 && TYPE_MODE (tfom) != BLKmode
5306 && targetm.calls.return_in_msb (tfom))
5307 {
5308 shift_return_value (TYPE_MODE (tfom), false, valreg);
5309 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5310 }
5311
5312 targetm.calls.end_call_args ();
5313
5314 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5315 that it should complain if nonvolatile values are live. For
5316 functions that cannot return, inform flow that control does not
5317 fall through. */
5318 if (flags & ECF_NORETURN)
5319 {
5320 /* The barrier note must be emitted
5321 immediately after the CALL_INSN. Some ports emit more than
5322 just a CALL_INSN above, so we must search for it here. */
5323 rtx_insn *last = get_last_insn ();
5324 while (!CALL_P (last))
5325 {
5326 last = PREV_INSN (last);
5327 /* There was no CALL_INSN? */
5328 gcc_assert (last != before_call);
5329 }
5330
5331 emit_barrier_after (last);
5332 }
5333
5334 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5335 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5336 if (flags & ECF_NOTHROW)
5337 {
5338 rtx_insn *last = get_last_insn ();
5339 while (!CALL_P (last))
5340 {
5341 last = PREV_INSN (last);
5342 /* There was no CALL_INSN? */
5343 gcc_assert (last != before_call);
5344 }
5345
5346 make_reg_eh_region_note_nothrow_nononlocal (last);
5347 }
5348
5349 /* Now restore inhibit_defer_pop to its actual original value. */
5350 OK_DEFER_POP;
5351
5352 pop_temp_slots ();
5353
5354 /* Copy the value to the right place. */
5355 if (outmode != VOIDmode && retval)
5356 {
5357 if (mem_value)
5358 {
5359 if (value == 0)
5360 value = mem_value;
5361 if (value != mem_value)
5362 emit_move_insn (value, mem_value);
5363 }
5364 else if (GET_CODE (valreg) == PARALLEL)
5365 {
5366 if (value == 0)
5367 value = gen_reg_rtx (outmode);
5368 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5369 }
5370 else
5371 {
5372 /* Convert to the proper mode if a promotion has been active. */
5373 if (GET_MODE (valreg) != outmode)
5374 {
5375 int unsignedp = TYPE_UNSIGNED (tfom);
5376
5377 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5378 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5379 == GET_MODE (valreg));
5380 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5381 }
5382
5383 if (value != 0)
5384 emit_move_insn (value, valreg);
5385 else
5386 value = valreg;
5387 }
5388 }
5389
5390 if (ACCUMULATE_OUTGOING_ARGS)
5391 {
5392 #ifdef REG_PARM_STACK_SPACE
5393 if (save_area)
5394 restore_fixed_argument_area (save_area, argblock,
5395 high_to_save, low_to_save);
5396 #endif
5397
5398 /* If we saved any argument areas, restore them. */
5399 for (count = 0; count < nargs; count++)
5400 if (argvec[count].save_area)
5401 {
5402 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5403 rtx adr = plus_constant (Pmode, argblock,
5404 argvec[count].locate.offset.constant);
5405 rtx stack_area = gen_rtx_MEM (save_mode,
5406 memory_address (save_mode, adr));
5407
5408 if (save_mode == BLKmode)
5409 emit_block_move (stack_area,
5410 validize_mem
5411 (copy_rtx (argvec[count].save_area)),
5412 (gen_int_mode
5413 (argvec[count].locate.size.constant, Pmode)),
5414 BLOCK_OP_CALL_PARM);
5415 else
5416 emit_move_insn (stack_area, argvec[count].save_area);
5417 }
5418
5419 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5420 stack_usage_map = initial_stack_usage_map;
5421 stack_usage_watermark = initial_stack_usage_watermark;
5422 }
5423
5424 free (stack_usage_map_buf);
5425
5426 return value;
5427
5428 }
5429 \f
5430
5431 /* Store a single argument for a function call
5432 into the register or memory area where it must be passed.
5433 *ARG describes the argument value and where to pass it.
5434
5435 ARGBLOCK is the address of the stack-block for all the arguments,
5436 or 0 on a machine where arguments are pushed individually.
5437
5438 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5439 so must be careful about how the stack is used.
5440
5441 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5442 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5443 that we need not worry about saving and restoring the stack.
5444
5445 FNDECL is the declaration of the function we are calling.
5446
5447 Return nonzero if this arg should cause sibcall failure,
5448 zero otherwise. */
5449
5450 static int
5451 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5452 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5453 {
5454 tree pval = arg->tree_value;
5455 rtx reg = 0;
5456 int partial = 0;
5457 poly_int64 used = 0;
5458 poly_int64 lower_bound = 0, upper_bound = 0;
5459 int sibcall_failure = 0;
5460
5461 if (TREE_CODE (pval) == ERROR_MARK)
5462 return 1;
5463
5464 /* Push a new temporary level for any temporaries we make for
5465 this argument. */
5466 push_temp_slots ();
5467
5468 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5469 {
5470 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5471 save any previous data at that location. */
5472 if (argblock && ! variable_size && arg->stack)
5473 {
5474 if (ARGS_GROW_DOWNWARD)
5475 {
5476 /* stack_slot is negative, but we want to index stack_usage_map
5477 with positive values. */
5478 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5479 {
5480 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5481 upper_bound = -rtx_to_poly_int64 (offset) + 1;
5482 }
5483 else
5484 upper_bound = 0;
5485
5486 lower_bound = upper_bound - arg->locate.size.constant;
5487 }
5488 else
5489 {
5490 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5491 {
5492 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5493 lower_bound = rtx_to_poly_int64 (offset);
5494 }
5495 else
5496 lower_bound = 0;
5497
5498 upper_bound = lower_bound + arg->locate.size.constant;
5499 }
5500
5501 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5502 reg_parm_stack_space))
5503 {
5504 /* We need to make a save area. */
5505 poly_uint64 size = arg->locate.size.constant * BITS_PER_UNIT;
5506 machine_mode save_mode
5507 = int_mode_for_size (size, 1).else_blk ();
5508 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5509 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5510
5511 if (save_mode == BLKmode)
5512 {
5513 arg->save_area
5514 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5515 preserve_temp_slots (arg->save_area);
5516 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5517 stack_area,
5518 (gen_int_mode
5519 (arg->locate.size.constant, Pmode)),
5520 BLOCK_OP_CALL_PARM);
5521 }
5522 else
5523 {
5524 arg->save_area = gen_reg_rtx (save_mode);
5525 emit_move_insn (arg->save_area, stack_area);
5526 }
5527 }
5528 }
5529 }
5530
5531 /* If this isn't going to be placed on both the stack and in registers,
5532 set up the register and number of words. */
5533 if (! arg->pass_on_stack)
5534 {
5535 if (flags & ECF_SIBCALL)
5536 reg = arg->tail_call_reg;
5537 else
5538 reg = arg->reg;
5539 partial = arg->partial;
5540 }
5541
5542 /* Being passed entirely in a register. We shouldn't be called in
5543 this case. */
5544 gcc_assert (reg == 0 || partial != 0);
5545
5546 /* If this arg needs special alignment, don't load the registers
5547 here. */
5548 if (arg->n_aligned_regs != 0)
5549 reg = 0;
5550
5551 /* If this is being passed partially in a register, we can't evaluate
5552 it directly into its stack slot. Otherwise, we can. */
5553 if (arg->value == 0)
5554 {
5555 /* stack_arg_under_construction is nonzero if a function argument is
5556 being evaluated directly into the outgoing argument list and
5557 expand_call must take special action to preserve the argument list
5558 if it is called recursively.
5559
5560 For scalar function arguments stack_usage_map is sufficient to
5561 determine which stack slots must be saved and restored. Scalar
5562 arguments in general have pass_on_stack == 0.
5563
5564 If this argument is initialized by a function which takes the
5565 address of the argument (a C++ constructor or a C function
5566 returning a BLKmode structure), then stack_usage_map is
5567 insufficient and expand_call must push the stack around the
5568 function call. Such arguments have pass_on_stack == 1.
5569
5570 Note that it is always safe to set stack_arg_under_construction,
5571 but this generates suboptimal code if set when not needed. */
5572
5573 if (arg->pass_on_stack)
5574 stack_arg_under_construction++;
5575
5576 arg->value = expand_expr (pval,
5577 (partial
5578 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5579 ? NULL_RTX : arg->stack,
5580 VOIDmode, EXPAND_STACK_PARM);
5581
5582 /* If we are promoting object (or for any other reason) the mode
5583 doesn't agree, convert the mode. */
5584
5585 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5586 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5587 arg->value, arg->unsignedp);
5588
5589 if (arg->pass_on_stack)
5590 stack_arg_under_construction--;
5591 }
5592
5593 /* Check for overlap with already clobbered argument area. */
5594 if ((flags & ECF_SIBCALL)
5595 && MEM_P (arg->value)
5596 && mem_might_overlap_already_clobbered_arg_p (XEXP (arg->value, 0),
5597 arg->locate.size.constant))
5598 sibcall_failure = 1;
5599
5600 /* Don't allow anything left on stack from computation
5601 of argument to alloca. */
5602 if (flags & ECF_MAY_BE_ALLOCA)
5603 do_pending_stack_adjust ();
5604
5605 if (arg->value == arg->stack)
5606 /* If the value is already in the stack slot, we are done. */
5607 ;
5608 else if (arg->mode != BLKmode)
5609 {
5610 unsigned int parm_align;
5611
5612 /* Argument is a scalar, not entirely passed in registers.
5613 (If part is passed in registers, arg->partial says how much
5614 and emit_push_insn will take care of putting it there.)
5615
5616 Push it, and if its size is less than the
5617 amount of space allocated to it,
5618 also bump stack pointer by the additional space.
5619 Note that in C the default argument promotions
5620 will prevent such mismatches. */
5621
5622 poly_int64 size = (TYPE_EMPTY_P (TREE_TYPE (pval))
5623 ? 0 : GET_MODE_SIZE (arg->mode));
5624
5625 /* Compute how much space the push instruction will push.
5626 On many machines, pushing a byte will advance the stack
5627 pointer by a halfword. */
5628 #ifdef PUSH_ROUNDING
5629 size = PUSH_ROUNDING (size);
5630 #endif
5631 used = size;
5632
5633 /* Compute how much space the argument should get:
5634 round up to a multiple of the alignment for arguments. */
5635 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5636 != PAD_NONE)
5637 /* At the moment we don't (need to) support ABIs for which the
5638 padding isn't known at compile time. In principle it should
5639 be easy to add though. */
5640 used = force_align_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
5641
5642 /* Compute the alignment of the pushed argument. */
5643 parm_align = arg->locate.boundary;
5644 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5645 == PAD_DOWNWARD)
5646 {
5647 poly_int64 pad = used - size;
5648 unsigned int pad_align = known_alignment (pad) * BITS_PER_UNIT;
5649 if (pad_align != 0)
5650 parm_align = MIN (parm_align, pad_align);
5651 }
5652
5653 /* This isn't already where we want it on the stack, so put it there.
5654 This can either be done with push or copy insns. */
5655 if (maybe_ne (used, 0)
5656 && !emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval),
5657 NULL_RTX, parm_align, partial, reg, used - size,
5658 argblock, ARGS_SIZE_RTX (arg->locate.offset),
5659 reg_parm_stack_space,
5660 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5661 sibcall_failure = 1;
5662
5663 /* Unless this is a partially-in-register argument, the argument is now
5664 in the stack. */
5665 if (partial == 0)
5666 arg->value = arg->stack;
5667 }
5668 else
5669 {
5670 /* BLKmode, at least partly to be pushed. */
5671
5672 unsigned int parm_align;
5673 poly_int64 excess;
5674 rtx size_rtx;
5675
5676 /* Pushing a nonscalar.
5677 If part is passed in registers, PARTIAL says how much
5678 and emit_push_insn will take care of putting it there. */
5679
5680 /* Round its size up to a multiple
5681 of the allocation unit for arguments. */
5682
5683 if (arg->locate.size.var != 0)
5684 {
5685 excess = 0;
5686 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
5687 }
5688 else
5689 {
5690 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
5691 for BLKmode is careful to avoid it. */
5692 excess = (arg->locate.size.constant
5693 - arg_int_size_in_bytes (TREE_TYPE (pval))
5694 + partial);
5695 size_rtx = expand_expr (arg_size_in_bytes (TREE_TYPE (pval)),
5696 NULL_RTX, TYPE_MODE (sizetype),
5697 EXPAND_NORMAL);
5698 }
5699
5700 parm_align = arg->locate.boundary;
5701
5702 /* When an argument is padded down, the block is aligned to
5703 PARM_BOUNDARY, but the actual argument isn't. */
5704 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5705 == PAD_DOWNWARD)
5706 {
5707 if (arg->locate.size.var)
5708 parm_align = BITS_PER_UNIT;
5709 else
5710 {
5711 unsigned int excess_align
5712 = known_alignment (excess) * BITS_PER_UNIT;
5713 if (excess_align != 0)
5714 parm_align = MIN (parm_align, excess_align);
5715 }
5716 }
5717
5718 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
5719 {
5720 /* emit_push_insn might not work properly if arg->value and
5721 argblock + arg->locate.offset areas overlap. */
5722 rtx x = arg->value;
5723 poly_int64 i = 0;
5724
5725 if (strip_offset (XEXP (x, 0), &i)
5726 == crtl->args.internal_arg_pointer)
5727 {
5728 /* arg.locate doesn't contain the pretend_args_size offset,
5729 it's part of argblock. Ensure we don't count it in I. */
5730 if (STACK_GROWS_DOWNWARD)
5731 i -= crtl->args.pretend_args_size;
5732 else
5733 i += crtl->args.pretend_args_size;
5734
5735 /* expand_call should ensure this. */
5736 gcc_assert (!arg->locate.offset.var
5737 && arg->locate.size.var == 0);
5738 poly_int64 size_val = rtx_to_poly_int64 (size_rtx);
5739
5740 if (known_eq (arg->locate.offset.constant, i))
5741 {
5742 /* Even though they appear to be at the same location,
5743 if part of the outgoing argument is in registers,
5744 they aren't really at the same location. Check for
5745 this by making sure that the incoming size is the
5746 same as the outgoing size. */
5747 if (maybe_ne (arg->locate.size.constant, size_val))
5748 sibcall_failure = 1;
5749 }
5750 else if (maybe_in_range_p (arg->locate.offset.constant,
5751 i, size_val))
5752 sibcall_failure = 1;
5753 /* Use arg->locate.size.constant instead of size_rtx
5754 because we only care about the part of the argument
5755 on the stack. */
5756 else if (maybe_in_range_p (i, arg->locate.offset.constant,
5757 arg->locate.size.constant))
5758 sibcall_failure = 1;
5759 }
5760 }
5761
5762 if (!CONST_INT_P (size_rtx) || INTVAL (size_rtx) != 0)
5763 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5764 parm_align, partial, reg, excess, argblock,
5765 ARGS_SIZE_RTX (arg->locate.offset),
5766 reg_parm_stack_space,
5767 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5768
5769 /* Unless this is a partially-in-register argument, the argument is now
5770 in the stack.
5771
5772 ??? Unlike the case above, in which we want the actual
5773 address of the data, so that we can load it directly into a
5774 register, here we want the address of the stack slot, so that
5775 it's properly aligned for word-by-word copying or something
5776 like that. It's not clear that this is always correct. */
5777 if (partial == 0)
5778 arg->value = arg->stack_slot;
5779 }
5780
5781 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5782 {
5783 tree type = TREE_TYPE (arg->tree_value);
5784 arg->parallel_value
5785 = emit_group_load_into_temps (arg->reg, arg->value, type,
5786 int_size_in_bytes (type));
5787 }
5788
5789 /* Mark all slots this store used. */
5790 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5791 && argblock && ! variable_size && arg->stack)
5792 mark_stack_region_used (lower_bound, upper_bound);
5793
5794 /* Once we have pushed something, pops can't safely
5795 be deferred during the rest of the arguments. */
5796 NO_DEFER_POP;
5797
5798 /* Free any temporary slots made in processing this argument. */
5799 pop_temp_slots ();
5800
5801 return sibcall_failure;
5802 }
5803
5804 /* Nonzero if we do not know how to pass TYPE solely in registers. */
5805
5806 bool
5807 must_pass_in_stack_var_size (machine_mode mode ATTRIBUTE_UNUSED,
5808 const_tree type)
5809 {
5810 if (!type)
5811 return false;
5812
5813 /* If the type has variable size... */
5814 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5815 return true;
5816
5817 /* If the type is marked as addressable (it is required
5818 to be constructed into the stack)... */
5819 if (TREE_ADDRESSABLE (type))
5820 return true;
5821
5822 return false;
5823 }
5824
5825 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5826 takes trailing padding of a structure into account. */
5827 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5828
5829 bool
5830 must_pass_in_stack_var_size_or_pad (machine_mode mode, const_tree type)
5831 {
5832 if (!type)
5833 return false;
5834
5835 /* If the type has variable size... */
5836 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5837 return true;
5838
5839 /* If the type is marked as addressable (it is required
5840 to be constructed into the stack)... */
5841 if (TREE_ADDRESSABLE (type))
5842 return true;
5843
5844 if (TYPE_EMPTY_P (type))
5845 return false;
5846
5847 /* If the padding and mode of the type is such that a copy into
5848 a register would put it into the wrong part of the register. */
5849 if (mode == BLKmode
5850 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5851 && (targetm.calls.function_arg_padding (mode, type)
5852 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5853 return true;
5854
5855 return false;
5856 }
5857
5858 /* Tell the garbage collector about GTY markers in this source file. */
5859 #include "gt-calls.h"