]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
Fix mismatched precisions in tree arithmetic
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-chkp.h"
51 #include "tree-vrp.h"
52 #include "tree-ssanames.h"
53 #include "rtl-chkp.h"
54 #include "intl.h"
55 #include "stringpool.h"
56 #include "attribs.h"
57
58 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
59 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
60
61 /* Data structure and subroutines used within expand_call. */
62
63 struct arg_data
64 {
65 /* Tree node for this argument. */
66 tree tree_value;
67 /* Mode for value; TYPE_MODE unless promoted. */
68 machine_mode mode;
69 /* Current RTL value for argument, or 0 if it isn't precomputed. */
70 rtx value;
71 /* Initially-compute RTL value for argument; only for const functions. */
72 rtx initial_value;
73 /* Register to pass this argument in, 0 if passed on stack, or an
74 PARALLEL if the arg is to be copied into multiple non-contiguous
75 registers. */
76 rtx reg;
77 /* Register to pass this argument in when generating tail call sequence.
78 This is not the same register as for normal calls on machines with
79 register windows. */
80 rtx tail_call_reg;
81 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
82 form for emit_group_move. */
83 rtx parallel_value;
84 /* If value is passed in neither reg nor stack, this field holds a number
85 of a special slot to be used. */
86 rtx special_slot;
87 /* For pointer bounds hold an index of parm bounds are bound to. -1 if
88 there is no such pointer. */
89 int pointer_arg;
90 /* If pointer_arg refers a structure, then pointer_offset holds an offset
91 of a pointer in this structure. */
92 int pointer_offset;
93 /* If REG was promoted from the actual mode of the argument expression,
94 indicates whether the promotion is sign- or zero-extended. */
95 int unsignedp;
96 /* Number of bytes to put in registers. 0 means put the whole arg
97 in registers. Also 0 if not passed in registers. */
98 int partial;
99 /* Nonzero if argument must be passed on stack.
100 Note that some arguments may be passed on the stack
101 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
102 pass_on_stack identifies arguments that *cannot* go in registers. */
103 int pass_on_stack;
104 /* Some fields packaged up for locate_and_pad_parm. */
105 struct locate_and_pad_arg_data locate;
106 /* Location on the stack at which parameter should be stored. The store
107 has already been done if STACK == VALUE. */
108 rtx stack;
109 /* Location on the stack of the start of this argument slot. This can
110 differ from STACK if this arg pads downward. This location is known
111 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
112 rtx stack_slot;
113 /* Place that this stack area has been saved, if needed. */
114 rtx save_area;
115 /* If an argument's alignment does not permit direct copying into registers,
116 copy in smaller-sized pieces into pseudos. These are stored in a
117 block pointed to by this field. The next field says how many
118 word-sized pseudos we made. */
119 rtx *aligned_regs;
120 int n_aligned_regs;
121 };
122
123 /* A vector of one char per byte of stack space. A byte if nonzero if
124 the corresponding stack location has been used.
125 This vector is used to prevent a function call within an argument from
126 clobbering any stack already set up. */
127 static char *stack_usage_map;
128
129 /* Size of STACK_USAGE_MAP. */
130 static int highest_outgoing_arg_in_use;
131
132 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
133 stack location's tail call argument has been already stored into the stack.
134 This bitmap is used to prevent sibling call optimization if function tries
135 to use parent's incoming argument slots when they have been already
136 overwritten with tail call arguments. */
137 static sbitmap stored_args_map;
138
139 /* stack_arg_under_construction is nonzero when an argument may be
140 initialized with a constructor call (including a C function that
141 returns a BLKmode struct) and expand_call must take special action
142 to make sure the object being constructed does not overlap the
143 argument list for the constructor call. */
144 static int stack_arg_under_construction;
145
146 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
147 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
148 cumulative_args_t);
149 static void precompute_register_parameters (int, struct arg_data *, int *);
150 static void store_bounds (struct arg_data *, struct arg_data *);
151 static int store_one_arg (struct arg_data *, rtx, int, int, int);
152 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
153 static int finalize_must_preallocate (int, int, struct arg_data *,
154 struct args_size *);
155 static void precompute_arguments (int, struct arg_data *);
156 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
157 static void initialize_argument_information (int, struct arg_data *,
158 struct args_size *, int,
159 tree, tree,
160 tree, tree, cumulative_args_t, int,
161 rtx *, int *, int *, int *,
162 bool *, bool);
163 static void compute_argument_addresses (struct arg_data *, rtx, int);
164 static rtx rtx_for_function_call (tree, tree);
165 static void load_register_parameters (struct arg_data *, int, rtx *, int,
166 int, int *);
167 static int special_function_p (const_tree, int);
168 static int check_sibcall_argument_overlap_1 (rtx);
169 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
170
171 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
172 unsigned int);
173 static tree split_complex_types (tree);
174
175 #ifdef REG_PARM_STACK_SPACE
176 static rtx save_fixed_argument_area (int, rtx, int *, int *);
177 static void restore_fixed_argument_area (rtx, rtx, int, int);
178 #endif
179 \f
180 /* Force FUNEXP into a form suitable for the address of a CALL,
181 and return that as an rtx. Also load the static chain register
182 if FNDECL is a nested function.
183
184 CALL_FUSAGE points to a variable holding the prospective
185 CALL_INSN_FUNCTION_USAGE information. */
186
187 rtx
188 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
189 rtx *call_fusage, int reg_parm_seen, int flags)
190 {
191 /* Make a valid memory address and copy constants through pseudo-regs,
192 but not for a constant address if -fno-function-cse. */
193 if (GET_CODE (funexp) != SYMBOL_REF)
194 {
195 /* If it's an indirect call by descriptor, generate code to perform
196 runtime identification of the pointer and load the descriptor. */
197 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
198 {
199 const int bit_val = targetm.calls.custom_function_descriptors;
200 rtx call_lab = gen_label_rtx ();
201
202 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
203 fndecl_or_type
204 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
205 fndecl_or_type);
206 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
207 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
208
209 if (GET_MODE (funexp) != Pmode)
210 funexp = convert_memory_address (Pmode, funexp);
211
212 /* Avoid long live ranges around function calls. */
213 funexp = copy_to_mode_reg (Pmode, funexp);
214
215 if (REG_P (chain))
216 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
217
218 /* Emit the runtime identification pattern. */
219 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
220 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
221 call_lab);
222
223 /* Statically predict the branch to very likely taken. */
224 rtx_insn *insn = get_last_insn ();
225 if (JUMP_P (insn))
226 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
227
228 /* Load the descriptor. */
229 rtx mem = gen_rtx_MEM (ptr_mode,
230 plus_constant (Pmode, funexp, - bit_val));
231 MEM_NOTRAP_P (mem) = 1;
232 mem = convert_memory_address (Pmode, mem);
233 emit_move_insn (chain, mem);
234
235 mem = gen_rtx_MEM (ptr_mode,
236 plus_constant (Pmode, funexp,
237 POINTER_SIZE / BITS_PER_UNIT
238 - bit_val));
239 MEM_NOTRAP_P (mem) = 1;
240 mem = convert_memory_address (Pmode, mem);
241 emit_move_insn (funexp, mem);
242
243 emit_label (call_lab);
244
245 if (REG_P (chain))
246 {
247 use_reg (call_fusage, chain);
248 STATIC_CHAIN_REG_P (chain) = 1;
249 }
250
251 /* Make sure we're not going to be overwritten below. */
252 gcc_assert (!static_chain_value);
253 }
254
255 /* If we are using registers for parameters, force the
256 function address into a register now. */
257 funexp = ((reg_parm_seen
258 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
259 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
260 : memory_address (FUNCTION_MODE, funexp));
261 }
262 else
263 {
264 /* funexp could be a SYMBOL_REF represents a function pointer which is
265 of ptr_mode. In this case, it should be converted into address mode
266 to be a valid address for memory rtx pattern. See PR 64971. */
267 if (GET_MODE (funexp) != Pmode)
268 funexp = convert_memory_address (Pmode, funexp);
269
270 if (!(flags & ECF_SIBCALL))
271 {
272 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
273 funexp = force_reg (Pmode, funexp);
274 }
275 }
276
277 if (static_chain_value != 0
278 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
279 || DECL_STATIC_CHAIN (fndecl_or_type)))
280 {
281 rtx chain;
282
283 chain = targetm.calls.static_chain (fndecl_or_type, false);
284 static_chain_value = convert_memory_address (Pmode, static_chain_value);
285
286 emit_move_insn (chain, static_chain_value);
287 if (REG_P (chain))
288 {
289 use_reg (call_fusage, chain);
290 STATIC_CHAIN_REG_P (chain) = 1;
291 }
292 }
293
294 return funexp;
295 }
296
297 /* Generate instructions to call function FUNEXP,
298 and optionally pop the results.
299 The CALL_INSN is the first insn generated.
300
301 FNDECL is the declaration node of the function. This is given to the
302 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
303 its own args.
304
305 FUNTYPE is the data type of the function. This is given to the hook
306 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
307 own args. We used to allow an identifier for library functions, but
308 that doesn't work when the return type is an aggregate type and the
309 calling convention says that the pointer to this aggregate is to be
310 popped by the callee.
311
312 STACK_SIZE is the number of bytes of arguments on the stack,
313 ROUNDED_STACK_SIZE is that number rounded up to
314 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
315 both to put into the call insn and to generate explicit popping
316 code if necessary.
317
318 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
319 It is zero if this call doesn't want a structure value.
320
321 NEXT_ARG_REG is the rtx that results from executing
322 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
323 just after all the args have had their registers assigned.
324 This could be whatever you like, but normally it is the first
325 arg-register beyond those used for args in this call,
326 or 0 if all the arg-registers are used in this call.
327 It is passed on to `gen_call' so you can put this info in the call insn.
328
329 VALREG is a hard register in which a value is returned,
330 or 0 if the call does not return a value.
331
332 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
333 the args to this call were processed.
334 We restore `inhibit_defer_pop' to that value.
335
336 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
337 denote registers used by the called function. */
338
339 static void
340 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
341 tree funtype ATTRIBUTE_UNUSED,
342 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
343 HOST_WIDE_INT rounded_stack_size,
344 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
345 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
346 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
347 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
348 {
349 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
350 rtx call, funmem, pat;
351 int already_popped = 0;
352 HOST_WIDE_INT n_popped = 0;
353
354 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
355 patterns exist). Any popping that the callee does on return will
356 be from our caller's frame rather than ours. */
357 if (!(ecf_flags & ECF_SIBCALL))
358 {
359 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
360
361 #ifdef CALL_POPS_ARGS
362 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
363 #endif
364 }
365
366 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
367 and we don't want to load it into a register as an optimization,
368 because prepare_call_address already did it if it should be done. */
369 if (GET_CODE (funexp) != SYMBOL_REF)
370 funexp = memory_address (FUNCTION_MODE, funexp);
371
372 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
373 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
374 {
375 tree t = fndecl;
376
377 /* Although a built-in FUNCTION_DECL and its non-__builtin
378 counterpart compare equal and get a shared mem_attrs, they
379 produce different dump output in compare-debug compilations,
380 if an entry gets garbage collected in one compilation, then
381 adds a different (but equivalent) entry, while the other
382 doesn't run the garbage collector at the same spot and then
383 shares the mem_attr with the equivalent entry. */
384 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
385 {
386 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
387 if (t2)
388 t = t2;
389 }
390
391 set_mem_expr (funmem, t);
392 }
393 else if (fntree)
394 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
395
396 if (ecf_flags & ECF_SIBCALL)
397 {
398 if (valreg)
399 pat = targetm.gen_sibcall_value (valreg, funmem,
400 rounded_stack_size_rtx,
401 next_arg_reg, NULL_RTX);
402 else
403 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
404 next_arg_reg, GEN_INT (struct_value_size));
405 }
406 /* If the target has "call" or "call_value" insns, then prefer them
407 if no arguments are actually popped. If the target does not have
408 "call" or "call_value" insns, then we must use the popping versions
409 even if the call has no arguments to pop. */
410 else if (n_popped > 0
411 || !(valreg
412 ? targetm.have_call_value ()
413 : targetm.have_call ()))
414 {
415 rtx n_pop = GEN_INT (n_popped);
416
417 /* If this subroutine pops its own args, record that in the call insn
418 if possible, for the sake of frame pointer elimination. */
419
420 if (valreg)
421 pat = targetm.gen_call_value_pop (valreg, funmem,
422 rounded_stack_size_rtx,
423 next_arg_reg, n_pop);
424 else
425 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
426 next_arg_reg, n_pop);
427
428 already_popped = 1;
429 }
430 else
431 {
432 if (valreg)
433 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
434 next_arg_reg, NULL_RTX);
435 else
436 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
437 GEN_INT (struct_value_size));
438 }
439 emit_insn (pat);
440
441 /* Find the call we just emitted. */
442 rtx_call_insn *call_insn = last_call_insn ();
443
444 /* Some target create a fresh MEM instead of reusing the one provided
445 above. Set its MEM_EXPR. */
446 call = get_call_rtx_from (call_insn);
447 if (call
448 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
449 && MEM_EXPR (funmem) != NULL_TREE)
450 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
451
452 /* Mark instrumented calls. */
453 if (call && fntree)
454 CALL_EXPR_WITH_BOUNDS_P (call) = CALL_WITH_BOUNDS_P (fntree);
455
456 /* Put the register usage information there. */
457 add_function_usage_to (call_insn, call_fusage);
458
459 /* If this is a const call, then set the insn's unchanging bit. */
460 if (ecf_flags & ECF_CONST)
461 RTL_CONST_CALL_P (call_insn) = 1;
462
463 /* If this is a pure call, then set the insn's unchanging bit. */
464 if (ecf_flags & ECF_PURE)
465 RTL_PURE_CALL_P (call_insn) = 1;
466
467 /* If this is a const call, then set the insn's unchanging bit. */
468 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
469 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
470
471 /* Create a nothrow REG_EH_REGION note, if needed. */
472 make_reg_eh_region_note (call_insn, ecf_flags, 0);
473
474 if (ecf_flags & ECF_NORETURN)
475 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
476
477 if (ecf_flags & ECF_RETURNS_TWICE)
478 {
479 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
480 cfun->calls_setjmp = 1;
481 }
482
483 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
484
485 /* Restore this now, so that we do defer pops for this call's args
486 if the context of the call as a whole permits. */
487 inhibit_defer_pop = old_inhibit_defer_pop;
488
489 if (n_popped > 0)
490 {
491 if (!already_popped)
492 CALL_INSN_FUNCTION_USAGE (call_insn)
493 = gen_rtx_EXPR_LIST (VOIDmode,
494 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
495 CALL_INSN_FUNCTION_USAGE (call_insn));
496 rounded_stack_size -= n_popped;
497 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
498 stack_pointer_delta -= n_popped;
499
500 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
501
502 /* If popup is needed, stack realign must use DRAP */
503 if (SUPPORTS_STACK_ALIGNMENT)
504 crtl->need_drap = true;
505 }
506 /* For noreturn calls when not accumulating outgoing args force
507 REG_ARGS_SIZE note to prevent crossjumping of calls with different
508 args sizes. */
509 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
510 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
511
512 if (!ACCUMULATE_OUTGOING_ARGS)
513 {
514 /* If returning from the subroutine does not automatically pop the args,
515 we need an instruction to pop them sooner or later.
516 Perhaps do it now; perhaps just record how much space to pop later.
517
518 If returning from the subroutine does pop the args, indicate that the
519 stack pointer will be changed. */
520
521 if (rounded_stack_size != 0)
522 {
523 if (ecf_flags & ECF_NORETURN)
524 /* Just pretend we did the pop. */
525 stack_pointer_delta -= rounded_stack_size;
526 else if (flag_defer_pop && inhibit_defer_pop == 0
527 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
528 pending_stack_adjust += rounded_stack_size;
529 else
530 adjust_stack (rounded_stack_size_rtx);
531 }
532 }
533 /* When we accumulate outgoing args, we must avoid any stack manipulations.
534 Restore the stack pointer to its original value now. Usually
535 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
536 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
537 popping variants of functions exist as well.
538
539 ??? We may optimize similar to defer_pop above, but it is
540 probably not worthwhile.
541
542 ??? It will be worthwhile to enable combine_stack_adjustments even for
543 such machines. */
544 else if (n_popped)
545 anti_adjust_stack (GEN_INT (n_popped));
546 }
547
548 /* Determine if the function identified by FNDECL is one with
549 special properties we wish to know about. Modify FLAGS accordingly.
550
551 For example, if the function might return more than one time (setjmp), then
552 set ECF_RETURNS_TWICE.
553
554 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
555 space from the stack such as alloca. */
556
557 static int
558 special_function_p (const_tree fndecl, int flags)
559 {
560 tree name_decl = DECL_NAME (fndecl);
561
562 /* For instrumentation clones we want to derive flags
563 from the original name. */
564 if (cgraph_node::get (fndecl)
565 && cgraph_node::get (fndecl)->instrumentation_clone)
566 name_decl = DECL_NAME (cgraph_node::get (fndecl)->orig_decl);
567
568 if (fndecl && name_decl
569 && IDENTIFIER_LENGTH (name_decl) <= 11
570 /* Exclude functions not at the file scope, or not `extern',
571 since they are not the magic functions we would otherwise
572 think they are.
573 FIXME: this should be handled with attributes, not with this
574 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
575 because you can declare fork() inside a function if you
576 wish. */
577 && (DECL_CONTEXT (fndecl) == NULL_TREE
578 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
579 && TREE_PUBLIC (fndecl))
580 {
581 const char *name = IDENTIFIER_POINTER (name_decl);
582 const char *tname = name;
583
584 /* We assume that alloca will always be called by name. It
585 makes no sense to pass it as a pointer-to-function to
586 anything that does not understand its behavior. */
587 if (IDENTIFIER_LENGTH (name_decl) == 6
588 && name[0] == 'a'
589 && ! strcmp (name, "alloca"))
590 flags |= ECF_MAY_BE_ALLOCA;
591
592 /* Disregard prefix _ or __. */
593 if (name[0] == '_')
594 {
595 if (name[1] == '_')
596 tname += 2;
597 else
598 tname += 1;
599 }
600
601 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
602 if (! strcmp (tname, "setjmp")
603 || ! strcmp (tname, "sigsetjmp")
604 || ! strcmp (name, "savectx")
605 || ! strcmp (name, "vfork")
606 || ! strcmp (name, "getcontext"))
607 flags |= ECF_RETURNS_TWICE;
608 }
609
610 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
611 switch (DECL_FUNCTION_CODE (fndecl))
612 {
613 case BUILT_IN_ALLOCA:
614 case BUILT_IN_ALLOCA_WITH_ALIGN:
615 flags |= ECF_MAY_BE_ALLOCA;
616 break;
617 default:
618 break;
619 }
620
621 return flags;
622 }
623
624 /* Similar to special_function_p; return a set of ERF_ flags for the
625 function FNDECL. */
626 static int
627 decl_return_flags (tree fndecl)
628 {
629 tree attr;
630 tree type = TREE_TYPE (fndecl);
631 if (!type)
632 return 0;
633
634 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
635 if (!attr)
636 return 0;
637
638 attr = TREE_VALUE (TREE_VALUE (attr));
639 if (!attr || TREE_STRING_LENGTH (attr) < 1)
640 return 0;
641
642 switch (TREE_STRING_POINTER (attr)[0])
643 {
644 case '1':
645 case '2':
646 case '3':
647 case '4':
648 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
649
650 case 'm':
651 return ERF_NOALIAS;
652
653 case '.':
654 default:
655 return 0;
656 }
657 }
658
659 /* Return nonzero when FNDECL represents a call to setjmp. */
660
661 int
662 setjmp_call_p (const_tree fndecl)
663 {
664 if (DECL_IS_RETURNS_TWICE (fndecl))
665 return ECF_RETURNS_TWICE;
666 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
667 }
668
669
670 /* Return true if STMT may be an alloca call. */
671
672 bool
673 gimple_maybe_alloca_call_p (const gimple *stmt)
674 {
675 tree fndecl;
676
677 if (!is_gimple_call (stmt))
678 return false;
679
680 fndecl = gimple_call_fndecl (stmt);
681 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
682 return true;
683
684 return false;
685 }
686
687 /* Return true if STMT is a builtin alloca call. */
688
689 bool
690 gimple_alloca_call_p (const gimple *stmt)
691 {
692 tree fndecl;
693
694 if (!is_gimple_call (stmt))
695 return false;
696
697 fndecl = gimple_call_fndecl (stmt);
698 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
699 switch (DECL_FUNCTION_CODE (fndecl))
700 {
701 case BUILT_IN_ALLOCA:
702 case BUILT_IN_ALLOCA_WITH_ALIGN:
703 return true;
704 default:
705 break;
706 }
707
708 return false;
709 }
710
711 /* Return true when exp contains a builtin alloca call. */
712
713 bool
714 alloca_call_p (const_tree exp)
715 {
716 tree fndecl;
717 if (TREE_CODE (exp) == CALL_EXPR
718 && (fndecl = get_callee_fndecl (exp))
719 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
720 switch (DECL_FUNCTION_CODE (fndecl))
721 {
722 case BUILT_IN_ALLOCA:
723 case BUILT_IN_ALLOCA_WITH_ALIGN:
724 return true;
725 default:
726 break;
727 }
728
729 return false;
730 }
731
732 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
733 function. Return FALSE otherwise. */
734
735 static bool
736 is_tm_builtin (const_tree fndecl)
737 {
738 if (fndecl == NULL)
739 return false;
740
741 if (decl_is_tm_clone (fndecl))
742 return true;
743
744 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
745 {
746 switch (DECL_FUNCTION_CODE (fndecl))
747 {
748 case BUILT_IN_TM_COMMIT:
749 case BUILT_IN_TM_COMMIT_EH:
750 case BUILT_IN_TM_ABORT:
751 case BUILT_IN_TM_IRREVOCABLE:
752 case BUILT_IN_TM_GETTMCLONE_IRR:
753 case BUILT_IN_TM_MEMCPY:
754 case BUILT_IN_TM_MEMMOVE:
755 case BUILT_IN_TM_MEMSET:
756 CASE_BUILT_IN_TM_STORE (1):
757 CASE_BUILT_IN_TM_STORE (2):
758 CASE_BUILT_IN_TM_STORE (4):
759 CASE_BUILT_IN_TM_STORE (8):
760 CASE_BUILT_IN_TM_STORE (FLOAT):
761 CASE_BUILT_IN_TM_STORE (DOUBLE):
762 CASE_BUILT_IN_TM_STORE (LDOUBLE):
763 CASE_BUILT_IN_TM_STORE (M64):
764 CASE_BUILT_IN_TM_STORE (M128):
765 CASE_BUILT_IN_TM_STORE (M256):
766 CASE_BUILT_IN_TM_LOAD (1):
767 CASE_BUILT_IN_TM_LOAD (2):
768 CASE_BUILT_IN_TM_LOAD (4):
769 CASE_BUILT_IN_TM_LOAD (8):
770 CASE_BUILT_IN_TM_LOAD (FLOAT):
771 CASE_BUILT_IN_TM_LOAD (DOUBLE):
772 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
773 CASE_BUILT_IN_TM_LOAD (M64):
774 CASE_BUILT_IN_TM_LOAD (M128):
775 CASE_BUILT_IN_TM_LOAD (M256):
776 case BUILT_IN_TM_LOG:
777 case BUILT_IN_TM_LOG_1:
778 case BUILT_IN_TM_LOG_2:
779 case BUILT_IN_TM_LOG_4:
780 case BUILT_IN_TM_LOG_8:
781 case BUILT_IN_TM_LOG_FLOAT:
782 case BUILT_IN_TM_LOG_DOUBLE:
783 case BUILT_IN_TM_LOG_LDOUBLE:
784 case BUILT_IN_TM_LOG_M64:
785 case BUILT_IN_TM_LOG_M128:
786 case BUILT_IN_TM_LOG_M256:
787 return true;
788 default:
789 break;
790 }
791 }
792 return false;
793 }
794
795 /* Detect flags (function attributes) from the function decl or type node. */
796
797 int
798 flags_from_decl_or_type (const_tree exp)
799 {
800 int flags = 0;
801
802 if (DECL_P (exp))
803 {
804 /* The function exp may have the `malloc' attribute. */
805 if (DECL_IS_MALLOC (exp))
806 flags |= ECF_MALLOC;
807
808 /* The function exp may have the `returns_twice' attribute. */
809 if (DECL_IS_RETURNS_TWICE (exp))
810 flags |= ECF_RETURNS_TWICE;
811
812 /* Process the pure and const attributes. */
813 if (TREE_READONLY (exp))
814 flags |= ECF_CONST;
815 if (DECL_PURE_P (exp))
816 flags |= ECF_PURE;
817 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
818 flags |= ECF_LOOPING_CONST_OR_PURE;
819
820 if (DECL_IS_NOVOPS (exp))
821 flags |= ECF_NOVOPS;
822 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
823 flags |= ECF_LEAF;
824 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
825 flags |= ECF_COLD;
826
827 if (TREE_NOTHROW (exp))
828 flags |= ECF_NOTHROW;
829
830 if (flag_tm)
831 {
832 if (is_tm_builtin (exp))
833 flags |= ECF_TM_BUILTIN;
834 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
835 || lookup_attribute ("transaction_pure",
836 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
837 flags |= ECF_TM_PURE;
838 }
839
840 flags = special_function_p (exp, flags);
841 }
842 else if (TYPE_P (exp))
843 {
844 if (TYPE_READONLY (exp))
845 flags |= ECF_CONST;
846
847 if (flag_tm
848 && ((flags & ECF_CONST) != 0
849 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
850 flags |= ECF_TM_PURE;
851 }
852 else
853 gcc_unreachable ();
854
855 if (TREE_THIS_VOLATILE (exp))
856 {
857 flags |= ECF_NORETURN;
858 if (flags & (ECF_CONST|ECF_PURE))
859 flags |= ECF_LOOPING_CONST_OR_PURE;
860 }
861
862 return flags;
863 }
864
865 /* Detect flags from a CALL_EXPR. */
866
867 int
868 call_expr_flags (const_tree t)
869 {
870 int flags;
871 tree decl = get_callee_fndecl (t);
872
873 if (decl)
874 flags = flags_from_decl_or_type (decl);
875 else if (CALL_EXPR_FN (t) == NULL_TREE)
876 flags = internal_fn_flags (CALL_EXPR_IFN (t));
877 else
878 {
879 tree type = TREE_TYPE (CALL_EXPR_FN (t));
880 if (type && TREE_CODE (type) == POINTER_TYPE)
881 flags = flags_from_decl_or_type (TREE_TYPE (type));
882 else
883 flags = 0;
884 if (CALL_EXPR_BY_DESCRIPTOR (t))
885 flags |= ECF_BY_DESCRIPTOR;
886 }
887
888 return flags;
889 }
890
891 /* Return true if TYPE should be passed by invisible reference. */
892
893 bool
894 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
895 tree type, bool named_arg)
896 {
897 if (type)
898 {
899 /* If this type contains non-trivial constructors, then it is
900 forbidden for the middle-end to create any new copies. */
901 if (TREE_ADDRESSABLE (type))
902 return true;
903
904 /* GCC post 3.4 passes *all* variable sized types by reference. */
905 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
906 return true;
907
908 /* If a record type should be passed the same as its first (and only)
909 member, use the type and mode of that member. */
910 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
911 {
912 type = TREE_TYPE (first_field (type));
913 mode = TYPE_MODE (type);
914 }
915 }
916
917 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
918 type, named_arg);
919 }
920
921 /* Return true if TYPE, which is passed by reference, should be callee
922 copied instead of caller copied. */
923
924 bool
925 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
926 tree type, bool named_arg)
927 {
928 if (type && TREE_ADDRESSABLE (type))
929 return false;
930 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
931 named_arg);
932 }
933
934
935 /* Precompute all register parameters as described by ARGS, storing values
936 into fields within the ARGS array.
937
938 NUM_ACTUALS indicates the total number elements in the ARGS array.
939
940 Set REG_PARM_SEEN if we encounter a register parameter. */
941
942 static void
943 precompute_register_parameters (int num_actuals, struct arg_data *args,
944 int *reg_parm_seen)
945 {
946 int i;
947
948 *reg_parm_seen = 0;
949
950 for (i = 0; i < num_actuals; i++)
951 if (args[i].reg != 0 && ! args[i].pass_on_stack)
952 {
953 *reg_parm_seen = 1;
954
955 if (args[i].value == 0)
956 {
957 push_temp_slots ();
958 args[i].value = expand_normal (args[i].tree_value);
959 preserve_temp_slots (args[i].value);
960 pop_temp_slots ();
961 }
962
963 /* If we are to promote the function arg to a wider mode,
964 do it now. */
965
966 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
967 args[i].value
968 = convert_modes (args[i].mode,
969 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
970 args[i].value, args[i].unsignedp);
971
972 /* If the value is a non-legitimate constant, force it into a
973 pseudo now. TLS symbols sometimes need a call to resolve. */
974 if (CONSTANT_P (args[i].value)
975 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
976 args[i].value = force_reg (args[i].mode, args[i].value);
977
978 /* If we're going to have to load the value by parts, pull the
979 parts into pseudos. The part extraction process can involve
980 non-trivial computation. */
981 if (GET_CODE (args[i].reg) == PARALLEL)
982 {
983 tree type = TREE_TYPE (args[i].tree_value);
984 args[i].parallel_value
985 = emit_group_load_into_temps (args[i].reg, args[i].value,
986 type, int_size_in_bytes (type));
987 }
988
989 /* If the value is expensive, and we are inside an appropriately
990 short loop, put the value into a pseudo and then put the pseudo
991 into the hard reg.
992
993 For small register classes, also do this if this call uses
994 register parameters. This is to avoid reload conflicts while
995 loading the parameters registers. */
996
997 else if ((! (REG_P (args[i].value)
998 || (GET_CODE (args[i].value) == SUBREG
999 && REG_P (SUBREG_REG (args[i].value)))))
1000 && args[i].mode != BLKmode
1001 && (set_src_cost (args[i].value, args[i].mode,
1002 optimize_insn_for_speed_p ())
1003 > COSTS_N_INSNS (1))
1004 && ((*reg_parm_seen
1005 && targetm.small_register_classes_for_mode_p (args[i].mode))
1006 || optimize))
1007 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1008 }
1009 }
1010
1011 #ifdef REG_PARM_STACK_SPACE
1012
1013 /* The argument list is the property of the called routine and it
1014 may clobber it. If the fixed area has been used for previous
1015 parameters, we must save and restore it. */
1016
1017 static rtx
1018 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1019 {
1020 int low;
1021 int high;
1022
1023 /* Compute the boundary of the area that needs to be saved, if any. */
1024 high = reg_parm_stack_space;
1025 if (ARGS_GROW_DOWNWARD)
1026 high += 1;
1027
1028 if (high > highest_outgoing_arg_in_use)
1029 high = highest_outgoing_arg_in_use;
1030
1031 for (low = 0; low < high; low++)
1032 if (stack_usage_map[low] != 0)
1033 {
1034 int num_to_save;
1035 machine_mode save_mode;
1036 int delta;
1037 rtx addr;
1038 rtx stack_area;
1039 rtx save_area;
1040
1041 while (stack_usage_map[--high] == 0)
1042 ;
1043
1044 *low_to_save = low;
1045 *high_to_save = high;
1046
1047 num_to_save = high - low + 1;
1048
1049 /* If we don't have the required alignment, must do this
1050 in BLKmode. */
1051 scalar_int_mode imode;
1052 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1053 && (low & (MIN (GET_MODE_SIZE (imode),
1054 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1055 save_mode = imode;
1056 else
1057 save_mode = BLKmode;
1058
1059 if (ARGS_GROW_DOWNWARD)
1060 delta = -high;
1061 else
1062 delta = low;
1063
1064 addr = plus_constant (Pmode, argblock, delta);
1065 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1066
1067 set_mem_align (stack_area, PARM_BOUNDARY);
1068 if (save_mode == BLKmode)
1069 {
1070 save_area = assign_stack_temp (BLKmode, num_to_save);
1071 emit_block_move (validize_mem (save_area), stack_area,
1072 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1073 }
1074 else
1075 {
1076 save_area = gen_reg_rtx (save_mode);
1077 emit_move_insn (save_area, stack_area);
1078 }
1079
1080 return save_area;
1081 }
1082
1083 return NULL_RTX;
1084 }
1085
1086 static void
1087 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1088 {
1089 machine_mode save_mode = GET_MODE (save_area);
1090 int delta;
1091 rtx addr, stack_area;
1092
1093 if (ARGS_GROW_DOWNWARD)
1094 delta = -high_to_save;
1095 else
1096 delta = low_to_save;
1097
1098 addr = plus_constant (Pmode, argblock, delta);
1099 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1100 set_mem_align (stack_area, PARM_BOUNDARY);
1101
1102 if (save_mode != BLKmode)
1103 emit_move_insn (stack_area, save_area);
1104 else
1105 emit_block_move (stack_area, validize_mem (save_area),
1106 GEN_INT (high_to_save - low_to_save + 1),
1107 BLOCK_OP_CALL_PARM);
1108 }
1109 #endif /* REG_PARM_STACK_SPACE */
1110
1111 /* If any elements in ARGS refer to parameters that are to be passed in
1112 registers, but not in memory, and whose alignment does not permit a
1113 direct copy into registers. Copy the values into a group of pseudos
1114 which we will later copy into the appropriate hard registers.
1115
1116 Pseudos for each unaligned argument will be stored into the array
1117 args[argnum].aligned_regs. The caller is responsible for deallocating
1118 the aligned_regs array if it is nonzero. */
1119
1120 static void
1121 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1122 {
1123 int i, j;
1124
1125 for (i = 0; i < num_actuals; i++)
1126 if (args[i].reg != 0 && ! args[i].pass_on_stack
1127 && GET_CODE (args[i].reg) != PARALLEL
1128 && args[i].mode == BLKmode
1129 && MEM_P (args[i].value)
1130 && (MEM_ALIGN (args[i].value)
1131 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1132 {
1133 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1134 int endian_correction = 0;
1135
1136 if (args[i].partial)
1137 {
1138 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1139 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1140 }
1141 else
1142 {
1143 args[i].n_aligned_regs
1144 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1145 }
1146
1147 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1148
1149 /* Structures smaller than a word are normally aligned to the
1150 least significant byte. On a BYTES_BIG_ENDIAN machine,
1151 this means we must skip the empty high order bytes when
1152 calculating the bit offset. */
1153 if (bytes < UNITS_PER_WORD
1154 #ifdef BLOCK_REG_PADDING
1155 && (BLOCK_REG_PADDING (args[i].mode,
1156 TREE_TYPE (args[i].tree_value), 1)
1157 == PAD_DOWNWARD)
1158 #else
1159 && BYTES_BIG_ENDIAN
1160 #endif
1161 )
1162 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1163
1164 for (j = 0; j < args[i].n_aligned_regs; j++)
1165 {
1166 rtx reg = gen_reg_rtx (word_mode);
1167 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1168 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1169
1170 args[i].aligned_regs[j] = reg;
1171 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1172 word_mode, word_mode, false, NULL);
1173
1174 /* There is no need to restrict this code to loading items
1175 in TYPE_ALIGN sized hunks. The bitfield instructions can
1176 load up entire word sized registers efficiently.
1177
1178 ??? This may not be needed anymore.
1179 We use to emit a clobber here but that doesn't let later
1180 passes optimize the instructions we emit. By storing 0 into
1181 the register later passes know the first AND to zero out the
1182 bitfield being set in the register is unnecessary. The store
1183 of 0 will be deleted as will at least the first AND. */
1184
1185 emit_move_insn (reg, const0_rtx);
1186
1187 bytes -= bitsize / BITS_PER_UNIT;
1188 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1189 word_mode, word, false);
1190 }
1191 }
1192 }
1193
1194 /* The limit set by -Walloc-larger-than=. */
1195 static GTY(()) tree alloc_object_size_limit;
1196
1197 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1198 setting if the option is specified, or to the maximum object size if it
1199 is not. Return the initialized value. */
1200
1201 static tree
1202 alloc_max_size (void)
1203 {
1204 if (!alloc_object_size_limit)
1205 {
1206 alloc_object_size_limit = TYPE_MAX_VALUE (ssizetype);
1207
1208 if (warn_alloc_size_limit)
1209 {
1210 char *end = NULL;
1211 errno = 0;
1212 unsigned HOST_WIDE_INT unit = 1;
1213 unsigned HOST_WIDE_INT limit
1214 = strtoull (warn_alloc_size_limit, &end, 10);
1215
1216 if (!errno)
1217 {
1218 if (end && *end)
1219 {
1220 /* Numeric option arguments are at most INT_MAX. Make it
1221 possible to specify a larger value by accepting common
1222 suffixes. */
1223 if (!strcmp (end, "kB"))
1224 unit = 1000;
1225 else if (!strcasecmp (end, "KiB") || strcmp (end, "KB"))
1226 unit = 1024;
1227 else if (!strcmp (end, "MB"))
1228 unit = HOST_WIDE_INT_UC (1000) * 1000;
1229 else if (!strcasecmp (end, "MiB"))
1230 unit = HOST_WIDE_INT_UC (1024) * 1024;
1231 else if (!strcasecmp (end, "GB"))
1232 unit = HOST_WIDE_INT_UC (1000) * 1000 * 1000;
1233 else if (!strcasecmp (end, "GiB"))
1234 unit = HOST_WIDE_INT_UC (1024) * 1024 * 1024;
1235 else if (!strcasecmp (end, "TB"))
1236 unit = HOST_WIDE_INT_UC (1000) * 1000 * 1000 * 1000;
1237 else if (!strcasecmp (end, "TiB"))
1238 unit = HOST_WIDE_INT_UC (1024) * 1024 * 1024 * 1024;
1239 else if (!strcasecmp (end, "PB"))
1240 unit = HOST_WIDE_INT_UC (1000) * 1000 * 1000 * 1000 * 1000;
1241 else if (!strcasecmp (end, "PiB"))
1242 unit = HOST_WIDE_INT_UC (1024) * 1024 * 1024 * 1024 * 1024;
1243 else if (!strcasecmp (end, "EB"))
1244 unit = HOST_WIDE_INT_UC (1000) * 1000 * 1000 * 1000 * 1000
1245 * 1000;
1246 else if (!strcasecmp (end, "EiB"))
1247 unit = HOST_WIDE_INT_UC (1024) * 1024 * 1024 * 1024 * 1024
1248 * 1024;
1249 else
1250 unit = 0;
1251 }
1252
1253 if (unit)
1254 {
1255 widest_int w = wi::mul (limit, unit);
1256 if (w < wi::to_widest (alloc_object_size_limit))
1257 alloc_object_size_limit = wide_int_to_tree (ssizetype, w);
1258 }
1259 }
1260 }
1261 }
1262 return alloc_object_size_limit;
1263 }
1264
1265 /* Return true when EXP's range can be determined and set RANGE[] to it
1266 after adjusting it if necessary to make EXP a valid size argument to
1267 an allocation function declared with attribute alloc_size (whose
1268 argument may be signed), or to a string manipulation function like
1269 memset. */
1270
1271 bool
1272 get_size_range (tree exp, tree range[2])
1273 {
1274 if (tree_fits_uhwi_p (exp))
1275 {
1276 /* EXP is a constant. */
1277 range[0] = range[1] = exp;
1278 return true;
1279 }
1280
1281 wide_int min, max;
1282 enum value_range_type range_type
1283 = ((TREE_CODE (exp) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (exp)))
1284 ? get_range_info (exp, &min, &max) : VR_VARYING);
1285
1286 if (range_type == VR_VARYING)
1287 {
1288 /* No range information available. */
1289 range[0] = NULL_TREE;
1290 range[1] = NULL_TREE;
1291 return false;
1292 }
1293
1294 tree exptype = TREE_TYPE (exp);
1295 unsigned expprec = TYPE_PRECISION (exptype);
1296 wide_int wzero = wi::zero (expprec);
1297 wide_int wmaxval = wide_int (TYPE_MAX_VALUE (exptype));
1298
1299 bool signed_p = !TYPE_UNSIGNED (exptype);
1300
1301 if (range_type == VR_ANTI_RANGE)
1302 {
1303 if (signed_p)
1304 {
1305 if (wi::les_p (max, wzero))
1306 {
1307 /* EXP is not in a strictly negative range. That means
1308 it must be in some (not necessarily strictly) positive
1309 range which includes zero. Since in signed to unsigned
1310 conversions negative values end up converted to large
1311 positive values, and otherwise they are not valid sizes,
1312 the resulting range is in both cases [0, TYPE_MAX]. */
1313 min = wzero;
1314 max = wmaxval;
1315 }
1316 else if (wi::les_p (min - 1, wzero))
1317 {
1318 /* EXP is not in a negative-positive range. That means EXP
1319 is either negative, or greater than max. Since negative
1320 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1321 min = max + 1;
1322 max = wmaxval;
1323 }
1324 else
1325 {
1326 max = min - 1;
1327 min = wzero;
1328 }
1329 }
1330 else if (wi::eq_p (wzero, min - 1))
1331 {
1332 /* EXP is unsigned and not in the range [1, MAX]. That means
1333 it's either zero or greater than MAX. Even though 0 would
1334 normally be detected by -Walloc-zero set the range to
1335 [MAX, TYPE_MAX] so that when MAX is greater than the limit
1336 the whole range is diagnosed. */
1337 min = max + 1;
1338 max = wmaxval;
1339 }
1340 else
1341 {
1342 max = min - 1;
1343 min = wzero;
1344 }
1345 }
1346
1347 range[0] = wide_int_to_tree (exptype, min);
1348 range[1] = wide_int_to_tree (exptype, max);
1349
1350 return true;
1351 }
1352
1353 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1354 whose argument numbers given by IDX with values given by ARGS exceed
1355 the maximum object size or cause an unsigned oveflow (wrapping) when
1356 multiplied. When ARGS[0] is null the function does nothing. ARGS[1]
1357 may be null for functions like malloc, and non-null for those like
1358 calloc that are decorated with a two-argument attribute alloc_size. */
1359
1360 void
1361 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1362 {
1363 /* The range each of the (up to) two arguments is known to be in. */
1364 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1365
1366 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1367 tree maxobjsize = alloc_max_size ();
1368
1369 location_t loc = EXPR_LOCATION (exp);
1370
1371 bool warned = false;
1372
1373 /* Validate each argument individually. */
1374 for (unsigned i = 0; i != 2 && args[i]; ++i)
1375 {
1376 if (TREE_CODE (args[i]) == INTEGER_CST)
1377 {
1378 argrange[i][0] = args[i];
1379 argrange[i][1] = args[i];
1380
1381 if (tree_int_cst_lt (args[i], integer_zero_node))
1382 {
1383 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1384 "%Kargument %i value %qE is negative",
1385 exp, idx[i] + 1, args[i]);
1386 }
1387 else if (integer_zerop (args[i]))
1388 {
1389 /* Avoid issuing -Walloc-zero for allocation functions other
1390 than __builtin_alloca that are declared with attribute
1391 returns_nonnull because there's no portability risk. This
1392 avoids warning for such calls to libiberty's xmalloc and
1393 friends.
1394 Also avoid issuing the warning for calls to function named
1395 "alloca". */
1396 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_ALLOCA
1397 && IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6)
1398 || (DECL_FUNCTION_CODE (fn) != BUILT_IN_ALLOCA
1399 && !lookup_attribute ("returns_nonnull",
1400 TYPE_ATTRIBUTES (TREE_TYPE (fn)))))
1401 warned = warning_at (loc, OPT_Walloc_zero,
1402 "%Kargument %i value is zero",
1403 exp, idx[i] + 1);
1404 }
1405 else if (tree_int_cst_lt (maxobjsize, args[i]))
1406 {
1407 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1408 mode and with -fno-exceptions as a way to indicate array
1409 size overflow. There's no good way to detect C++98 here
1410 so avoid diagnosing these calls for all C++ modes. */
1411 if (i == 0
1412 && !args[1]
1413 && lang_GNU_CXX ()
1414 && DECL_IS_OPERATOR_NEW (fn)
1415 && integer_all_onesp (args[i]))
1416 continue;
1417
1418 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1419 "%Kargument %i value %qE exceeds "
1420 "maximum object size %E",
1421 exp, idx[i] + 1, args[i], maxobjsize);
1422 }
1423 }
1424 else if (TREE_CODE (args[i]) == SSA_NAME
1425 && get_size_range (args[i], argrange[i]))
1426 {
1427 /* Verify that the argument's range is not negative (including
1428 upper bound of zero). */
1429 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1430 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1431 {
1432 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1433 "%Kargument %i range [%E, %E] is negative",
1434 exp, idx[i] + 1,
1435 argrange[i][0], argrange[i][1]);
1436 }
1437 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1438 {
1439 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1440 "%Kargument %i range [%E, %E] exceeds "
1441 "maximum object size %E",
1442 exp, idx[i] + 1,
1443 argrange[i][0], argrange[i][1],
1444 maxobjsize);
1445 }
1446 }
1447 }
1448
1449 if (!argrange[0])
1450 return;
1451
1452 /* For a two-argument alloc_size, validate the product of the two
1453 arguments if both of their values or ranges are known. */
1454 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1455 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1456 && !integer_onep (argrange[0][0])
1457 && !integer_onep (argrange[1][0]))
1458 {
1459 /* Check for overflow in the product of a function decorated with
1460 attribute alloc_size (X, Y). */
1461 unsigned szprec = TYPE_PRECISION (size_type_node);
1462 wide_int x = wi::to_wide (argrange[0][0], szprec);
1463 wide_int y = wi::to_wide (argrange[1][0], szprec);
1464
1465 bool vflow;
1466 wide_int prod = wi::umul (x, y, &vflow);
1467
1468 if (vflow)
1469 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1470 "%Kproduct %<%E * %E%> of arguments %i and %i "
1471 "exceeds %<SIZE_MAX%>",
1472 exp, argrange[0][0], argrange[1][0],
1473 idx[0] + 1, idx[1] + 1);
1474 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1475 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1476 "%Kproduct %<%E * %E%> of arguments %i and %i "
1477 "exceeds maximum object size %E",
1478 exp, argrange[0][0], argrange[1][0],
1479 idx[0] + 1, idx[1] + 1,
1480 maxobjsize);
1481
1482 if (warned)
1483 {
1484 /* Print the full range of each of the two arguments to make
1485 it clear when it is, in fact, in a range and not constant. */
1486 if (argrange[0][0] != argrange [0][1])
1487 inform (loc, "argument %i in the range [%E, %E]",
1488 idx[0] + 1, argrange[0][0], argrange[0][1]);
1489 if (argrange[1][0] != argrange [1][1])
1490 inform (loc, "argument %i in the range [%E, %E]",
1491 idx[1] + 1, argrange[1][0], argrange[1][1]);
1492 }
1493 }
1494
1495 if (warned)
1496 {
1497 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1498
1499 if (DECL_IS_BUILTIN (fn))
1500 inform (loc,
1501 "in a call to built-in allocation function %qD", fn);
1502 else
1503 inform (fnloc,
1504 "in a call to allocation function %qD declared here", fn);
1505 }
1506 }
1507
1508 /* Issue an error if CALL_EXPR was flagged as requiring
1509 tall-call optimization. */
1510
1511 static void
1512 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1513 {
1514 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1515 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1516 return;
1517
1518 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1519 }
1520
1521 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1522 CALL_EXPR EXP.
1523
1524 NUM_ACTUALS is the total number of parameters.
1525
1526 N_NAMED_ARGS is the total number of named arguments.
1527
1528 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1529 value, or null.
1530
1531 FNDECL is the tree code for the target of this call (if known)
1532
1533 ARGS_SO_FAR holds state needed by the target to know where to place
1534 the next argument.
1535
1536 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1537 for arguments which are passed in registers.
1538
1539 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1540 and may be modified by this routine.
1541
1542 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1543 flags which may be modified by this routine.
1544
1545 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1546 that requires allocation of stack space.
1547
1548 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1549 the thunked-to function. */
1550
1551 static void
1552 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1553 struct arg_data *args,
1554 struct args_size *args_size,
1555 int n_named_args ATTRIBUTE_UNUSED,
1556 tree exp, tree struct_value_addr_value,
1557 tree fndecl, tree fntype,
1558 cumulative_args_t args_so_far,
1559 int reg_parm_stack_space,
1560 rtx *old_stack_level, int *old_pending_adj,
1561 int *must_preallocate, int *ecf_flags,
1562 bool *may_tailcall, bool call_from_thunk_p)
1563 {
1564 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1565 location_t loc = EXPR_LOCATION (exp);
1566
1567 /* Count arg position in order args appear. */
1568 int argpos;
1569
1570 int i;
1571
1572 args_size->constant = 0;
1573 args_size->var = 0;
1574
1575 bitmap_obstack_initialize (NULL);
1576
1577 /* In this loop, we consider args in the order they are written.
1578 We fill up ARGS from the back. */
1579
1580 i = num_actuals - 1;
1581 {
1582 int j = i, ptr_arg = -1;
1583 call_expr_arg_iterator iter;
1584 tree arg;
1585 bitmap slots = NULL;
1586
1587 if (struct_value_addr_value)
1588 {
1589 args[j].tree_value = struct_value_addr_value;
1590 j--;
1591
1592 /* If we pass structure address then we need to
1593 create bounds for it. Since created bounds is
1594 a call statement, we expand it right here to avoid
1595 fixing all other places where it may be expanded. */
1596 if (CALL_WITH_BOUNDS_P (exp))
1597 {
1598 args[j].value = gen_reg_rtx (targetm.chkp_bound_mode ());
1599 args[j].tree_value
1600 = chkp_make_bounds_for_struct_addr (struct_value_addr_value);
1601 expand_expr_real (args[j].tree_value, args[j].value, VOIDmode,
1602 EXPAND_NORMAL, 0, false);
1603 args[j].pointer_arg = j + 1;
1604 j--;
1605 }
1606 }
1607 argpos = 0;
1608 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1609 {
1610 tree argtype = TREE_TYPE (arg);
1611
1612 /* Remember last param with pointer and associate it
1613 with following pointer bounds. */
1614 if (CALL_WITH_BOUNDS_P (exp)
1615 && chkp_type_has_pointer (argtype))
1616 {
1617 if (slots)
1618 BITMAP_FREE (slots);
1619 ptr_arg = j;
1620 if (!BOUNDED_TYPE_P (argtype))
1621 {
1622 slots = BITMAP_ALLOC (NULL);
1623 chkp_find_bound_slots (argtype, slots);
1624 }
1625 }
1626 else if (CALL_WITH_BOUNDS_P (exp)
1627 && pass_by_reference (NULL, TYPE_MODE (argtype), argtype,
1628 argpos < n_named_args))
1629 {
1630 if (slots)
1631 BITMAP_FREE (slots);
1632 ptr_arg = j;
1633 }
1634 else if (POINTER_BOUNDS_TYPE_P (argtype))
1635 {
1636 /* We expect bounds in instrumented calls only.
1637 Otherwise it is a sign we lost flag due to some optimization
1638 and may emit call args incorrectly. */
1639 gcc_assert (CALL_WITH_BOUNDS_P (exp));
1640
1641 /* For structures look for the next available pointer. */
1642 if (ptr_arg != -1 && slots)
1643 {
1644 unsigned bnd_no = bitmap_first_set_bit (slots);
1645 args[j].pointer_offset =
1646 bnd_no * POINTER_SIZE / BITS_PER_UNIT;
1647
1648 bitmap_clear_bit (slots, bnd_no);
1649
1650 /* Check we have no more pointers in the structure. */
1651 if (bitmap_empty_p (slots))
1652 BITMAP_FREE (slots);
1653 }
1654 args[j].pointer_arg = ptr_arg;
1655
1656 /* Check we covered all pointers in the previous
1657 non bounds arg. */
1658 if (!slots)
1659 ptr_arg = -1;
1660 }
1661 else
1662 ptr_arg = -1;
1663
1664 if (targetm.calls.split_complex_arg
1665 && argtype
1666 && TREE_CODE (argtype) == COMPLEX_TYPE
1667 && targetm.calls.split_complex_arg (argtype))
1668 {
1669 tree subtype = TREE_TYPE (argtype);
1670 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1671 j--;
1672 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1673 }
1674 else
1675 args[j].tree_value = arg;
1676 j--;
1677 argpos++;
1678 }
1679
1680 if (slots)
1681 BITMAP_FREE (slots);
1682 }
1683
1684 bitmap_obstack_release (NULL);
1685
1686 /* Extract attribute alloc_size and if set, store the indices of
1687 the corresponding arguments in ALLOC_IDX, and then the actual
1688 argument(s) at those indices in ALLOC_ARGS. */
1689 int alloc_idx[2] = { -1, -1 };
1690 if (tree alloc_size
1691 = (fndecl ? lookup_attribute ("alloc_size",
1692 TYPE_ATTRIBUTES (TREE_TYPE (fndecl)))
1693 : NULL_TREE))
1694 {
1695 tree args = TREE_VALUE (alloc_size);
1696 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
1697 if (TREE_CHAIN (args))
1698 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
1699 }
1700
1701 /* Array for up to the two attribute alloc_size arguments. */
1702 tree alloc_args[] = { NULL_TREE, NULL_TREE };
1703
1704 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1705 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1706 {
1707 tree type = TREE_TYPE (args[i].tree_value);
1708 int unsignedp;
1709 machine_mode mode;
1710
1711 /* Replace erroneous argument with constant zero. */
1712 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1713 args[i].tree_value = integer_zero_node, type = integer_type_node;
1714
1715 /* If TYPE is a transparent union or record, pass things the way
1716 we would pass the first field of the union or record. We have
1717 already verified that the modes are the same. */
1718 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1719 && TYPE_TRANSPARENT_AGGR (type))
1720 type = TREE_TYPE (first_field (type));
1721
1722 /* Decide where to pass this arg.
1723
1724 args[i].reg is nonzero if all or part is passed in registers.
1725
1726 args[i].partial is nonzero if part but not all is passed in registers,
1727 and the exact value says how many bytes are passed in registers.
1728
1729 args[i].pass_on_stack is nonzero if the argument must at least be
1730 computed on the stack. It may then be loaded back into registers
1731 if args[i].reg is nonzero.
1732
1733 These decisions are driven by the FUNCTION_... macros and must agree
1734 with those made by function.c. */
1735
1736 /* See if this argument should be passed by invisible reference. */
1737 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1738 type, argpos < n_named_args))
1739 {
1740 bool callee_copies;
1741 tree base = NULL_TREE;
1742
1743 callee_copies
1744 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1745 type, argpos < n_named_args);
1746
1747 /* If we're compiling a thunk, pass through invisible references
1748 instead of making a copy. */
1749 if (call_from_thunk_p
1750 || (callee_copies
1751 && !TREE_ADDRESSABLE (type)
1752 && (base = get_base_address (args[i].tree_value))
1753 && TREE_CODE (base) != SSA_NAME
1754 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1755 {
1756 /* We may have turned the parameter value into an SSA name.
1757 Go back to the original parameter so we can take the
1758 address. */
1759 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
1760 {
1761 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
1762 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
1763 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
1764 }
1765 /* Argument setup code may have copied the value to register. We
1766 revert that optimization now because the tail call code must
1767 use the original location. */
1768 if (TREE_CODE (args[i].tree_value) == PARM_DECL
1769 && !MEM_P (DECL_RTL (args[i].tree_value))
1770 && DECL_INCOMING_RTL (args[i].tree_value)
1771 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
1772 set_decl_rtl (args[i].tree_value,
1773 DECL_INCOMING_RTL (args[i].tree_value));
1774
1775 mark_addressable (args[i].tree_value);
1776
1777 /* We can't use sibcalls if a callee-copied argument is
1778 stored in the current function's frame. */
1779 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1780 {
1781 *may_tailcall = false;
1782 maybe_complain_about_tail_call (exp,
1783 "a callee-copied argument is"
1784 " stored in the current "
1785 " function's frame");
1786 }
1787
1788 args[i].tree_value = build_fold_addr_expr_loc (loc,
1789 args[i].tree_value);
1790 type = TREE_TYPE (args[i].tree_value);
1791
1792 if (*ecf_flags & ECF_CONST)
1793 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1794 }
1795 else
1796 {
1797 /* We make a copy of the object and pass the address to the
1798 function being called. */
1799 rtx copy;
1800
1801 if (!COMPLETE_TYPE_P (type)
1802 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1803 || (flag_stack_check == GENERIC_STACK_CHECK
1804 && compare_tree_int (TYPE_SIZE_UNIT (type),
1805 STACK_CHECK_MAX_VAR_SIZE) > 0))
1806 {
1807 /* This is a variable-sized object. Make space on the stack
1808 for it. */
1809 rtx size_rtx = expr_size (args[i].tree_value);
1810
1811 if (*old_stack_level == 0)
1812 {
1813 emit_stack_save (SAVE_BLOCK, old_stack_level);
1814 *old_pending_adj = pending_stack_adjust;
1815 pending_stack_adjust = 0;
1816 }
1817
1818 /* We can pass TRUE as the 4th argument because we just
1819 saved the stack pointer and will restore it right after
1820 the call. */
1821 copy = allocate_dynamic_stack_space (size_rtx,
1822 TYPE_ALIGN (type),
1823 TYPE_ALIGN (type),
1824 true);
1825 copy = gen_rtx_MEM (BLKmode, copy);
1826 set_mem_attributes (copy, type, 1);
1827 }
1828 else
1829 copy = assign_temp (type, 1, 0);
1830
1831 store_expr (args[i].tree_value, copy, 0, false, false);
1832
1833 /* Just change the const function to pure and then let
1834 the next test clear the pure based on
1835 callee_copies. */
1836 if (*ecf_flags & ECF_CONST)
1837 {
1838 *ecf_flags &= ~ECF_CONST;
1839 *ecf_flags |= ECF_PURE;
1840 }
1841
1842 if (!callee_copies && *ecf_flags & ECF_PURE)
1843 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1844
1845 args[i].tree_value
1846 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1847 type = TREE_TYPE (args[i].tree_value);
1848 *may_tailcall = false;
1849 maybe_complain_about_tail_call (exp,
1850 "argument must be passed"
1851 " by copying");
1852 }
1853 }
1854
1855 unsignedp = TYPE_UNSIGNED (type);
1856 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1857 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1858
1859 args[i].unsignedp = unsignedp;
1860 args[i].mode = mode;
1861
1862 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1863 argpos < n_named_args);
1864
1865 if (args[i].reg && CONST_INT_P (args[i].reg))
1866 {
1867 args[i].special_slot = args[i].reg;
1868 args[i].reg = NULL;
1869 }
1870
1871 /* If this is a sibling call and the machine has register windows, the
1872 register window has to be unwinded before calling the routine, so
1873 arguments have to go into the incoming registers. */
1874 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1875 args[i].tail_call_reg
1876 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1877 argpos < n_named_args);
1878 else
1879 args[i].tail_call_reg = args[i].reg;
1880
1881 if (args[i].reg)
1882 args[i].partial
1883 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1884 argpos < n_named_args);
1885
1886 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1887
1888 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1889 it means that we are to pass this arg in the register(s) designated
1890 by the PARALLEL, but also to pass it in the stack. */
1891 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1892 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1893 args[i].pass_on_stack = 1;
1894
1895 /* If this is an addressable type, we must preallocate the stack
1896 since we must evaluate the object into its final location.
1897
1898 If this is to be passed in both registers and the stack, it is simpler
1899 to preallocate. */
1900 if (TREE_ADDRESSABLE (type)
1901 || (args[i].pass_on_stack && args[i].reg != 0))
1902 *must_preallocate = 1;
1903
1904 /* No stack allocation and padding for bounds. */
1905 if (POINTER_BOUNDS_P (args[i].tree_value))
1906 ;
1907 /* Compute the stack-size of this argument. */
1908 else if (args[i].reg == 0 || args[i].partial != 0
1909 || reg_parm_stack_space > 0
1910 || args[i].pass_on_stack)
1911 locate_and_pad_parm (mode, type,
1912 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1913 1,
1914 #else
1915 args[i].reg != 0,
1916 #endif
1917 reg_parm_stack_space,
1918 args[i].pass_on_stack ? 0 : args[i].partial,
1919 fndecl, args_size, &args[i].locate);
1920 #ifdef BLOCK_REG_PADDING
1921 else
1922 /* The argument is passed entirely in registers. See at which
1923 end it should be padded. */
1924 args[i].locate.where_pad =
1925 BLOCK_REG_PADDING (mode, type,
1926 int_size_in_bytes (type) <= UNITS_PER_WORD);
1927 #endif
1928
1929 /* Update ARGS_SIZE, the total stack space for args so far. */
1930
1931 args_size->constant += args[i].locate.size.constant;
1932 if (args[i].locate.size.var)
1933 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1934
1935 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1936 have been used, etc. */
1937
1938 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1939 type, argpos < n_named_args);
1940
1941 /* Store argument values for functions decorated with attribute
1942 alloc_size. */
1943 if (argpos == alloc_idx[0])
1944 alloc_args[0] = args[i].tree_value;
1945 else if (argpos == alloc_idx[1])
1946 alloc_args[1] = args[i].tree_value;
1947 }
1948
1949 if (alloc_args[0])
1950 {
1951 /* Check the arguments of functions decorated with attribute
1952 alloc_size. */
1953 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
1954 }
1955 }
1956
1957 /* Update ARGS_SIZE to contain the total size for the argument block.
1958 Return the original constant component of the argument block's size.
1959
1960 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1961 for arguments passed in registers. */
1962
1963 static int
1964 compute_argument_block_size (int reg_parm_stack_space,
1965 struct args_size *args_size,
1966 tree fndecl ATTRIBUTE_UNUSED,
1967 tree fntype ATTRIBUTE_UNUSED,
1968 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1969 {
1970 int unadjusted_args_size = args_size->constant;
1971
1972 /* For accumulate outgoing args mode we don't need to align, since the frame
1973 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1974 backends from generating misaligned frame sizes. */
1975 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1976 preferred_stack_boundary = STACK_BOUNDARY;
1977
1978 /* Compute the actual size of the argument block required. The variable
1979 and constant sizes must be combined, the size may have to be rounded,
1980 and there may be a minimum required size. */
1981
1982 if (args_size->var)
1983 {
1984 args_size->var = ARGS_SIZE_TREE (*args_size);
1985 args_size->constant = 0;
1986
1987 preferred_stack_boundary /= BITS_PER_UNIT;
1988 if (preferred_stack_boundary > 1)
1989 {
1990 /* We don't handle this case yet. To handle it correctly we have
1991 to add the delta, round and subtract the delta.
1992 Currently no machine description requires this support. */
1993 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1994 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1995 }
1996
1997 if (reg_parm_stack_space > 0)
1998 {
1999 args_size->var
2000 = size_binop (MAX_EXPR, args_size->var,
2001 ssize_int (reg_parm_stack_space));
2002
2003 /* The area corresponding to register parameters is not to count in
2004 the size of the block we need. So make the adjustment. */
2005 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2006 args_size->var
2007 = size_binop (MINUS_EXPR, args_size->var,
2008 ssize_int (reg_parm_stack_space));
2009 }
2010 }
2011 else
2012 {
2013 preferred_stack_boundary /= BITS_PER_UNIT;
2014 if (preferred_stack_boundary < 1)
2015 preferred_stack_boundary = 1;
2016 args_size->constant = (((args_size->constant
2017 + stack_pointer_delta
2018 + preferred_stack_boundary - 1)
2019 / preferred_stack_boundary
2020 * preferred_stack_boundary)
2021 - stack_pointer_delta);
2022
2023 args_size->constant = MAX (args_size->constant,
2024 reg_parm_stack_space);
2025
2026 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2027 args_size->constant -= reg_parm_stack_space;
2028 }
2029 return unadjusted_args_size;
2030 }
2031
2032 /* Precompute parameters as needed for a function call.
2033
2034 FLAGS is mask of ECF_* constants.
2035
2036 NUM_ACTUALS is the number of arguments.
2037
2038 ARGS is an array containing information for each argument; this
2039 routine fills in the INITIAL_VALUE and VALUE fields for each
2040 precomputed argument. */
2041
2042 static void
2043 precompute_arguments (int num_actuals, struct arg_data *args)
2044 {
2045 int i;
2046
2047 /* If this is a libcall, then precompute all arguments so that we do not
2048 get extraneous instructions emitted as part of the libcall sequence. */
2049
2050 /* If we preallocated the stack space, and some arguments must be passed
2051 on the stack, then we must precompute any parameter which contains a
2052 function call which will store arguments on the stack.
2053 Otherwise, evaluating the parameter may clobber previous parameters
2054 which have already been stored into the stack. (we have code to avoid
2055 such case by saving the outgoing stack arguments, but it results in
2056 worse code) */
2057 if (!ACCUMULATE_OUTGOING_ARGS)
2058 return;
2059
2060 for (i = 0; i < num_actuals; i++)
2061 {
2062 tree type;
2063 machine_mode mode;
2064
2065 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2066 continue;
2067
2068 /* If this is an addressable type, we cannot pre-evaluate it. */
2069 type = TREE_TYPE (args[i].tree_value);
2070 gcc_assert (!TREE_ADDRESSABLE (type));
2071
2072 args[i].initial_value = args[i].value
2073 = expand_normal (args[i].tree_value);
2074
2075 mode = TYPE_MODE (type);
2076 if (mode != args[i].mode)
2077 {
2078 int unsignedp = args[i].unsignedp;
2079 args[i].value
2080 = convert_modes (args[i].mode, mode,
2081 args[i].value, args[i].unsignedp);
2082
2083 /* CSE will replace this only if it contains args[i].value
2084 pseudo, so convert it down to the declared mode using
2085 a SUBREG. */
2086 if (REG_P (args[i].value)
2087 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2088 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2089 {
2090 args[i].initial_value
2091 = gen_lowpart_SUBREG (mode, args[i].value);
2092 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2093 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2094 }
2095 }
2096 }
2097 }
2098
2099 /* Given the current state of MUST_PREALLOCATE and information about
2100 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2101 compute and return the final value for MUST_PREALLOCATE. */
2102
2103 static int
2104 finalize_must_preallocate (int must_preallocate, int num_actuals,
2105 struct arg_data *args, struct args_size *args_size)
2106 {
2107 /* See if we have or want to preallocate stack space.
2108
2109 If we would have to push a partially-in-regs parm
2110 before other stack parms, preallocate stack space instead.
2111
2112 If the size of some parm is not a multiple of the required stack
2113 alignment, we must preallocate.
2114
2115 If the total size of arguments that would otherwise create a copy in
2116 a temporary (such as a CALL) is more than half the total argument list
2117 size, preallocation is faster.
2118
2119 Another reason to preallocate is if we have a machine (like the m88k)
2120 where stack alignment is required to be maintained between every
2121 pair of insns, not just when the call is made. However, we assume here
2122 that such machines either do not have push insns (and hence preallocation
2123 would occur anyway) or the problem is taken care of with
2124 PUSH_ROUNDING. */
2125
2126 if (! must_preallocate)
2127 {
2128 int partial_seen = 0;
2129 int copy_to_evaluate_size = 0;
2130 int i;
2131
2132 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2133 {
2134 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2135 partial_seen = 1;
2136 else if (partial_seen && args[i].reg == 0)
2137 must_preallocate = 1;
2138 /* We preallocate in case there are bounds passed
2139 in the bounds table to have precomputed address
2140 for bounds association. */
2141 else if (POINTER_BOUNDS_P (args[i].tree_value)
2142 && !args[i].reg)
2143 must_preallocate = 1;
2144
2145 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2146 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2147 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2148 || TREE_CODE (args[i].tree_value) == COND_EXPR
2149 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2150 copy_to_evaluate_size
2151 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2152 }
2153
2154 if (copy_to_evaluate_size * 2 >= args_size->constant
2155 && args_size->constant > 0)
2156 must_preallocate = 1;
2157 }
2158 return must_preallocate;
2159 }
2160
2161 /* If we preallocated stack space, compute the address of each argument
2162 and store it into the ARGS array.
2163
2164 We need not ensure it is a valid memory address here; it will be
2165 validized when it is used.
2166
2167 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2168
2169 static void
2170 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2171 {
2172 if (argblock)
2173 {
2174 rtx arg_reg = argblock;
2175 int i, arg_offset = 0;
2176
2177 if (GET_CODE (argblock) == PLUS)
2178 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
2179
2180 for (i = 0; i < num_actuals; i++)
2181 {
2182 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2183 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2184 rtx addr;
2185 unsigned int align, boundary;
2186 unsigned int units_on_stack = 0;
2187 machine_mode partial_mode = VOIDmode;
2188
2189 /* Skip this parm if it will not be passed on the stack. */
2190 if (! args[i].pass_on_stack
2191 && args[i].reg != 0
2192 && args[i].partial == 0)
2193 continue;
2194
2195 /* Pointer Bounds are never passed on the stack. */
2196 if (POINTER_BOUNDS_P (args[i].tree_value))
2197 continue;
2198
2199 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
2200 addr = plus_constant (Pmode, addr, arg_offset);
2201
2202 if (args[i].partial != 0)
2203 {
2204 /* Only part of the parameter is being passed on the stack.
2205 Generate a simple memory reference of the correct size. */
2206 units_on_stack = args[i].locate.size.constant;
2207 unsigned int bits_on_stack = units_on_stack * BITS_PER_UNIT;
2208 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
2209 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2210 set_mem_size (args[i].stack, units_on_stack);
2211 }
2212 else
2213 {
2214 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2215 set_mem_attributes (args[i].stack,
2216 TREE_TYPE (args[i].tree_value), 1);
2217 }
2218 align = BITS_PER_UNIT;
2219 boundary = args[i].locate.boundary;
2220 if (args[i].locate.where_pad != PAD_DOWNWARD)
2221 align = boundary;
2222 else if (CONST_INT_P (offset))
2223 {
2224 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
2225 align = least_bit_hwi (align);
2226 }
2227 set_mem_align (args[i].stack, align);
2228
2229 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
2230 addr = plus_constant (Pmode, addr, arg_offset);
2231
2232 if (args[i].partial != 0)
2233 {
2234 /* Only part of the parameter is being passed on the stack.
2235 Generate a simple memory reference of the correct size.
2236 */
2237 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2238 set_mem_size (args[i].stack_slot, units_on_stack);
2239 }
2240 else
2241 {
2242 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2243 set_mem_attributes (args[i].stack_slot,
2244 TREE_TYPE (args[i].tree_value), 1);
2245 }
2246 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2247
2248 /* Function incoming arguments may overlap with sibling call
2249 outgoing arguments and we cannot allow reordering of reads
2250 from function arguments with stores to outgoing arguments
2251 of sibling calls. */
2252 set_mem_alias_set (args[i].stack, 0);
2253 set_mem_alias_set (args[i].stack_slot, 0);
2254 }
2255 }
2256 }
2257
2258 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2259 in a call instruction.
2260
2261 FNDECL is the tree node for the target function. For an indirect call
2262 FNDECL will be NULL_TREE.
2263
2264 ADDR is the operand 0 of CALL_EXPR for this call. */
2265
2266 static rtx
2267 rtx_for_function_call (tree fndecl, tree addr)
2268 {
2269 rtx funexp;
2270
2271 /* Get the function to call, in the form of RTL. */
2272 if (fndecl)
2273 {
2274 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2275 TREE_USED (fndecl) = 1;
2276
2277 /* Get a SYMBOL_REF rtx for the function address. */
2278 funexp = XEXP (DECL_RTL (fndecl), 0);
2279 }
2280 else
2281 /* Generate an rtx (probably a pseudo-register) for the address. */
2282 {
2283 push_temp_slots ();
2284 funexp = expand_normal (addr);
2285 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2286 }
2287 return funexp;
2288 }
2289
2290 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2291 static struct
2292 {
2293 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2294 or NULL_RTX if none has been scanned yet. */
2295 rtx_insn *scan_start;
2296 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2297 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2298 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2299 with fixed offset, or PC if this is with variable or unknown offset. */
2300 vec<rtx> cache;
2301 } internal_arg_pointer_exp_state;
2302
2303 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2304
2305 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2306 the tail call sequence, starting with first insn that hasn't been
2307 scanned yet, and note for each pseudo on the LHS whether it is based
2308 on crtl->args.internal_arg_pointer or not, and what offset from that
2309 that pointer it has. */
2310
2311 static void
2312 internal_arg_pointer_based_exp_scan (void)
2313 {
2314 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2315
2316 if (scan_start == NULL_RTX)
2317 insn = get_insns ();
2318 else
2319 insn = NEXT_INSN (scan_start);
2320
2321 while (insn)
2322 {
2323 rtx set = single_set (insn);
2324 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2325 {
2326 rtx val = NULL_RTX;
2327 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2328 /* Punt on pseudos set multiple times. */
2329 if (idx < internal_arg_pointer_exp_state.cache.length ()
2330 && (internal_arg_pointer_exp_state.cache[idx]
2331 != NULL_RTX))
2332 val = pc_rtx;
2333 else
2334 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2335 if (val != NULL_RTX)
2336 {
2337 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2338 internal_arg_pointer_exp_state.cache
2339 .safe_grow_cleared (idx + 1);
2340 internal_arg_pointer_exp_state.cache[idx] = val;
2341 }
2342 }
2343 if (NEXT_INSN (insn) == NULL_RTX)
2344 scan_start = insn;
2345 insn = NEXT_INSN (insn);
2346 }
2347
2348 internal_arg_pointer_exp_state.scan_start = scan_start;
2349 }
2350
2351 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2352 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2353 it with fixed offset, or PC if this is with variable or unknown offset.
2354 TOPLEVEL is true if the function is invoked at the topmost level. */
2355
2356 static rtx
2357 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2358 {
2359 if (CONSTANT_P (rtl))
2360 return NULL_RTX;
2361
2362 if (rtl == crtl->args.internal_arg_pointer)
2363 return const0_rtx;
2364
2365 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2366 return NULL_RTX;
2367
2368 if (GET_CODE (rtl) == PLUS && CONST_INT_P (XEXP (rtl, 1)))
2369 {
2370 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2371 if (val == NULL_RTX || val == pc_rtx)
2372 return val;
2373 return plus_constant (Pmode, val, INTVAL (XEXP (rtl, 1)));
2374 }
2375
2376 /* When called at the topmost level, scan pseudo assignments in between the
2377 last scanned instruction in the tail call sequence and the latest insn
2378 in that sequence. */
2379 if (toplevel)
2380 internal_arg_pointer_based_exp_scan ();
2381
2382 if (REG_P (rtl))
2383 {
2384 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2385 if (idx < internal_arg_pointer_exp_state.cache.length ())
2386 return internal_arg_pointer_exp_state.cache[idx];
2387
2388 return NULL_RTX;
2389 }
2390
2391 subrtx_iterator::array_type array;
2392 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2393 {
2394 const_rtx x = *iter;
2395 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2396 return pc_rtx;
2397 if (MEM_P (x))
2398 iter.skip_subrtxes ();
2399 }
2400
2401 return NULL_RTX;
2402 }
2403
2404 /* Return true if and only if SIZE storage units (usually bytes)
2405 starting from address ADDR overlap with already clobbered argument
2406 area. This function is used to determine if we should give up a
2407 sibcall. */
2408
2409 static bool
2410 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
2411 {
2412 HOST_WIDE_INT i;
2413 rtx val;
2414
2415 if (bitmap_empty_p (stored_args_map))
2416 return false;
2417 val = internal_arg_pointer_based_exp (addr, true);
2418 if (val == NULL_RTX)
2419 return false;
2420 else if (val == pc_rtx)
2421 return true;
2422 else
2423 i = INTVAL (val);
2424
2425 if (STACK_GROWS_DOWNWARD)
2426 i -= crtl->args.pretend_args_size;
2427 else
2428 i += crtl->args.pretend_args_size;
2429
2430
2431 if (ARGS_GROW_DOWNWARD)
2432 i = -i - size;
2433
2434 if (size > 0)
2435 {
2436 unsigned HOST_WIDE_INT k;
2437
2438 for (k = 0; k < size; k++)
2439 if (i + k < SBITMAP_SIZE (stored_args_map)
2440 && bitmap_bit_p (stored_args_map, i + k))
2441 return true;
2442 }
2443
2444 return false;
2445 }
2446
2447 /* Do the register loads required for any wholly-register parms or any
2448 parms which are passed both on the stack and in a register. Their
2449 expressions were already evaluated.
2450
2451 Mark all register-parms as living through the call, putting these USE
2452 insns in the CALL_INSN_FUNCTION_USAGE field.
2453
2454 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2455 checking, setting *SIBCALL_FAILURE if appropriate. */
2456
2457 static void
2458 load_register_parameters (struct arg_data *args, int num_actuals,
2459 rtx *call_fusage, int flags, int is_sibcall,
2460 int *sibcall_failure)
2461 {
2462 int i, j;
2463
2464 for (i = 0; i < num_actuals; i++)
2465 {
2466 rtx reg = ((flags & ECF_SIBCALL)
2467 ? args[i].tail_call_reg : args[i].reg);
2468 if (reg)
2469 {
2470 int partial = args[i].partial;
2471 int nregs;
2472 int size = 0;
2473 rtx_insn *before_arg = get_last_insn ();
2474 /* Set non-negative if we must move a word at a time, even if
2475 just one word (e.g, partial == 4 && mode == DFmode). Set
2476 to -1 if we just use a normal move insn. This value can be
2477 zero if the argument is a zero size structure. */
2478 nregs = -1;
2479 if (GET_CODE (reg) == PARALLEL)
2480 ;
2481 else if (partial)
2482 {
2483 gcc_assert (partial % UNITS_PER_WORD == 0);
2484 nregs = partial / UNITS_PER_WORD;
2485 }
2486 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
2487 {
2488 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2489 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2490 }
2491 else
2492 size = GET_MODE_SIZE (args[i].mode);
2493
2494 /* Handle calls that pass values in multiple non-contiguous
2495 locations. The Irix 6 ABI has examples of this. */
2496
2497 if (GET_CODE (reg) == PARALLEL)
2498 emit_group_move (reg, args[i].parallel_value);
2499
2500 /* If simple case, just do move. If normal partial, store_one_arg
2501 has already loaded the register for us. In all other cases,
2502 load the register(s) from memory. */
2503
2504 else if (nregs == -1)
2505 {
2506 emit_move_insn (reg, args[i].value);
2507 #ifdef BLOCK_REG_PADDING
2508 /* Handle case where we have a value that needs shifting
2509 up to the msb. eg. a QImode value and we're padding
2510 upward on a BYTES_BIG_ENDIAN machine. */
2511 if (size < UNITS_PER_WORD
2512 && (args[i].locate.where_pad
2513 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2514 {
2515 rtx x;
2516 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2517
2518 /* Assigning REG here rather than a temp makes CALL_FUSAGE
2519 report the whole reg as used. Strictly speaking, the
2520 call only uses SIZE bytes at the msb end, but it doesn't
2521 seem worth generating rtl to say that. */
2522 reg = gen_rtx_REG (word_mode, REGNO (reg));
2523 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
2524 if (x != reg)
2525 emit_move_insn (reg, x);
2526 }
2527 #endif
2528 }
2529
2530 /* If we have pre-computed the values to put in the registers in
2531 the case of non-aligned structures, copy them in now. */
2532
2533 else if (args[i].n_aligned_regs != 0)
2534 for (j = 0; j < args[i].n_aligned_regs; j++)
2535 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2536 args[i].aligned_regs[j]);
2537
2538 else if (partial == 0 || args[i].pass_on_stack)
2539 {
2540 rtx mem = validize_mem (copy_rtx (args[i].value));
2541
2542 /* Check for overlap with already clobbered argument area,
2543 providing that this has non-zero size. */
2544 if (is_sibcall
2545 && size != 0
2546 && (mem_overlaps_already_clobbered_arg_p
2547 (XEXP (args[i].value, 0), size)))
2548 *sibcall_failure = 1;
2549
2550 if (size % UNITS_PER_WORD == 0
2551 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2552 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2553 else
2554 {
2555 if (nregs > 1)
2556 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2557 args[i].mode);
2558 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2559 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2560 unsigned int bitsize = size * BITS_PER_UNIT - bitoff;
2561 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
2562 word_mode, word_mode, false,
2563 NULL);
2564 if (BYTES_BIG_ENDIAN)
2565 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2566 BITS_PER_WORD - bitsize, dest, 1);
2567 if (x != dest)
2568 emit_move_insn (dest, x);
2569 }
2570
2571 /* Handle a BLKmode that needs shifting. */
2572 if (nregs == 1 && size < UNITS_PER_WORD
2573 #ifdef BLOCK_REG_PADDING
2574 && args[i].locate.where_pad == PAD_DOWNWARD
2575 #else
2576 && BYTES_BIG_ENDIAN
2577 #endif
2578 )
2579 {
2580 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2581 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2582 enum tree_code dir = (BYTES_BIG_ENDIAN
2583 ? RSHIFT_EXPR : LSHIFT_EXPR);
2584 rtx x;
2585
2586 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2587 if (x != dest)
2588 emit_move_insn (dest, x);
2589 }
2590 }
2591
2592 /* When a parameter is a block, and perhaps in other cases, it is
2593 possible that it did a load from an argument slot that was
2594 already clobbered. */
2595 if (is_sibcall
2596 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
2597 *sibcall_failure = 1;
2598
2599 /* Handle calls that pass values in multiple non-contiguous
2600 locations. The Irix 6 ABI has examples of this. */
2601 if (GET_CODE (reg) == PARALLEL)
2602 use_group_regs (call_fusage, reg);
2603 else if (nregs == -1)
2604 use_reg_mode (call_fusage, reg,
2605 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2606 else if (nregs > 0)
2607 use_regs (call_fusage, REGNO (reg), nregs);
2608 }
2609 }
2610 }
2611
2612 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2613 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2614 bytes, then we would need to push some additional bytes to pad the
2615 arguments. So, we compute an adjust to the stack pointer for an
2616 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2617 bytes. Then, when the arguments are pushed the stack will be perfectly
2618 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
2619 be popped after the call. Returns the adjustment. */
2620
2621 static int
2622 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
2623 struct args_size *args_size,
2624 unsigned int preferred_unit_stack_boundary)
2625 {
2626 /* The number of bytes to pop so that the stack will be
2627 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2628 HOST_WIDE_INT adjustment;
2629 /* The alignment of the stack after the arguments are pushed, if we
2630 just pushed the arguments without adjust the stack here. */
2631 unsigned HOST_WIDE_INT unadjusted_alignment;
2632
2633 unadjusted_alignment
2634 = ((stack_pointer_delta + unadjusted_args_size)
2635 % preferred_unit_stack_boundary);
2636
2637 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2638 as possible -- leaving just enough left to cancel out the
2639 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2640 PENDING_STACK_ADJUST is non-negative, and congruent to
2641 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2642
2643 /* Begin by trying to pop all the bytes. */
2644 unadjusted_alignment
2645 = (unadjusted_alignment
2646 - (pending_stack_adjust % preferred_unit_stack_boundary));
2647 adjustment = pending_stack_adjust;
2648 /* Push enough additional bytes that the stack will be aligned
2649 after the arguments are pushed. */
2650 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
2651 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2652
2653 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2654 bytes after the call. The right number is the entire
2655 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2656 by the arguments in the first place. */
2657 args_size->constant
2658 = pending_stack_adjust - adjustment + unadjusted_args_size;
2659
2660 return adjustment;
2661 }
2662
2663 /* Scan X expression if it does not dereference any argument slots
2664 we already clobbered by tail call arguments (as noted in stored_args_map
2665 bitmap).
2666 Return nonzero if X expression dereferences such argument slots,
2667 zero otherwise. */
2668
2669 static int
2670 check_sibcall_argument_overlap_1 (rtx x)
2671 {
2672 RTX_CODE code;
2673 int i, j;
2674 const char *fmt;
2675
2676 if (x == NULL_RTX)
2677 return 0;
2678
2679 code = GET_CODE (x);
2680
2681 /* We need not check the operands of the CALL expression itself. */
2682 if (code == CALL)
2683 return 0;
2684
2685 if (code == MEM)
2686 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
2687 GET_MODE_SIZE (GET_MODE (x)));
2688
2689 /* Scan all subexpressions. */
2690 fmt = GET_RTX_FORMAT (code);
2691 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2692 {
2693 if (*fmt == 'e')
2694 {
2695 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
2696 return 1;
2697 }
2698 else if (*fmt == 'E')
2699 {
2700 for (j = 0; j < XVECLEN (x, i); j++)
2701 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
2702 return 1;
2703 }
2704 }
2705 return 0;
2706 }
2707
2708 /* Scan sequence after INSN if it does not dereference any argument slots
2709 we already clobbered by tail call arguments (as noted in stored_args_map
2710 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
2711 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
2712 should be 0). Return nonzero if sequence after INSN dereferences such argument
2713 slots, zero otherwise. */
2714
2715 static int
2716 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
2717 int mark_stored_args_map)
2718 {
2719 int low, high;
2720
2721 if (insn == NULL_RTX)
2722 insn = get_insns ();
2723 else
2724 insn = NEXT_INSN (insn);
2725
2726 for (; insn; insn = NEXT_INSN (insn))
2727 if (INSN_P (insn)
2728 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
2729 break;
2730
2731 if (mark_stored_args_map)
2732 {
2733 if (ARGS_GROW_DOWNWARD)
2734 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
2735 else
2736 low = arg->locate.slot_offset.constant;
2737
2738 for (high = low + arg->locate.size.constant; low < high; low++)
2739 bitmap_set_bit (stored_args_map, low);
2740 }
2741 return insn != NULL_RTX;
2742 }
2743
2744 /* Given that a function returns a value of mode MODE at the most
2745 significant end of hard register VALUE, shift VALUE left or right
2746 as specified by LEFT_P. Return true if some action was needed. */
2747
2748 bool
2749 shift_return_value (machine_mode mode, bool left_p, rtx value)
2750 {
2751 HOST_WIDE_INT shift;
2752
2753 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
2754 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
2755 if (shift == 0)
2756 return false;
2757
2758 /* Use ashr rather than lshr for right shifts. This is for the benefit
2759 of the MIPS port, which requires SImode values to be sign-extended
2760 when stored in 64-bit registers. */
2761 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
2762 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
2763 gcc_unreachable ();
2764 return true;
2765 }
2766
2767 /* If X is a likely-spilled register value, copy it to a pseudo
2768 register and return that register. Return X otherwise. */
2769
2770 static rtx
2771 avoid_likely_spilled_reg (rtx x)
2772 {
2773 rtx new_rtx;
2774
2775 if (REG_P (x)
2776 && HARD_REGISTER_P (x)
2777 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2778 {
2779 /* Make sure that we generate a REG rather than a CONCAT.
2780 Moves into CONCATs can need nontrivial instructions,
2781 and the whole point of this function is to avoid
2782 using the hard register directly in such a situation. */
2783 generating_concat_p = 0;
2784 new_rtx = gen_reg_rtx (GET_MODE (x));
2785 generating_concat_p = 1;
2786 emit_move_insn (new_rtx, x);
2787 return new_rtx;
2788 }
2789 return x;
2790 }
2791
2792 /* Helper function for expand_call.
2793 Return false is EXP is not implementable as a sibling call. */
2794
2795 static bool
2796 can_implement_as_sibling_call_p (tree exp,
2797 rtx structure_value_addr,
2798 tree funtype,
2799 int reg_parm_stack_space ATTRIBUTE_UNUSED,
2800 tree fndecl,
2801 int flags,
2802 tree addr,
2803 const args_size &args_size)
2804 {
2805 if (!targetm.have_sibcall_epilogue ())
2806 {
2807 maybe_complain_about_tail_call
2808 (exp,
2809 "machine description does not have"
2810 " a sibcall_epilogue instruction pattern");
2811 return false;
2812 }
2813
2814 /* Doing sibling call optimization needs some work, since
2815 structure_value_addr can be allocated on the stack.
2816 It does not seem worth the effort since few optimizable
2817 sibling calls will return a structure. */
2818 if (structure_value_addr != NULL_RTX)
2819 {
2820 maybe_complain_about_tail_call (exp, "callee returns a structure");
2821 return false;
2822 }
2823
2824 #ifdef REG_PARM_STACK_SPACE
2825 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2826 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2827 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
2828 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
2829 {
2830 maybe_complain_about_tail_call (exp,
2831 "inconsistent size of stack space"
2832 " allocated for arguments which are"
2833 " passed in registers");
2834 return false;
2835 }
2836 #endif
2837
2838 /* Check whether the target is able to optimize the call
2839 into a sibcall. */
2840 if (!targetm.function_ok_for_sibcall (fndecl, exp))
2841 {
2842 maybe_complain_about_tail_call (exp,
2843 "target is not able to optimize the"
2844 " call into a sibling call");
2845 return false;
2846 }
2847
2848 /* Functions that do not return exactly once may not be sibcall
2849 optimized. */
2850 if (flags & ECF_RETURNS_TWICE)
2851 {
2852 maybe_complain_about_tail_call (exp, "callee returns twice");
2853 return false;
2854 }
2855 if (flags & ECF_NORETURN)
2856 {
2857 maybe_complain_about_tail_call (exp, "callee does not return");
2858 return false;
2859 }
2860
2861 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
2862 {
2863 maybe_complain_about_tail_call (exp, "volatile function type");
2864 return false;
2865 }
2866
2867 /* If the called function is nested in the current one, it might access
2868 some of the caller's arguments, but could clobber them beforehand if
2869 the argument areas are shared. */
2870 if (fndecl && decl_function_context (fndecl) == current_function_decl)
2871 {
2872 maybe_complain_about_tail_call (exp, "nested function");
2873 return false;
2874 }
2875
2876 /* If this function requires more stack slots than the current
2877 function, we cannot change it into a sibling call.
2878 crtl->args.pretend_args_size is not part of the
2879 stack allocated by our caller. */
2880 if (args_size.constant > (crtl->args.size - crtl->args.pretend_args_size))
2881 {
2882 maybe_complain_about_tail_call (exp,
2883 "callee required more stack slots"
2884 " than the caller");
2885 return false;
2886 }
2887
2888 /* If the callee pops its own arguments, then it must pop exactly
2889 the same number of arguments as the current function. */
2890 if (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2891 != targetm.calls.return_pops_args (current_function_decl,
2892 TREE_TYPE (current_function_decl),
2893 crtl->args.size))
2894 {
2895 maybe_complain_about_tail_call (exp,
2896 "inconsistent number of"
2897 " popped arguments");
2898 return false;
2899 }
2900
2901 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
2902 {
2903 maybe_complain_about_tail_call (exp, "frontend does not support"
2904 " sibling call");
2905 return false;
2906 }
2907
2908 /* All checks passed. */
2909 return true;
2910 }
2911
2912 /* Generate all the code for a CALL_EXPR exp
2913 and return an rtx for its value.
2914 Store the value in TARGET (specified as an rtx) if convenient.
2915 If the value is stored in TARGET then TARGET is returned.
2916 If IGNORE is nonzero, then we ignore the value of the function call. */
2917
2918 rtx
2919 expand_call (tree exp, rtx target, int ignore)
2920 {
2921 /* Nonzero if we are currently expanding a call. */
2922 static int currently_expanding_call = 0;
2923
2924 /* RTX for the function to be called. */
2925 rtx funexp;
2926 /* Sequence of insns to perform a normal "call". */
2927 rtx_insn *normal_call_insns = NULL;
2928 /* Sequence of insns to perform a tail "call". */
2929 rtx_insn *tail_call_insns = NULL;
2930 /* Data type of the function. */
2931 tree funtype;
2932 tree type_arg_types;
2933 tree rettype;
2934 /* Declaration of the function being called,
2935 or 0 if the function is computed (not known by name). */
2936 tree fndecl = 0;
2937 /* The type of the function being called. */
2938 tree fntype;
2939 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
2940 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
2941 int pass;
2942
2943 /* Register in which non-BLKmode value will be returned,
2944 or 0 if no value or if value is BLKmode. */
2945 rtx valreg;
2946 /* Register(s) in which bounds are returned. */
2947 rtx valbnd = NULL;
2948 /* Address where we should return a BLKmode value;
2949 0 if value not BLKmode. */
2950 rtx structure_value_addr = 0;
2951 /* Nonzero if that address is being passed by treating it as
2952 an extra, implicit first parameter. Otherwise,
2953 it is passed by being copied directly into struct_value_rtx. */
2954 int structure_value_addr_parm = 0;
2955 /* Holds the value of implicit argument for the struct value. */
2956 tree structure_value_addr_value = NULL_TREE;
2957 /* Size of aggregate value wanted, or zero if none wanted
2958 or if we are using the non-reentrant PCC calling convention
2959 or expecting the value in registers. */
2960 HOST_WIDE_INT struct_value_size = 0;
2961 /* Nonzero if called function returns an aggregate in memory PCC style,
2962 by returning the address of where to find it. */
2963 int pcc_struct_value = 0;
2964 rtx struct_value = 0;
2965
2966 /* Number of actual parameters in this call, including struct value addr. */
2967 int num_actuals;
2968 /* Number of named args. Args after this are anonymous ones
2969 and they must all go on the stack. */
2970 int n_named_args;
2971 /* Number of complex actual arguments that need to be split. */
2972 int num_complex_actuals = 0;
2973
2974 /* Vector of information about each argument.
2975 Arguments are numbered in the order they will be pushed,
2976 not the order they are written. */
2977 struct arg_data *args;
2978
2979 /* Total size in bytes of all the stack-parms scanned so far. */
2980 struct args_size args_size;
2981 struct args_size adjusted_args_size;
2982 /* Size of arguments before any adjustments (such as rounding). */
2983 int unadjusted_args_size;
2984 /* Data on reg parms scanned so far. */
2985 CUMULATIVE_ARGS args_so_far_v;
2986 cumulative_args_t args_so_far;
2987 /* Nonzero if a reg parm has been scanned. */
2988 int reg_parm_seen;
2989 /* Nonzero if this is an indirect function call. */
2990
2991 /* Nonzero if we must avoid push-insns in the args for this call.
2992 If stack space is allocated for register parameters, but not by the
2993 caller, then it is preallocated in the fixed part of the stack frame.
2994 So the entire argument block must then be preallocated (i.e., we
2995 ignore PUSH_ROUNDING in that case). */
2996
2997 int must_preallocate = !PUSH_ARGS;
2998
2999 /* Size of the stack reserved for parameter registers. */
3000 int reg_parm_stack_space = 0;
3001
3002 /* Address of space preallocated for stack parms
3003 (on machines that lack push insns), or 0 if space not preallocated. */
3004 rtx argblock = 0;
3005
3006 /* Mask of ECF_ and ERF_ flags. */
3007 int flags = 0;
3008 int return_flags = 0;
3009 #ifdef REG_PARM_STACK_SPACE
3010 /* Define the boundary of the register parm stack space that needs to be
3011 saved, if any. */
3012 int low_to_save, high_to_save;
3013 rtx save_area = 0; /* Place that it is saved */
3014 #endif
3015
3016 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3017 char *initial_stack_usage_map = stack_usage_map;
3018 char *stack_usage_map_buf = NULL;
3019
3020 int old_stack_allocated;
3021
3022 /* State variables to track stack modifications. */
3023 rtx old_stack_level = 0;
3024 int old_stack_arg_under_construction = 0;
3025 int old_pending_adj = 0;
3026 int old_inhibit_defer_pop = inhibit_defer_pop;
3027
3028 /* Some stack pointer alterations we make are performed via
3029 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3030 which we then also need to save/restore along the way. */
3031 int old_stack_pointer_delta = 0;
3032
3033 rtx call_fusage;
3034 tree addr = CALL_EXPR_FN (exp);
3035 int i;
3036 /* The alignment of the stack, in bits. */
3037 unsigned HOST_WIDE_INT preferred_stack_boundary;
3038 /* The alignment of the stack, in bytes. */
3039 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3040 /* The static chain value to use for this call. */
3041 rtx static_chain_value;
3042 /* See if this is "nothrow" function call. */
3043 if (TREE_NOTHROW (exp))
3044 flags |= ECF_NOTHROW;
3045
3046 /* See if we can find a DECL-node for the actual function, and get the
3047 function attributes (flags) from the function decl or type node. */
3048 fndecl = get_callee_fndecl (exp);
3049 if (fndecl)
3050 {
3051 fntype = TREE_TYPE (fndecl);
3052 flags |= flags_from_decl_or_type (fndecl);
3053 return_flags |= decl_return_flags (fndecl);
3054 }
3055 else
3056 {
3057 fntype = TREE_TYPE (TREE_TYPE (addr));
3058 flags |= flags_from_decl_or_type (fntype);
3059 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3060 flags |= ECF_BY_DESCRIPTOR;
3061 }
3062 rettype = TREE_TYPE (exp);
3063
3064 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3065
3066 /* Warn if this value is an aggregate type,
3067 regardless of which calling convention we are using for it. */
3068 if (AGGREGATE_TYPE_P (rettype))
3069 warning (OPT_Waggregate_return, "function call has aggregate value");
3070
3071 /* If the result of a non looping pure or const function call is
3072 ignored (or void), and none of its arguments are volatile, we can
3073 avoid expanding the call and just evaluate the arguments for
3074 side-effects. */
3075 if ((flags & (ECF_CONST | ECF_PURE))
3076 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3077 && (ignore || target == const0_rtx
3078 || TYPE_MODE (rettype) == VOIDmode))
3079 {
3080 bool volatilep = false;
3081 tree arg;
3082 call_expr_arg_iterator iter;
3083
3084 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3085 if (TREE_THIS_VOLATILE (arg))
3086 {
3087 volatilep = true;
3088 break;
3089 }
3090
3091 if (! volatilep)
3092 {
3093 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3094 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3095 return const0_rtx;
3096 }
3097 }
3098
3099 #ifdef REG_PARM_STACK_SPACE
3100 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3101 #endif
3102
3103 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3104 && reg_parm_stack_space > 0 && PUSH_ARGS)
3105 must_preallocate = 1;
3106
3107 /* Set up a place to return a structure. */
3108
3109 /* Cater to broken compilers. */
3110 if (aggregate_value_p (exp, fntype))
3111 {
3112 /* This call returns a big structure. */
3113 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3114
3115 #ifdef PCC_STATIC_STRUCT_RETURN
3116 {
3117 pcc_struct_value = 1;
3118 }
3119 #else /* not PCC_STATIC_STRUCT_RETURN */
3120 {
3121 struct_value_size = int_size_in_bytes (rettype);
3122
3123 /* Even if it is semantically safe to use the target as the return
3124 slot, it may be not sufficiently aligned for the return type. */
3125 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3126 && target
3127 && MEM_P (target)
3128 && !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3129 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
3130 MEM_ALIGN (target))))
3131 structure_value_addr = XEXP (target, 0);
3132 else
3133 {
3134 /* For variable-sized objects, we must be called with a target
3135 specified. If we were to allocate space on the stack here,
3136 we would have no way of knowing when to free it. */
3137 rtx d = assign_temp (rettype, 1, 1);
3138 structure_value_addr = XEXP (d, 0);
3139 target = 0;
3140 }
3141 }
3142 #endif /* not PCC_STATIC_STRUCT_RETURN */
3143 }
3144
3145 /* Figure out the amount to which the stack should be aligned. */
3146 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3147 if (fndecl)
3148 {
3149 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3150 /* Without automatic stack alignment, we can't increase preferred
3151 stack boundary. With automatic stack alignment, it is
3152 unnecessary since unless we can guarantee that all callers will
3153 align the outgoing stack properly, callee has to align its
3154 stack anyway. */
3155 if (i
3156 && i->preferred_incoming_stack_boundary
3157 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3158 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3159 }
3160
3161 /* Operand 0 is a pointer-to-function; get the type of the function. */
3162 funtype = TREE_TYPE (addr);
3163 gcc_assert (POINTER_TYPE_P (funtype));
3164 funtype = TREE_TYPE (funtype);
3165
3166 /* Count whether there are actual complex arguments that need to be split
3167 into their real and imaginary parts. Munge the type_arg_types
3168 appropriately here as well. */
3169 if (targetm.calls.split_complex_arg)
3170 {
3171 call_expr_arg_iterator iter;
3172 tree arg;
3173 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3174 {
3175 tree type = TREE_TYPE (arg);
3176 if (type && TREE_CODE (type) == COMPLEX_TYPE
3177 && targetm.calls.split_complex_arg (type))
3178 num_complex_actuals++;
3179 }
3180 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3181 }
3182 else
3183 type_arg_types = TYPE_ARG_TYPES (funtype);
3184
3185 if (flags & ECF_MAY_BE_ALLOCA)
3186 cfun->calls_alloca = 1;
3187
3188 /* If struct_value_rtx is 0, it means pass the address
3189 as if it were an extra parameter. Put the argument expression
3190 in structure_value_addr_value. */
3191 if (structure_value_addr && struct_value == 0)
3192 {
3193 /* If structure_value_addr is a REG other than
3194 virtual_outgoing_args_rtx, we can use always use it. If it
3195 is not a REG, we must always copy it into a register.
3196 If it is virtual_outgoing_args_rtx, we must copy it to another
3197 register in some cases. */
3198 rtx temp = (!REG_P (structure_value_addr)
3199 || (ACCUMULATE_OUTGOING_ARGS
3200 && stack_arg_under_construction
3201 && structure_value_addr == virtual_outgoing_args_rtx)
3202 ? copy_addr_to_reg (convert_memory_address
3203 (Pmode, structure_value_addr))
3204 : structure_value_addr);
3205
3206 structure_value_addr_value =
3207 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3208 structure_value_addr_parm = CALL_WITH_BOUNDS_P (exp) ? 2 : 1;
3209 }
3210
3211 /* Count the arguments and set NUM_ACTUALS. */
3212 num_actuals =
3213 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3214
3215 /* Compute number of named args.
3216 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3217
3218 if (type_arg_types != 0)
3219 n_named_args
3220 = (list_length (type_arg_types)
3221 /* Count the struct value address, if it is passed as a parm. */
3222 + structure_value_addr_parm);
3223 else
3224 /* If we know nothing, treat all args as named. */
3225 n_named_args = num_actuals;
3226
3227 /* Start updating where the next arg would go.
3228
3229 On some machines (such as the PA) indirect calls have a different
3230 calling convention than normal calls. The fourth argument in
3231 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3232 or not. */
3233 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3234 args_so_far = pack_cumulative_args (&args_so_far_v);
3235
3236 /* Now possibly adjust the number of named args.
3237 Normally, don't include the last named arg if anonymous args follow.
3238 We do include the last named arg if
3239 targetm.calls.strict_argument_naming() returns nonzero.
3240 (If no anonymous args follow, the result of list_length is actually
3241 one too large. This is harmless.)
3242
3243 If targetm.calls.pretend_outgoing_varargs_named() returns
3244 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3245 this machine will be able to place unnamed args that were passed
3246 in registers into the stack. So treat all args as named. This
3247 allows the insns emitting for a specific argument list to be
3248 independent of the function declaration.
3249
3250 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3251 we do not have any reliable way to pass unnamed args in
3252 registers, so we must force them into memory. */
3253
3254 if (type_arg_types != 0
3255 && targetm.calls.strict_argument_naming (args_so_far))
3256 ;
3257 else if (type_arg_types != 0
3258 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3259 /* Don't include the last named arg. */
3260 --n_named_args;
3261 else
3262 /* Treat all args as named. */
3263 n_named_args = num_actuals;
3264
3265 /* Make a vector to hold all the information about each arg. */
3266 args = XCNEWVEC (struct arg_data, num_actuals);
3267
3268 /* Build up entries in the ARGS array, compute the size of the
3269 arguments into ARGS_SIZE, etc. */
3270 initialize_argument_information (num_actuals, args, &args_size,
3271 n_named_args, exp,
3272 structure_value_addr_value, fndecl, fntype,
3273 args_so_far, reg_parm_stack_space,
3274 &old_stack_level, &old_pending_adj,
3275 &must_preallocate, &flags,
3276 &try_tail_call, CALL_FROM_THUNK_P (exp));
3277
3278 if (args_size.var)
3279 must_preallocate = 1;
3280
3281 /* Now make final decision about preallocating stack space. */
3282 must_preallocate = finalize_must_preallocate (must_preallocate,
3283 num_actuals, args,
3284 &args_size);
3285
3286 /* If the structure value address will reference the stack pointer, we
3287 must stabilize it. We don't need to do this if we know that we are
3288 not going to adjust the stack pointer in processing this call. */
3289
3290 if (structure_value_addr
3291 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3292 || reg_mentioned_p (virtual_outgoing_args_rtx,
3293 structure_value_addr))
3294 && (args_size.var
3295 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
3296 structure_value_addr = copy_to_reg (structure_value_addr);
3297
3298 /* Tail calls can make things harder to debug, and we've traditionally
3299 pushed these optimizations into -O2. Don't try if we're already
3300 expanding a call, as that means we're an argument. Don't try if
3301 there's cleanups, as we know there's code to follow the call. */
3302
3303 if (currently_expanding_call++ != 0
3304 || !flag_optimize_sibling_calls
3305 || args_size.var
3306 || dbg_cnt (tail_call) == false)
3307 try_tail_call = 0;
3308
3309 /* If the user has marked the function as requiring tail-call
3310 optimization, attempt it. */
3311 if (must_tail_call)
3312 try_tail_call = 1;
3313
3314 /* Rest of purposes for tail call optimizations to fail. */
3315 if (try_tail_call)
3316 try_tail_call = can_implement_as_sibling_call_p (exp,
3317 structure_value_addr,
3318 funtype,
3319 reg_parm_stack_space,
3320 fndecl,
3321 flags, addr, args_size);
3322
3323 /* Check if caller and callee disagree in promotion of function
3324 return value. */
3325 if (try_tail_call)
3326 {
3327 machine_mode caller_mode, caller_promoted_mode;
3328 machine_mode callee_mode, callee_promoted_mode;
3329 int caller_unsignedp, callee_unsignedp;
3330 tree caller_res = DECL_RESULT (current_function_decl);
3331
3332 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3333 caller_mode = DECL_MODE (caller_res);
3334 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3335 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3336 caller_promoted_mode
3337 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3338 &caller_unsignedp,
3339 TREE_TYPE (current_function_decl), 1);
3340 callee_promoted_mode
3341 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3342 &callee_unsignedp,
3343 funtype, 1);
3344 if (caller_mode != VOIDmode
3345 && (caller_promoted_mode != callee_promoted_mode
3346 || ((caller_mode != caller_promoted_mode
3347 || callee_mode != callee_promoted_mode)
3348 && (caller_unsignedp != callee_unsignedp
3349 || partial_subreg_p (caller_mode, callee_mode)))))
3350 {
3351 try_tail_call = 0;
3352 maybe_complain_about_tail_call (exp,
3353 "caller and callee disagree in"
3354 " promotion of function"
3355 " return value");
3356 }
3357 }
3358
3359 /* Ensure current function's preferred stack boundary is at least
3360 what we need. Stack alignment may also increase preferred stack
3361 boundary. */
3362 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
3363 crtl->preferred_stack_boundary = preferred_stack_boundary;
3364 else
3365 preferred_stack_boundary = crtl->preferred_stack_boundary;
3366
3367 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
3368
3369 /* We want to make two insn chains; one for a sibling call, the other
3370 for a normal call. We will select one of the two chains after
3371 initial RTL generation is complete. */
3372 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
3373 {
3374 int sibcall_failure = 0;
3375 /* We want to emit any pending stack adjustments before the tail
3376 recursion "call". That way we know any adjustment after the tail
3377 recursion call can be ignored if we indeed use the tail
3378 call expansion. */
3379 saved_pending_stack_adjust save;
3380 rtx_insn *insns, *before_call, *after_args;
3381 rtx next_arg_reg;
3382
3383 if (pass == 0)
3384 {
3385 /* State variables we need to save and restore between
3386 iterations. */
3387 save_pending_stack_adjust (&save);
3388 }
3389 if (pass)
3390 flags &= ~ECF_SIBCALL;
3391 else
3392 flags |= ECF_SIBCALL;
3393
3394 /* Other state variables that we must reinitialize each time
3395 through the loop (that are not initialized by the loop itself). */
3396 argblock = 0;
3397 call_fusage = 0;
3398
3399 /* Start a new sequence for the normal call case.
3400
3401 From this point on, if the sibling call fails, we want to set
3402 sibcall_failure instead of continuing the loop. */
3403 start_sequence ();
3404
3405 /* Don't let pending stack adjusts add up to too much.
3406 Also, do all pending adjustments now if there is any chance
3407 this might be a call to alloca or if we are expanding a sibling
3408 call sequence.
3409 Also do the adjustments before a throwing call, otherwise
3410 exception handling can fail; PR 19225. */
3411 if (pending_stack_adjust >= 32
3412 || (pending_stack_adjust > 0
3413 && (flags & ECF_MAY_BE_ALLOCA))
3414 || (pending_stack_adjust > 0
3415 && flag_exceptions && !(flags & ECF_NOTHROW))
3416 || pass == 0)
3417 do_pending_stack_adjust ();
3418
3419 /* Precompute any arguments as needed. */
3420 if (pass)
3421 precompute_arguments (num_actuals, args);
3422
3423 /* Now we are about to start emitting insns that can be deleted
3424 if a libcall is deleted. */
3425 if (pass && (flags & ECF_MALLOC))
3426 start_sequence ();
3427
3428 if (pass == 0
3429 && crtl->stack_protect_guard
3430 && targetm.stack_protect_runtime_enabled_p ())
3431 stack_protect_epilogue ();
3432
3433 adjusted_args_size = args_size;
3434 /* Compute the actual size of the argument block required. The variable
3435 and constant sizes must be combined, the size may have to be rounded,
3436 and there may be a minimum required size. When generating a sibcall
3437 pattern, do not round up, since we'll be re-using whatever space our
3438 caller provided. */
3439 unadjusted_args_size
3440 = compute_argument_block_size (reg_parm_stack_space,
3441 &adjusted_args_size,
3442 fndecl, fntype,
3443 (pass == 0 ? 0
3444 : preferred_stack_boundary));
3445
3446 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3447
3448 /* The argument block when performing a sibling call is the
3449 incoming argument block. */
3450 if (pass == 0)
3451 {
3452 argblock = crtl->args.internal_arg_pointer;
3453 if (STACK_GROWS_DOWNWARD)
3454 argblock
3455 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
3456 else
3457 argblock
3458 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
3459
3460 stored_args_map = sbitmap_alloc (args_size.constant);
3461 bitmap_clear (stored_args_map);
3462 }
3463
3464 /* If we have no actual push instructions, or shouldn't use them,
3465 make space for all args right now. */
3466 else if (adjusted_args_size.var != 0)
3467 {
3468 if (old_stack_level == 0)
3469 {
3470 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3471 old_stack_pointer_delta = stack_pointer_delta;
3472 old_pending_adj = pending_stack_adjust;
3473 pending_stack_adjust = 0;
3474 /* stack_arg_under_construction says whether a stack arg is
3475 being constructed at the old stack level. Pushing the stack
3476 gets a clean outgoing argument block. */
3477 old_stack_arg_under_construction = stack_arg_under_construction;
3478 stack_arg_under_construction = 0;
3479 }
3480 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
3481 if (flag_stack_usage_info)
3482 current_function_has_unbounded_dynamic_stack_size = 1;
3483 }
3484 else
3485 {
3486 /* Note that we must go through the motions of allocating an argument
3487 block even if the size is zero because we may be storing args
3488 in the area reserved for register arguments, which may be part of
3489 the stack frame. */
3490
3491 int needed = adjusted_args_size.constant;
3492
3493 /* Store the maximum argument space used. It will be pushed by
3494 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
3495 checking). */
3496
3497 if (needed > crtl->outgoing_args_size)
3498 crtl->outgoing_args_size = needed;
3499
3500 if (must_preallocate)
3501 {
3502 if (ACCUMULATE_OUTGOING_ARGS)
3503 {
3504 /* Since the stack pointer will never be pushed, it is
3505 possible for the evaluation of a parm to clobber
3506 something we have already written to the stack.
3507 Since most function calls on RISC machines do not use
3508 the stack, this is uncommon, but must work correctly.
3509
3510 Therefore, we save any area of the stack that was already
3511 written and that we are using. Here we set up to do this
3512 by making a new stack usage map from the old one. The
3513 actual save will be done by store_one_arg.
3514
3515 Another approach might be to try to reorder the argument
3516 evaluations to avoid this conflicting stack usage. */
3517
3518 /* Since we will be writing into the entire argument area,
3519 the map must be allocated for its entire size, not just
3520 the part that is the responsibility of the caller. */
3521 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3522 needed += reg_parm_stack_space;
3523
3524 if (ARGS_GROW_DOWNWARD)
3525 highest_outgoing_arg_in_use
3526 = MAX (initial_highest_arg_in_use, needed + 1);
3527 else
3528 highest_outgoing_arg_in_use
3529 = MAX (initial_highest_arg_in_use, needed);
3530
3531 free (stack_usage_map_buf);
3532 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3533 stack_usage_map = stack_usage_map_buf;
3534
3535 if (initial_highest_arg_in_use)
3536 memcpy (stack_usage_map, initial_stack_usage_map,
3537 initial_highest_arg_in_use);
3538
3539 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3540 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3541 (highest_outgoing_arg_in_use
3542 - initial_highest_arg_in_use));
3543 needed = 0;
3544
3545 /* The address of the outgoing argument list must not be
3546 copied to a register here, because argblock would be left
3547 pointing to the wrong place after the call to
3548 allocate_dynamic_stack_space below. */
3549
3550 argblock = virtual_outgoing_args_rtx;
3551 }
3552 else
3553 {
3554 if (inhibit_defer_pop == 0)
3555 {
3556 /* Try to reuse some or all of the pending_stack_adjust
3557 to get this space. */
3558 needed
3559 = (combine_pending_stack_adjustment_and_call
3560 (unadjusted_args_size,
3561 &adjusted_args_size,
3562 preferred_unit_stack_boundary));
3563
3564 /* combine_pending_stack_adjustment_and_call computes
3565 an adjustment before the arguments are allocated.
3566 Account for them and see whether or not the stack
3567 needs to go up or down. */
3568 needed = unadjusted_args_size - needed;
3569
3570 if (needed < 0)
3571 {
3572 /* We're releasing stack space. */
3573 /* ??? We can avoid any adjustment at all if we're
3574 already aligned. FIXME. */
3575 pending_stack_adjust = -needed;
3576 do_pending_stack_adjust ();
3577 needed = 0;
3578 }
3579 else
3580 /* We need to allocate space. We'll do that in
3581 push_block below. */
3582 pending_stack_adjust = 0;
3583 }
3584
3585 /* Special case this because overhead of `push_block' in
3586 this case is non-trivial. */
3587 if (needed == 0)
3588 argblock = virtual_outgoing_args_rtx;
3589 else
3590 {
3591 argblock = push_block (GEN_INT (needed), 0, 0);
3592 if (ARGS_GROW_DOWNWARD)
3593 argblock = plus_constant (Pmode, argblock, needed);
3594 }
3595
3596 /* We only really need to call `copy_to_reg' in the case
3597 where push insns are going to be used to pass ARGBLOCK
3598 to a function call in ARGS. In that case, the stack
3599 pointer changes value from the allocation point to the
3600 call point, and hence the value of
3601 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3602 as well always do it. */
3603 argblock = copy_to_reg (argblock);
3604 }
3605 }
3606 }
3607
3608 if (ACCUMULATE_OUTGOING_ARGS)
3609 {
3610 /* The save/restore code in store_one_arg handles all
3611 cases except one: a constructor call (including a C
3612 function returning a BLKmode struct) to initialize
3613 an argument. */
3614 if (stack_arg_under_construction)
3615 {
3616 rtx push_size
3617 = GEN_INT (adjusted_args_size.constant
3618 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
3619 : TREE_TYPE (fndecl))) ? 0
3620 : reg_parm_stack_space));
3621 if (old_stack_level == 0)
3622 {
3623 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3624 old_stack_pointer_delta = stack_pointer_delta;
3625 old_pending_adj = pending_stack_adjust;
3626 pending_stack_adjust = 0;
3627 /* stack_arg_under_construction says whether a stack
3628 arg is being constructed at the old stack level.
3629 Pushing the stack gets a clean outgoing argument
3630 block. */
3631 old_stack_arg_under_construction
3632 = stack_arg_under_construction;
3633 stack_arg_under_construction = 0;
3634 /* Make a new map for the new argument list. */
3635 free (stack_usage_map_buf);
3636 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
3637 stack_usage_map = stack_usage_map_buf;
3638 highest_outgoing_arg_in_use = 0;
3639 }
3640 /* We can pass TRUE as the 4th argument because we just
3641 saved the stack pointer and will restore it right after
3642 the call. */
3643 allocate_dynamic_stack_space (push_size, 0,
3644 BIGGEST_ALIGNMENT, true);
3645 }
3646
3647 /* If argument evaluation might modify the stack pointer,
3648 copy the address of the argument list to a register. */
3649 for (i = 0; i < num_actuals; i++)
3650 if (args[i].pass_on_stack)
3651 {
3652 argblock = copy_addr_to_reg (argblock);
3653 break;
3654 }
3655 }
3656
3657 compute_argument_addresses (args, argblock, num_actuals);
3658
3659 /* Stack is properly aligned, pops can't safely be deferred during
3660 the evaluation of the arguments. */
3661 NO_DEFER_POP;
3662
3663 /* Precompute all register parameters. It isn't safe to compute
3664 anything once we have started filling any specific hard regs.
3665 TLS symbols sometimes need a call to resolve. Precompute
3666 register parameters before any stack pointer manipulation
3667 to avoid unaligned stack in the called function. */
3668 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
3669
3670 OK_DEFER_POP;
3671
3672 /* Perform stack alignment before the first push (the last arg). */
3673 if (argblock == 0
3674 && adjusted_args_size.constant > reg_parm_stack_space
3675 && adjusted_args_size.constant != unadjusted_args_size)
3676 {
3677 /* When the stack adjustment is pending, we get better code
3678 by combining the adjustments. */
3679 if (pending_stack_adjust
3680 && ! inhibit_defer_pop)
3681 {
3682 pending_stack_adjust
3683 = (combine_pending_stack_adjustment_and_call
3684 (unadjusted_args_size,
3685 &adjusted_args_size,
3686 preferred_unit_stack_boundary));
3687 do_pending_stack_adjust ();
3688 }
3689 else if (argblock == 0)
3690 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
3691 - unadjusted_args_size));
3692 }
3693 /* Now that the stack is properly aligned, pops can't safely
3694 be deferred during the evaluation of the arguments. */
3695 NO_DEFER_POP;
3696
3697 /* Record the maximum pushed stack space size. We need to delay
3698 doing it this far to take into account the optimization done
3699 by combine_pending_stack_adjustment_and_call. */
3700 if (flag_stack_usage_info
3701 && !ACCUMULATE_OUTGOING_ARGS
3702 && pass
3703 && adjusted_args_size.var == 0)
3704 {
3705 int pushed = adjusted_args_size.constant + pending_stack_adjust;
3706 if (pushed > current_function_pushed_stack_size)
3707 current_function_pushed_stack_size = pushed;
3708 }
3709
3710 funexp = rtx_for_function_call (fndecl, addr);
3711
3712 if (CALL_EXPR_STATIC_CHAIN (exp))
3713 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
3714 else
3715 static_chain_value = 0;
3716
3717 #ifdef REG_PARM_STACK_SPACE
3718 /* Save the fixed argument area if it's part of the caller's frame and
3719 is clobbered by argument setup for this call. */
3720 if (ACCUMULATE_OUTGOING_ARGS && pass)
3721 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3722 &low_to_save, &high_to_save);
3723 #endif
3724
3725 /* Now store (and compute if necessary) all non-register parms.
3726 These come before register parms, since they can require block-moves,
3727 which could clobber the registers used for register parms.
3728 Parms which have partial registers are not stored here,
3729 but we do preallocate space here if they want that. */
3730
3731 for (i = 0; i < num_actuals; i++)
3732 {
3733 /* Delay bounds until all other args are stored. */
3734 if (POINTER_BOUNDS_P (args[i].tree_value))
3735 continue;
3736 else if (args[i].reg == 0 || args[i].pass_on_stack)
3737 {
3738 rtx_insn *before_arg = get_last_insn ();
3739
3740 /* We don't allow passing huge (> 2^30 B) arguments
3741 by value. It would cause an overflow later on. */
3742 if (adjusted_args_size.constant
3743 >= (1 << (HOST_BITS_PER_INT - 2)))
3744 {
3745 sorry ("passing too large argument on stack");
3746 continue;
3747 }
3748
3749 if (store_one_arg (&args[i], argblock, flags,
3750 adjusted_args_size.var != 0,
3751 reg_parm_stack_space)
3752 || (pass == 0
3753 && check_sibcall_argument_overlap (before_arg,
3754 &args[i], 1)))
3755 sibcall_failure = 1;
3756 }
3757
3758 if (args[i].stack)
3759 call_fusage
3760 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
3761 gen_rtx_USE (VOIDmode, args[i].stack),
3762 call_fusage);
3763 }
3764
3765 /* If we have a parm that is passed in registers but not in memory
3766 and whose alignment does not permit a direct copy into registers,
3767 make a group of pseudos that correspond to each register that we
3768 will later fill. */
3769 if (STRICT_ALIGNMENT)
3770 store_unaligned_arguments_into_pseudos (args, num_actuals);
3771
3772 /* Now store any partially-in-registers parm.
3773 This is the last place a block-move can happen. */
3774 if (reg_parm_seen)
3775 for (i = 0; i < num_actuals; i++)
3776 if (args[i].partial != 0 && ! args[i].pass_on_stack)
3777 {
3778 rtx_insn *before_arg = get_last_insn ();
3779
3780 /* On targets with weird calling conventions (e.g. PA) it's
3781 hard to ensure that all cases of argument overlap between
3782 stack and registers work. Play it safe and bail out. */
3783 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
3784 {
3785 sibcall_failure = 1;
3786 break;
3787 }
3788
3789 if (store_one_arg (&args[i], argblock, flags,
3790 adjusted_args_size.var != 0,
3791 reg_parm_stack_space)
3792 || (pass == 0
3793 && check_sibcall_argument_overlap (before_arg,
3794 &args[i], 1)))
3795 sibcall_failure = 1;
3796 }
3797
3798 bool any_regs = false;
3799 for (i = 0; i < num_actuals; i++)
3800 if (args[i].reg != NULL_RTX)
3801 {
3802 any_regs = true;
3803 targetm.calls.call_args (args[i].reg, funtype);
3804 }
3805 if (!any_regs)
3806 targetm.calls.call_args (pc_rtx, funtype);
3807
3808 /* Figure out the register where the value, if any, will come back. */
3809 valreg = 0;
3810 valbnd = 0;
3811 if (TYPE_MODE (rettype) != VOIDmode
3812 && ! structure_value_addr)
3813 {
3814 if (pcc_struct_value)
3815 {
3816 valreg = hard_function_value (build_pointer_type (rettype),
3817 fndecl, NULL, (pass == 0));
3818 if (CALL_WITH_BOUNDS_P (exp))
3819 valbnd = targetm.calls.
3820 chkp_function_value_bounds (build_pointer_type (rettype),
3821 fndecl, (pass == 0));
3822 }
3823 else
3824 {
3825 valreg = hard_function_value (rettype, fndecl, fntype,
3826 (pass == 0));
3827 if (CALL_WITH_BOUNDS_P (exp))
3828 valbnd = targetm.calls.chkp_function_value_bounds (rettype,
3829 fndecl,
3830 (pass == 0));
3831 }
3832
3833 /* If VALREG is a PARALLEL whose first member has a zero
3834 offset, use that. This is for targets such as m68k that
3835 return the same value in multiple places. */
3836 if (GET_CODE (valreg) == PARALLEL)
3837 {
3838 rtx elem = XVECEXP (valreg, 0, 0);
3839 rtx where = XEXP (elem, 0);
3840 rtx offset = XEXP (elem, 1);
3841 if (offset == const0_rtx
3842 && GET_MODE (where) == GET_MODE (valreg))
3843 valreg = where;
3844 }
3845 }
3846
3847 /* Store all bounds not passed in registers. */
3848 for (i = 0; i < num_actuals; i++)
3849 {
3850 if (POINTER_BOUNDS_P (args[i].tree_value)
3851 && !args[i].reg)
3852 store_bounds (&args[i],
3853 args[i].pointer_arg == -1
3854 ? NULL
3855 : &args[args[i].pointer_arg]);
3856 }
3857
3858 /* If register arguments require space on the stack and stack space
3859 was not preallocated, allocate stack space here for arguments
3860 passed in registers. */
3861 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3862 && !ACCUMULATE_OUTGOING_ARGS
3863 && must_preallocate == 0 && reg_parm_stack_space > 0)
3864 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
3865
3866 /* Pass the function the address in which to return a
3867 structure value. */
3868 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
3869 {
3870 structure_value_addr
3871 = convert_memory_address (Pmode, structure_value_addr);
3872 emit_move_insn (struct_value,
3873 force_reg (Pmode,
3874 force_operand (structure_value_addr,
3875 NULL_RTX)));
3876
3877 if (REG_P (struct_value))
3878 use_reg (&call_fusage, struct_value);
3879 }
3880
3881 after_args = get_last_insn ();
3882 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
3883 static_chain_value, &call_fusage,
3884 reg_parm_seen, flags);
3885
3886 load_register_parameters (args, num_actuals, &call_fusage, flags,
3887 pass == 0, &sibcall_failure);
3888
3889 /* Save a pointer to the last insn before the call, so that we can
3890 later safely search backwards to find the CALL_INSN. */
3891 before_call = get_last_insn ();
3892
3893 /* Set up next argument register. For sibling calls on machines
3894 with register windows this should be the incoming register. */
3895 if (pass == 0)
3896 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
3897 VOIDmode,
3898 void_type_node,
3899 true);
3900 else
3901 next_arg_reg = targetm.calls.function_arg (args_so_far,
3902 VOIDmode, void_type_node,
3903 true);
3904
3905 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
3906 {
3907 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
3908 arg_nr = num_actuals - arg_nr - 1;
3909 if (arg_nr >= 0
3910 && arg_nr < num_actuals
3911 && args[arg_nr].reg
3912 && valreg
3913 && REG_P (valreg)
3914 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
3915 call_fusage
3916 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
3917 gen_rtx_SET (valreg, args[arg_nr].reg),
3918 call_fusage);
3919 }
3920 /* All arguments and registers used for the call must be set up by
3921 now! */
3922
3923 /* Stack must be properly aligned now. */
3924 gcc_assert (!pass
3925 || !(stack_pointer_delta % preferred_unit_stack_boundary));
3926
3927 /* Generate the actual call instruction. */
3928 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
3929 adjusted_args_size.constant, struct_value_size,
3930 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
3931 flags, args_so_far);
3932
3933 if (flag_ipa_ra)
3934 {
3935 rtx_call_insn *last;
3936 rtx datum = NULL_RTX;
3937 if (fndecl != NULL_TREE)
3938 {
3939 datum = XEXP (DECL_RTL (fndecl), 0);
3940 gcc_assert (datum != NULL_RTX
3941 && GET_CODE (datum) == SYMBOL_REF);
3942 }
3943 last = last_call_insn ();
3944 add_reg_note (last, REG_CALL_DECL, datum);
3945 }
3946
3947 /* If the call setup or the call itself overlaps with anything
3948 of the argument setup we probably clobbered our call address.
3949 In that case we can't do sibcalls. */
3950 if (pass == 0
3951 && check_sibcall_argument_overlap (after_args, 0, 0))
3952 sibcall_failure = 1;
3953
3954 /* If a non-BLKmode value is returned at the most significant end
3955 of a register, shift the register right by the appropriate amount
3956 and update VALREG accordingly. BLKmode values are handled by the
3957 group load/store machinery below. */
3958 if (!structure_value_addr
3959 && !pcc_struct_value
3960 && TYPE_MODE (rettype) != VOIDmode
3961 && TYPE_MODE (rettype) != BLKmode
3962 && REG_P (valreg)
3963 && targetm.calls.return_in_msb (rettype))
3964 {
3965 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
3966 sibcall_failure = 1;
3967 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
3968 }
3969
3970 if (pass && (flags & ECF_MALLOC))
3971 {
3972 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3973 rtx_insn *last, *insns;
3974
3975 /* The return value from a malloc-like function is a pointer. */
3976 if (TREE_CODE (rettype) == POINTER_TYPE)
3977 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
3978
3979 emit_move_insn (temp, valreg);
3980
3981 /* The return value from a malloc-like function can not alias
3982 anything else. */
3983 last = get_last_insn ();
3984 add_reg_note (last, REG_NOALIAS, temp);
3985
3986 /* Write out the sequence. */
3987 insns = get_insns ();
3988 end_sequence ();
3989 emit_insn (insns);
3990 valreg = temp;
3991 }
3992
3993 /* For calls to `setjmp', etc., inform
3994 function.c:setjmp_warnings that it should complain if
3995 nonvolatile values are live. For functions that cannot
3996 return, inform flow that control does not fall through. */
3997
3998 if ((flags & ECF_NORETURN) || pass == 0)
3999 {
4000 /* The barrier must be emitted
4001 immediately after the CALL_INSN. Some ports emit more
4002 than just a CALL_INSN above, so we must search for it here. */
4003
4004 rtx_insn *last = get_last_insn ();
4005 while (!CALL_P (last))
4006 {
4007 last = PREV_INSN (last);
4008 /* There was no CALL_INSN? */
4009 gcc_assert (last != before_call);
4010 }
4011
4012 emit_barrier_after (last);
4013
4014 /* Stack adjustments after a noreturn call are dead code.
4015 However when NO_DEFER_POP is in effect, we must preserve
4016 stack_pointer_delta. */
4017 if (inhibit_defer_pop == 0)
4018 {
4019 stack_pointer_delta = old_stack_allocated;
4020 pending_stack_adjust = 0;
4021 }
4022 }
4023
4024 /* If value type not void, return an rtx for the value. */
4025
4026 if (TYPE_MODE (rettype) == VOIDmode
4027 || ignore)
4028 target = const0_rtx;
4029 else if (structure_value_addr)
4030 {
4031 if (target == 0 || !MEM_P (target))
4032 {
4033 target
4034 = gen_rtx_MEM (TYPE_MODE (rettype),
4035 memory_address (TYPE_MODE (rettype),
4036 structure_value_addr));
4037 set_mem_attributes (target, rettype, 1);
4038 }
4039 }
4040 else if (pcc_struct_value)
4041 {
4042 /* This is the special C++ case where we need to
4043 know what the true target was. We take care to
4044 never use this value more than once in one expression. */
4045 target = gen_rtx_MEM (TYPE_MODE (rettype),
4046 copy_to_reg (valreg));
4047 set_mem_attributes (target, rettype, 1);
4048 }
4049 /* Handle calls that return values in multiple non-contiguous locations.
4050 The Irix 6 ABI has examples of this. */
4051 else if (GET_CODE (valreg) == PARALLEL)
4052 {
4053 if (target == 0)
4054 target = emit_group_move_into_temps (valreg);
4055 else if (rtx_equal_p (target, valreg))
4056 ;
4057 else if (GET_CODE (target) == PARALLEL)
4058 /* Handle the result of a emit_group_move_into_temps
4059 call in the previous pass. */
4060 emit_group_move (target, valreg);
4061 else
4062 emit_group_store (target, valreg, rettype,
4063 int_size_in_bytes (rettype));
4064 }
4065 else if (target
4066 && GET_MODE (target) == TYPE_MODE (rettype)
4067 && GET_MODE (target) == GET_MODE (valreg))
4068 {
4069 bool may_overlap = false;
4070
4071 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4072 reg to a plain register. */
4073 if (!REG_P (target) || HARD_REGISTER_P (target))
4074 valreg = avoid_likely_spilled_reg (valreg);
4075
4076 /* If TARGET is a MEM in the argument area, and we have
4077 saved part of the argument area, then we can't store
4078 directly into TARGET as it may get overwritten when we
4079 restore the argument save area below. Don't work too
4080 hard though and simply force TARGET to a register if it
4081 is a MEM; the optimizer is quite likely to sort it out. */
4082 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4083 for (i = 0; i < num_actuals; i++)
4084 if (args[i].save_area)
4085 {
4086 may_overlap = true;
4087 break;
4088 }
4089
4090 if (may_overlap)
4091 target = copy_to_reg (valreg);
4092 else
4093 {
4094 /* TARGET and VALREG cannot be equal at this point
4095 because the latter would not have
4096 REG_FUNCTION_VALUE_P true, while the former would if
4097 it were referring to the same register.
4098
4099 If they refer to the same register, this move will be
4100 a no-op, except when function inlining is being
4101 done. */
4102 emit_move_insn (target, valreg);
4103
4104 /* If we are setting a MEM, this code must be executed.
4105 Since it is emitted after the call insn, sibcall
4106 optimization cannot be performed in that case. */
4107 if (MEM_P (target))
4108 sibcall_failure = 1;
4109 }
4110 }
4111 else
4112 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4113
4114 /* If we promoted this return value, make the proper SUBREG.
4115 TARGET might be const0_rtx here, so be careful. */
4116 if (REG_P (target)
4117 && TYPE_MODE (rettype) != BLKmode
4118 && GET_MODE (target) != TYPE_MODE (rettype))
4119 {
4120 tree type = rettype;
4121 int unsignedp = TYPE_UNSIGNED (type);
4122 int offset = 0;
4123 machine_mode pmode;
4124
4125 /* Ensure we promote as expected, and get the new unsignedness. */
4126 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4127 funtype, 1);
4128 gcc_assert (GET_MODE (target) == pmode);
4129
4130 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
4131 && (GET_MODE_SIZE (GET_MODE (target))
4132 > GET_MODE_SIZE (TYPE_MODE (type))))
4133 {
4134 offset = GET_MODE_SIZE (GET_MODE (target))
4135 - GET_MODE_SIZE (TYPE_MODE (type));
4136 if (! BYTES_BIG_ENDIAN)
4137 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
4138 else if (! WORDS_BIG_ENDIAN)
4139 offset %= UNITS_PER_WORD;
4140 }
4141
4142 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4143 SUBREG_PROMOTED_VAR_P (target) = 1;
4144 SUBREG_PROMOTED_SET (target, unsignedp);
4145 }
4146
4147 /* If size of args is variable or this was a constructor call for a stack
4148 argument, restore saved stack-pointer value. */
4149
4150 if (old_stack_level)
4151 {
4152 rtx_insn *prev = get_last_insn ();
4153
4154 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4155 stack_pointer_delta = old_stack_pointer_delta;
4156
4157 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4158
4159 pending_stack_adjust = old_pending_adj;
4160 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4161 stack_arg_under_construction = old_stack_arg_under_construction;
4162 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4163 stack_usage_map = initial_stack_usage_map;
4164 sibcall_failure = 1;
4165 }
4166 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4167 {
4168 #ifdef REG_PARM_STACK_SPACE
4169 if (save_area)
4170 restore_fixed_argument_area (save_area, argblock,
4171 high_to_save, low_to_save);
4172 #endif
4173
4174 /* If we saved any argument areas, restore them. */
4175 for (i = 0; i < num_actuals; i++)
4176 if (args[i].save_area)
4177 {
4178 machine_mode save_mode = GET_MODE (args[i].save_area);
4179 rtx stack_area
4180 = gen_rtx_MEM (save_mode,
4181 memory_address (save_mode,
4182 XEXP (args[i].stack_slot, 0)));
4183
4184 if (save_mode != BLKmode)
4185 emit_move_insn (stack_area, args[i].save_area);
4186 else
4187 emit_block_move (stack_area, args[i].save_area,
4188 GEN_INT (args[i].locate.size.constant),
4189 BLOCK_OP_CALL_PARM);
4190 }
4191
4192 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4193 stack_usage_map = initial_stack_usage_map;
4194 }
4195
4196 /* If this was alloca, record the new stack level. */
4197 if (flags & ECF_MAY_BE_ALLOCA)
4198 record_new_stack_level ();
4199
4200 /* Free up storage we no longer need. */
4201 for (i = 0; i < num_actuals; ++i)
4202 free (args[i].aligned_regs);
4203
4204 targetm.calls.end_call_args ();
4205
4206 insns = get_insns ();
4207 end_sequence ();
4208
4209 if (pass == 0)
4210 {
4211 tail_call_insns = insns;
4212
4213 /* Restore the pending stack adjustment now that we have
4214 finished generating the sibling call sequence. */
4215
4216 restore_pending_stack_adjust (&save);
4217
4218 /* Prepare arg structure for next iteration. */
4219 for (i = 0; i < num_actuals; i++)
4220 {
4221 args[i].value = 0;
4222 args[i].aligned_regs = 0;
4223 args[i].stack = 0;
4224 }
4225
4226 sbitmap_free (stored_args_map);
4227 internal_arg_pointer_exp_state.scan_start = NULL;
4228 internal_arg_pointer_exp_state.cache.release ();
4229 }
4230 else
4231 {
4232 normal_call_insns = insns;
4233
4234 /* Verify that we've deallocated all the stack we used. */
4235 gcc_assert ((flags & ECF_NORETURN)
4236 || (old_stack_allocated
4237 == stack_pointer_delta - pending_stack_adjust));
4238 }
4239
4240 /* If something prevents making this a sibling call,
4241 zero out the sequence. */
4242 if (sibcall_failure)
4243 tail_call_insns = NULL;
4244 else
4245 break;
4246 }
4247
4248 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4249 arguments too, as argument area is now clobbered by the call. */
4250 if (tail_call_insns)
4251 {
4252 emit_insn (tail_call_insns);
4253 crtl->tail_call_emit = true;
4254 }
4255 else
4256 {
4257 emit_insn (normal_call_insns);
4258 if (try_tail_call)
4259 /* Ideally we'd emit a message for all of the ways that it could
4260 have failed. */
4261 maybe_complain_about_tail_call (exp, "tail call production failed");
4262 }
4263
4264 currently_expanding_call--;
4265
4266 free (stack_usage_map_buf);
4267 free (args);
4268
4269 /* Join result with returned bounds so caller may use them if needed. */
4270 target = chkp_join_splitted_slot (target, valbnd);
4271
4272 return target;
4273 }
4274
4275 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4276 this function's incoming arguments.
4277
4278 At the start of RTL generation we know the only REG_EQUIV notes
4279 in the rtl chain are those for incoming arguments, so we can look
4280 for REG_EQUIV notes between the start of the function and the
4281 NOTE_INSN_FUNCTION_BEG.
4282
4283 This is (slight) overkill. We could keep track of the highest
4284 argument we clobber and be more selective in removing notes, but it
4285 does not seem to be worth the effort. */
4286
4287 void
4288 fixup_tail_calls (void)
4289 {
4290 rtx_insn *insn;
4291
4292 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4293 {
4294 rtx note;
4295
4296 /* There are never REG_EQUIV notes for the incoming arguments
4297 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4298 if (NOTE_P (insn)
4299 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4300 break;
4301
4302 note = find_reg_note (insn, REG_EQUIV, 0);
4303 if (note)
4304 remove_note (insn, note);
4305 note = find_reg_note (insn, REG_EQUIV, 0);
4306 gcc_assert (!note);
4307 }
4308 }
4309
4310 /* Traverse a list of TYPES and expand all complex types into their
4311 components. */
4312 static tree
4313 split_complex_types (tree types)
4314 {
4315 tree p;
4316
4317 /* Before allocating memory, check for the common case of no complex. */
4318 for (p = types; p; p = TREE_CHAIN (p))
4319 {
4320 tree type = TREE_VALUE (p);
4321 if (TREE_CODE (type) == COMPLEX_TYPE
4322 && targetm.calls.split_complex_arg (type))
4323 goto found;
4324 }
4325 return types;
4326
4327 found:
4328 types = copy_list (types);
4329
4330 for (p = types; p; p = TREE_CHAIN (p))
4331 {
4332 tree complex_type = TREE_VALUE (p);
4333
4334 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4335 && targetm.calls.split_complex_arg (complex_type))
4336 {
4337 tree next, imag;
4338
4339 /* Rewrite complex type with component type. */
4340 TREE_VALUE (p) = TREE_TYPE (complex_type);
4341 next = TREE_CHAIN (p);
4342
4343 /* Add another component type for the imaginary part. */
4344 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4345 TREE_CHAIN (p) = imag;
4346 TREE_CHAIN (imag) = next;
4347
4348 /* Skip the newly created node. */
4349 p = TREE_CHAIN (p);
4350 }
4351 }
4352
4353 return types;
4354 }
4355 \f
4356 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
4357 for a value of mode OUTMODE,
4358 with NARGS different arguments, passed as ARGS.
4359 Store the return value if RETVAL is nonzero: store it in VALUE if
4360 VALUE is nonnull, otherwise pick a convenient location. In either
4361 case return the location of the stored value.
4362
4363 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4364 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
4365 other types of library calls. */
4366
4367 rtx
4368 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4369 enum libcall_type fn_type,
4370 machine_mode outmode, int nargs, rtx_mode_t *args)
4371 {
4372 /* Total size in bytes of all the stack-parms scanned so far. */
4373 struct args_size args_size;
4374 /* Size of arguments before any adjustments (such as rounding). */
4375 struct args_size original_args_size;
4376 int argnum;
4377 rtx fun;
4378 /* Todo, choose the correct decl type of orgfun. Sadly this information
4379 isn't present here, so we default to native calling abi here. */
4380 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4381 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4382 int count;
4383 rtx argblock = 0;
4384 CUMULATIVE_ARGS args_so_far_v;
4385 cumulative_args_t args_so_far;
4386 struct arg
4387 {
4388 rtx value;
4389 machine_mode mode;
4390 rtx reg;
4391 int partial;
4392 struct locate_and_pad_arg_data locate;
4393 rtx save_area;
4394 };
4395 struct arg *argvec;
4396 int old_inhibit_defer_pop = inhibit_defer_pop;
4397 rtx call_fusage = 0;
4398 rtx mem_value = 0;
4399 rtx valreg;
4400 int pcc_struct_value = 0;
4401 int struct_value_size = 0;
4402 int flags;
4403 int reg_parm_stack_space = 0;
4404 int needed;
4405 rtx_insn *before_call;
4406 bool have_push_fusage;
4407 tree tfom; /* type_for_mode (outmode, 0) */
4408
4409 #ifdef REG_PARM_STACK_SPACE
4410 /* Define the boundary of the register parm stack space that needs to be
4411 save, if any. */
4412 int low_to_save = 0, high_to_save = 0;
4413 rtx save_area = 0; /* Place that it is saved. */
4414 #endif
4415
4416 /* Size of the stack reserved for parameter registers. */
4417 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
4418 char *initial_stack_usage_map = stack_usage_map;
4419 char *stack_usage_map_buf = NULL;
4420
4421 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
4422
4423 #ifdef REG_PARM_STACK_SPACE
4424 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
4425 #endif
4426
4427 /* By default, library functions cannot throw. */
4428 flags = ECF_NOTHROW;
4429
4430 switch (fn_type)
4431 {
4432 case LCT_NORMAL:
4433 break;
4434 case LCT_CONST:
4435 flags |= ECF_CONST;
4436 break;
4437 case LCT_PURE:
4438 flags |= ECF_PURE;
4439 break;
4440 case LCT_NORETURN:
4441 flags |= ECF_NORETURN;
4442 break;
4443 case LCT_THROW:
4444 flags &= ~ECF_NOTHROW;
4445 break;
4446 case LCT_RETURNS_TWICE:
4447 flags = ECF_RETURNS_TWICE;
4448 break;
4449 }
4450 fun = orgfun;
4451
4452 /* Ensure current function's preferred stack boundary is at least
4453 what we need. */
4454 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
4455 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
4456
4457 /* If this kind of value comes back in memory,
4458 decide where in memory it should come back. */
4459 if (outmode != VOIDmode)
4460 {
4461 tfom = lang_hooks.types.type_for_mode (outmode, 0);
4462 if (aggregate_value_p (tfom, 0))
4463 {
4464 #ifdef PCC_STATIC_STRUCT_RETURN
4465 rtx pointer_reg
4466 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
4467 mem_value = gen_rtx_MEM (outmode, pointer_reg);
4468 pcc_struct_value = 1;
4469 if (value == 0)
4470 value = gen_reg_rtx (outmode);
4471 #else /* not PCC_STATIC_STRUCT_RETURN */
4472 struct_value_size = GET_MODE_SIZE (outmode);
4473 if (value != 0 && MEM_P (value))
4474 mem_value = value;
4475 else
4476 mem_value = assign_temp (tfom, 1, 1);
4477 #endif
4478 /* This call returns a big structure. */
4479 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
4480 }
4481 }
4482 else
4483 tfom = void_type_node;
4484
4485 /* ??? Unfinished: must pass the memory address as an argument. */
4486
4487 /* Copy all the libcall-arguments out of the varargs data
4488 and into a vector ARGVEC.
4489
4490 Compute how to pass each argument. We only support a very small subset
4491 of the full argument passing conventions to limit complexity here since
4492 library functions shouldn't have many args. */
4493
4494 argvec = XALLOCAVEC (struct arg, nargs + 1);
4495 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
4496
4497 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
4498 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
4499 #else
4500 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
4501 #endif
4502 args_so_far = pack_cumulative_args (&args_so_far_v);
4503
4504 args_size.constant = 0;
4505 args_size.var = 0;
4506
4507 count = 0;
4508
4509 push_temp_slots ();
4510
4511 /* If there's a structure value address to be passed,
4512 either pass it in the special place, or pass it as an extra argument. */
4513 if (mem_value && struct_value == 0 && ! pcc_struct_value)
4514 {
4515 rtx addr = XEXP (mem_value, 0);
4516
4517 nargs++;
4518
4519 /* Make sure it is a reasonable operand for a move or push insn. */
4520 if (!REG_P (addr) && !MEM_P (addr)
4521 && !(CONSTANT_P (addr)
4522 && targetm.legitimate_constant_p (Pmode, addr)))
4523 addr = force_operand (addr, NULL_RTX);
4524
4525 argvec[count].value = addr;
4526 argvec[count].mode = Pmode;
4527 argvec[count].partial = 0;
4528
4529 argvec[count].reg = targetm.calls.function_arg (args_so_far,
4530 Pmode, NULL_TREE, true);
4531 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
4532 NULL_TREE, 1) == 0);
4533
4534 locate_and_pad_parm (Pmode, NULL_TREE,
4535 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4536 1,
4537 #else
4538 argvec[count].reg != 0,
4539 #endif
4540 reg_parm_stack_space, 0,
4541 NULL_TREE, &args_size, &argvec[count].locate);
4542
4543 if (argvec[count].reg == 0 || argvec[count].partial != 0
4544 || reg_parm_stack_space > 0)
4545 args_size.constant += argvec[count].locate.size.constant;
4546
4547 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
4548
4549 count++;
4550 }
4551
4552 for (unsigned int i = 0; count < nargs; i++, count++)
4553 {
4554 rtx val = args[i].first;
4555 machine_mode mode = args[i].second;
4556 int unsigned_p = 0;
4557
4558 /* We cannot convert the arg value to the mode the library wants here;
4559 must do it earlier where we know the signedness of the arg. */
4560 gcc_assert (mode != BLKmode
4561 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
4562
4563 /* Make sure it is a reasonable operand for a move or push insn. */
4564 if (!REG_P (val) && !MEM_P (val)
4565 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
4566 val = force_operand (val, NULL_RTX);
4567
4568 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
4569 {
4570 rtx slot;
4571 int must_copy
4572 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
4573
4574 /* If this was a CONST function, it is now PURE since it now
4575 reads memory. */
4576 if (flags & ECF_CONST)
4577 {
4578 flags &= ~ECF_CONST;
4579 flags |= ECF_PURE;
4580 }
4581
4582 if (MEM_P (val) && !must_copy)
4583 {
4584 tree val_expr = MEM_EXPR (val);
4585 if (val_expr)
4586 mark_addressable (val_expr);
4587 slot = val;
4588 }
4589 else
4590 {
4591 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
4592 1, 1);
4593 emit_move_insn (slot, val);
4594 }
4595
4596 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4597 gen_rtx_USE (VOIDmode, slot),
4598 call_fusage);
4599 if (must_copy)
4600 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4601 gen_rtx_CLOBBER (VOIDmode,
4602 slot),
4603 call_fusage);
4604
4605 mode = Pmode;
4606 val = force_operand (XEXP (slot, 0), NULL_RTX);
4607 }
4608
4609 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
4610 argvec[count].mode = mode;
4611 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
4612 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
4613 NULL_TREE, true);
4614
4615 argvec[count].partial
4616 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
4617
4618 if (argvec[count].reg == 0
4619 || argvec[count].partial != 0
4620 || reg_parm_stack_space > 0)
4621 {
4622 locate_and_pad_parm (mode, NULL_TREE,
4623 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4624 1,
4625 #else
4626 argvec[count].reg != 0,
4627 #endif
4628 reg_parm_stack_space, argvec[count].partial,
4629 NULL_TREE, &args_size, &argvec[count].locate);
4630 args_size.constant += argvec[count].locate.size.constant;
4631 gcc_assert (!argvec[count].locate.size.var);
4632 }
4633 #ifdef BLOCK_REG_PADDING
4634 else
4635 /* The argument is passed entirely in registers. See at which
4636 end it should be padded. */
4637 argvec[count].locate.where_pad =
4638 BLOCK_REG_PADDING (mode, NULL_TREE,
4639 GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
4640 #endif
4641
4642 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
4643 }
4644
4645 /* If this machine requires an external definition for library
4646 functions, write one out. */
4647 assemble_external_libcall (fun);
4648
4649 original_args_size = args_size;
4650 args_size.constant = (((args_size.constant
4651 + stack_pointer_delta
4652 + STACK_BYTES - 1)
4653 / STACK_BYTES
4654 * STACK_BYTES)
4655 - stack_pointer_delta);
4656
4657 args_size.constant = MAX (args_size.constant,
4658 reg_parm_stack_space);
4659
4660 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4661 args_size.constant -= reg_parm_stack_space;
4662
4663 if (args_size.constant > crtl->outgoing_args_size)
4664 crtl->outgoing_args_size = args_size.constant;
4665
4666 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
4667 {
4668 int pushed = args_size.constant + pending_stack_adjust;
4669 if (pushed > current_function_pushed_stack_size)
4670 current_function_pushed_stack_size = pushed;
4671 }
4672
4673 if (ACCUMULATE_OUTGOING_ARGS)
4674 {
4675 /* Since the stack pointer will never be pushed, it is possible for
4676 the evaluation of a parm to clobber something we have already
4677 written to the stack. Since most function calls on RISC machines
4678 do not use the stack, this is uncommon, but must work correctly.
4679
4680 Therefore, we save any area of the stack that was already written
4681 and that we are using. Here we set up to do this by making a new
4682 stack usage map from the old one.
4683
4684 Another approach might be to try to reorder the argument
4685 evaluations to avoid this conflicting stack usage. */
4686
4687 needed = args_size.constant;
4688
4689 /* Since we will be writing into the entire argument area, the
4690 map must be allocated for its entire size, not just the part that
4691 is the responsibility of the caller. */
4692 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4693 needed += reg_parm_stack_space;
4694
4695 if (ARGS_GROW_DOWNWARD)
4696 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
4697 needed + 1);
4698 else
4699 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, needed);
4700
4701 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
4702 stack_usage_map = stack_usage_map_buf;
4703
4704 if (initial_highest_arg_in_use)
4705 memcpy (stack_usage_map, initial_stack_usage_map,
4706 initial_highest_arg_in_use);
4707
4708 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
4709 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
4710 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
4711 needed = 0;
4712
4713 /* We must be careful to use virtual regs before they're instantiated,
4714 and real regs afterwards. Loop optimization, for example, can create
4715 new libcalls after we've instantiated the virtual regs, and if we
4716 use virtuals anyway, they won't match the rtl patterns. */
4717
4718 if (virtuals_instantiated)
4719 argblock = plus_constant (Pmode, stack_pointer_rtx,
4720 STACK_POINTER_OFFSET);
4721 else
4722 argblock = virtual_outgoing_args_rtx;
4723 }
4724 else
4725 {
4726 if (!PUSH_ARGS)
4727 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
4728 }
4729
4730 /* We push args individually in reverse order, perform stack alignment
4731 before the first push (the last arg). */
4732 if (argblock == 0)
4733 anti_adjust_stack (GEN_INT (args_size.constant
4734 - original_args_size.constant));
4735
4736 argnum = nargs - 1;
4737
4738 #ifdef REG_PARM_STACK_SPACE
4739 if (ACCUMULATE_OUTGOING_ARGS)
4740 {
4741 /* The argument list is the property of the called routine and it
4742 may clobber it. If the fixed area has been used for previous
4743 parameters, we must save and restore it. */
4744 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4745 &low_to_save, &high_to_save);
4746 }
4747 #endif
4748
4749 /* When expanding a normal call, args are stored in push order,
4750 which is the reverse of what we have here. */
4751 bool any_regs = false;
4752 for (int i = nargs; i-- > 0; )
4753 if (argvec[i].reg != NULL_RTX)
4754 {
4755 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
4756 any_regs = true;
4757 }
4758 if (!any_regs)
4759 targetm.calls.call_args (pc_rtx, NULL_TREE);
4760
4761 /* Push the args that need to be pushed. */
4762
4763 have_push_fusage = false;
4764
4765 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4766 are to be pushed. */
4767 for (count = 0; count < nargs; count++, argnum--)
4768 {
4769 machine_mode mode = argvec[argnum].mode;
4770 rtx val = argvec[argnum].value;
4771 rtx reg = argvec[argnum].reg;
4772 int partial = argvec[argnum].partial;
4773 unsigned int parm_align = argvec[argnum].locate.boundary;
4774 int lower_bound = 0, upper_bound = 0, i;
4775
4776 if (! (reg != 0 && partial == 0))
4777 {
4778 rtx use;
4779
4780 if (ACCUMULATE_OUTGOING_ARGS)
4781 {
4782 /* If this is being stored into a pre-allocated, fixed-size,
4783 stack area, save any previous data at that location. */
4784
4785 if (ARGS_GROW_DOWNWARD)
4786 {
4787 /* stack_slot is negative, but we want to index stack_usage_map
4788 with positive values. */
4789 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
4790 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
4791 }
4792 else
4793 {
4794 lower_bound = argvec[argnum].locate.slot_offset.constant;
4795 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
4796 }
4797
4798 i = lower_bound;
4799 /* Don't worry about things in the fixed argument area;
4800 it has already been saved. */
4801 if (i < reg_parm_stack_space)
4802 i = reg_parm_stack_space;
4803 while (i < upper_bound && stack_usage_map[i] == 0)
4804 i++;
4805
4806 if (i < upper_bound)
4807 {
4808 /* We need to make a save area. */
4809 unsigned int size
4810 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
4811 machine_mode save_mode
4812 = int_mode_for_size (size, 1).else_blk ();
4813 rtx adr
4814 = plus_constant (Pmode, argblock,
4815 argvec[argnum].locate.offset.constant);
4816 rtx stack_area
4817 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
4818
4819 if (save_mode == BLKmode)
4820 {
4821 argvec[argnum].save_area
4822 = assign_stack_temp (BLKmode,
4823 argvec[argnum].locate.size.constant
4824 );
4825
4826 emit_block_move (validize_mem
4827 (copy_rtx (argvec[argnum].save_area)),
4828 stack_area,
4829 GEN_INT (argvec[argnum].locate.size.constant),
4830 BLOCK_OP_CALL_PARM);
4831 }
4832 else
4833 {
4834 argvec[argnum].save_area = gen_reg_rtx (save_mode);
4835
4836 emit_move_insn (argvec[argnum].save_area, stack_area);
4837 }
4838 }
4839 }
4840
4841 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
4842 partial, reg, 0, argblock,
4843 GEN_INT (argvec[argnum].locate.offset.constant),
4844 reg_parm_stack_space,
4845 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
4846
4847 /* Now mark the segment we just used. */
4848 if (ACCUMULATE_OUTGOING_ARGS)
4849 for (i = lower_bound; i < upper_bound; i++)
4850 stack_usage_map[i] = 1;
4851
4852 NO_DEFER_POP;
4853
4854 /* Indicate argument access so that alias.c knows that these
4855 values are live. */
4856 if (argblock)
4857 use = plus_constant (Pmode, argblock,
4858 argvec[argnum].locate.offset.constant);
4859 else if (have_push_fusage)
4860 continue;
4861 else
4862 {
4863 /* When arguments are pushed, trying to tell alias.c where
4864 exactly this argument is won't work, because the
4865 auto-increment causes confusion. So we merely indicate
4866 that we access something with a known mode somewhere on
4867 the stack. */
4868 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4869 gen_rtx_SCRATCH (Pmode));
4870 have_push_fusage = true;
4871 }
4872 use = gen_rtx_MEM (argvec[argnum].mode, use);
4873 use = gen_rtx_USE (VOIDmode, use);
4874 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
4875 }
4876 }
4877
4878 argnum = nargs - 1;
4879
4880 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
4881
4882 /* Now load any reg parms into their regs. */
4883
4884 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4885 are to be pushed. */
4886 for (count = 0; count < nargs; count++, argnum--)
4887 {
4888 machine_mode mode = argvec[argnum].mode;
4889 rtx val = argvec[argnum].value;
4890 rtx reg = argvec[argnum].reg;
4891 int partial = argvec[argnum].partial;
4892 #ifdef BLOCK_REG_PADDING
4893 int size = 0;
4894 #endif
4895
4896 /* Handle calls that pass values in multiple non-contiguous
4897 locations. The PA64 has examples of this for library calls. */
4898 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4899 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
4900 else if (reg != 0 && partial == 0)
4901 {
4902 emit_move_insn (reg, val);
4903 #ifdef BLOCK_REG_PADDING
4904 size = GET_MODE_SIZE (argvec[argnum].mode);
4905
4906 /* Copied from load_register_parameters. */
4907
4908 /* Handle case where we have a value that needs shifting
4909 up to the msb. eg. a QImode value and we're padding
4910 upward on a BYTES_BIG_ENDIAN machine. */
4911 if (size < UNITS_PER_WORD
4912 && (argvec[argnum].locate.where_pad
4913 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
4914 {
4915 rtx x;
4916 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4917
4918 /* Assigning REG here rather than a temp makes CALL_FUSAGE
4919 report the whole reg as used. Strictly speaking, the
4920 call only uses SIZE bytes at the msb end, but it doesn't
4921 seem worth generating rtl to say that. */
4922 reg = gen_rtx_REG (word_mode, REGNO (reg));
4923 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
4924 if (x != reg)
4925 emit_move_insn (reg, x);
4926 }
4927 #endif
4928 }
4929
4930 NO_DEFER_POP;
4931 }
4932
4933 /* Any regs containing parms remain in use through the call. */
4934 for (count = 0; count < nargs; count++)
4935 {
4936 rtx reg = argvec[count].reg;
4937 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4938 use_group_regs (&call_fusage, reg);
4939 else if (reg != 0)
4940 {
4941 int partial = argvec[count].partial;
4942 if (partial)
4943 {
4944 int nregs;
4945 gcc_assert (partial % UNITS_PER_WORD == 0);
4946 nregs = partial / UNITS_PER_WORD;
4947 use_regs (&call_fusage, REGNO (reg), nregs);
4948 }
4949 else
4950 use_reg (&call_fusage, reg);
4951 }
4952 }
4953
4954 /* Pass the function the address in which to return a structure value. */
4955 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
4956 {
4957 emit_move_insn (struct_value,
4958 force_reg (Pmode,
4959 force_operand (XEXP (mem_value, 0),
4960 NULL_RTX)));
4961 if (REG_P (struct_value))
4962 use_reg (&call_fusage, struct_value);
4963 }
4964
4965 /* Don't allow popping to be deferred, since then
4966 cse'ing of library calls could delete a call and leave the pop. */
4967 NO_DEFER_POP;
4968 valreg = (mem_value == 0 && outmode != VOIDmode
4969 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
4970
4971 /* Stack must be properly aligned now. */
4972 gcc_assert (!(stack_pointer_delta
4973 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
4974
4975 before_call = get_last_insn ();
4976
4977 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4978 will set inhibit_defer_pop to that value. */
4979 /* The return type is needed to decide how many bytes the function pops.
4980 Signedness plays no role in that, so for simplicity, we pretend it's
4981 always signed. We also assume that the list of arguments passed has
4982 no impact, so we pretend it is unknown. */
4983
4984 emit_call_1 (fun, NULL,
4985 get_identifier (XSTR (orgfun, 0)),
4986 build_function_type (tfom, NULL_TREE),
4987 original_args_size.constant, args_size.constant,
4988 struct_value_size,
4989 targetm.calls.function_arg (args_so_far,
4990 VOIDmode, void_type_node, true),
4991 valreg,
4992 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
4993
4994 if (flag_ipa_ra)
4995 {
4996 rtx datum = orgfun;
4997 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
4998 rtx_call_insn *last = last_call_insn ();
4999 add_reg_note (last, REG_CALL_DECL, datum);
5000 }
5001
5002 /* Right-shift returned value if necessary. */
5003 if (!pcc_struct_value
5004 && TYPE_MODE (tfom) != BLKmode
5005 && targetm.calls.return_in_msb (tfom))
5006 {
5007 shift_return_value (TYPE_MODE (tfom), false, valreg);
5008 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5009 }
5010
5011 targetm.calls.end_call_args ();
5012
5013 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5014 that it should complain if nonvolatile values are live. For
5015 functions that cannot return, inform flow that control does not
5016 fall through. */
5017 if (flags & ECF_NORETURN)
5018 {
5019 /* The barrier note must be emitted
5020 immediately after the CALL_INSN. Some ports emit more than
5021 just a CALL_INSN above, so we must search for it here. */
5022 rtx_insn *last = get_last_insn ();
5023 while (!CALL_P (last))
5024 {
5025 last = PREV_INSN (last);
5026 /* There was no CALL_INSN? */
5027 gcc_assert (last != before_call);
5028 }
5029
5030 emit_barrier_after (last);
5031 }
5032
5033 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5034 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5035 if (flags & ECF_NOTHROW)
5036 {
5037 rtx_insn *last = get_last_insn ();
5038 while (!CALL_P (last))
5039 {
5040 last = PREV_INSN (last);
5041 /* There was no CALL_INSN? */
5042 gcc_assert (last != before_call);
5043 }
5044
5045 make_reg_eh_region_note_nothrow_nononlocal (last);
5046 }
5047
5048 /* Now restore inhibit_defer_pop to its actual original value. */
5049 OK_DEFER_POP;
5050
5051 pop_temp_slots ();
5052
5053 /* Copy the value to the right place. */
5054 if (outmode != VOIDmode && retval)
5055 {
5056 if (mem_value)
5057 {
5058 if (value == 0)
5059 value = mem_value;
5060 if (value != mem_value)
5061 emit_move_insn (value, mem_value);
5062 }
5063 else if (GET_CODE (valreg) == PARALLEL)
5064 {
5065 if (value == 0)
5066 value = gen_reg_rtx (outmode);
5067 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5068 }
5069 else
5070 {
5071 /* Convert to the proper mode if a promotion has been active. */
5072 if (GET_MODE (valreg) != outmode)
5073 {
5074 int unsignedp = TYPE_UNSIGNED (tfom);
5075
5076 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5077 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5078 == GET_MODE (valreg));
5079 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5080 }
5081
5082 if (value != 0)
5083 emit_move_insn (value, valreg);
5084 else
5085 value = valreg;
5086 }
5087 }
5088
5089 if (ACCUMULATE_OUTGOING_ARGS)
5090 {
5091 #ifdef REG_PARM_STACK_SPACE
5092 if (save_area)
5093 restore_fixed_argument_area (save_area, argblock,
5094 high_to_save, low_to_save);
5095 #endif
5096
5097 /* If we saved any argument areas, restore them. */
5098 for (count = 0; count < nargs; count++)
5099 if (argvec[count].save_area)
5100 {
5101 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5102 rtx adr = plus_constant (Pmode, argblock,
5103 argvec[count].locate.offset.constant);
5104 rtx stack_area = gen_rtx_MEM (save_mode,
5105 memory_address (save_mode, adr));
5106
5107 if (save_mode == BLKmode)
5108 emit_block_move (stack_area,
5109 validize_mem
5110 (copy_rtx (argvec[count].save_area)),
5111 GEN_INT (argvec[count].locate.size.constant),
5112 BLOCK_OP_CALL_PARM);
5113 else
5114 emit_move_insn (stack_area, argvec[count].save_area);
5115 }
5116
5117 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5118 stack_usage_map = initial_stack_usage_map;
5119 }
5120
5121 free (stack_usage_map_buf);
5122
5123 return value;
5124
5125 }
5126 \f
5127
5128 /* Store pointer bounds argument ARG into Bounds Table entry
5129 associated with PARM. */
5130 static void
5131 store_bounds (struct arg_data *arg, struct arg_data *parm)
5132 {
5133 rtx slot = NULL, ptr = NULL, addr = NULL;
5134
5135 /* We may pass bounds not associated with any pointer. */
5136 if (!parm)
5137 {
5138 gcc_assert (arg->special_slot);
5139 slot = arg->special_slot;
5140 ptr = const0_rtx;
5141 }
5142 /* Find pointer associated with bounds and where it is
5143 passed. */
5144 else
5145 {
5146 if (!parm->reg)
5147 {
5148 gcc_assert (!arg->special_slot);
5149
5150 addr = adjust_address (parm->stack, Pmode, arg->pointer_offset);
5151 }
5152 else if (REG_P (parm->reg))
5153 {
5154 gcc_assert (arg->special_slot);
5155 slot = arg->special_slot;
5156
5157 if (MEM_P (parm->value))
5158 addr = adjust_address (parm->value, Pmode, arg->pointer_offset);
5159 else if (REG_P (parm->value))
5160 ptr = gen_rtx_SUBREG (Pmode, parm->value, arg->pointer_offset);
5161 else
5162 {
5163 gcc_assert (!arg->pointer_offset);
5164 ptr = parm->value;
5165 }
5166 }
5167 else
5168 {
5169 gcc_assert (GET_CODE (parm->reg) == PARALLEL);
5170
5171 gcc_assert (arg->special_slot);
5172 slot = arg->special_slot;
5173
5174 if (parm->parallel_value)
5175 ptr = chkp_get_value_with_offs (parm->parallel_value,
5176 GEN_INT (arg->pointer_offset));
5177 else
5178 gcc_unreachable ();
5179 }
5180 }
5181
5182 /* Expand bounds. */
5183 if (!arg->value)
5184 arg->value = expand_normal (arg->tree_value);
5185
5186 targetm.calls.store_bounds_for_arg (ptr, addr, arg->value, slot);
5187 }
5188
5189 /* Store a single argument for a function call
5190 into the register or memory area where it must be passed.
5191 *ARG describes the argument value and where to pass it.
5192
5193 ARGBLOCK is the address of the stack-block for all the arguments,
5194 or 0 on a machine where arguments are pushed individually.
5195
5196 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5197 so must be careful about how the stack is used.
5198
5199 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5200 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5201 that we need not worry about saving and restoring the stack.
5202
5203 FNDECL is the declaration of the function we are calling.
5204
5205 Return nonzero if this arg should cause sibcall failure,
5206 zero otherwise. */
5207
5208 static int
5209 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5210 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5211 {
5212 tree pval = arg->tree_value;
5213 rtx reg = 0;
5214 int partial = 0;
5215 int used = 0;
5216 int i, lower_bound = 0, upper_bound = 0;
5217 int sibcall_failure = 0;
5218
5219 if (TREE_CODE (pval) == ERROR_MARK)
5220 return 1;
5221
5222 /* Push a new temporary level for any temporaries we make for
5223 this argument. */
5224 push_temp_slots ();
5225
5226 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5227 {
5228 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5229 save any previous data at that location. */
5230 if (argblock && ! variable_size && arg->stack)
5231 {
5232 if (ARGS_GROW_DOWNWARD)
5233 {
5234 /* stack_slot is negative, but we want to index stack_usage_map
5235 with positive values. */
5236 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5237 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
5238 else
5239 upper_bound = 0;
5240
5241 lower_bound = upper_bound - arg->locate.size.constant;
5242 }
5243 else
5244 {
5245 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5246 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
5247 else
5248 lower_bound = 0;
5249
5250 upper_bound = lower_bound + arg->locate.size.constant;
5251 }
5252
5253 i = lower_bound;
5254 /* Don't worry about things in the fixed argument area;
5255 it has already been saved. */
5256 if (i < reg_parm_stack_space)
5257 i = reg_parm_stack_space;
5258 while (i < upper_bound && stack_usage_map[i] == 0)
5259 i++;
5260
5261 if (i < upper_bound)
5262 {
5263 /* We need to make a save area. */
5264 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
5265 machine_mode save_mode
5266 = int_mode_for_size (size, 1).else_blk ();
5267 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5268 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5269
5270 if (save_mode == BLKmode)
5271 {
5272 arg->save_area
5273 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5274 preserve_temp_slots (arg->save_area);
5275 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5276 stack_area,
5277 GEN_INT (arg->locate.size.constant),
5278 BLOCK_OP_CALL_PARM);
5279 }
5280 else
5281 {
5282 arg->save_area = gen_reg_rtx (save_mode);
5283 emit_move_insn (arg->save_area, stack_area);
5284 }
5285 }
5286 }
5287 }
5288
5289 /* If this isn't going to be placed on both the stack and in registers,
5290 set up the register and number of words. */
5291 if (! arg->pass_on_stack)
5292 {
5293 if (flags & ECF_SIBCALL)
5294 reg = arg->tail_call_reg;
5295 else
5296 reg = arg->reg;
5297 partial = arg->partial;
5298 }
5299
5300 /* Being passed entirely in a register. We shouldn't be called in
5301 this case. */
5302 gcc_assert (reg == 0 || partial != 0);
5303
5304 /* If this arg needs special alignment, don't load the registers
5305 here. */
5306 if (arg->n_aligned_regs != 0)
5307 reg = 0;
5308
5309 /* If this is being passed partially in a register, we can't evaluate
5310 it directly into its stack slot. Otherwise, we can. */
5311 if (arg->value == 0)
5312 {
5313 /* stack_arg_under_construction is nonzero if a function argument is
5314 being evaluated directly into the outgoing argument list and
5315 expand_call must take special action to preserve the argument list
5316 if it is called recursively.
5317
5318 For scalar function arguments stack_usage_map is sufficient to
5319 determine which stack slots must be saved and restored. Scalar
5320 arguments in general have pass_on_stack == 0.
5321
5322 If this argument is initialized by a function which takes the
5323 address of the argument (a C++ constructor or a C function
5324 returning a BLKmode structure), then stack_usage_map is
5325 insufficient and expand_call must push the stack around the
5326 function call. Such arguments have pass_on_stack == 1.
5327
5328 Note that it is always safe to set stack_arg_under_construction,
5329 but this generates suboptimal code if set when not needed. */
5330
5331 if (arg->pass_on_stack)
5332 stack_arg_under_construction++;
5333
5334 arg->value = expand_expr (pval,
5335 (partial
5336 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5337 ? NULL_RTX : arg->stack,
5338 VOIDmode, EXPAND_STACK_PARM);
5339
5340 /* If we are promoting object (or for any other reason) the mode
5341 doesn't agree, convert the mode. */
5342
5343 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5344 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5345 arg->value, arg->unsignedp);
5346
5347 if (arg->pass_on_stack)
5348 stack_arg_under_construction--;
5349 }
5350
5351 /* Check for overlap with already clobbered argument area. */
5352 if ((flags & ECF_SIBCALL)
5353 && MEM_P (arg->value)
5354 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
5355 arg->locate.size.constant))
5356 sibcall_failure = 1;
5357
5358 /* Don't allow anything left on stack from computation
5359 of argument to alloca. */
5360 if (flags & ECF_MAY_BE_ALLOCA)
5361 do_pending_stack_adjust ();
5362
5363 if (arg->value == arg->stack)
5364 /* If the value is already in the stack slot, we are done. */
5365 ;
5366 else if (arg->mode != BLKmode)
5367 {
5368 int size;
5369 unsigned int parm_align;
5370
5371 /* Argument is a scalar, not entirely passed in registers.
5372 (If part is passed in registers, arg->partial says how much
5373 and emit_push_insn will take care of putting it there.)
5374
5375 Push it, and if its size is less than the
5376 amount of space allocated to it,
5377 also bump stack pointer by the additional space.
5378 Note that in C the default argument promotions
5379 will prevent such mismatches. */
5380
5381 size = GET_MODE_SIZE (arg->mode);
5382 /* Compute how much space the push instruction will push.
5383 On many machines, pushing a byte will advance the stack
5384 pointer by a halfword. */
5385 #ifdef PUSH_ROUNDING
5386 size = PUSH_ROUNDING (size);
5387 #endif
5388 used = size;
5389
5390 /* Compute how much space the argument should get:
5391 round up to a multiple of the alignment for arguments. */
5392 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5393 != PAD_NONE)
5394 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
5395 / (PARM_BOUNDARY / BITS_PER_UNIT))
5396 * (PARM_BOUNDARY / BITS_PER_UNIT));
5397
5398 /* Compute the alignment of the pushed argument. */
5399 parm_align = arg->locate.boundary;
5400 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5401 == PAD_DOWNWARD)
5402 {
5403 int pad = used - size;
5404 if (pad)
5405 {
5406 unsigned int pad_align = least_bit_hwi (pad) * BITS_PER_UNIT;
5407 parm_align = MIN (parm_align, pad_align);
5408 }
5409 }
5410
5411 /* This isn't already where we want it on the stack, so put it there.
5412 This can either be done with push or copy insns. */
5413 if (!emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
5414 parm_align, partial, reg, used - size, argblock,
5415 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
5416 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5417 sibcall_failure = 1;
5418
5419 /* Unless this is a partially-in-register argument, the argument is now
5420 in the stack. */
5421 if (partial == 0)
5422 arg->value = arg->stack;
5423 }
5424 else
5425 {
5426 /* BLKmode, at least partly to be pushed. */
5427
5428 unsigned int parm_align;
5429 int excess;
5430 rtx size_rtx;
5431
5432 /* Pushing a nonscalar.
5433 If part is passed in registers, PARTIAL says how much
5434 and emit_push_insn will take care of putting it there. */
5435
5436 /* Round its size up to a multiple
5437 of the allocation unit for arguments. */
5438
5439 if (arg->locate.size.var != 0)
5440 {
5441 excess = 0;
5442 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
5443 }
5444 else
5445 {
5446 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
5447 for BLKmode is careful to avoid it. */
5448 excess = (arg->locate.size.constant
5449 - int_size_in_bytes (TREE_TYPE (pval))
5450 + partial);
5451 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
5452 NULL_RTX, TYPE_MODE (sizetype),
5453 EXPAND_NORMAL);
5454 }
5455
5456 parm_align = arg->locate.boundary;
5457
5458 /* When an argument is padded down, the block is aligned to
5459 PARM_BOUNDARY, but the actual argument isn't. */
5460 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5461 == PAD_DOWNWARD)
5462 {
5463 if (arg->locate.size.var)
5464 parm_align = BITS_PER_UNIT;
5465 else if (excess)
5466 {
5467 unsigned int excess_align = least_bit_hwi (excess) * BITS_PER_UNIT;
5468 parm_align = MIN (parm_align, excess_align);
5469 }
5470 }
5471
5472 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
5473 {
5474 /* emit_push_insn might not work properly if arg->value and
5475 argblock + arg->locate.offset areas overlap. */
5476 rtx x = arg->value;
5477 int i = 0;
5478
5479 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
5480 || (GET_CODE (XEXP (x, 0)) == PLUS
5481 && XEXP (XEXP (x, 0), 0) ==
5482 crtl->args.internal_arg_pointer
5483 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
5484 {
5485 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
5486 i = INTVAL (XEXP (XEXP (x, 0), 1));
5487
5488 /* arg.locate doesn't contain the pretend_args_size offset,
5489 it's part of argblock. Ensure we don't count it in I. */
5490 if (STACK_GROWS_DOWNWARD)
5491 i -= crtl->args.pretend_args_size;
5492 else
5493 i += crtl->args.pretend_args_size;
5494
5495 /* expand_call should ensure this. */
5496 gcc_assert (!arg->locate.offset.var
5497 && arg->locate.size.var == 0
5498 && CONST_INT_P (size_rtx));
5499
5500 if (arg->locate.offset.constant > i)
5501 {
5502 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
5503 sibcall_failure = 1;
5504 }
5505 else if (arg->locate.offset.constant < i)
5506 {
5507 /* Use arg->locate.size.constant instead of size_rtx
5508 because we only care about the part of the argument
5509 on the stack. */
5510 if (i < (arg->locate.offset.constant
5511 + arg->locate.size.constant))
5512 sibcall_failure = 1;
5513 }
5514 else
5515 {
5516 /* Even though they appear to be at the same location,
5517 if part of the outgoing argument is in registers,
5518 they aren't really at the same location. Check for
5519 this by making sure that the incoming size is the
5520 same as the outgoing size. */
5521 if (arg->locate.size.constant != INTVAL (size_rtx))
5522 sibcall_failure = 1;
5523 }
5524 }
5525 }
5526
5527 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5528 parm_align, partial, reg, excess, argblock,
5529 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
5530 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5531
5532 /* Unless this is a partially-in-register argument, the argument is now
5533 in the stack.
5534
5535 ??? Unlike the case above, in which we want the actual
5536 address of the data, so that we can load it directly into a
5537 register, here we want the address of the stack slot, so that
5538 it's properly aligned for word-by-word copying or something
5539 like that. It's not clear that this is always correct. */
5540 if (partial == 0)
5541 arg->value = arg->stack_slot;
5542 }
5543
5544 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5545 {
5546 tree type = TREE_TYPE (arg->tree_value);
5547 arg->parallel_value
5548 = emit_group_load_into_temps (arg->reg, arg->value, type,
5549 int_size_in_bytes (type));
5550 }
5551
5552 /* Mark all slots this store used. */
5553 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5554 && argblock && ! variable_size && arg->stack)
5555 for (i = lower_bound; i < upper_bound; i++)
5556 stack_usage_map[i] = 1;
5557
5558 /* Once we have pushed something, pops can't safely
5559 be deferred during the rest of the arguments. */
5560 NO_DEFER_POP;
5561
5562 /* Free any temporary slots made in processing this argument. */
5563 pop_temp_slots ();
5564
5565 return sibcall_failure;
5566 }
5567
5568 /* Nonzero if we do not know how to pass TYPE solely in registers. */
5569
5570 bool
5571 must_pass_in_stack_var_size (machine_mode mode ATTRIBUTE_UNUSED,
5572 const_tree type)
5573 {
5574 if (!type)
5575 return false;
5576
5577 /* If the type has variable size... */
5578 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5579 return true;
5580
5581 /* If the type is marked as addressable (it is required
5582 to be constructed into the stack)... */
5583 if (TREE_ADDRESSABLE (type))
5584 return true;
5585
5586 return false;
5587 }
5588
5589 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5590 takes trailing padding of a structure into account. */
5591 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5592
5593 bool
5594 must_pass_in_stack_var_size_or_pad (machine_mode mode, const_tree type)
5595 {
5596 if (!type)
5597 return false;
5598
5599 /* If the type has variable size... */
5600 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5601 return true;
5602
5603 /* If the type is marked as addressable (it is required
5604 to be constructed into the stack)... */
5605 if (TREE_ADDRESSABLE (type))
5606 return true;
5607
5608 /* If the padding and mode of the type is such that a copy into
5609 a register would put it into the wrong part of the register. */
5610 if (mode == BLKmode
5611 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5612 && (targetm.calls.function_arg_padding (mode, type)
5613 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5614 return true;
5615
5616 return false;
5617 }
5618
5619 /* Tell the garbage collector about GTY markers in this source file. */
5620 #include "gt-calls.h"