]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
Update copyright years.
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-vrp.h"
51 #include "tree-ssanames.h"
52 #include "tree-ssa-strlen.h"
53 #include "intl.h"
54 #include "stringpool.h"
55 #include "attribs.h"
56 #include "builtins.h"
57 #include "gimple-fold.h"
58
59 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
60 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
61
62 /* Data structure and subroutines used within expand_call. */
63
64 struct arg_data
65 {
66 /* Tree node for this argument. */
67 tree tree_value;
68 /* Mode for value; TYPE_MODE unless promoted. */
69 machine_mode mode;
70 /* Current RTL value for argument, or 0 if it isn't precomputed. */
71 rtx value;
72 /* Initially-compute RTL value for argument; only for const functions. */
73 rtx initial_value;
74 /* Register to pass this argument in, 0 if passed on stack, or an
75 PARALLEL if the arg is to be copied into multiple non-contiguous
76 registers. */
77 rtx reg;
78 /* Register to pass this argument in when generating tail call sequence.
79 This is not the same register as for normal calls on machines with
80 register windows. */
81 rtx tail_call_reg;
82 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
83 form for emit_group_move. */
84 rtx parallel_value;
85 /* If value is passed in neither reg nor stack, this field holds a number
86 of a special slot to be used. */
87 rtx special_slot;
88 /* For pointer bounds hold an index of parm bounds are bound to. -1 if
89 there is no such pointer. */
90 int pointer_arg;
91 /* If pointer_arg refers a structure, then pointer_offset holds an offset
92 of a pointer in this structure. */
93 int pointer_offset;
94 /* If REG was promoted from the actual mode of the argument expression,
95 indicates whether the promotion is sign- or zero-extended. */
96 int unsignedp;
97 /* Number of bytes to put in registers. 0 means put the whole arg
98 in registers. Also 0 if not passed in registers. */
99 int partial;
100 /* Nonzero if argument must be passed on stack.
101 Note that some arguments may be passed on the stack
102 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
103 pass_on_stack identifies arguments that *cannot* go in registers. */
104 int pass_on_stack;
105 /* Some fields packaged up for locate_and_pad_parm. */
106 struct locate_and_pad_arg_data locate;
107 /* Location on the stack at which parameter should be stored. The store
108 has already been done if STACK == VALUE. */
109 rtx stack;
110 /* Location on the stack of the start of this argument slot. This can
111 differ from STACK if this arg pads downward. This location is known
112 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
113 rtx stack_slot;
114 /* Place that this stack area has been saved, if needed. */
115 rtx save_area;
116 /* If an argument's alignment does not permit direct copying into registers,
117 copy in smaller-sized pieces into pseudos. These are stored in a
118 block pointed to by this field. The next field says how many
119 word-sized pseudos we made. */
120 rtx *aligned_regs;
121 int n_aligned_regs;
122 };
123
124 /* A vector of one char per byte of stack space. A byte if nonzero if
125 the corresponding stack location has been used.
126 This vector is used to prevent a function call within an argument from
127 clobbering any stack already set up. */
128 static char *stack_usage_map;
129
130 /* Size of STACK_USAGE_MAP. */
131 static unsigned int highest_outgoing_arg_in_use;
132
133 /* Assume that any stack location at this byte index is used,
134 without checking the contents of stack_usage_map. */
135 static unsigned HOST_WIDE_INT stack_usage_watermark = HOST_WIDE_INT_M1U;
136
137 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
138 stack location's tail call argument has been already stored into the stack.
139 This bitmap is used to prevent sibling call optimization if function tries
140 to use parent's incoming argument slots when they have been already
141 overwritten with tail call arguments. */
142 static sbitmap stored_args_map;
143
144 /* Assume that any virtual-incoming location at this byte index has been
145 stored, without checking the contents of stored_args_map. */
146 static unsigned HOST_WIDE_INT stored_args_watermark;
147
148 /* stack_arg_under_construction is nonzero when an argument may be
149 initialized with a constructor call (including a C function that
150 returns a BLKmode struct) and expand_call must take special action
151 to make sure the object being constructed does not overlap the
152 argument list for the constructor call. */
153 static int stack_arg_under_construction;
154
155 static void precompute_register_parameters (int, struct arg_data *, int *);
156 static int store_one_arg (struct arg_data *, rtx, int, int, int);
157 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
158 static int finalize_must_preallocate (int, int, struct arg_data *,
159 struct args_size *);
160 static void precompute_arguments (int, struct arg_data *);
161 static void compute_argument_addresses (struct arg_data *, rtx, int);
162 static rtx rtx_for_function_call (tree, tree);
163 static void load_register_parameters (struct arg_data *, int, rtx *, int,
164 int, int *);
165 static int special_function_p (const_tree, int);
166 static int check_sibcall_argument_overlap_1 (rtx);
167 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
168
169 static tree split_complex_types (tree);
170
171 #ifdef REG_PARM_STACK_SPACE
172 static rtx save_fixed_argument_area (int, rtx, int *, int *);
173 static void restore_fixed_argument_area (rtx, rtx, int, int);
174 #endif
175 \f
176 /* Return true if bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
177 stack region might already be in use. */
178
179 static bool
180 stack_region_maybe_used_p (poly_uint64 lower_bound, poly_uint64 upper_bound,
181 unsigned int reg_parm_stack_space)
182 {
183 unsigned HOST_WIDE_INT const_lower, const_upper;
184 const_lower = constant_lower_bound (lower_bound);
185 if (!upper_bound.is_constant (&const_upper))
186 const_upper = HOST_WIDE_INT_M1U;
187
188 if (const_upper > stack_usage_watermark)
189 return true;
190
191 /* Don't worry about things in the fixed argument area;
192 it has already been saved. */
193 const_lower = MAX (const_lower, reg_parm_stack_space);
194 const_upper = MIN (const_upper, highest_outgoing_arg_in_use);
195 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
196 if (stack_usage_map[i])
197 return true;
198 return false;
199 }
200
201 /* Record that bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
202 stack region are now in use. */
203
204 static void
205 mark_stack_region_used (poly_uint64 lower_bound, poly_uint64 upper_bound)
206 {
207 unsigned HOST_WIDE_INT const_lower, const_upper;
208 const_lower = constant_lower_bound (lower_bound);
209 if (upper_bound.is_constant (&const_upper))
210 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
211 stack_usage_map[i] = 1;
212 else
213 stack_usage_watermark = MIN (stack_usage_watermark, const_lower);
214 }
215
216 /* Force FUNEXP into a form suitable for the address of a CALL,
217 and return that as an rtx. Also load the static chain register
218 if FNDECL is a nested function.
219
220 CALL_FUSAGE points to a variable holding the prospective
221 CALL_INSN_FUNCTION_USAGE information. */
222
223 rtx
224 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
225 rtx *call_fusage, int reg_parm_seen, int flags)
226 {
227 /* Make a valid memory address and copy constants through pseudo-regs,
228 but not for a constant address if -fno-function-cse. */
229 if (GET_CODE (funexp) != SYMBOL_REF)
230 {
231 /* If it's an indirect call by descriptor, generate code to perform
232 runtime identification of the pointer and load the descriptor. */
233 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
234 {
235 const int bit_val = targetm.calls.custom_function_descriptors;
236 rtx call_lab = gen_label_rtx ();
237
238 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
239 fndecl_or_type
240 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
241 fndecl_or_type);
242 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
243 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
244
245 if (GET_MODE (funexp) != Pmode)
246 funexp = convert_memory_address (Pmode, funexp);
247
248 /* Avoid long live ranges around function calls. */
249 funexp = copy_to_mode_reg (Pmode, funexp);
250
251 if (REG_P (chain))
252 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
253
254 /* Emit the runtime identification pattern. */
255 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
256 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
257 call_lab);
258
259 /* Statically predict the branch to very likely taken. */
260 rtx_insn *insn = get_last_insn ();
261 if (JUMP_P (insn))
262 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
263
264 /* Load the descriptor. */
265 rtx mem = gen_rtx_MEM (ptr_mode,
266 plus_constant (Pmode, funexp, - bit_val));
267 MEM_NOTRAP_P (mem) = 1;
268 mem = convert_memory_address (Pmode, mem);
269 emit_move_insn (chain, mem);
270
271 mem = gen_rtx_MEM (ptr_mode,
272 plus_constant (Pmode, funexp,
273 POINTER_SIZE / BITS_PER_UNIT
274 - bit_val));
275 MEM_NOTRAP_P (mem) = 1;
276 mem = convert_memory_address (Pmode, mem);
277 emit_move_insn (funexp, mem);
278
279 emit_label (call_lab);
280
281 if (REG_P (chain))
282 {
283 use_reg (call_fusage, chain);
284 STATIC_CHAIN_REG_P (chain) = 1;
285 }
286
287 /* Make sure we're not going to be overwritten below. */
288 gcc_assert (!static_chain_value);
289 }
290
291 /* If we are using registers for parameters, force the
292 function address into a register now. */
293 funexp = ((reg_parm_seen
294 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
295 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
296 : memory_address (FUNCTION_MODE, funexp));
297 }
298 else
299 {
300 /* funexp could be a SYMBOL_REF represents a function pointer which is
301 of ptr_mode. In this case, it should be converted into address mode
302 to be a valid address for memory rtx pattern. See PR 64971. */
303 if (GET_MODE (funexp) != Pmode)
304 funexp = convert_memory_address (Pmode, funexp);
305
306 if (!(flags & ECF_SIBCALL))
307 {
308 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
309 funexp = force_reg (Pmode, funexp);
310 }
311 }
312
313 if (static_chain_value != 0
314 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
315 || DECL_STATIC_CHAIN (fndecl_or_type)))
316 {
317 rtx chain;
318
319 chain = targetm.calls.static_chain (fndecl_or_type, false);
320 static_chain_value = convert_memory_address (Pmode, static_chain_value);
321
322 emit_move_insn (chain, static_chain_value);
323 if (REG_P (chain))
324 {
325 use_reg (call_fusage, chain);
326 STATIC_CHAIN_REG_P (chain) = 1;
327 }
328 }
329
330 return funexp;
331 }
332
333 /* Generate instructions to call function FUNEXP,
334 and optionally pop the results.
335 The CALL_INSN is the first insn generated.
336
337 FNDECL is the declaration node of the function. This is given to the
338 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
339 its own args.
340
341 FUNTYPE is the data type of the function. This is given to the hook
342 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
343 own args. We used to allow an identifier for library functions, but
344 that doesn't work when the return type is an aggregate type and the
345 calling convention says that the pointer to this aggregate is to be
346 popped by the callee.
347
348 STACK_SIZE is the number of bytes of arguments on the stack,
349 ROUNDED_STACK_SIZE is that number rounded up to
350 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
351 both to put into the call insn and to generate explicit popping
352 code if necessary.
353
354 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
355 It is zero if this call doesn't want a structure value.
356
357 NEXT_ARG_REG is the rtx that results from executing
358 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
359 just after all the args have had their registers assigned.
360 This could be whatever you like, but normally it is the first
361 arg-register beyond those used for args in this call,
362 or 0 if all the arg-registers are used in this call.
363 It is passed on to `gen_call' so you can put this info in the call insn.
364
365 VALREG is a hard register in which a value is returned,
366 or 0 if the call does not return a value.
367
368 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
369 the args to this call were processed.
370 We restore `inhibit_defer_pop' to that value.
371
372 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
373 denote registers used by the called function. */
374
375 static void
376 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
377 tree funtype ATTRIBUTE_UNUSED,
378 poly_int64 stack_size ATTRIBUTE_UNUSED,
379 poly_int64 rounded_stack_size,
380 poly_int64 struct_value_size ATTRIBUTE_UNUSED,
381 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
382 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
383 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
384 {
385 rtx rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
386 rtx call, funmem, pat;
387 int already_popped = 0;
388 poly_int64 n_popped = 0;
389
390 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
391 patterns exist). Any popping that the callee does on return will
392 be from our caller's frame rather than ours. */
393 if (!(ecf_flags & ECF_SIBCALL))
394 {
395 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
396
397 #ifdef CALL_POPS_ARGS
398 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
399 #endif
400 }
401
402 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
403 and we don't want to load it into a register as an optimization,
404 because prepare_call_address already did it if it should be done. */
405 if (GET_CODE (funexp) != SYMBOL_REF)
406 funexp = memory_address (FUNCTION_MODE, funexp);
407
408 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
409 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
410 {
411 tree t = fndecl;
412
413 /* Although a built-in FUNCTION_DECL and its non-__builtin
414 counterpart compare equal and get a shared mem_attrs, they
415 produce different dump output in compare-debug compilations,
416 if an entry gets garbage collected in one compilation, then
417 adds a different (but equivalent) entry, while the other
418 doesn't run the garbage collector at the same spot and then
419 shares the mem_attr with the equivalent entry. */
420 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
421 {
422 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
423 if (t2)
424 t = t2;
425 }
426
427 set_mem_expr (funmem, t);
428 }
429 else if (fntree)
430 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
431
432 if (ecf_flags & ECF_SIBCALL)
433 {
434 if (valreg)
435 pat = targetm.gen_sibcall_value (valreg, funmem,
436 rounded_stack_size_rtx,
437 next_arg_reg, NULL_RTX);
438 else
439 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
440 next_arg_reg,
441 gen_int_mode (struct_value_size, Pmode));
442 }
443 /* If the target has "call" or "call_value" insns, then prefer them
444 if no arguments are actually popped. If the target does not have
445 "call" or "call_value" insns, then we must use the popping versions
446 even if the call has no arguments to pop. */
447 else if (maybe_ne (n_popped, 0)
448 || !(valreg
449 ? targetm.have_call_value ()
450 : targetm.have_call ()))
451 {
452 rtx n_pop = gen_int_mode (n_popped, Pmode);
453
454 /* If this subroutine pops its own args, record that in the call insn
455 if possible, for the sake of frame pointer elimination. */
456
457 if (valreg)
458 pat = targetm.gen_call_value_pop (valreg, funmem,
459 rounded_stack_size_rtx,
460 next_arg_reg, n_pop);
461 else
462 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
463 next_arg_reg, n_pop);
464
465 already_popped = 1;
466 }
467 else
468 {
469 if (valreg)
470 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
471 next_arg_reg, NULL_RTX);
472 else
473 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
474 gen_int_mode (struct_value_size, Pmode));
475 }
476 emit_insn (pat);
477
478 /* Find the call we just emitted. */
479 rtx_call_insn *call_insn = last_call_insn ();
480
481 /* Some target create a fresh MEM instead of reusing the one provided
482 above. Set its MEM_EXPR. */
483 call = get_call_rtx_from (call_insn);
484 if (call
485 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
486 && MEM_EXPR (funmem) != NULL_TREE)
487 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
488
489 /* Put the register usage information there. */
490 add_function_usage_to (call_insn, call_fusage);
491
492 /* If this is a const call, then set the insn's unchanging bit. */
493 if (ecf_flags & ECF_CONST)
494 RTL_CONST_CALL_P (call_insn) = 1;
495
496 /* If this is a pure call, then set the insn's unchanging bit. */
497 if (ecf_flags & ECF_PURE)
498 RTL_PURE_CALL_P (call_insn) = 1;
499
500 /* If this is a const call, then set the insn's unchanging bit. */
501 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
502 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
503
504 /* Create a nothrow REG_EH_REGION note, if needed. */
505 make_reg_eh_region_note (call_insn, ecf_flags, 0);
506
507 if (ecf_flags & ECF_NORETURN)
508 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
509
510 if (ecf_flags & ECF_RETURNS_TWICE)
511 {
512 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
513 cfun->calls_setjmp = 1;
514 }
515
516 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
517
518 /* Restore this now, so that we do defer pops for this call's args
519 if the context of the call as a whole permits. */
520 inhibit_defer_pop = old_inhibit_defer_pop;
521
522 if (maybe_ne (n_popped, 0))
523 {
524 if (!already_popped)
525 CALL_INSN_FUNCTION_USAGE (call_insn)
526 = gen_rtx_EXPR_LIST (VOIDmode,
527 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
528 CALL_INSN_FUNCTION_USAGE (call_insn));
529 rounded_stack_size -= n_popped;
530 rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
531 stack_pointer_delta -= n_popped;
532
533 add_args_size_note (call_insn, stack_pointer_delta);
534
535 /* If popup is needed, stack realign must use DRAP */
536 if (SUPPORTS_STACK_ALIGNMENT)
537 crtl->need_drap = true;
538 }
539 /* For noreturn calls when not accumulating outgoing args force
540 REG_ARGS_SIZE note to prevent crossjumping of calls with different
541 args sizes. */
542 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
543 add_args_size_note (call_insn, stack_pointer_delta);
544
545 if (!ACCUMULATE_OUTGOING_ARGS)
546 {
547 /* If returning from the subroutine does not automatically pop the args,
548 we need an instruction to pop them sooner or later.
549 Perhaps do it now; perhaps just record how much space to pop later.
550
551 If returning from the subroutine does pop the args, indicate that the
552 stack pointer will be changed. */
553
554 if (maybe_ne (rounded_stack_size, 0))
555 {
556 if (ecf_flags & ECF_NORETURN)
557 /* Just pretend we did the pop. */
558 stack_pointer_delta -= rounded_stack_size;
559 else if (flag_defer_pop && inhibit_defer_pop == 0
560 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
561 pending_stack_adjust += rounded_stack_size;
562 else
563 adjust_stack (rounded_stack_size_rtx);
564 }
565 }
566 /* When we accumulate outgoing args, we must avoid any stack manipulations.
567 Restore the stack pointer to its original value now. Usually
568 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
569 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
570 popping variants of functions exist as well.
571
572 ??? We may optimize similar to defer_pop above, but it is
573 probably not worthwhile.
574
575 ??? It will be worthwhile to enable combine_stack_adjustments even for
576 such machines. */
577 else if (maybe_ne (n_popped, 0))
578 anti_adjust_stack (gen_int_mode (n_popped, Pmode));
579 }
580
581 /* Determine if the function identified by FNDECL is one with
582 special properties we wish to know about. Modify FLAGS accordingly.
583
584 For example, if the function might return more than one time (setjmp), then
585 set ECF_RETURNS_TWICE.
586
587 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
588 space from the stack such as alloca. */
589
590 static int
591 special_function_p (const_tree fndecl, int flags)
592 {
593 tree name_decl = DECL_NAME (fndecl);
594
595 if (fndecl && name_decl
596 && IDENTIFIER_LENGTH (name_decl) <= 11
597 /* Exclude functions not at the file scope, or not `extern',
598 since they are not the magic functions we would otherwise
599 think they are.
600 FIXME: this should be handled with attributes, not with this
601 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
602 because you can declare fork() inside a function if you
603 wish. */
604 && (DECL_CONTEXT (fndecl) == NULL_TREE
605 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
606 && TREE_PUBLIC (fndecl))
607 {
608 const char *name = IDENTIFIER_POINTER (name_decl);
609 const char *tname = name;
610
611 /* We assume that alloca will always be called by name. It
612 makes no sense to pass it as a pointer-to-function to
613 anything that does not understand its behavior. */
614 if (IDENTIFIER_LENGTH (name_decl) == 6
615 && name[0] == 'a'
616 && ! strcmp (name, "alloca"))
617 flags |= ECF_MAY_BE_ALLOCA;
618
619 /* Disregard prefix _ or __. */
620 if (name[0] == '_')
621 {
622 if (name[1] == '_')
623 tname += 2;
624 else
625 tname += 1;
626 }
627
628 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
629 if (! strcmp (tname, "setjmp")
630 || ! strcmp (tname, "sigsetjmp")
631 || ! strcmp (name, "savectx")
632 || ! strcmp (name, "vfork")
633 || ! strcmp (name, "getcontext"))
634 flags |= ECF_RETURNS_TWICE;
635 }
636
637 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
638 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
639 flags |= ECF_MAY_BE_ALLOCA;
640
641 return flags;
642 }
643
644 /* Similar to special_function_p; return a set of ERF_ flags for the
645 function FNDECL. */
646 static int
647 decl_return_flags (tree fndecl)
648 {
649 tree attr;
650 tree type = TREE_TYPE (fndecl);
651 if (!type)
652 return 0;
653
654 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
655 if (!attr)
656 return 0;
657
658 attr = TREE_VALUE (TREE_VALUE (attr));
659 if (!attr || TREE_STRING_LENGTH (attr) < 1)
660 return 0;
661
662 switch (TREE_STRING_POINTER (attr)[0])
663 {
664 case '1':
665 case '2':
666 case '3':
667 case '4':
668 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
669
670 case 'm':
671 return ERF_NOALIAS;
672
673 case '.':
674 default:
675 return 0;
676 }
677 }
678
679 /* Return nonzero when FNDECL represents a call to setjmp. */
680
681 int
682 setjmp_call_p (const_tree fndecl)
683 {
684 if (DECL_IS_RETURNS_TWICE (fndecl))
685 return ECF_RETURNS_TWICE;
686 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
687 }
688
689
690 /* Return true if STMT may be an alloca call. */
691
692 bool
693 gimple_maybe_alloca_call_p (const gimple *stmt)
694 {
695 tree fndecl;
696
697 if (!is_gimple_call (stmt))
698 return false;
699
700 fndecl = gimple_call_fndecl (stmt);
701 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
702 return true;
703
704 return false;
705 }
706
707 /* Return true if STMT is a builtin alloca call. */
708
709 bool
710 gimple_alloca_call_p (const gimple *stmt)
711 {
712 tree fndecl;
713
714 if (!is_gimple_call (stmt))
715 return false;
716
717 fndecl = gimple_call_fndecl (stmt);
718 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
719 switch (DECL_FUNCTION_CODE (fndecl))
720 {
721 CASE_BUILT_IN_ALLOCA:
722 return gimple_call_num_args (stmt) > 0;
723 default:
724 break;
725 }
726
727 return false;
728 }
729
730 /* Return true when exp contains a builtin alloca call. */
731
732 bool
733 alloca_call_p (const_tree exp)
734 {
735 tree fndecl;
736 if (TREE_CODE (exp) == CALL_EXPR
737 && (fndecl = get_callee_fndecl (exp))
738 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
739 switch (DECL_FUNCTION_CODE (fndecl))
740 {
741 CASE_BUILT_IN_ALLOCA:
742 return true;
743 default:
744 break;
745 }
746
747 return false;
748 }
749
750 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
751 function. Return FALSE otherwise. */
752
753 static bool
754 is_tm_builtin (const_tree fndecl)
755 {
756 if (fndecl == NULL)
757 return false;
758
759 if (decl_is_tm_clone (fndecl))
760 return true;
761
762 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
763 {
764 switch (DECL_FUNCTION_CODE (fndecl))
765 {
766 case BUILT_IN_TM_COMMIT:
767 case BUILT_IN_TM_COMMIT_EH:
768 case BUILT_IN_TM_ABORT:
769 case BUILT_IN_TM_IRREVOCABLE:
770 case BUILT_IN_TM_GETTMCLONE_IRR:
771 case BUILT_IN_TM_MEMCPY:
772 case BUILT_IN_TM_MEMMOVE:
773 case BUILT_IN_TM_MEMSET:
774 CASE_BUILT_IN_TM_STORE (1):
775 CASE_BUILT_IN_TM_STORE (2):
776 CASE_BUILT_IN_TM_STORE (4):
777 CASE_BUILT_IN_TM_STORE (8):
778 CASE_BUILT_IN_TM_STORE (FLOAT):
779 CASE_BUILT_IN_TM_STORE (DOUBLE):
780 CASE_BUILT_IN_TM_STORE (LDOUBLE):
781 CASE_BUILT_IN_TM_STORE (M64):
782 CASE_BUILT_IN_TM_STORE (M128):
783 CASE_BUILT_IN_TM_STORE (M256):
784 CASE_BUILT_IN_TM_LOAD (1):
785 CASE_BUILT_IN_TM_LOAD (2):
786 CASE_BUILT_IN_TM_LOAD (4):
787 CASE_BUILT_IN_TM_LOAD (8):
788 CASE_BUILT_IN_TM_LOAD (FLOAT):
789 CASE_BUILT_IN_TM_LOAD (DOUBLE):
790 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
791 CASE_BUILT_IN_TM_LOAD (M64):
792 CASE_BUILT_IN_TM_LOAD (M128):
793 CASE_BUILT_IN_TM_LOAD (M256):
794 case BUILT_IN_TM_LOG:
795 case BUILT_IN_TM_LOG_1:
796 case BUILT_IN_TM_LOG_2:
797 case BUILT_IN_TM_LOG_4:
798 case BUILT_IN_TM_LOG_8:
799 case BUILT_IN_TM_LOG_FLOAT:
800 case BUILT_IN_TM_LOG_DOUBLE:
801 case BUILT_IN_TM_LOG_LDOUBLE:
802 case BUILT_IN_TM_LOG_M64:
803 case BUILT_IN_TM_LOG_M128:
804 case BUILT_IN_TM_LOG_M256:
805 return true;
806 default:
807 break;
808 }
809 }
810 return false;
811 }
812
813 /* Detect flags (function attributes) from the function decl or type node. */
814
815 int
816 flags_from_decl_or_type (const_tree exp)
817 {
818 int flags = 0;
819
820 if (DECL_P (exp))
821 {
822 /* The function exp may have the `malloc' attribute. */
823 if (DECL_IS_MALLOC (exp))
824 flags |= ECF_MALLOC;
825
826 /* The function exp may have the `returns_twice' attribute. */
827 if (DECL_IS_RETURNS_TWICE (exp))
828 flags |= ECF_RETURNS_TWICE;
829
830 /* Process the pure and const attributes. */
831 if (TREE_READONLY (exp))
832 flags |= ECF_CONST;
833 if (DECL_PURE_P (exp))
834 flags |= ECF_PURE;
835 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
836 flags |= ECF_LOOPING_CONST_OR_PURE;
837
838 if (DECL_IS_NOVOPS (exp))
839 flags |= ECF_NOVOPS;
840 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
841 flags |= ECF_LEAF;
842 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
843 flags |= ECF_COLD;
844
845 if (TREE_NOTHROW (exp))
846 flags |= ECF_NOTHROW;
847
848 if (flag_tm)
849 {
850 if (is_tm_builtin (exp))
851 flags |= ECF_TM_BUILTIN;
852 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
853 || lookup_attribute ("transaction_pure",
854 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
855 flags |= ECF_TM_PURE;
856 }
857
858 flags = special_function_p (exp, flags);
859 }
860 else if (TYPE_P (exp))
861 {
862 if (TYPE_READONLY (exp))
863 flags |= ECF_CONST;
864
865 if (flag_tm
866 && ((flags & ECF_CONST) != 0
867 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
868 flags |= ECF_TM_PURE;
869 }
870 else
871 gcc_unreachable ();
872
873 if (TREE_THIS_VOLATILE (exp))
874 {
875 flags |= ECF_NORETURN;
876 if (flags & (ECF_CONST|ECF_PURE))
877 flags |= ECF_LOOPING_CONST_OR_PURE;
878 }
879
880 return flags;
881 }
882
883 /* Detect flags from a CALL_EXPR. */
884
885 int
886 call_expr_flags (const_tree t)
887 {
888 int flags;
889 tree decl = get_callee_fndecl (t);
890
891 if (decl)
892 flags = flags_from_decl_or_type (decl);
893 else if (CALL_EXPR_FN (t) == NULL_TREE)
894 flags = internal_fn_flags (CALL_EXPR_IFN (t));
895 else
896 {
897 tree type = TREE_TYPE (CALL_EXPR_FN (t));
898 if (type && TREE_CODE (type) == POINTER_TYPE)
899 flags = flags_from_decl_or_type (TREE_TYPE (type));
900 else
901 flags = 0;
902 if (CALL_EXPR_BY_DESCRIPTOR (t))
903 flags |= ECF_BY_DESCRIPTOR;
904 }
905
906 return flags;
907 }
908
909 /* Return true if TYPE should be passed by invisible reference. */
910
911 bool
912 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
913 tree type, bool named_arg)
914 {
915 if (type)
916 {
917 /* If this type contains non-trivial constructors, then it is
918 forbidden for the middle-end to create any new copies. */
919 if (TREE_ADDRESSABLE (type))
920 return true;
921
922 /* GCC post 3.4 passes *all* variable sized types by reference. */
923 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
924 return true;
925
926 /* If a record type should be passed the same as its first (and only)
927 member, use the type and mode of that member. */
928 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
929 {
930 type = TREE_TYPE (first_field (type));
931 mode = TYPE_MODE (type);
932 }
933 }
934
935 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
936 type, named_arg);
937 }
938
939 /* Return true if TYPE, which is passed by reference, should be callee
940 copied instead of caller copied. */
941
942 bool
943 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
944 tree type, bool named_arg)
945 {
946 if (type && TREE_ADDRESSABLE (type))
947 return false;
948 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
949 named_arg);
950 }
951
952
953 /* Precompute all register parameters as described by ARGS, storing values
954 into fields within the ARGS array.
955
956 NUM_ACTUALS indicates the total number elements in the ARGS array.
957
958 Set REG_PARM_SEEN if we encounter a register parameter. */
959
960 static void
961 precompute_register_parameters (int num_actuals, struct arg_data *args,
962 int *reg_parm_seen)
963 {
964 int i;
965
966 *reg_parm_seen = 0;
967
968 for (i = 0; i < num_actuals; i++)
969 if (args[i].reg != 0 && ! args[i].pass_on_stack)
970 {
971 *reg_parm_seen = 1;
972
973 if (args[i].value == 0)
974 {
975 push_temp_slots ();
976 args[i].value = expand_normal (args[i].tree_value);
977 preserve_temp_slots (args[i].value);
978 pop_temp_slots ();
979 }
980
981 /* If we are to promote the function arg to a wider mode,
982 do it now. */
983
984 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
985 args[i].value
986 = convert_modes (args[i].mode,
987 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
988 args[i].value, args[i].unsignedp);
989
990 /* If the value is a non-legitimate constant, force it into a
991 pseudo now. TLS symbols sometimes need a call to resolve. */
992 if (CONSTANT_P (args[i].value)
993 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
994 args[i].value = force_reg (args[i].mode, args[i].value);
995
996 /* If we're going to have to load the value by parts, pull the
997 parts into pseudos. The part extraction process can involve
998 non-trivial computation. */
999 if (GET_CODE (args[i].reg) == PARALLEL)
1000 {
1001 tree type = TREE_TYPE (args[i].tree_value);
1002 args[i].parallel_value
1003 = emit_group_load_into_temps (args[i].reg, args[i].value,
1004 type, int_size_in_bytes (type));
1005 }
1006
1007 /* If the value is expensive, and we are inside an appropriately
1008 short loop, put the value into a pseudo and then put the pseudo
1009 into the hard reg.
1010
1011 For small register classes, also do this if this call uses
1012 register parameters. This is to avoid reload conflicts while
1013 loading the parameters registers. */
1014
1015 else if ((! (REG_P (args[i].value)
1016 || (GET_CODE (args[i].value) == SUBREG
1017 && REG_P (SUBREG_REG (args[i].value)))))
1018 && args[i].mode != BLKmode
1019 && (set_src_cost (args[i].value, args[i].mode,
1020 optimize_insn_for_speed_p ())
1021 > COSTS_N_INSNS (1))
1022 && ((*reg_parm_seen
1023 && targetm.small_register_classes_for_mode_p (args[i].mode))
1024 || optimize))
1025 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1026 }
1027 }
1028
1029 #ifdef REG_PARM_STACK_SPACE
1030
1031 /* The argument list is the property of the called routine and it
1032 may clobber it. If the fixed area has been used for previous
1033 parameters, we must save and restore it. */
1034
1035 static rtx
1036 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1037 {
1038 unsigned int low;
1039 unsigned int high;
1040
1041 /* Compute the boundary of the area that needs to be saved, if any. */
1042 high = reg_parm_stack_space;
1043 if (ARGS_GROW_DOWNWARD)
1044 high += 1;
1045
1046 if (high > highest_outgoing_arg_in_use)
1047 high = highest_outgoing_arg_in_use;
1048
1049 for (low = 0; low < high; low++)
1050 if (stack_usage_map[low] != 0 || low >= stack_usage_watermark)
1051 {
1052 int num_to_save;
1053 machine_mode save_mode;
1054 int delta;
1055 rtx addr;
1056 rtx stack_area;
1057 rtx save_area;
1058
1059 while (stack_usage_map[--high] == 0)
1060 ;
1061
1062 *low_to_save = low;
1063 *high_to_save = high;
1064
1065 num_to_save = high - low + 1;
1066
1067 /* If we don't have the required alignment, must do this
1068 in BLKmode. */
1069 scalar_int_mode imode;
1070 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1071 && (low & (MIN (GET_MODE_SIZE (imode),
1072 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1073 save_mode = imode;
1074 else
1075 save_mode = BLKmode;
1076
1077 if (ARGS_GROW_DOWNWARD)
1078 delta = -high;
1079 else
1080 delta = low;
1081
1082 addr = plus_constant (Pmode, argblock, delta);
1083 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1084
1085 set_mem_align (stack_area, PARM_BOUNDARY);
1086 if (save_mode == BLKmode)
1087 {
1088 save_area = assign_stack_temp (BLKmode, num_to_save);
1089 emit_block_move (validize_mem (save_area), stack_area,
1090 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1091 }
1092 else
1093 {
1094 save_area = gen_reg_rtx (save_mode);
1095 emit_move_insn (save_area, stack_area);
1096 }
1097
1098 return save_area;
1099 }
1100
1101 return NULL_RTX;
1102 }
1103
1104 static void
1105 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1106 {
1107 machine_mode save_mode = GET_MODE (save_area);
1108 int delta;
1109 rtx addr, stack_area;
1110
1111 if (ARGS_GROW_DOWNWARD)
1112 delta = -high_to_save;
1113 else
1114 delta = low_to_save;
1115
1116 addr = plus_constant (Pmode, argblock, delta);
1117 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1118 set_mem_align (stack_area, PARM_BOUNDARY);
1119
1120 if (save_mode != BLKmode)
1121 emit_move_insn (stack_area, save_area);
1122 else
1123 emit_block_move (stack_area, validize_mem (save_area),
1124 GEN_INT (high_to_save - low_to_save + 1),
1125 BLOCK_OP_CALL_PARM);
1126 }
1127 #endif /* REG_PARM_STACK_SPACE */
1128
1129 /* If any elements in ARGS refer to parameters that are to be passed in
1130 registers, but not in memory, and whose alignment does not permit a
1131 direct copy into registers. Copy the values into a group of pseudos
1132 which we will later copy into the appropriate hard registers.
1133
1134 Pseudos for each unaligned argument will be stored into the array
1135 args[argnum].aligned_regs. The caller is responsible for deallocating
1136 the aligned_regs array if it is nonzero. */
1137
1138 static void
1139 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1140 {
1141 int i, j;
1142
1143 for (i = 0; i < num_actuals; i++)
1144 if (args[i].reg != 0 && ! args[i].pass_on_stack
1145 && GET_CODE (args[i].reg) != PARALLEL
1146 && args[i].mode == BLKmode
1147 && MEM_P (args[i].value)
1148 && (MEM_ALIGN (args[i].value)
1149 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1150 {
1151 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1152 int endian_correction = 0;
1153
1154 if (args[i].partial)
1155 {
1156 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1157 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1158 }
1159 else
1160 {
1161 args[i].n_aligned_regs
1162 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1163 }
1164
1165 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1166
1167 /* Structures smaller than a word are normally aligned to the
1168 least significant byte. On a BYTES_BIG_ENDIAN machine,
1169 this means we must skip the empty high order bytes when
1170 calculating the bit offset. */
1171 if (bytes < UNITS_PER_WORD
1172 #ifdef BLOCK_REG_PADDING
1173 && (BLOCK_REG_PADDING (args[i].mode,
1174 TREE_TYPE (args[i].tree_value), 1)
1175 == PAD_DOWNWARD)
1176 #else
1177 && BYTES_BIG_ENDIAN
1178 #endif
1179 )
1180 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1181
1182 for (j = 0; j < args[i].n_aligned_regs; j++)
1183 {
1184 rtx reg = gen_reg_rtx (word_mode);
1185 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1186 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1187
1188 args[i].aligned_regs[j] = reg;
1189 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1190 word_mode, word_mode, false, NULL);
1191
1192 /* There is no need to restrict this code to loading items
1193 in TYPE_ALIGN sized hunks. The bitfield instructions can
1194 load up entire word sized registers efficiently.
1195
1196 ??? This may not be needed anymore.
1197 We use to emit a clobber here but that doesn't let later
1198 passes optimize the instructions we emit. By storing 0 into
1199 the register later passes know the first AND to zero out the
1200 bitfield being set in the register is unnecessary. The store
1201 of 0 will be deleted as will at least the first AND. */
1202
1203 emit_move_insn (reg, const0_rtx);
1204
1205 bytes -= bitsize / BITS_PER_UNIT;
1206 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1207 word_mode, word, false);
1208 }
1209 }
1210 }
1211
1212 /* The limit set by -Walloc-larger-than=. */
1213 static GTY(()) tree alloc_object_size_limit;
1214
1215 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1216 setting if the option is specified, or to the maximum object size if it
1217 is not. Return the initialized value. */
1218
1219 static tree
1220 alloc_max_size (void)
1221 {
1222 if (alloc_object_size_limit)
1223 return alloc_object_size_limit;
1224
1225 HOST_WIDE_INT limit = warn_alloc_size_limit;
1226 if (limit == HOST_WIDE_INT_MAX)
1227 limit = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
1228
1229 alloc_object_size_limit = build_int_cst (size_type_node, limit);
1230
1231 return alloc_object_size_limit;
1232 }
1233
1234 /* Return true when EXP's range can be determined and set RANGE[] to it
1235 after adjusting it if necessary to make EXP a represents a valid size
1236 of object, or a valid size argument to an allocation function declared
1237 with attribute alloc_size (whose argument may be signed), or to a string
1238 manipulation function like memset. When ALLOW_ZERO is true, allow
1239 returning a range of [0, 0] for a size in an anti-range [1, N] where
1240 N > PTRDIFF_MAX. A zero range is a (nearly) invalid argument to
1241 allocation functions like malloc but it is a valid argument to
1242 functions like memset. */
1243
1244 bool
1245 get_size_range (tree exp, tree range[2], bool allow_zero /* = false */)
1246 {
1247 if (tree_fits_uhwi_p (exp))
1248 {
1249 /* EXP is a constant. */
1250 range[0] = range[1] = exp;
1251 return true;
1252 }
1253
1254 tree exptype = TREE_TYPE (exp);
1255 bool integral = INTEGRAL_TYPE_P (exptype);
1256
1257 wide_int min, max;
1258 enum value_range_kind range_type;
1259
1260 if (integral)
1261 range_type = determine_value_range (exp, &min, &max);
1262 else
1263 range_type = VR_VARYING;
1264
1265 if (range_type == VR_VARYING)
1266 {
1267 if (integral)
1268 {
1269 /* Use the full range of the type of the expression when
1270 no value range information is available. */
1271 range[0] = TYPE_MIN_VALUE (exptype);
1272 range[1] = TYPE_MAX_VALUE (exptype);
1273 return true;
1274 }
1275
1276 range[0] = NULL_TREE;
1277 range[1] = NULL_TREE;
1278 return false;
1279 }
1280
1281 unsigned expprec = TYPE_PRECISION (exptype);
1282
1283 bool signed_p = !TYPE_UNSIGNED (exptype);
1284
1285 if (range_type == VR_ANTI_RANGE)
1286 {
1287 if (signed_p)
1288 {
1289 if (wi::les_p (max, 0))
1290 {
1291 /* EXP is not in a strictly negative range. That means
1292 it must be in some (not necessarily strictly) positive
1293 range which includes zero. Since in signed to unsigned
1294 conversions negative values end up converted to large
1295 positive values, and otherwise they are not valid sizes,
1296 the resulting range is in both cases [0, TYPE_MAX]. */
1297 min = wi::zero (expprec);
1298 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1299 }
1300 else if (wi::les_p (min - 1, 0))
1301 {
1302 /* EXP is not in a negative-positive range. That means EXP
1303 is either negative, or greater than max. Since negative
1304 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1305 min = max + 1;
1306 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1307 }
1308 else
1309 {
1310 max = min - 1;
1311 min = wi::zero (expprec);
1312 }
1313 }
1314 else if (wi::eq_p (0, min - 1))
1315 {
1316 /* EXP is unsigned and not in the range [1, MAX]. That means
1317 it's either zero or greater than MAX. Even though 0 would
1318 normally be detected by -Walloc-zero, unless ALLOW_ZERO
1319 is true, set the range to [MAX, TYPE_MAX] so that when MAX
1320 is greater than the limit the whole range is diagnosed. */
1321 if (allow_zero)
1322 min = max = wi::zero (expprec);
1323 else
1324 {
1325 min = max + 1;
1326 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1327 }
1328 }
1329 else
1330 {
1331 max = min - 1;
1332 min = wi::zero (expprec);
1333 }
1334 }
1335
1336 range[0] = wide_int_to_tree (exptype, min);
1337 range[1] = wide_int_to_tree (exptype, max);
1338
1339 return true;
1340 }
1341
1342 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1343 whose argument numbers given by IDX with values given by ARGS exceed
1344 the maximum object size or cause an unsigned oveflow (wrapping) when
1345 multiplied. FN is null when EXP is a call via a function pointer.
1346 When ARGS[0] is null the function does nothing. ARGS[1] may be null
1347 for functions like malloc, and non-null for those like calloc that
1348 are decorated with a two-argument attribute alloc_size. */
1349
1350 void
1351 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1352 {
1353 /* The range each of the (up to) two arguments is known to be in. */
1354 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1355
1356 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1357 tree maxobjsize = alloc_max_size ();
1358
1359 location_t loc = EXPR_LOCATION (exp);
1360
1361 tree fntype = fn ? TREE_TYPE (fn) : TREE_TYPE (TREE_TYPE (exp));
1362 built_in_function fncode = fn ? DECL_FUNCTION_CODE (fn) : BUILT_IN_NONE;
1363 bool warned = false;
1364
1365 /* Validate each argument individually. */
1366 for (unsigned i = 0; i != 2 && args[i]; ++i)
1367 {
1368 if (TREE_CODE (args[i]) == INTEGER_CST)
1369 {
1370 argrange[i][0] = args[i];
1371 argrange[i][1] = args[i];
1372
1373 if (tree_int_cst_lt (args[i], integer_zero_node))
1374 {
1375 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1376 "%Kargument %i value %qE is negative",
1377 exp, idx[i] + 1, args[i]);
1378 }
1379 else if (integer_zerop (args[i]))
1380 {
1381 /* Avoid issuing -Walloc-zero for allocation functions other
1382 than __builtin_alloca that are declared with attribute
1383 returns_nonnull because there's no portability risk. This
1384 avoids warning for such calls to libiberty's xmalloc and
1385 friends.
1386 Also avoid issuing the warning for calls to function named
1387 "alloca". */
1388 if ((fncode == BUILT_IN_ALLOCA
1389 && IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6)
1390 || (fncode != BUILT_IN_ALLOCA
1391 && !lookup_attribute ("returns_nonnull",
1392 TYPE_ATTRIBUTES (fntype))))
1393 warned = warning_at (loc, OPT_Walloc_zero,
1394 "%Kargument %i value is zero",
1395 exp, idx[i] + 1);
1396 }
1397 else if (tree_int_cst_lt (maxobjsize, args[i]))
1398 {
1399 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1400 mode and with -fno-exceptions as a way to indicate array
1401 size overflow. There's no good way to detect C++98 here
1402 so avoid diagnosing these calls for all C++ modes. */
1403 if (i == 0
1404 && fn
1405 && !args[1]
1406 && lang_GNU_CXX ()
1407 && DECL_IS_OPERATOR_NEW (fn)
1408 && integer_all_onesp (args[i]))
1409 continue;
1410
1411 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1412 "%Kargument %i value %qE exceeds "
1413 "maximum object size %E",
1414 exp, idx[i] + 1, args[i], maxobjsize);
1415 }
1416 }
1417 else if (TREE_CODE (args[i]) == SSA_NAME
1418 && get_size_range (args[i], argrange[i]))
1419 {
1420 /* Verify that the argument's range is not negative (including
1421 upper bound of zero). */
1422 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1423 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1424 {
1425 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1426 "%Kargument %i range [%E, %E] is negative",
1427 exp, idx[i] + 1,
1428 argrange[i][0], argrange[i][1]);
1429 }
1430 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1431 {
1432 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1433 "%Kargument %i range [%E, %E] exceeds "
1434 "maximum object size %E",
1435 exp, idx[i] + 1,
1436 argrange[i][0], argrange[i][1],
1437 maxobjsize);
1438 }
1439 }
1440 }
1441
1442 if (!argrange[0])
1443 return;
1444
1445 /* For a two-argument alloc_size, validate the product of the two
1446 arguments if both of their values or ranges are known. */
1447 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1448 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1449 && !integer_onep (argrange[0][0])
1450 && !integer_onep (argrange[1][0]))
1451 {
1452 /* Check for overflow in the product of a function decorated with
1453 attribute alloc_size (X, Y). */
1454 unsigned szprec = TYPE_PRECISION (size_type_node);
1455 wide_int x = wi::to_wide (argrange[0][0], szprec);
1456 wide_int y = wi::to_wide (argrange[1][0], szprec);
1457
1458 wi::overflow_type vflow;
1459 wide_int prod = wi::umul (x, y, &vflow);
1460
1461 if (vflow)
1462 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1463 "%Kproduct %<%E * %E%> of arguments %i and %i "
1464 "exceeds %<SIZE_MAX%>",
1465 exp, argrange[0][0], argrange[1][0],
1466 idx[0] + 1, idx[1] + 1);
1467 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1468 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1469 "%Kproduct %<%E * %E%> of arguments %i and %i "
1470 "exceeds maximum object size %E",
1471 exp, argrange[0][0], argrange[1][0],
1472 idx[0] + 1, idx[1] + 1,
1473 maxobjsize);
1474
1475 if (warned)
1476 {
1477 /* Print the full range of each of the two arguments to make
1478 it clear when it is, in fact, in a range and not constant. */
1479 if (argrange[0][0] != argrange [0][1])
1480 inform (loc, "argument %i in the range [%E, %E]",
1481 idx[0] + 1, argrange[0][0], argrange[0][1]);
1482 if (argrange[1][0] != argrange [1][1])
1483 inform (loc, "argument %i in the range [%E, %E]",
1484 idx[1] + 1, argrange[1][0], argrange[1][1]);
1485 }
1486 }
1487
1488 if (warned && fn)
1489 {
1490 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1491
1492 if (DECL_IS_BUILTIN (fn))
1493 inform (loc,
1494 "in a call to built-in allocation function %qD", fn);
1495 else
1496 inform (fnloc,
1497 "in a call to allocation function %qD declared here", fn);
1498 }
1499 }
1500
1501 /* If EXPR refers to a character array or pointer declared attribute
1502 nonstring return a decl for that array or pointer and set *REF to
1503 the referenced enclosing object or pointer. Otherwise returns
1504 null. */
1505
1506 tree
1507 get_attr_nonstring_decl (tree expr, tree *ref)
1508 {
1509 tree decl = expr;
1510 tree var = NULL_TREE;
1511 if (TREE_CODE (decl) == SSA_NAME)
1512 {
1513 gimple *def = SSA_NAME_DEF_STMT (decl);
1514
1515 if (is_gimple_assign (def))
1516 {
1517 tree_code code = gimple_assign_rhs_code (def);
1518 if (code == ADDR_EXPR
1519 || code == COMPONENT_REF
1520 || code == VAR_DECL)
1521 decl = gimple_assign_rhs1 (def);
1522 }
1523 else
1524 var = SSA_NAME_VAR (decl);
1525 }
1526
1527 if (TREE_CODE (decl) == ADDR_EXPR)
1528 decl = TREE_OPERAND (decl, 0);
1529
1530 /* To simplify calling code, store the referenced DECL regardless of
1531 the attribute determined below, but avoid storing the SSA_NAME_VAR
1532 obtained above (it's not useful for dataflow purposes). */
1533 if (ref)
1534 *ref = decl;
1535
1536 /* Use the SSA_NAME_VAR that was determined above to see if it's
1537 declared nonstring. Otherwise drill down into the referenced
1538 DECL. */
1539 if (var)
1540 decl = var;
1541 else if (TREE_CODE (decl) == ARRAY_REF)
1542 decl = TREE_OPERAND (decl, 0);
1543 else if (TREE_CODE (decl) == COMPONENT_REF)
1544 decl = TREE_OPERAND (decl, 1);
1545 else if (TREE_CODE (decl) == MEM_REF)
1546 return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
1547
1548 if (DECL_P (decl)
1549 && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
1550 return decl;
1551
1552 return NULL_TREE;
1553 }
1554
1555 /* Warn about passing a non-string array/pointer to a function that
1556 expects a nul-terminated string argument. */
1557
1558 void
1559 maybe_warn_nonstring_arg (tree fndecl, tree exp)
1560 {
1561 if (!fndecl || !fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
1562 return;
1563
1564 if (TREE_NO_WARNING (exp) || !warn_stringop_overflow)
1565 return;
1566
1567 unsigned nargs = call_expr_nargs (exp);
1568
1569 /* The bound argument to a bounded string function like strncpy. */
1570 tree bound = NULL_TREE;
1571
1572 /* The range of lengths of a string argument to one of the comparison
1573 functions. If the length is less than the bound it is used instead. */
1574 tree lenrng[2] = { NULL_TREE, NULL_TREE };
1575
1576 /* It's safe to call "bounded" string functions with a non-string
1577 argument since the functions provide an explicit bound for this
1578 purpose. The exception is strncat where the bound may refer to
1579 either the destination or the source. */
1580 int fncode = DECL_FUNCTION_CODE (fndecl);
1581 switch (fncode)
1582 {
1583 case BUILT_IN_STRCMP:
1584 case BUILT_IN_STRNCMP:
1585 case BUILT_IN_STRNCASECMP:
1586 {
1587 /* For these, if one argument refers to one or more of a set
1588 of string constants or arrays of known size, determine
1589 the range of their known or possible lengths and use it
1590 conservatively as the bound for the unbounded function,
1591 and to adjust the range of the bound of the bounded ones. */
1592 for (unsigned argno = 0;
1593 argno < MIN (nargs, 2)
1594 && !(lenrng[1] && TREE_CODE (lenrng[1]) == INTEGER_CST); argno++)
1595 {
1596 tree arg = CALL_EXPR_ARG (exp, argno);
1597 if (!get_attr_nonstring_decl (arg))
1598 get_range_strlen (arg, lenrng);
1599 }
1600 }
1601 /* Fall through. */
1602
1603 case BUILT_IN_STRNCAT:
1604 case BUILT_IN_STPNCPY:
1605 case BUILT_IN_STRNCPY:
1606 if (nargs > 2)
1607 bound = CALL_EXPR_ARG (exp, 2);
1608 break;
1609
1610 case BUILT_IN_STRNDUP:
1611 if (nargs > 1)
1612 bound = CALL_EXPR_ARG (exp, 1);
1613 break;
1614
1615 case BUILT_IN_STRNLEN:
1616 {
1617 tree arg = CALL_EXPR_ARG (exp, 0);
1618 if (!get_attr_nonstring_decl (arg))
1619 get_range_strlen (arg, lenrng);
1620
1621 if (nargs > 1)
1622 bound = CALL_EXPR_ARG (exp, 1);
1623 break;
1624 }
1625
1626 default:
1627 break;
1628 }
1629
1630 /* Determine the range of the bound argument (if specified). */
1631 tree bndrng[2] = { NULL_TREE, NULL_TREE };
1632 if (bound)
1633 {
1634 STRIP_NOPS (bound);
1635 get_size_range (bound, bndrng);
1636 }
1637
1638 location_t loc = EXPR_LOCATION (exp);
1639
1640 if (bndrng[0])
1641 {
1642 /* Diagnose excessive bound prior the adjustment below and
1643 regardless of attribute nonstring. */
1644 tree maxobjsize = max_object_size ();
1645 if (tree_int_cst_lt (maxobjsize, bndrng[0]))
1646 {
1647 if (tree_int_cst_equal (bndrng[0], bndrng[1]))
1648 warning_at (loc, OPT_Wstringop_overflow_,
1649 "%K%qD specified bound %E "
1650 "exceeds maximum object size %E",
1651 exp, fndecl, bndrng[0], maxobjsize);
1652 else
1653 warning_at (loc, OPT_Wstringop_overflow_,
1654 "%K%qD specified bound [%E, %E] "
1655 "exceeds maximum object size %E",
1656 exp, fndecl, bndrng[0], bndrng[1], maxobjsize);
1657 return;
1658 }
1659 }
1660
1661 if (lenrng[1] && TREE_CODE (lenrng[1]) == INTEGER_CST)
1662 {
1663 /* Add one for the nul. */
1664 lenrng[1] = const_binop (PLUS_EXPR, TREE_TYPE (lenrng[1]),
1665 lenrng[1], size_one_node);
1666
1667 if (!bndrng[0])
1668 {
1669 /* Conservatively use the upper bound of the lengths for
1670 both the lower and the upper bound of the operation. */
1671 bndrng[0] = lenrng[1];
1672 bndrng[1] = lenrng[1];
1673 bound = void_type_node;
1674 }
1675 else
1676 {
1677 /* Replace the bound on the operation with the upper bound
1678 of the length of the string if the latter is smaller. */
1679 if (tree_int_cst_lt (lenrng[1], bndrng[0]))
1680 bndrng[0] = lenrng[1];
1681 else if (tree_int_cst_lt (lenrng[1], bndrng[1]))
1682 bndrng[1] = lenrng[1];
1683 }
1684 }
1685
1686 /* Iterate over the built-in function's formal arguments and check
1687 each const char* against the actual argument. If the actual
1688 argument is declared attribute non-string issue a warning unless
1689 the argument's maximum length is bounded. */
1690 function_args_iterator it;
1691 function_args_iter_init (&it, TREE_TYPE (fndecl));
1692
1693 for (unsigned argno = 0; ; ++argno, function_args_iter_next (&it))
1694 {
1695 /* Avoid iterating past the declared argument in a call
1696 to function declared without a prototype. */
1697 if (argno >= nargs)
1698 break;
1699
1700 tree argtype = function_args_iter_cond (&it);
1701 if (!argtype)
1702 break;
1703
1704 if (TREE_CODE (argtype) != POINTER_TYPE)
1705 continue;
1706
1707 argtype = TREE_TYPE (argtype);
1708
1709 if (TREE_CODE (argtype) != INTEGER_TYPE
1710 || !TYPE_READONLY (argtype))
1711 continue;
1712
1713 argtype = TYPE_MAIN_VARIANT (argtype);
1714 if (argtype != char_type_node)
1715 continue;
1716
1717 tree callarg = CALL_EXPR_ARG (exp, argno);
1718 if (TREE_CODE (callarg) == ADDR_EXPR)
1719 callarg = TREE_OPERAND (callarg, 0);
1720
1721 /* See if the destination is declared with attribute "nonstring". */
1722 tree decl = get_attr_nonstring_decl (callarg);
1723 if (!decl)
1724 continue;
1725
1726 /* The maximum number of array elements accessed. */
1727 offset_int wibnd = 0;
1728
1729 if (argno && fncode == BUILT_IN_STRNCAT)
1730 {
1731 /* See if the bound in strncat is derived from the length
1732 of the strlen of the destination (as it's expected to be).
1733 If so, reset BOUND and FNCODE to trigger a warning. */
1734 tree dstarg = CALL_EXPR_ARG (exp, 0);
1735 if (is_strlen_related_p (dstarg, bound))
1736 {
1737 /* The bound applies to the destination, not to the source,
1738 so reset these to trigger a warning without mentioning
1739 the bound. */
1740 bound = NULL;
1741 fncode = 0;
1742 }
1743 else if (bndrng[1])
1744 /* Use the upper bound of the range for strncat. */
1745 wibnd = wi::to_offset (bndrng[1]);
1746 }
1747 else if (bndrng[0])
1748 /* Use the lower bound of the range for functions other than
1749 strncat. */
1750 wibnd = wi::to_offset (bndrng[0]);
1751
1752 /* Determine the size of the argument array if it is one. */
1753 offset_int asize = wibnd;
1754 bool known_size = false;
1755 tree type = TREE_TYPE (decl);
1756
1757 /* Determine the array size. For arrays of unknown bound and
1758 pointers reset BOUND to trigger the appropriate warning. */
1759 if (TREE_CODE (type) == ARRAY_TYPE)
1760 {
1761 if (tree arrbnd = TYPE_DOMAIN (type))
1762 {
1763 if ((arrbnd = TYPE_MAX_VALUE (arrbnd)))
1764 {
1765 asize = wi::to_offset (arrbnd) + 1;
1766 known_size = true;
1767 }
1768 }
1769 else if (bound == void_type_node)
1770 bound = NULL_TREE;
1771 }
1772 else if (bound == void_type_node)
1773 bound = NULL_TREE;
1774
1775 /* In a call to strncat with a bound in a range whose lower but
1776 not upper bound is less than the array size, reset ASIZE to
1777 be the same as the bound and the other variable to trigger
1778 the apprpriate warning below. */
1779 if (fncode == BUILT_IN_STRNCAT
1780 && bndrng[0] != bndrng[1]
1781 && wi::ltu_p (wi::to_offset (bndrng[0]), asize)
1782 && (!known_size
1783 || wi::ltu_p (asize, wibnd)))
1784 {
1785 asize = wibnd;
1786 bound = NULL_TREE;
1787 fncode = 0;
1788 }
1789
1790 bool warned = false;
1791
1792 auto_diagnostic_group d;
1793 if (wi::ltu_p (asize, wibnd))
1794 {
1795 if (bndrng[0] == bndrng[1])
1796 warned = warning_at (loc, OPT_Wstringop_overflow_,
1797 "%qD argument %i declared attribute "
1798 "%<nonstring%> is smaller than the specified "
1799 "bound %wu",
1800 fndecl, argno + 1, wibnd.to_uhwi ());
1801 else if (wi::ltu_p (asize, wi::to_offset (bndrng[0])))
1802 warned = warning_at (loc, OPT_Wstringop_overflow_,
1803 "%qD argument %i declared attribute "
1804 "%<nonstring%> is smaller than "
1805 "the specified bound [%E, %E]",
1806 fndecl, argno + 1, bndrng[0], bndrng[1]);
1807 else
1808 warned = warning_at (loc, OPT_Wstringop_overflow_,
1809 "%qD argument %i declared attribute "
1810 "%<nonstring%> may be smaller than "
1811 "the specified bound [%E, %E]",
1812 fndecl, argno + 1, bndrng[0], bndrng[1]);
1813 }
1814 else if (fncode == BUILT_IN_STRNCAT)
1815 ; /* Avoid warning for calls to strncat() when the bound
1816 is equal to the size of the non-string argument. */
1817 else if (!bound)
1818 warned = warning_at (loc, OPT_Wstringop_overflow_,
1819 "%qD argument %i declared attribute %<nonstring%>",
1820 fndecl, argno + 1);
1821
1822 if (warned)
1823 inform (DECL_SOURCE_LOCATION (decl),
1824 "argument %qD declared here", decl);
1825 }
1826 }
1827
1828 /* Issue an error if CALL_EXPR was flagged as requiring
1829 tall-call optimization. */
1830
1831 static void
1832 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1833 {
1834 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1835 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1836 return;
1837
1838 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1839 }
1840
1841 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1842 CALL_EXPR EXP.
1843
1844 NUM_ACTUALS is the total number of parameters.
1845
1846 N_NAMED_ARGS is the total number of named arguments.
1847
1848 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1849 value, or null.
1850
1851 FNDECL is the tree code for the target of this call (if known)
1852
1853 ARGS_SO_FAR holds state needed by the target to know where to place
1854 the next argument.
1855
1856 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1857 for arguments which are passed in registers.
1858
1859 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1860 and may be modified by this routine.
1861
1862 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1863 flags which may be modified by this routine.
1864
1865 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1866 that requires allocation of stack space.
1867
1868 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1869 the thunked-to function. */
1870
1871 static void
1872 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1873 struct arg_data *args,
1874 struct args_size *args_size,
1875 int n_named_args ATTRIBUTE_UNUSED,
1876 tree exp, tree struct_value_addr_value,
1877 tree fndecl, tree fntype,
1878 cumulative_args_t args_so_far,
1879 int reg_parm_stack_space,
1880 rtx *old_stack_level,
1881 poly_int64_pod *old_pending_adj,
1882 int *must_preallocate, int *ecf_flags,
1883 bool *may_tailcall, bool call_from_thunk_p)
1884 {
1885 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1886 location_t loc = EXPR_LOCATION (exp);
1887
1888 /* Count arg position in order args appear. */
1889 int argpos;
1890
1891 int i;
1892
1893 args_size->constant = 0;
1894 args_size->var = 0;
1895
1896 bitmap_obstack_initialize (NULL);
1897
1898 /* In this loop, we consider args in the order they are written.
1899 We fill up ARGS from the back. */
1900
1901 i = num_actuals - 1;
1902 {
1903 int j = i;
1904 call_expr_arg_iterator iter;
1905 tree arg;
1906 bitmap slots = NULL;
1907
1908 if (struct_value_addr_value)
1909 {
1910 args[j].tree_value = struct_value_addr_value;
1911 j--;
1912 }
1913 argpos = 0;
1914 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1915 {
1916 tree argtype = TREE_TYPE (arg);
1917
1918 if (targetm.calls.split_complex_arg
1919 && argtype
1920 && TREE_CODE (argtype) == COMPLEX_TYPE
1921 && targetm.calls.split_complex_arg (argtype))
1922 {
1923 tree subtype = TREE_TYPE (argtype);
1924 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1925 j--;
1926 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1927 }
1928 else
1929 args[j].tree_value = arg;
1930 j--;
1931 argpos++;
1932 }
1933
1934 if (slots)
1935 BITMAP_FREE (slots);
1936 }
1937
1938 bitmap_obstack_release (NULL);
1939
1940 /* Extract attribute alloc_size from the type of the called expression
1941 (which could be a function or a function pointer) and if set, store
1942 the indices of the corresponding arguments in ALLOC_IDX, and then
1943 the actual argument(s) at those indices in ALLOC_ARGS. */
1944 int alloc_idx[2] = { -1, -1 };
1945 if (tree alloc_size = lookup_attribute ("alloc_size",
1946 TYPE_ATTRIBUTES (fntype)))
1947 {
1948 tree args = TREE_VALUE (alloc_size);
1949 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
1950 if (TREE_CHAIN (args))
1951 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
1952 }
1953
1954 /* Array for up to the two attribute alloc_size arguments. */
1955 tree alloc_args[] = { NULL_TREE, NULL_TREE };
1956
1957 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1958 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1959 {
1960 tree type = TREE_TYPE (args[i].tree_value);
1961 int unsignedp;
1962 machine_mode mode;
1963
1964 /* Replace erroneous argument with constant zero. */
1965 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1966 args[i].tree_value = integer_zero_node, type = integer_type_node;
1967
1968 /* If TYPE is a transparent union or record, pass things the way
1969 we would pass the first field of the union or record. We have
1970 already verified that the modes are the same. */
1971 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1972 && TYPE_TRANSPARENT_AGGR (type))
1973 type = TREE_TYPE (first_field (type));
1974
1975 /* Decide where to pass this arg.
1976
1977 args[i].reg is nonzero if all or part is passed in registers.
1978
1979 args[i].partial is nonzero if part but not all is passed in registers,
1980 and the exact value says how many bytes are passed in registers.
1981
1982 args[i].pass_on_stack is nonzero if the argument must at least be
1983 computed on the stack. It may then be loaded back into registers
1984 if args[i].reg is nonzero.
1985
1986 These decisions are driven by the FUNCTION_... macros and must agree
1987 with those made by function.c. */
1988
1989 /* See if this argument should be passed by invisible reference. */
1990 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1991 type, argpos < n_named_args))
1992 {
1993 bool callee_copies;
1994 tree base = NULL_TREE;
1995
1996 callee_copies
1997 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1998 type, argpos < n_named_args);
1999
2000 /* If we're compiling a thunk, pass through invisible references
2001 instead of making a copy. */
2002 if (call_from_thunk_p
2003 || (callee_copies
2004 && !TREE_ADDRESSABLE (type)
2005 && (base = get_base_address (args[i].tree_value))
2006 && TREE_CODE (base) != SSA_NAME
2007 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
2008 {
2009 /* We may have turned the parameter value into an SSA name.
2010 Go back to the original parameter so we can take the
2011 address. */
2012 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
2013 {
2014 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
2015 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
2016 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
2017 }
2018 /* Argument setup code may have copied the value to register. We
2019 revert that optimization now because the tail call code must
2020 use the original location. */
2021 if (TREE_CODE (args[i].tree_value) == PARM_DECL
2022 && !MEM_P (DECL_RTL (args[i].tree_value))
2023 && DECL_INCOMING_RTL (args[i].tree_value)
2024 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
2025 set_decl_rtl (args[i].tree_value,
2026 DECL_INCOMING_RTL (args[i].tree_value));
2027
2028 mark_addressable (args[i].tree_value);
2029
2030 /* We can't use sibcalls if a callee-copied argument is
2031 stored in the current function's frame. */
2032 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
2033 {
2034 *may_tailcall = false;
2035 maybe_complain_about_tail_call (exp,
2036 "a callee-copied argument is"
2037 " stored in the current"
2038 " function's frame");
2039 }
2040
2041 args[i].tree_value = build_fold_addr_expr_loc (loc,
2042 args[i].tree_value);
2043 type = TREE_TYPE (args[i].tree_value);
2044
2045 if (*ecf_flags & ECF_CONST)
2046 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
2047 }
2048 else
2049 {
2050 /* We make a copy of the object and pass the address to the
2051 function being called. */
2052 rtx copy;
2053
2054 if (!COMPLETE_TYPE_P (type)
2055 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
2056 || (flag_stack_check == GENERIC_STACK_CHECK
2057 && compare_tree_int (TYPE_SIZE_UNIT (type),
2058 STACK_CHECK_MAX_VAR_SIZE) > 0))
2059 {
2060 /* This is a variable-sized object. Make space on the stack
2061 for it. */
2062 rtx size_rtx = expr_size (args[i].tree_value);
2063
2064 if (*old_stack_level == 0)
2065 {
2066 emit_stack_save (SAVE_BLOCK, old_stack_level);
2067 *old_pending_adj = pending_stack_adjust;
2068 pending_stack_adjust = 0;
2069 }
2070
2071 /* We can pass TRUE as the 4th argument because we just
2072 saved the stack pointer and will restore it right after
2073 the call. */
2074 copy = allocate_dynamic_stack_space (size_rtx,
2075 TYPE_ALIGN (type),
2076 TYPE_ALIGN (type),
2077 max_int_size_in_bytes
2078 (type),
2079 true);
2080 copy = gen_rtx_MEM (BLKmode, copy);
2081 set_mem_attributes (copy, type, 1);
2082 }
2083 else
2084 copy = assign_temp (type, 1, 0);
2085
2086 store_expr (args[i].tree_value, copy, 0, false, false);
2087
2088 /* Just change the const function to pure and then let
2089 the next test clear the pure based on
2090 callee_copies. */
2091 if (*ecf_flags & ECF_CONST)
2092 {
2093 *ecf_flags &= ~ECF_CONST;
2094 *ecf_flags |= ECF_PURE;
2095 }
2096
2097 if (!callee_copies && *ecf_flags & ECF_PURE)
2098 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2099
2100 args[i].tree_value
2101 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
2102 type = TREE_TYPE (args[i].tree_value);
2103 *may_tailcall = false;
2104 maybe_complain_about_tail_call (exp,
2105 "argument must be passed"
2106 " by copying");
2107 }
2108 }
2109
2110 unsignedp = TYPE_UNSIGNED (type);
2111 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
2112 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
2113
2114 args[i].unsignedp = unsignedp;
2115 args[i].mode = mode;
2116
2117 targetm.calls.warn_parameter_passing_abi (args_so_far, type);
2118
2119 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
2120 argpos < n_named_args);
2121
2122 if (args[i].reg && CONST_INT_P (args[i].reg))
2123 {
2124 args[i].special_slot = args[i].reg;
2125 args[i].reg = NULL;
2126 }
2127
2128 /* If this is a sibling call and the machine has register windows, the
2129 register window has to be unwinded before calling the routine, so
2130 arguments have to go into the incoming registers. */
2131 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
2132 args[i].tail_call_reg
2133 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
2134 argpos < n_named_args);
2135 else
2136 args[i].tail_call_reg = args[i].reg;
2137
2138 if (args[i].reg)
2139 args[i].partial
2140 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
2141 argpos < n_named_args);
2142
2143 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
2144
2145 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
2146 it means that we are to pass this arg in the register(s) designated
2147 by the PARALLEL, but also to pass it in the stack. */
2148 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
2149 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
2150 args[i].pass_on_stack = 1;
2151
2152 /* If this is an addressable type, we must preallocate the stack
2153 since we must evaluate the object into its final location.
2154
2155 If this is to be passed in both registers and the stack, it is simpler
2156 to preallocate. */
2157 if (TREE_ADDRESSABLE (type)
2158 || (args[i].pass_on_stack && args[i].reg != 0))
2159 *must_preallocate = 1;
2160
2161 /* Compute the stack-size of this argument. */
2162 if (args[i].reg == 0 || args[i].partial != 0
2163 || reg_parm_stack_space > 0
2164 || args[i].pass_on_stack)
2165 locate_and_pad_parm (mode, type,
2166 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2167 1,
2168 #else
2169 args[i].reg != 0,
2170 #endif
2171 reg_parm_stack_space,
2172 args[i].pass_on_stack ? 0 : args[i].partial,
2173 fndecl, args_size, &args[i].locate);
2174 #ifdef BLOCK_REG_PADDING
2175 else
2176 /* The argument is passed entirely in registers. See at which
2177 end it should be padded. */
2178 args[i].locate.where_pad =
2179 BLOCK_REG_PADDING (mode, type,
2180 int_size_in_bytes (type) <= UNITS_PER_WORD);
2181 #endif
2182
2183 /* Update ARGS_SIZE, the total stack space for args so far. */
2184
2185 args_size->constant += args[i].locate.size.constant;
2186 if (args[i].locate.size.var)
2187 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
2188
2189 /* Increment ARGS_SO_FAR, which has info about which arg-registers
2190 have been used, etc. */
2191
2192 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
2193 type, argpos < n_named_args);
2194
2195 /* Store argument values for functions decorated with attribute
2196 alloc_size. */
2197 if (argpos == alloc_idx[0])
2198 alloc_args[0] = args[i].tree_value;
2199 else if (argpos == alloc_idx[1])
2200 alloc_args[1] = args[i].tree_value;
2201 }
2202
2203 if (alloc_args[0])
2204 {
2205 /* Check the arguments of functions decorated with attribute
2206 alloc_size. */
2207 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
2208 }
2209
2210 /* Detect passing non-string arguments to functions expecting
2211 nul-terminated strings. */
2212 maybe_warn_nonstring_arg (fndecl, exp);
2213 }
2214
2215 /* Update ARGS_SIZE to contain the total size for the argument block.
2216 Return the original constant component of the argument block's size.
2217
2218 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
2219 for arguments passed in registers. */
2220
2221 static poly_int64
2222 compute_argument_block_size (int reg_parm_stack_space,
2223 struct args_size *args_size,
2224 tree fndecl ATTRIBUTE_UNUSED,
2225 tree fntype ATTRIBUTE_UNUSED,
2226 int preferred_stack_boundary ATTRIBUTE_UNUSED)
2227 {
2228 poly_int64 unadjusted_args_size = args_size->constant;
2229
2230 /* For accumulate outgoing args mode we don't need to align, since the frame
2231 will be already aligned. Align to STACK_BOUNDARY in order to prevent
2232 backends from generating misaligned frame sizes. */
2233 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
2234 preferred_stack_boundary = STACK_BOUNDARY;
2235
2236 /* Compute the actual size of the argument block required. The variable
2237 and constant sizes must be combined, the size may have to be rounded,
2238 and there may be a minimum required size. */
2239
2240 if (args_size->var)
2241 {
2242 args_size->var = ARGS_SIZE_TREE (*args_size);
2243 args_size->constant = 0;
2244
2245 preferred_stack_boundary /= BITS_PER_UNIT;
2246 if (preferred_stack_boundary > 1)
2247 {
2248 /* We don't handle this case yet. To handle it correctly we have
2249 to add the delta, round and subtract the delta.
2250 Currently no machine description requires this support. */
2251 gcc_assert (multiple_p (stack_pointer_delta,
2252 preferred_stack_boundary));
2253 args_size->var = round_up (args_size->var, preferred_stack_boundary);
2254 }
2255
2256 if (reg_parm_stack_space > 0)
2257 {
2258 args_size->var
2259 = size_binop (MAX_EXPR, args_size->var,
2260 ssize_int (reg_parm_stack_space));
2261
2262 /* The area corresponding to register parameters is not to count in
2263 the size of the block we need. So make the adjustment. */
2264 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2265 args_size->var
2266 = size_binop (MINUS_EXPR, args_size->var,
2267 ssize_int (reg_parm_stack_space));
2268 }
2269 }
2270 else
2271 {
2272 preferred_stack_boundary /= BITS_PER_UNIT;
2273 if (preferred_stack_boundary < 1)
2274 preferred_stack_boundary = 1;
2275 args_size->constant = (aligned_upper_bound (args_size->constant
2276 + stack_pointer_delta,
2277 preferred_stack_boundary)
2278 - stack_pointer_delta);
2279
2280 args_size->constant = upper_bound (args_size->constant,
2281 reg_parm_stack_space);
2282
2283 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2284 args_size->constant -= reg_parm_stack_space;
2285 }
2286 return unadjusted_args_size;
2287 }
2288
2289 /* Precompute parameters as needed for a function call.
2290
2291 FLAGS is mask of ECF_* constants.
2292
2293 NUM_ACTUALS is the number of arguments.
2294
2295 ARGS is an array containing information for each argument; this
2296 routine fills in the INITIAL_VALUE and VALUE fields for each
2297 precomputed argument. */
2298
2299 static void
2300 precompute_arguments (int num_actuals, struct arg_data *args)
2301 {
2302 int i;
2303
2304 /* If this is a libcall, then precompute all arguments so that we do not
2305 get extraneous instructions emitted as part of the libcall sequence. */
2306
2307 /* If we preallocated the stack space, and some arguments must be passed
2308 on the stack, then we must precompute any parameter which contains a
2309 function call which will store arguments on the stack.
2310 Otherwise, evaluating the parameter may clobber previous parameters
2311 which have already been stored into the stack. (we have code to avoid
2312 such case by saving the outgoing stack arguments, but it results in
2313 worse code) */
2314 if (!ACCUMULATE_OUTGOING_ARGS)
2315 return;
2316
2317 for (i = 0; i < num_actuals; i++)
2318 {
2319 tree type;
2320 machine_mode mode;
2321
2322 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2323 continue;
2324
2325 /* If this is an addressable type, we cannot pre-evaluate it. */
2326 type = TREE_TYPE (args[i].tree_value);
2327 gcc_assert (!TREE_ADDRESSABLE (type));
2328
2329 args[i].initial_value = args[i].value
2330 = expand_normal (args[i].tree_value);
2331
2332 mode = TYPE_MODE (type);
2333 if (mode != args[i].mode)
2334 {
2335 int unsignedp = args[i].unsignedp;
2336 args[i].value
2337 = convert_modes (args[i].mode, mode,
2338 args[i].value, args[i].unsignedp);
2339
2340 /* CSE will replace this only if it contains args[i].value
2341 pseudo, so convert it down to the declared mode using
2342 a SUBREG. */
2343 if (REG_P (args[i].value)
2344 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2345 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2346 {
2347 args[i].initial_value
2348 = gen_lowpart_SUBREG (mode, args[i].value);
2349 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2350 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2351 }
2352 }
2353 }
2354 }
2355
2356 /* Given the current state of MUST_PREALLOCATE and information about
2357 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2358 compute and return the final value for MUST_PREALLOCATE. */
2359
2360 static int
2361 finalize_must_preallocate (int must_preallocate, int num_actuals,
2362 struct arg_data *args, struct args_size *args_size)
2363 {
2364 /* See if we have or want to preallocate stack space.
2365
2366 If we would have to push a partially-in-regs parm
2367 before other stack parms, preallocate stack space instead.
2368
2369 If the size of some parm is not a multiple of the required stack
2370 alignment, we must preallocate.
2371
2372 If the total size of arguments that would otherwise create a copy in
2373 a temporary (such as a CALL) is more than half the total argument list
2374 size, preallocation is faster.
2375
2376 Another reason to preallocate is if we have a machine (like the m88k)
2377 where stack alignment is required to be maintained between every
2378 pair of insns, not just when the call is made. However, we assume here
2379 that such machines either do not have push insns (and hence preallocation
2380 would occur anyway) or the problem is taken care of with
2381 PUSH_ROUNDING. */
2382
2383 if (! must_preallocate)
2384 {
2385 int partial_seen = 0;
2386 poly_int64 copy_to_evaluate_size = 0;
2387 int i;
2388
2389 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2390 {
2391 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2392 partial_seen = 1;
2393 else if (partial_seen && args[i].reg == 0)
2394 must_preallocate = 1;
2395
2396 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2397 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2398 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2399 || TREE_CODE (args[i].tree_value) == COND_EXPR
2400 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2401 copy_to_evaluate_size
2402 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2403 }
2404
2405 if (maybe_ne (args_size->constant, 0)
2406 && maybe_ge (copy_to_evaluate_size * 2, args_size->constant))
2407 must_preallocate = 1;
2408 }
2409 return must_preallocate;
2410 }
2411
2412 /* If we preallocated stack space, compute the address of each argument
2413 and store it into the ARGS array.
2414
2415 We need not ensure it is a valid memory address here; it will be
2416 validized when it is used.
2417
2418 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2419
2420 static void
2421 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2422 {
2423 if (argblock)
2424 {
2425 rtx arg_reg = argblock;
2426 int i;
2427 poly_int64 arg_offset = 0;
2428
2429 if (GET_CODE (argblock) == PLUS)
2430 {
2431 arg_reg = XEXP (argblock, 0);
2432 arg_offset = rtx_to_poly_int64 (XEXP (argblock, 1));
2433 }
2434
2435 for (i = 0; i < num_actuals; i++)
2436 {
2437 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2438 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2439 rtx addr;
2440 unsigned int align, boundary;
2441 poly_uint64 units_on_stack = 0;
2442 machine_mode partial_mode = VOIDmode;
2443
2444 /* Skip this parm if it will not be passed on the stack. */
2445 if (! args[i].pass_on_stack
2446 && args[i].reg != 0
2447 && args[i].partial == 0)
2448 continue;
2449
2450 if (TYPE_EMPTY_P (TREE_TYPE (args[i].tree_value)))
2451 continue;
2452
2453 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
2454 addr = plus_constant (Pmode, addr, arg_offset);
2455
2456 if (args[i].partial != 0)
2457 {
2458 /* Only part of the parameter is being passed on the stack.
2459 Generate a simple memory reference of the correct size. */
2460 units_on_stack = args[i].locate.size.constant;
2461 poly_uint64 bits_on_stack = units_on_stack * BITS_PER_UNIT;
2462 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
2463 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2464 set_mem_size (args[i].stack, units_on_stack);
2465 }
2466 else
2467 {
2468 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2469 set_mem_attributes (args[i].stack,
2470 TREE_TYPE (args[i].tree_value), 1);
2471 }
2472 align = BITS_PER_UNIT;
2473 boundary = args[i].locate.boundary;
2474 poly_int64 offset_val;
2475 if (args[i].locate.where_pad != PAD_DOWNWARD)
2476 align = boundary;
2477 else if (poly_int_rtx_p (offset, &offset_val))
2478 {
2479 align = least_bit_hwi (boundary);
2480 unsigned int offset_align
2481 = known_alignment (offset_val) * BITS_PER_UNIT;
2482 if (offset_align != 0)
2483 align = MIN (align, offset_align);
2484 }
2485 set_mem_align (args[i].stack, align);
2486
2487 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
2488 addr = plus_constant (Pmode, addr, arg_offset);
2489
2490 if (args[i].partial != 0)
2491 {
2492 /* Only part of the parameter is being passed on the stack.
2493 Generate a simple memory reference of the correct size.
2494 */
2495 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2496 set_mem_size (args[i].stack_slot, units_on_stack);
2497 }
2498 else
2499 {
2500 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2501 set_mem_attributes (args[i].stack_slot,
2502 TREE_TYPE (args[i].tree_value), 1);
2503 }
2504 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2505
2506 /* Function incoming arguments may overlap with sibling call
2507 outgoing arguments and we cannot allow reordering of reads
2508 from function arguments with stores to outgoing arguments
2509 of sibling calls. */
2510 set_mem_alias_set (args[i].stack, 0);
2511 set_mem_alias_set (args[i].stack_slot, 0);
2512 }
2513 }
2514 }
2515
2516 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2517 in a call instruction.
2518
2519 FNDECL is the tree node for the target function. For an indirect call
2520 FNDECL will be NULL_TREE.
2521
2522 ADDR is the operand 0 of CALL_EXPR for this call. */
2523
2524 static rtx
2525 rtx_for_function_call (tree fndecl, tree addr)
2526 {
2527 rtx funexp;
2528
2529 /* Get the function to call, in the form of RTL. */
2530 if (fndecl)
2531 {
2532 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2533 TREE_USED (fndecl) = 1;
2534
2535 /* Get a SYMBOL_REF rtx for the function address. */
2536 funexp = XEXP (DECL_RTL (fndecl), 0);
2537 }
2538 else
2539 /* Generate an rtx (probably a pseudo-register) for the address. */
2540 {
2541 push_temp_slots ();
2542 funexp = expand_normal (addr);
2543 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2544 }
2545 return funexp;
2546 }
2547
2548 /* Return the static chain for this function, if any. */
2549
2550 rtx
2551 rtx_for_static_chain (const_tree fndecl_or_type, bool incoming_p)
2552 {
2553 if (DECL_P (fndecl_or_type) && !DECL_STATIC_CHAIN (fndecl_or_type))
2554 return NULL;
2555
2556 return targetm.calls.static_chain (fndecl_or_type, incoming_p);
2557 }
2558
2559 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2560 static struct
2561 {
2562 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2563 or NULL_RTX if none has been scanned yet. */
2564 rtx_insn *scan_start;
2565 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2566 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2567 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2568 with fixed offset, or PC if this is with variable or unknown offset. */
2569 vec<rtx> cache;
2570 } internal_arg_pointer_exp_state;
2571
2572 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2573
2574 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2575 the tail call sequence, starting with first insn that hasn't been
2576 scanned yet, and note for each pseudo on the LHS whether it is based
2577 on crtl->args.internal_arg_pointer or not, and what offset from that
2578 that pointer it has. */
2579
2580 static void
2581 internal_arg_pointer_based_exp_scan (void)
2582 {
2583 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2584
2585 if (scan_start == NULL_RTX)
2586 insn = get_insns ();
2587 else
2588 insn = NEXT_INSN (scan_start);
2589
2590 while (insn)
2591 {
2592 rtx set = single_set (insn);
2593 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2594 {
2595 rtx val = NULL_RTX;
2596 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2597 /* Punt on pseudos set multiple times. */
2598 if (idx < internal_arg_pointer_exp_state.cache.length ()
2599 && (internal_arg_pointer_exp_state.cache[idx]
2600 != NULL_RTX))
2601 val = pc_rtx;
2602 else
2603 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2604 if (val != NULL_RTX)
2605 {
2606 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2607 internal_arg_pointer_exp_state.cache
2608 .safe_grow_cleared (idx + 1);
2609 internal_arg_pointer_exp_state.cache[idx] = val;
2610 }
2611 }
2612 if (NEXT_INSN (insn) == NULL_RTX)
2613 scan_start = insn;
2614 insn = NEXT_INSN (insn);
2615 }
2616
2617 internal_arg_pointer_exp_state.scan_start = scan_start;
2618 }
2619
2620 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2621 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2622 it with fixed offset, or PC if this is with variable or unknown offset.
2623 TOPLEVEL is true if the function is invoked at the topmost level. */
2624
2625 static rtx
2626 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2627 {
2628 if (CONSTANT_P (rtl))
2629 return NULL_RTX;
2630
2631 if (rtl == crtl->args.internal_arg_pointer)
2632 return const0_rtx;
2633
2634 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2635 return NULL_RTX;
2636
2637 poly_int64 offset;
2638 if (GET_CODE (rtl) == PLUS && poly_int_rtx_p (XEXP (rtl, 1), &offset))
2639 {
2640 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2641 if (val == NULL_RTX || val == pc_rtx)
2642 return val;
2643 return plus_constant (Pmode, val, offset);
2644 }
2645
2646 /* When called at the topmost level, scan pseudo assignments in between the
2647 last scanned instruction in the tail call sequence and the latest insn
2648 in that sequence. */
2649 if (toplevel)
2650 internal_arg_pointer_based_exp_scan ();
2651
2652 if (REG_P (rtl))
2653 {
2654 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2655 if (idx < internal_arg_pointer_exp_state.cache.length ())
2656 return internal_arg_pointer_exp_state.cache[idx];
2657
2658 return NULL_RTX;
2659 }
2660
2661 subrtx_iterator::array_type array;
2662 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2663 {
2664 const_rtx x = *iter;
2665 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2666 return pc_rtx;
2667 if (MEM_P (x))
2668 iter.skip_subrtxes ();
2669 }
2670
2671 return NULL_RTX;
2672 }
2673
2674 /* Return true if SIZE bytes starting from address ADDR might overlap an
2675 already-clobbered argument area. This function is used to determine
2676 if we should give up a sibcall. */
2677
2678 static bool
2679 mem_might_overlap_already_clobbered_arg_p (rtx addr, poly_uint64 size)
2680 {
2681 poly_int64 i;
2682 unsigned HOST_WIDE_INT start, end;
2683 rtx val;
2684
2685 if (bitmap_empty_p (stored_args_map)
2686 && stored_args_watermark == HOST_WIDE_INT_M1U)
2687 return false;
2688 val = internal_arg_pointer_based_exp (addr, true);
2689 if (val == NULL_RTX)
2690 return false;
2691 else if (!poly_int_rtx_p (val, &i))
2692 return true;
2693
2694 if (known_eq (size, 0U))
2695 return false;
2696
2697 if (STACK_GROWS_DOWNWARD)
2698 i -= crtl->args.pretend_args_size;
2699 else
2700 i += crtl->args.pretend_args_size;
2701
2702 if (ARGS_GROW_DOWNWARD)
2703 i = -i - size;
2704
2705 /* We can ignore any references to the function's pretend args,
2706 which at this point would manifest as negative values of I. */
2707 if (known_le (i, 0) && known_le (size, poly_uint64 (-i)))
2708 return false;
2709
2710 start = maybe_lt (i, 0) ? 0 : constant_lower_bound (i);
2711 if (!(i + size).is_constant (&end))
2712 end = HOST_WIDE_INT_M1U;
2713
2714 if (end > stored_args_watermark)
2715 return true;
2716
2717 end = MIN (end, SBITMAP_SIZE (stored_args_map));
2718 for (unsigned HOST_WIDE_INT k = start; k < end; ++k)
2719 if (bitmap_bit_p (stored_args_map, k))
2720 return true;
2721
2722 return false;
2723 }
2724
2725 /* Do the register loads required for any wholly-register parms or any
2726 parms which are passed both on the stack and in a register. Their
2727 expressions were already evaluated.
2728
2729 Mark all register-parms as living through the call, putting these USE
2730 insns in the CALL_INSN_FUNCTION_USAGE field.
2731
2732 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2733 checking, setting *SIBCALL_FAILURE if appropriate. */
2734
2735 static void
2736 load_register_parameters (struct arg_data *args, int num_actuals,
2737 rtx *call_fusage, int flags, int is_sibcall,
2738 int *sibcall_failure)
2739 {
2740 int i, j;
2741
2742 for (i = 0; i < num_actuals; i++)
2743 {
2744 rtx reg = ((flags & ECF_SIBCALL)
2745 ? args[i].tail_call_reg : args[i].reg);
2746 if (reg)
2747 {
2748 int partial = args[i].partial;
2749 int nregs;
2750 poly_int64 size = 0;
2751 HOST_WIDE_INT const_size = 0;
2752 rtx_insn *before_arg = get_last_insn ();
2753 /* Set non-negative if we must move a word at a time, even if
2754 just one word (e.g, partial == 4 && mode == DFmode). Set
2755 to -1 if we just use a normal move insn. This value can be
2756 zero if the argument is a zero size structure. */
2757 nregs = -1;
2758 if (GET_CODE (reg) == PARALLEL)
2759 ;
2760 else if (partial)
2761 {
2762 gcc_assert (partial % UNITS_PER_WORD == 0);
2763 nregs = partial / UNITS_PER_WORD;
2764 }
2765 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
2766 {
2767 /* Variable-sized parameters should be described by a
2768 PARALLEL instead. */
2769 const_size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2770 gcc_assert (const_size >= 0);
2771 nregs = (const_size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2772 size = const_size;
2773 }
2774 else
2775 size = GET_MODE_SIZE (args[i].mode);
2776
2777 /* Handle calls that pass values in multiple non-contiguous
2778 locations. The Irix 6 ABI has examples of this. */
2779
2780 if (GET_CODE (reg) == PARALLEL)
2781 emit_group_move (reg, args[i].parallel_value);
2782
2783 /* If simple case, just do move. If normal partial, store_one_arg
2784 has already loaded the register for us. In all other cases,
2785 load the register(s) from memory. */
2786
2787 else if (nregs == -1)
2788 {
2789 emit_move_insn (reg, args[i].value);
2790 #ifdef BLOCK_REG_PADDING
2791 /* Handle case where we have a value that needs shifting
2792 up to the msb. eg. a QImode value and we're padding
2793 upward on a BYTES_BIG_ENDIAN machine. */
2794 if (args[i].locate.where_pad
2795 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))
2796 {
2797 gcc_checking_assert (ordered_p (size, UNITS_PER_WORD));
2798 if (maybe_lt (size, UNITS_PER_WORD))
2799 {
2800 rtx x;
2801 poly_int64 shift
2802 = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2803
2804 /* Assigning REG here rather than a temp makes
2805 CALL_FUSAGE report the whole reg as used.
2806 Strictly speaking, the call only uses SIZE
2807 bytes at the msb end, but it doesn't seem worth
2808 generating rtl to say that. */
2809 reg = gen_rtx_REG (word_mode, REGNO (reg));
2810 x = expand_shift (LSHIFT_EXPR, word_mode,
2811 reg, shift, reg, 1);
2812 if (x != reg)
2813 emit_move_insn (reg, x);
2814 }
2815 }
2816 #endif
2817 }
2818
2819 /* If we have pre-computed the values to put in the registers in
2820 the case of non-aligned structures, copy them in now. */
2821
2822 else if (args[i].n_aligned_regs != 0)
2823 for (j = 0; j < args[i].n_aligned_regs; j++)
2824 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2825 args[i].aligned_regs[j]);
2826
2827 else if (partial == 0 || args[i].pass_on_stack)
2828 {
2829 /* SIZE and CONST_SIZE are 0 for partial arguments and
2830 the size of a BLKmode type otherwise. */
2831 gcc_checking_assert (known_eq (size, const_size));
2832 rtx mem = validize_mem (copy_rtx (args[i].value));
2833
2834 /* Check for overlap with already clobbered argument area,
2835 providing that this has non-zero size. */
2836 if (is_sibcall
2837 && const_size != 0
2838 && (mem_might_overlap_already_clobbered_arg_p
2839 (XEXP (args[i].value, 0), const_size)))
2840 *sibcall_failure = 1;
2841
2842 if (const_size % UNITS_PER_WORD == 0
2843 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2844 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2845 else
2846 {
2847 if (nregs > 1)
2848 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2849 args[i].mode);
2850 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2851 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2852 unsigned int bitsize = const_size * BITS_PER_UNIT - bitoff;
2853 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
2854 word_mode, word_mode, false,
2855 NULL);
2856 if (BYTES_BIG_ENDIAN)
2857 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2858 BITS_PER_WORD - bitsize, dest, 1);
2859 if (x != dest)
2860 emit_move_insn (dest, x);
2861 }
2862
2863 /* Handle a BLKmode that needs shifting. */
2864 if (nregs == 1 && const_size < UNITS_PER_WORD
2865 #ifdef BLOCK_REG_PADDING
2866 && args[i].locate.where_pad == PAD_DOWNWARD
2867 #else
2868 && BYTES_BIG_ENDIAN
2869 #endif
2870 )
2871 {
2872 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2873 int shift = (UNITS_PER_WORD - const_size) * BITS_PER_UNIT;
2874 enum tree_code dir = (BYTES_BIG_ENDIAN
2875 ? RSHIFT_EXPR : LSHIFT_EXPR);
2876 rtx x;
2877
2878 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2879 if (x != dest)
2880 emit_move_insn (dest, x);
2881 }
2882 }
2883
2884 /* When a parameter is a block, and perhaps in other cases, it is
2885 possible that it did a load from an argument slot that was
2886 already clobbered. */
2887 if (is_sibcall
2888 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
2889 *sibcall_failure = 1;
2890
2891 /* Handle calls that pass values in multiple non-contiguous
2892 locations. The Irix 6 ABI has examples of this. */
2893 if (GET_CODE (reg) == PARALLEL)
2894 use_group_regs (call_fusage, reg);
2895 else if (nregs == -1)
2896 use_reg_mode (call_fusage, reg,
2897 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2898 else if (nregs > 0)
2899 use_regs (call_fusage, REGNO (reg), nregs);
2900 }
2901 }
2902 }
2903
2904 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2905 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2906 bytes, then we would need to push some additional bytes to pad the
2907 arguments. So, we try to compute an adjust to the stack pointer for an
2908 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2909 bytes. Then, when the arguments are pushed the stack will be perfectly
2910 aligned.
2911
2912 Return true if this optimization is possible, storing the adjustment
2913 in ADJUSTMENT_OUT and setting ARGS_SIZE->CONSTANT to the number of
2914 bytes that should be popped after the call. */
2915
2916 static bool
2917 combine_pending_stack_adjustment_and_call (poly_int64_pod *adjustment_out,
2918 poly_int64 unadjusted_args_size,
2919 struct args_size *args_size,
2920 unsigned int preferred_unit_stack_boundary)
2921 {
2922 /* The number of bytes to pop so that the stack will be
2923 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2924 poly_int64 adjustment;
2925 /* The alignment of the stack after the arguments are pushed, if we
2926 just pushed the arguments without adjust the stack here. */
2927 unsigned HOST_WIDE_INT unadjusted_alignment;
2928
2929 if (!known_misalignment (stack_pointer_delta + unadjusted_args_size,
2930 preferred_unit_stack_boundary,
2931 &unadjusted_alignment))
2932 return false;
2933
2934 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2935 as possible -- leaving just enough left to cancel out the
2936 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2937 PENDING_STACK_ADJUST is non-negative, and congruent to
2938 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2939
2940 /* Begin by trying to pop all the bytes. */
2941 unsigned HOST_WIDE_INT tmp_misalignment;
2942 if (!known_misalignment (pending_stack_adjust,
2943 preferred_unit_stack_boundary,
2944 &tmp_misalignment))
2945 return false;
2946 unadjusted_alignment -= tmp_misalignment;
2947 adjustment = pending_stack_adjust;
2948 /* Push enough additional bytes that the stack will be aligned
2949 after the arguments are pushed. */
2950 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
2951 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2952
2953 /* We need to know whether the adjusted argument size
2954 (UNADJUSTED_ARGS_SIZE - ADJUSTMENT) constitutes an allocation
2955 or a deallocation. */
2956 if (!ordered_p (adjustment, unadjusted_args_size))
2957 return false;
2958
2959 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2960 bytes after the call. The right number is the entire
2961 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2962 by the arguments in the first place. */
2963 args_size->constant
2964 = pending_stack_adjust - adjustment + unadjusted_args_size;
2965
2966 *adjustment_out = adjustment;
2967 return true;
2968 }
2969
2970 /* Scan X expression if it does not dereference any argument slots
2971 we already clobbered by tail call arguments (as noted in stored_args_map
2972 bitmap).
2973 Return nonzero if X expression dereferences such argument slots,
2974 zero otherwise. */
2975
2976 static int
2977 check_sibcall_argument_overlap_1 (rtx x)
2978 {
2979 RTX_CODE code;
2980 int i, j;
2981 const char *fmt;
2982
2983 if (x == NULL_RTX)
2984 return 0;
2985
2986 code = GET_CODE (x);
2987
2988 /* We need not check the operands of the CALL expression itself. */
2989 if (code == CALL)
2990 return 0;
2991
2992 if (code == MEM)
2993 return (mem_might_overlap_already_clobbered_arg_p
2994 (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x))));
2995
2996 /* Scan all subexpressions. */
2997 fmt = GET_RTX_FORMAT (code);
2998 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2999 {
3000 if (*fmt == 'e')
3001 {
3002 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
3003 return 1;
3004 }
3005 else if (*fmt == 'E')
3006 {
3007 for (j = 0; j < XVECLEN (x, i); j++)
3008 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
3009 return 1;
3010 }
3011 }
3012 return 0;
3013 }
3014
3015 /* Scan sequence after INSN if it does not dereference any argument slots
3016 we already clobbered by tail call arguments (as noted in stored_args_map
3017 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
3018 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
3019 should be 0). Return nonzero if sequence after INSN dereferences such argument
3020 slots, zero otherwise. */
3021
3022 static int
3023 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
3024 int mark_stored_args_map)
3025 {
3026 poly_uint64 low, high;
3027 unsigned HOST_WIDE_INT const_low, const_high;
3028
3029 if (insn == NULL_RTX)
3030 insn = get_insns ();
3031 else
3032 insn = NEXT_INSN (insn);
3033
3034 for (; insn; insn = NEXT_INSN (insn))
3035 if (INSN_P (insn)
3036 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
3037 break;
3038
3039 if (mark_stored_args_map)
3040 {
3041 if (ARGS_GROW_DOWNWARD)
3042 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
3043 else
3044 low = arg->locate.slot_offset.constant;
3045 high = low + arg->locate.size.constant;
3046
3047 const_low = constant_lower_bound (low);
3048 if (high.is_constant (&const_high))
3049 for (unsigned HOST_WIDE_INT i = const_low; i < const_high; ++i)
3050 bitmap_set_bit (stored_args_map, i);
3051 else
3052 stored_args_watermark = MIN (stored_args_watermark, const_low);
3053 }
3054 return insn != NULL_RTX;
3055 }
3056
3057 /* Given that a function returns a value of mode MODE at the most
3058 significant end of hard register VALUE, shift VALUE left or right
3059 as specified by LEFT_P. Return true if some action was needed. */
3060
3061 bool
3062 shift_return_value (machine_mode mode, bool left_p, rtx value)
3063 {
3064 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
3065 machine_mode value_mode = GET_MODE (value);
3066 poly_int64 shift = GET_MODE_BITSIZE (value_mode) - GET_MODE_BITSIZE (mode);
3067
3068 if (known_eq (shift, 0))
3069 return false;
3070
3071 /* Use ashr rather than lshr for right shifts. This is for the benefit
3072 of the MIPS port, which requires SImode values to be sign-extended
3073 when stored in 64-bit registers. */
3074 if (!force_expand_binop (value_mode, left_p ? ashl_optab : ashr_optab,
3075 value, gen_int_shift_amount (value_mode, shift),
3076 value, 1, OPTAB_WIDEN))
3077 gcc_unreachable ();
3078 return true;
3079 }
3080
3081 /* If X is a likely-spilled register value, copy it to a pseudo
3082 register and return that register. Return X otherwise. */
3083
3084 static rtx
3085 avoid_likely_spilled_reg (rtx x)
3086 {
3087 rtx new_rtx;
3088
3089 if (REG_P (x)
3090 && HARD_REGISTER_P (x)
3091 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
3092 {
3093 /* Make sure that we generate a REG rather than a CONCAT.
3094 Moves into CONCATs can need nontrivial instructions,
3095 and the whole point of this function is to avoid
3096 using the hard register directly in such a situation. */
3097 generating_concat_p = 0;
3098 new_rtx = gen_reg_rtx (GET_MODE (x));
3099 generating_concat_p = 1;
3100 emit_move_insn (new_rtx, x);
3101 return new_rtx;
3102 }
3103 return x;
3104 }
3105
3106 /* Helper function for expand_call.
3107 Return false is EXP is not implementable as a sibling call. */
3108
3109 static bool
3110 can_implement_as_sibling_call_p (tree exp,
3111 rtx structure_value_addr,
3112 tree funtype,
3113 int reg_parm_stack_space ATTRIBUTE_UNUSED,
3114 tree fndecl,
3115 int flags,
3116 tree addr,
3117 const args_size &args_size)
3118 {
3119 if (!targetm.have_sibcall_epilogue ())
3120 {
3121 maybe_complain_about_tail_call
3122 (exp,
3123 "machine description does not have"
3124 " a sibcall_epilogue instruction pattern");
3125 return false;
3126 }
3127
3128 /* Doing sibling call optimization needs some work, since
3129 structure_value_addr can be allocated on the stack.
3130 It does not seem worth the effort since few optimizable
3131 sibling calls will return a structure. */
3132 if (structure_value_addr != NULL_RTX)
3133 {
3134 maybe_complain_about_tail_call (exp, "callee returns a structure");
3135 return false;
3136 }
3137
3138 #ifdef REG_PARM_STACK_SPACE
3139 /* If outgoing reg parm stack space changes, we can not do sibcall. */
3140 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
3141 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
3142 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
3143 {
3144 maybe_complain_about_tail_call (exp,
3145 "inconsistent size of stack space"
3146 " allocated for arguments which are"
3147 " passed in registers");
3148 return false;
3149 }
3150 #endif
3151
3152 /* Check whether the target is able to optimize the call
3153 into a sibcall. */
3154 if (!targetm.function_ok_for_sibcall (fndecl, exp))
3155 {
3156 maybe_complain_about_tail_call (exp,
3157 "target is not able to optimize the"
3158 " call into a sibling call");
3159 return false;
3160 }
3161
3162 /* Functions that do not return exactly once may not be sibcall
3163 optimized. */
3164 if (flags & ECF_RETURNS_TWICE)
3165 {
3166 maybe_complain_about_tail_call (exp, "callee returns twice");
3167 return false;
3168 }
3169 if (flags & ECF_NORETURN)
3170 {
3171 maybe_complain_about_tail_call (exp, "callee does not return");
3172 return false;
3173 }
3174
3175 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
3176 {
3177 maybe_complain_about_tail_call (exp, "volatile function type");
3178 return false;
3179 }
3180
3181 /* If the called function is nested in the current one, it might access
3182 some of the caller's arguments, but could clobber them beforehand if
3183 the argument areas are shared. */
3184 if (fndecl && decl_function_context (fndecl) == current_function_decl)
3185 {
3186 maybe_complain_about_tail_call (exp, "nested function");
3187 return false;
3188 }
3189
3190 /* If this function requires more stack slots than the current
3191 function, we cannot change it into a sibling call.
3192 crtl->args.pretend_args_size is not part of the
3193 stack allocated by our caller. */
3194 if (maybe_gt (args_size.constant,
3195 crtl->args.size - crtl->args.pretend_args_size))
3196 {
3197 maybe_complain_about_tail_call (exp,
3198 "callee required more stack slots"
3199 " than the caller");
3200 return false;
3201 }
3202
3203 /* If the callee pops its own arguments, then it must pop exactly
3204 the same number of arguments as the current function. */
3205 if (maybe_ne (targetm.calls.return_pops_args (fndecl, funtype,
3206 args_size.constant),
3207 targetm.calls.return_pops_args (current_function_decl,
3208 TREE_TYPE
3209 (current_function_decl),
3210 crtl->args.size)))
3211 {
3212 maybe_complain_about_tail_call (exp,
3213 "inconsistent number of"
3214 " popped arguments");
3215 return false;
3216 }
3217
3218 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
3219 {
3220 maybe_complain_about_tail_call (exp, "frontend does not support"
3221 " sibling call");
3222 return false;
3223 }
3224
3225 /* All checks passed. */
3226 return true;
3227 }
3228
3229 /* Generate all the code for a CALL_EXPR exp
3230 and return an rtx for its value.
3231 Store the value in TARGET (specified as an rtx) if convenient.
3232 If the value is stored in TARGET then TARGET is returned.
3233 If IGNORE is nonzero, then we ignore the value of the function call. */
3234
3235 rtx
3236 expand_call (tree exp, rtx target, int ignore)
3237 {
3238 /* Nonzero if we are currently expanding a call. */
3239 static int currently_expanding_call = 0;
3240
3241 /* RTX for the function to be called. */
3242 rtx funexp;
3243 /* Sequence of insns to perform a normal "call". */
3244 rtx_insn *normal_call_insns = NULL;
3245 /* Sequence of insns to perform a tail "call". */
3246 rtx_insn *tail_call_insns = NULL;
3247 /* Data type of the function. */
3248 tree funtype;
3249 tree type_arg_types;
3250 tree rettype;
3251 /* Declaration of the function being called,
3252 or 0 if the function is computed (not known by name). */
3253 tree fndecl = 0;
3254 /* The type of the function being called. */
3255 tree fntype;
3256 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
3257 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
3258 int pass;
3259
3260 /* Register in which non-BLKmode value will be returned,
3261 or 0 if no value or if value is BLKmode. */
3262 rtx valreg;
3263 /* Address where we should return a BLKmode value;
3264 0 if value not BLKmode. */
3265 rtx structure_value_addr = 0;
3266 /* Nonzero if that address is being passed by treating it as
3267 an extra, implicit first parameter. Otherwise,
3268 it is passed by being copied directly into struct_value_rtx. */
3269 int structure_value_addr_parm = 0;
3270 /* Holds the value of implicit argument for the struct value. */
3271 tree structure_value_addr_value = NULL_TREE;
3272 /* Size of aggregate value wanted, or zero if none wanted
3273 or if we are using the non-reentrant PCC calling convention
3274 or expecting the value in registers. */
3275 poly_int64 struct_value_size = 0;
3276 /* Nonzero if called function returns an aggregate in memory PCC style,
3277 by returning the address of where to find it. */
3278 int pcc_struct_value = 0;
3279 rtx struct_value = 0;
3280
3281 /* Number of actual parameters in this call, including struct value addr. */
3282 int num_actuals;
3283 /* Number of named args. Args after this are anonymous ones
3284 and they must all go on the stack. */
3285 int n_named_args;
3286 /* Number of complex actual arguments that need to be split. */
3287 int num_complex_actuals = 0;
3288
3289 /* Vector of information about each argument.
3290 Arguments are numbered in the order they will be pushed,
3291 not the order they are written. */
3292 struct arg_data *args;
3293
3294 /* Total size in bytes of all the stack-parms scanned so far. */
3295 struct args_size args_size;
3296 struct args_size adjusted_args_size;
3297 /* Size of arguments before any adjustments (such as rounding). */
3298 poly_int64 unadjusted_args_size;
3299 /* Data on reg parms scanned so far. */
3300 CUMULATIVE_ARGS args_so_far_v;
3301 cumulative_args_t args_so_far;
3302 /* Nonzero if a reg parm has been scanned. */
3303 int reg_parm_seen;
3304 /* Nonzero if this is an indirect function call. */
3305
3306 /* Nonzero if we must avoid push-insns in the args for this call.
3307 If stack space is allocated for register parameters, but not by the
3308 caller, then it is preallocated in the fixed part of the stack frame.
3309 So the entire argument block must then be preallocated (i.e., we
3310 ignore PUSH_ROUNDING in that case). */
3311
3312 int must_preallocate = !PUSH_ARGS;
3313
3314 /* Size of the stack reserved for parameter registers. */
3315 int reg_parm_stack_space = 0;
3316
3317 /* Address of space preallocated for stack parms
3318 (on machines that lack push insns), or 0 if space not preallocated. */
3319 rtx argblock = 0;
3320
3321 /* Mask of ECF_ and ERF_ flags. */
3322 int flags = 0;
3323 int return_flags = 0;
3324 #ifdef REG_PARM_STACK_SPACE
3325 /* Define the boundary of the register parm stack space that needs to be
3326 saved, if any. */
3327 int low_to_save, high_to_save;
3328 rtx save_area = 0; /* Place that it is saved */
3329 #endif
3330
3331 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3332 char *initial_stack_usage_map = stack_usage_map;
3333 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
3334 char *stack_usage_map_buf = NULL;
3335
3336 poly_int64 old_stack_allocated;
3337
3338 /* State variables to track stack modifications. */
3339 rtx old_stack_level = 0;
3340 int old_stack_arg_under_construction = 0;
3341 poly_int64 old_pending_adj = 0;
3342 int old_inhibit_defer_pop = inhibit_defer_pop;
3343
3344 /* Some stack pointer alterations we make are performed via
3345 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3346 which we then also need to save/restore along the way. */
3347 poly_int64 old_stack_pointer_delta = 0;
3348
3349 rtx call_fusage;
3350 tree addr = CALL_EXPR_FN (exp);
3351 int i;
3352 /* The alignment of the stack, in bits. */
3353 unsigned HOST_WIDE_INT preferred_stack_boundary;
3354 /* The alignment of the stack, in bytes. */
3355 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3356 /* The static chain value to use for this call. */
3357 rtx static_chain_value;
3358 /* See if this is "nothrow" function call. */
3359 if (TREE_NOTHROW (exp))
3360 flags |= ECF_NOTHROW;
3361
3362 /* See if we can find a DECL-node for the actual function, and get the
3363 function attributes (flags) from the function decl or type node. */
3364 fndecl = get_callee_fndecl (exp);
3365 if (fndecl)
3366 {
3367 fntype = TREE_TYPE (fndecl);
3368 flags |= flags_from_decl_or_type (fndecl);
3369 return_flags |= decl_return_flags (fndecl);
3370 }
3371 else
3372 {
3373 fntype = TREE_TYPE (TREE_TYPE (addr));
3374 flags |= flags_from_decl_or_type (fntype);
3375 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3376 flags |= ECF_BY_DESCRIPTOR;
3377 }
3378 rettype = TREE_TYPE (exp);
3379
3380 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3381
3382 /* Warn if this value is an aggregate type,
3383 regardless of which calling convention we are using for it. */
3384 if (AGGREGATE_TYPE_P (rettype))
3385 warning (OPT_Waggregate_return, "function call has aggregate value");
3386
3387 /* If the result of a non looping pure or const function call is
3388 ignored (or void), and none of its arguments are volatile, we can
3389 avoid expanding the call and just evaluate the arguments for
3390 side-effects. */
3391 if ((flags & (ECF_CONST | ECF_PURE))
3392 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3393 && (ignore || target == const0_rtx
3394 || TYPE_MODE (rettype) == VOIDmode))
3395 {
3396 bool volatilep = false;
3397 tree arg;
3398 call_expr_arg_iterator iter;
3399
3400 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3401 if (TREE_THIS_VOLATILE (arg))
3402 {
3403 volatilep = true;
3404 break;
3405 }
3406
3407 if (! volatilep)
3408 {
3409 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3410 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3411 return const0_rtx;
3412 }
3413 }
3414
3415 #ifdef REG_PARM_STACK_SPACE
3416 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3417 #endif
3418
3419 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3420 && reg_parm_stack_space > 0 && PUSH_ARGS)
3421 must_preallocate = 1;
3422
3423 /* Set up a place to return a structure. */
3424
3425 /* Cater to broken compilers. */
3426 if (aggregate_value_p (exp, fntype))
3427 {
3428 /* This call returns a big structure. */
3429 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3430
3431 #ifdef PCC_STATIC_STRUCT_RETURN
3432 {
3433 pcc_struct_value = 1;
3434 }
3435 #else /* not PCC_STATIC_STRUCT_RETURN */
3436 {
3437 if (!poly_int_tree_p (TYPE_SIZE_UNIT (rettype), &struct_value_size))
3438 struct_value_size = -1;
3439
3440 /* Even if it is semantically safe to use the target as the return
3441 slot, it may be not sufficiently aligned for the return type. */
3442 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3443 && target
3444 && MEM_P (target)
3445 /* If rettype is addressable, we may not create a temporary.
3446 If target is properly aligned at runtime and the compiler
3447 just doesn't know about it, it will work fine, otherwise it
3448 will be UB. */
3449 && (TREE_ADDRESSABLE (rettype)
3450 || !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3451 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
3452 MEM_ALIGN (target)))))
3453 structure_value_addr = XEXP (target, 0);
3454 else
3455 {
3456 /* For variable-sized objects, we must be called with a target
3457 specified. If we were to allocate space on the stack here,
3458 we would have no way of knowing when to free it. */
3459 rtx d = assign_temp (rettype, 1, 1);
3460 structure_value_addr = XEXP (d, 0);
3461 target = 0;
3462 }
3463 }
3464 #endif /* not PCC_STATIC_STRUCT_RETURN */
3465 }
3466
3467 /* Figure out the amount to which the stack should be aligned. */
3468 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3469 if (fndecl)
3470 {
3471 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3472 /* Without automatic stack alignment, we can't increase preferred
3473 stack boundary. With automatic stack alignment, it is
3474 unnecessary since unless we can guarantee that all callers will
3475 align the outgoing stack properly, callee has to align its
3476 stack anyway. */
3477 if (i
3478 && i->preferred_incoming_stack_boundary
3479 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3480 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3481 }
3482
3483 /* Operand 0 is a pointer-to-function; get the type of the function. */
3484 funtype = TREE_TYPE (addr);
3485 gcc_assert (POINTER_TYPE_P (funtype));
3486 funtype = TREE_TYPE (funtype);
3487
3488 /* Count whether there are actual complex arguments that need to be split
3489 into their real and imaginary parts. Munge the type_arg_types
3490 appropriately here as well. */
3491 if (targetm.calls.split_complex_arg)
3492 {
3493 call_expr_arg_iterator iter;
3494 tree arg;
3495 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3496 {
3497 tree type = TREE_TYPE (arg);
3498 if (type && TREE_CODE (type) == COMPLEX_TYPE
3499 && targetm.calls.split_complex_arg (type))
3500 num_complex_actuals++;
3501 }
3502 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3503 }
3504 else
3505 type_arg_types = TYPE_ARG_TYPES (funtype);
3506
3507 if (flags & ECF_MAY_BE_ALLOCA)
3508 cfun->calls_alloca = 1;
3509
3510 /* If struct_value_rtx is 0, it means pass the address
3511 as if it were an extra parameter. Put the argument expression
3512 in structure_value_addr_value. */
3513 if (structure_value_addr && struct_value == 0)
3514 {
3515 /* If structure_value_addr is a REG other than
3516 virtual_outgoing_args_rtx, we can use always use it. If it
3517 is not a REG, we must always copy it into a register.
3518 If it is virtual_outgoing_args_rtx, we must copy it to another
3519 register in some cases. */
3520 rtx temp = (!REG_P (structure_value_addr)
3521 || (ACCUMULATE_OUTGOING_ARGS
3522 && stack_arg_under_construction
3523 && structure_value_addr == virtual_outgoing_args_rtx)
3524 ? copy_addr_to_reg (convert_memory_address
3525 (Pmode, structure_value_addr))
3526 : structure_value_addr);
3527
3528 structure_value_addr_value =
3529 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3530 structure_value_addr_parm = 1;
3531 }
3532
3533 /* Count the arguments and set NUM_ACTUALS. */
3534 num_actuals =
3535 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3536
3537 /* Compute number of named args.
3538 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3539
3540 if (type_arg_types != 0)
3541 n_named_args
3542 = (list_length (type_arg_types)
3543 /* Count the struct value address, if it is passed as a parm. */
3544 + structure_value_addr_parm);
3545 else
3546 /* If we know nothing, treat all args as named. */
3547 n_named_args = num_actuals;
3548
3549 /* Start updating where the next arg would go.
3550
3551 On some machines (such as the PA) indirect calls have a different
3552 calling convention than normal calls. The fourth argument in
3553 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3554 or not. */
3555 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3556 args_so_far = pack_cumulative_args (&args_so_far_v);
3557
3558 /* Now possibly adjust the number of named args.
3559 Normally, don't include the last named arg if anonymous args follow.
3560 We do include the last named arg if
3561 targetm.calls.strict_argument_naming() returns nonzero.
3562 (If no anonymous args follow, the result of list_length is actually
3563 one too large. This is harmless.)
3564
3565 If targetm.calls.pretend_outgoing_varargs_named() returns
3566 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3567 this machine will be able to place unnamed args that were passed
3568 in registers into the stack. So treat all args as named. This
3569 allows the insns emitting for a specific argument list to be
3570 independent of the function declaration.
3571
3572 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3573 we do not have any reliable way to pass unnamed args in
3574 registers, so we must force them into memory. */
3575
3576 if (type_arg_types != 0
3577 && targetm.calls.strict_argument_naming (args_so_far))
3578 ;
3579 else if (type_arg_types != 0
3580 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3581 /* Don't include the last named arg. */
3582 --n_named_args;
3583 else
3584 /* Treat all args as named. */
3585 n_named_args = num_actuals;
3586
3587 /* Make a vector to hold all the information about each arg. */
3588 args = XCNEWVEC (struct arg_data, num_actuals);
3589
3590 /* Build up entries in the ARGS array, compute the size of the
3591 arguments into ARGS_SIZE, etc. */
3592 initialize_argument_information (num_actuals, args, &args_size,
3593 n_named_args, exp,
3594 structure_value_addr_value, fndecl, fntype,
3595 args_so_far, reg_parm_stack_space,
3596 &old_stack_level, &old_pending_adj,
3597 &must_preallocate, &flags,
3598 &try_tail_call, CALL_FROM_THUNK_P (exp));
3599
3600 if (args_size.var)
3601 must_preallocate = 1;
3602
3603 /* Now make final decision about preallocating stack space. */
3604 must_preallocate = finalize_must_preallocate (must_preallocate,
3605 num_actuals, args,
3606 &args_size);
3607
3608 /* If the structure value address will reference the stack pointer, we
3609 must stabilize it. We don't need to do this if we know that we are
3610 not going to adjust the stack pointer in processing this call. */
3611
3612 if (structure_value_addr
3613 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3614 || reg_mentioned_p (virtual_outgoing_args_rtx,
3615 structure_value_addr))
3616 && (args_size.var
3617 || (!ACCUMULATE_OUTGOING_ARGS
3618 && maybe_ne (args_size.constant, 0))))
3619 structure_value_addr = copy_to_reg (structure_value_addr);
3620
3621 /* Tail calls can make things harder to debug, and we've traditionally
3622 pushed these optimizations into -O2. Don't try if we're already
3623 expanding a call, as that means we're an argument. Don't try if
3624 there's cleanups, as we know there's code to follow the call. */
3625 if (currently_expanding_call++ != 0
3626 || (!flag_optimize_sibling_calls && !CALL_FROM_THUNK_P (exp))
3627 || args_size.var
3628 || dbg_cnt (tail_call) == false)
3629 try_tail_call = 0;
3630
3631 /* If the user has marked the function as requiring tail-call
3632 optimization, attempt it. */
3633 if (must_tail_call)
3634 try_tail_call = 1;
3635
3636 /* Rest of purposes for tail call optimizations to fail. */
3637 if (try_tail_call)
3638 try_tail_call = can_implement_as_sibling_call_p (exp,
3639 structure_value_addr,
3640 funtype,
3641 reg_parm_stack_space,
3642 fndecl,
3643 flags, addr, args_size);
3644
3645 /* Check if caller and callee disagree in promotion of function
3646 return value. */
3647 if (try_tail_call)
3648 {
3649 machine_mode caller_mode, caller_promoted_mode;
3650 machine_mode callee_mode, callee_promoted_mode;
3651 int caller_unsignedp, callee_unsignedp;
3652 tree caller_res = DECL_RESULT (current_function_decl);
3653
3654 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3655 caller_mode = DECL_MODE (caller_res);
3656 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3657 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3658 caller_promoted_mode
3659 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3660 &caller_unsignedp,
3661 TREE_TYPE (current_function_decl), 1);
3662 callee_promoted_mode
3663 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3664 &callee_unsignedp,
3665 funtype, 1);
3666 if (caller_mode != VOIDmode
3667 && (caller_promoted_mode != callee_promoted_mode
3668 || ((caller_mode != caller_promoted_mode
3669 || callee_mode != callee_promoted_mode)
3670 && (caller_unsignedp != callee_unsignedp
3671 || partial_subreg_p (caller_mode, callee_mode)))))
3672 {
3673 try_tail_call = 0;
3674 maybe_complain_about_tail_call (exp,
3675 "caller and callee disagree in"
3676 " promotion of function"
3677 " return value");
3678 }
3679 }
3680
3681 /* Ensure current function's preferred stack boundary is at least
3682 what we need. Stack alignment may also increase preferred stack
3683 boundary. */
3684 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
3685 crtl->preferred_stack_boundary = preferred_stack_boundary;
3686 else
3687 preferred_stack_boundary = crtl->preferred_stack_boundary;
3688
3689 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
3690
3691 /* We want to make two insn chains; one for a sibling call, the other
3692 for a normal call. We will select one of the two chains after
3693 initial RTL generation is complete. */
3694 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
3695 {
3696 int sibcall_failure = 0;
3697 /* We want to emit any pending stack adjustments before the tail
3698 recursion "call". That way we know any adjustment after the tail
3699 recursion call can be ignored if we indeed use the tail
3700 call expansion. */
3701 saved_pending_stack_adjust save;
3702 rtx_insn *insns, *before_call, *after_args;
3703 rtx next_arg_reg;
3704
3705 if (pass == 0)
3706 {
3707 /* State variables we need to save and restore between
3708 iterations. */
3709 save_pending_stack_adjust (&save);
3710 }
3711 if (pass)
3712 flags &= ~ECF_SIBCALL;
3713 else
3714 flags |= ECF_SIBCALL;
3715
3716 /* Other state variables that we must reinitialize each time
3717 through the loop (that are not initialized by the loop itself). */
3718 argblock = 0;
3719 call_fusage = 0;
3720
3721 /* Start a new sequence for the normal call case.
3722
3723 From this point on, if the sibling call fails, we want to set
3724 sibcall_failure instead of continuing the loop. */
3725 start_sequence ();
3726
3727 /* Don't let pending stack adjusts add up to too much.
3728 Also, do all pending adjustments now if there is any chance
3729 this might be a call to alloca or if we are expanding a sibling
3730 call sequence.
3731 Also do the adjustments before a throwing call, otherwise
3732 exception handling can fail; PR 19225. */
3733 if (maybe_ge (pending_stack_adjust, 32)
3734 || (maybe_ne (pending_stack_adjust, 0)
3735 && (flags & ECF_MAY_BE_ALLOCA))
3736 || (maybe_ne (pending_stack_adjust, 0)
3737 && flag_exceptions && !(flags & ECF_NOTHROW))
3738 || pass == 0)
3739 do_pending_stack_adjust ();
3740
3741 /* Precompute any arguments as needed. */
3742 if (pass)
3743 precompute_arguments (num_actuals, args);
3744
3745 /* Now we are about to start emitting insns that can be deleted
3746 if a libcall is deleted. */
3747 if (pass && (flags & ECF_MALLOC))
3748 start_sequence ();
3749
3750 if (pass == 0
3751 && crtl->stack_protect_guard
3752 && targetm.stack_protect_runtime_enabled_p ())
3753 stack_protect_epilogue ();
3754
3755 adjusted_args_size = args_size;
3756 /* Compute the actual size of the argument block required. The variable
3757 and constant sizes must be combined, the size may have to be rounded,
3758 and there may be a minimum required size. When generating a sibcall
3759 pattern, do not round up, since we'll be re-using whatever space our
3760 caller provided. */
3761 unadjusted_args_size
3762 = compute_argument_block_size (reg_parm_stack_space,
3763 &adjusted_args_size,
3764 fndecl, fntype,
3765 (pass == 0 ? 0
3766 : preferred_stack_boundary));
3767
3768 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3769
3770 /* The argument block when performing a sibling call is the
3771 incoming argument block. */
3772 if (pass == 0)
3773 {
3774 argblock = crtl->args.internal_arg_pointer;
3775 if (STACK_GROWS_DOWNWARD)
3776 argblock
3777 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
3778 else
3779 argblock
3780 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
3781
3782 HOST_WIDE_INT map_size = constant_lower_bound (args_size.constant);
3783 stored_args_map = sbitmap_alloc (map_size);
3784 bitmap_clear (stored_args_map);
3785 stored_args_watermark = HOST_WIDE_INT_M1U;
3786 }
3787
3788 /* If we have no actual push instructions, or shouldn't use them,
3789 make space for all args right now. */
3790 else if (adjusted_args_size.var != 0)
3791 {
3792 if (old_stack_level == 0)
3793 {
3794 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3795 old_stack_pointer_delta = stack_pointer_delta;
3796 old_pending_adj = pending_stack_adjust;
3797 pending_stack_adjust = 0;
3798 /* stack_arg_under_construction says whether a stack arg is
3799 being constructed at the old stack level. Pushing the stack
3800 gets a clean outgoing argument block. */
3801 old_stack_arg_under_construction = stack_arg_under_construction;
3802 stack_arg_under_construction = 0;
3803 }
3804 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
3805 if (flag_stack_usage_info)
3806 current_function_has_unbounded_dynamic_stack_size = 1;
3807 }
3808 else
3809 {
3810 /* Note that we must go through the motions of allocating an argument
3811 block even if the size is zero because we may be storing args
3812 in the area reserved for register arguments, which may be part of
3813 the stack frame. */
3814
3815 poly_int64 needed = adjusted_args_size.constant;
3816
3817 /* Store the maximum argument space used. It will be pushed by
3818 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
3819 checking). */
3820
3821 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
3822 needed);
3823
3824 if (must_preallocate)
3825 {
3826 if (ACCUMULATE_OUTGOING_ARGS)
3827 {
3828 /* Since the stack pointer will never be pushed, it is
3829 possible for the evaluation of a parm to clobber
3830 something we have already written to the stack.
3831 Since most function calls on RISC machines do not use
3832 the stack, this is uncommon, but must work correctly.
3833
3834 Therefore, we save any area of the stack that was already
3835 written and that we are using. Here we set up to do this
3836 by making a new stack usage map from the old one. The
3837 actual save will be done by store_one_arg.
3838
3839 Another approach might be to try to reorder the argument
3840 evaluations to avoid this conflicting stack usage. */
3841
3842 /* Since we will be writing into the entire argument area,
3843 the map must be allocated for its entire size, not just
3844 the part that is the responsibility of the caller. */
3845 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3846 needed += reg_parm_stack_space;
3847
3848 poly_int64 limit = needed;
3849 if (ARGS_GROW_DOWNWARD)
3850 limit += 1;
3851
3852 /* For polynomial sizes, this is the maximum possible
3853 size needed for arguments with a constant size
3854 and offset. */
3855 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
3856 highest_outgoing_arg_in_use
3857 = MAX (initial_highest_arg_in_use, const_limit);
3858
3859 free (stack_usage_map_buf);
3860 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3861 stack_usage_map = stack_usage_map_buf;
3862
3863 if (initial_highest_arg_in_use)
3864 memcpy (stack_usage_map, initial_stack_usage_map,
3865 initial_highest_arg_in_use);
3866
3867 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3868 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3869 (highest_outgoing_arg_in_use
3870 - initial_highest_arg_in_use));
3871 needed = 0;
3872
3873 /* The address of the outgoing argument list must not be
3874 copied to a register here, because argblock would be left
3875 pointing to the wrong place after the call to
3876 allocate_dynamic_stack_space below. */
3877
3878 argblock = virtual_outgoing_args_rtx;
3879 }
3880 else
3881 {
3882 /* Try to reuse some or all of the pending_stack_adjust
3883 to get this space. */
3884 if (inhibit_defer_pop == 0
3885 && (combine_pending_stack_adjustment_and_call
3886 (&needed,
3887 unadjusted_args_size,
3888 &adjusted_args_size,
3889 preferred_unit_stack_boundary)))
3890 {
3891 /* combine_pending_stack_adjustment_and_call computes
3892 an adjustment before the arguments are allocated.
3893 Account for them and see whether or not the stack
3894 needs to go up or down. */
3895 needed = unadjusted_args_size - needed;
3896
3897 /* Checked by
3898 combine_pending_stack_adjustment_and_call. */
3899 gcc_checking_assert (ordered_p (needed, 0));
3900 if (maybe_lt (needed, 0))
3901 {
3902 /* We're releasing stack space. */
3903 /* ??? We can avoid any adjustment at all if we're
3904 already aligned. FIXME. */
3905 pending_stack_adjust = -needed;
3906 do_pending_stack_adjust ();
3907 needed = 0;
3908 }
3909 else
3910 /* We need to allocate space. We'll do that in
3911 push_block below. */
3912 pending_stack_adjust = 0;
3913 }
3914
3915 /* Special case this because overhead of `push_block' in
3916 this case is non-trivial. */
3917 if (known_eq (needed, 0))
3918 argblock = virtual_outgoing_args_rtx;
3919 else
3920 {
3921 rtx needed_rtx = gen_int_mode (needed, Pmode);
3922 argblock = push_block (needed_rtx, 0, 0);
3923 if (ARGS_GROW_DOWNWARD)
3924 argblock = plus_constant (Pmode, argblock, needed);
3925 }
3926
3927 /* We only really need to call `copy_to_reg' in the case
3928 where push insns are going to be used to pass ARGBLOCK
3929 to a function call in ARGS. In that case, the stack
3930 pointer changes value from the allocation point to the
3931 call point, and hence the value of
3932 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3933 as well always do it. */
3934 argblock = copy_to_reg (argblock);
3935 }
3936 }
3937 }
3938
3939 if (ACCUMULATE_OUTGOING_ARGS)
3940 {
3941 /* The save/restore code in store_one_arg handles all
3942 cases except one: a constructor call (including a C
3943 function returning a BLKmode struct) to initialize
3944 an argument. */
3945 if (stack_arg_under_construction)
3946 {
3947 rtx push_size
3948 = (gen_int_mode
3949 (adjusted_args_size.constant
3950 + (OUTGOING_REG_PARM_STACK_SPACE (!fndecl ? fntype
3951 : TREE_TYPE (fndecl))
3952 ? 0 : reg_parm_stack_space), Pmode));
3953 if (old_stack_level == 0)
3954 {
3955 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3956 old_stack_pointer_delta = stack_pointer_delta;
3957 old_pending_adj = pending_stack_adjust;
3958 pending_stack_adjust = 0;
3959 /* stack_arg_under_construction says whether a stack
3960 arg is being constructed at the old stack level.
3961 Pushing the stack gets a clean outgoing argument
3962 block. */
3963 old_stack_arg_under_construction
3964 = stack_arg_under_construction;
3965 stack_arg_under_construction = 0;
3966 /* Make a new map for the new argument list. */
3967 free (stack_usage_map_buf);
3968 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
3969 stack_usage_map = stack_usage_map_buf;
3970 highest_outgoing_arg_in_use = 0;
3971 stack_usage_watermark = HOST_WIDE_INT_M1U;
3972 }
3973 /* We can pass TRUE as the 4th argument because we just
3974 saved the stack pointer and will restore it right after
3975 the call. */
3976 allocate_dynamic_stack_space (push_size, 0, BIGGEST_ALIGNMENT,
3977 -1, true);
3978 }
3979
3980 /* If argument evaluation might modify the stack pointer,
3981 copy the address of the argument list to a register. */
3982 for (i = 0; i < num_actuals; i++)
3983 if (args[i].pass_on_stack)
3984 {
3985 argblock = copy_addr_to_reg (argblock);
3986 break;
3987 }
3988 }
3989
3990 compute_argument_addresses (args, argblock, num_actuals);
3991
3992 /* Stack is properly aligned, pops can't safely be deferred during
3993 the evaluation of the arguments. */
3994 NO_DEFER_POP;
3995
3996 /* Precompute all register parameters. It isn't safe to compute
3997 anything once we have started filling any specific hard regs.
3998 TLS symbols sometimes need a call to resolve. Precompute
3999 register parameters before any stack pointer manipulation
4000 to avoid unaligned stack in the called function. */
4001 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
4002
4003 OK_DEFER_POP;
4004
4005 /* Perform stack alignment before the first push (the last arg). */
4006 if (argblock == 0
4007 && maybe_gt (adjusted_args_size.constant, reg_parm_stack_space)
4008 && maybe_ne (adjusted_args_size.constant, unadjusted_args_size))
4009 {
4010 /* When the stack adjustment is pending, we get better code
4011 by combining the adjustments. */
4012 if (maybe_ne (pending_stack_adjust, 0)
4013 && ! inhibit_defer_pop
4014 && (combine_pending_stack_adjustment_and_call
4015 (&pending_stack_adjust,
4016 unadjusted_args_size,
4017 &adjusted_args_size,
4018 preferred_unit_stack_boundary)))
4019 do_pending_stack_adjust ();
4020 else if (argblock == 0)
4021 anti_adjust_stack (gen_int_mode (adjusted_args_size.constant
4022 - unadjusted_args_size,
4023 Pmode));
4024 }
4025 /* Now that the stack is properly aligned, pops can't safely
4026 be deferred during the evaluation of the arguments. */
4027 NO_DEFER_POP;
4028
4029 /* Record the maximum pushed stack space size. We need to delay
4030 doing it this far to take into account the optimization done
4031 by combine_pending_stack_adjustment_and_call. */
4032 if (flag_stack_usage_info
4033 && !ACCUMULATE_OUTGOING_ARGS
4034 && pass
4035 && adjusted_args_size.var == 0)
4036 {
4037 poly_int64 pushed = (adjusted_args_size.constant
4038 + pending_stack_adjust);
4039 current_function_pushed_stack_size
4040 = upper_bound (current_function_pushed_stack_size, pushed);
4041 }
4042
4043 funexp = rtx_for_function_call (fndecl, addr);
4044
4045 if (CALL_EXPR_STATIC_CHAIN (exp))
4046 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
4047 else
4048 static_chain_value = 0;
4049
4050 #ifdef REG_PARM_STACK_SPACE
4051 /* Save the fixed argument area if it's part of the caller's frame and
4052 is clobbered by argument setup for this call. */
4053 if (ACCUMULATE_OUTGOING_ARGS && pass)
4054 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4055 &low_to_save, &high_to_save);
4056 #endif
4057
4058 /* Now store (and compute if necessary) all non-register parms.
4059 These come before register parms, since they can require block-moves,
4060 which could clobber the registers used for register parms.
4061 Parms which have partial registers are not stored here,
4062 but we do preallocate space here if they want that. */
4063
4064 for (i = 0; i < num_actuals; i++)
4065 {
4066 if (args[i].reg == 0 || args[i].pass_on_stack)
4067 {
4068 rtx_insn *before_arg = get_last_insn ();
4069
4070 /* We don't allow passing huge (> 2^30 B) arguments
4071 by value. It would cause an overflow later on. */
4072 if (constant_lower_bound (adjusted_args_size.constant)
4073 >= (1 << (HOST_BITS_PER_INT - 2)))
4074 {
4075 sorry ("passing too large argument on stack");
4076 continue;
4077 }
4078
4079 if (store_one_arg (&args[i], argblock, flags,
4080 adjusted_args_size.var != 0,
4081 reg_parm_stack_space)
4082 || (pass == 0
4083 && check_sibcall_argument_overlap (before_arg,
4084 &args[i], 1)))
4085 sibcall_failure = 1;
4086 }
4087
4088 if (args[i].stack)
4089 call_fusage
4090 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
4091 gen_rtx_USE (VOIDmode, args[i].stack),
4092 call_fusage);
4093 }
4094
4095 /* If we have a parm that is passed in registers but not in memory
4096 and whose alignment does not permit a direct copy into registers,
4097 make a group of pseudos that correspond to each register that we
4098 will later fill. */
4099 if (STRICT_ALIGNMENT)
4100 store_unaligned_arguments_into_pseudos (args, num_actuals);
4101
4102 /* Now store any partially-in-registers parm.
4103 This is the last place a block-move can happen. */
4104 if (reg_parm_seen)
4105 for (i = 0; i < num_actuals; i++)
4106 if (args[i].partial != 0 && ! args[i].pass_on_stack)
4107 {
4108 rtx_insn *before_arg = get_last_insn ();
4109
4110 /* On targets with weird calling conventions (e.g. PA) it's
4111 hard to ensure that all cases of argument overlap between
4112 stack and registers work. Play it safe and bail out. */
4113 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
4114 {
4115 sibcall_failure = 1;
4116 break;
4117 }
4118
4119 if (store_one_arg (&args[i], argblock, flags,
4120 adjusted_args_size.var != 0,
4121 reg_parm_stack_space)
4122 || (pass == 0
4123 && check_sibcall_argument_overlap (before_arg,
4124 &args[i], 1)))
4125 sibcall_failure = 1;
4126 }
4127
4128 bool any_regs = false;
4129 for (i = 0; i < num_actuals; i++)
4130 if (args[i].reg != NULL_RTX)
4131 {
4132 any_regs = true;
4133 targetm.calls.call_args (args[i].reg, funtype);
4134 }
4135 if (!any_regs)
4136 targetm.calls.call_args (pc_rtx, funtype);
4137
4138 /* Figure out the register where the value, if any, will come back. */
4139 valreg = 0;
4140 if (TYPE_MODE (rettype) != VOIDmode
4141 && ! structure_value_addr)
4142 {
4143 if (pcc_struct_value)
4144 valreg = hard_function_value (build_pointer_type (rettype),
4145 fndecl, NULL, (pass == 0));
4146 else
4147 valreg = hard_function_value (rettype, fndecl, fntype,
4148 (pass == 0));
4149
4150 /* If VALREG is a PARALLEL whose first member has a zero
4151 offset, use that. This is for targets such as m68k that
4152 return the same value in multiple places. */
4153 if (GET_CODE (valreg) == PARALLEL)
4154 {
4155 rtx elem = XVECEXP (valreg, 0, 0);
4156 rtx where = XEXP (elem, 0);
4157 rtx offset = XEXP (elem, 1);
4158 if (offset == const0_rtx
4159 && GET_MODE (where) == GET_MODE (valreg))
4160 valreg = where;
4161 }
4162 }
4163
4164 /* If register arguments require space on the stack and stack space
4165 was not preallocated, allocate stack space here for arguments
4166 passed in registers. */
4167 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
4168 && !ACCUMULATE_OUTGOING_ARGS
4169 && must_preallocate == 0 && reg_parm_stack_space > 0)
4170 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
4171
4172 /* Pass the function the address in which to return a
4173 structure value. */
4174 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
4175 {
4176 structure_value_addr
4177 = convert_memory_address (Pmode, structure_value_addr);
4178 emit_move_insn (struct_value,
4179 force_reg (Pmode,
4180 force_operand (structure_value_addr,
4181 NULL_RTX)));
4182
4183 if (REG_P (struct_value))
4184 use_reg (&call_fusage, struct_value);
4185 }
4186
4187 after_args = get_last_insn ();
4188 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
4189 static_chain_value, &call_fusage,
4190 reg_parm_seen, flags);
4191
4192 load_register_parameters (args, num_actuals, &call_fusage, flags,
4193 pass == 0, &sibcall_failure);
4194
4195 /* Save a pointer to the last insn before the call, so that we can
4196 later safely search backwards to find the CALL_INSN. */
4197 before_call = get_last_insn ();
4198
4199 /* Set up next argument register. For sibling calls on machines
4200 with register windows this should be the incoming register. */
4201 if (pass == 0)
4202 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
4203 VOIDmode,
4204 void_type_node,
4205 true);
4206 else
4207 next_arg_reg = targetm.calls.function_arg (args_so_far,
4208 VOIDmode, void_type_node,
4209 true);
4210
4211 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
4212 {
4213 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
4214 arg_nr = num_actuals - arg_nr - 1;
4215 if (arg_nr >= 0
4216 && arg_nr < num_actuals
4217 && args[arg_nr].reg
4218 && valreg
4219 && REG_P (valreg)
4220 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
4221 call_fusage
4222 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
4223 gen_rtx_SET (valreg, args[arg_nr].reg),
4224 call_fusage);
4225 }
4226 /* All arguments and registers used for the call must be set up by
4227 now! */
4228
4229 /* Stack must be properly aligned now. */
4230 gcc_assert (!pass
4231 || multiple_p (stack_pointer_delta,
4232 preferred_unit_stack_boundary));
4233
4234 /* Generate the actual call instruction. */
4235 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
4236 adjusted_args_size.constant, struct_value_size,
4237 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
4238 flags, args_so_far);
4239
4240 if (flag_ipa_ra)
4241 {
4242 rtx_call_insn *last;
4243 rtx datum = NULL_RTX;
4244 if (fndecl != NULL_TREE)
4245 {
4246 datum = XEXP (DECL_RTL (fndecl), 0);
4247 gcc_assert (datum != NULL_RTX
4248 && GET_CODE (datum) == SYMBOL_REF);
4249 }
4250 last = last_call_insn ();
4251 add_reg_note (last, REG_CALL_DECL, datum);
4252 }
4253
4254 /* If the call setup or the call itself overlaps with anything
4255 of the argument setup we probably clobbered our call address.
4256 In that case we can't do sibcalls. */
4257 if (pass == 0
4258 && check_sibcall_argument_overlap (after_args, 0, 0))
4259 sibcall_failure = 1;
4260
4261 /* If a non-BLKmode value is returned at the most significant end
4262 of a register, shift the register right by the appropriate amount
4263 and update VALREG accordingly. BLKmode values are handled by the
4264 group load/store machinery below. */
4265 if (!structure_value_addr
4266 && !pcc_struct_value
4267 && TYPE_MODE (rettype) != VOIDmode
4268 && TYPE_MODE (rettype) != BLKmode
4269 && REG_P (valreg)
4270 && targetm.calls.return_in_msb (rettype))
4271 {
4272 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
4273 sibcall_failure = 1;
4274 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
4275 }
4276
4277 if (pass && (flags & ECF_MALLOC))
4278 {
4279 rtx temp = gen_reg_rtx (GET_MODE (valreg));
4280 rtx_insn *last, *insns;
4281
4282 /* The return value from a malloc-like function is a pointer. */
4283 if (TREE_CODE (rettype) == POINTER_TYPE)
4284 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
4285
4286 emit_move_insn (temp, valreg);
4287
4288 /* The return value from a malloc-like function can not alias
4289 anything else. */
4290 last = get_last_insn ();
4291 add_reg_note (last, REG_NOALIAS, temp);
4292
4293 /* Write out the sequence. */
4294 insns = get_insns ();
4295 end_sequence ();
4296 emit_insn (insns);
4297 valreg = temp;
4298 }
4299
4300 /* For calls to `setjmp', etc., inform
4301 function.c:setjmp_warnings that it should complain if
4302 nonvolatile values are live. For functions that cannot
4303 return, inform flow that control does not fall through. */
4304
4305 if ((flags & ECF_NORETURN) || pass == 0)
4306 {
4307 /* The barrier must be emitted
4308 immediately after the CALL_INSN. Some ports emit more
4309 than just a CALL_INSN above, so we must search for it here. */
4310
4311 rtx_insn *last = get_last_insn ();
4312 while (!CALL_P (last))
4313 {
4314 last = PREV_INSN (last);
4315 /* There was no CALL_INSN? */
4316 gcc_assert (last != before_call);
4317 }
4318
4319 emit_barrier_after (last);
4320
4321 /* Stack adjustments after a noreturn call are dead code.
4322 However when NO_DEFER_POP is in effect, we must preserve
4323 stack_pointer_delta. */
4324 if (inhibit_defer_pop == 0)
4325 {
4326 stack_pointer_delta = old_stack_allocated;
4327 pending_stack_adjust = 0;
4328 }
4329 }
4330
4331 /* If value type not void, return an rtx for the value. */
4332
4333 if (TYPE_MODE (rettype) == VOIDmode
4334 || ignore)
4335 target = const0_rtx;
4336 else if (structure_value_addr)
4337 {
4338 if (target == 0 || !MEM_P (target))
4339 {
4340 target
4341 = gen_rtx_MEM (TYPE_MODE (rettype),
4342 memory_address (TYPE_MODE (rettype),
4343 structure_value_addr));
4344 set_mem_attributes (target, rettype, 1);
4345 }
4346 }
4347 else if (pcc_struct_value)
4348 {
4349 /* This is the special C++ case where we need to
4350 know what the true target was. We take care to
4351 never use this value more than once in one expression. */
4352 target = gen_rtx_MEM (TYPE_MODE (rettype),
4353 copy_to_reg (valreg));
4354 set_mem_attributes (target, rettype, 1);
4355 }
4356 /* Handle calls that return values in multiple non-contiguous locations.
4357 The Irix 6 ABI has examples of this. */
4358 else if (GET_CODE (valreg) == PARALLEL)
4359 {
4360 if (target == 0)
4361 target = emit_group_move_into_temps (valreg);
4362 else if (rtx_equal_p (target, valreg))
4363 ;
4364 else if (GET_CODE (target) == PARALLEL)
4365 /* Handle the result of a emit_group_move_into_temps
4366 call in the previous pass. */
4367 emit_group_move (target, valreg);
4368 else
4369 emit_group_store (target, valreg, rettype,
4370 int_size_in_bytes (rettype));
4371 }
4372 else if (target
4373 && GET_MODE (target) == TYPE_MODE (rettype)
4374 && GET_MODE (target) == GET_MODE (valreg))
4375 {
4376 bool may_overlap = false;
4377
4378 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4379 reg to a plain register. */
4380 if (!REG_P (target) || HARD_REGISTER_P (target))
4381 valreg = avoid_likely_spilled_reg (valreg);
4382
4383 /* If TARGET is a MEM in the argument area, and we have
4384 saved part of the argument area, then we can't store
4385 directly into TARGET as it may get overwritten when we
4386 restore the argument save area below. Don't work too
4387 hard though and simply force TARGET to a register if it
4388 is a MEM; the optimizer is quite likely to sort it out. */
4389 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4390 for (i = 0; i < num_actuals; i++)
4391 if (args[i].save_area)
4392 {
4393 may_overlap = true;
4394 break;
4395 }
4396
4397 if (may_overlap)
4398 target = copy_to_reg (valreg);
4399 else
4400 {
4401 /* TARGET and VALREG cannot be equal at this point
4402 because the latter would not have
4403 REG_FUNCTION_VALUE_P true, while the former would if
4404 it were referring to the same register.
4405
4406 If they refer to the same register, this move will be
4407 a no-op, except when function inlining is being
4408 done. */
4409 emit_move_insn (target, valreg);
4410
4411 /* If we are setting a MEM, this code must be executed.
4412 Since it is emitted after the call insn, sibcall
4413 optimization cannot be performed in that case. */
4414 if (MEM_P (target))
4415 sibcall_failure = 1;
4416 }
4417 }
4418 else
4419 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4420
4421 /* If we promoted this return value, make the proper SUBREG.
4422 TARGET might be const0_rtx here, so be careful. */
4423 if (REG_P (target)
4424 && TYPE_MODE (rettype) != BLKmode
4425 && GET_MODE (target) != TYPE_MODE (rettype))
4426 {
4427 tree type = rettype;
4428 int unsignedp = TYPE_UNSIGNED (type);
4429 machine_mode pmode;
4430
4431 /* Ensure we promote as expected, and get the new unsignedness. */
4432 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4433 funtype, 1);
4434 gcc_assert (GET_MODE (target) == pmode);
4435
4436 poly_uint64 offset = subreg_lowpart_offset (TYPE_MODE (type),
4437 GET_MODE (target));
4438 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4439 SUBREG_PROMOTED_VAR_P (target) = 1;
4440 SUBREG_PROMOTED_SET (target, unsignedp);
4441 }
4442
4443 /* If size of args is variable or this was a constructor call for a stack
4444 argument, restore saved stack-pointer value. */
4445
4446 if (old_stack_level)
4447 {
4448 rtx_insn *prev = get_last_insn ();
4449
4450 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4451 stack_pointer_delta = old_stack_pointer_delta;
4452
4453 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4454
4455 pending_stack_adjust = old_pending_adj;
4456 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4457 stack_arg_under_construction = old_stack_arg_under_construction;
4458 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4459 stack_usage_map = initial_stack_usage_map;
4460 stack_usage_watermark = initial_stack_usage_watermark;
4461 sibcall_failure = 1;
4462 }
4463 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4464 {
4465 #ifdef REG_PARM_STACK_SPACE
4466 if (save_area)
4467 restore_fixed_argument_area (save_area, argblock,
4468 high_to_save, low_to_save);
4469 #endif
4470
4471 /* If we saved any argument areas, restore them. */
4472 for (i = 0; i < num_actuals; i++)
4473 if (args[i].save_area)
4474 {
4475 machine_mode save_mode = GET_MODE (args[i].save_area);
4476 rtx stack_area
4477 = gen_rtx_MEM (save_mode,
4478 memory_address (save_mode,
4479 XEXP (args[i].stack_slot, 0)));
4480
4481 if (save_mode != BLKmode)
4482 emit_move_insn (stack_area, args[i].save_area);
4483 else
4484 emit_block_move (stack_area, args[i].save_area,
4485 (gen_int_mode
4486 (args[i].locate.size.constant, Pmode)),
4487 BLOCK_OP_CALL_PARM);
4488 }
4489
4490 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4491 stack_usage_map = initial_stack_usage_map;
4492 stack_usage_watermark = initial_stack_usage_watermark;
4493 }
4494
4495 /* If this was alloca, record the new stack level. */
4496 if (flags & ECF_MAY_BE_ALLOCA)
4497 record_new_stack_level ();
4498
4499 /* Free up storage we no longer need. */
4500 for (i = 0; i < num_actuals; ++i)
4501 free (args[i].aligned_regs);
4502
4503 targetm.calls.end_call_args ();
4504
4505 insns = get_insns ();
4506 end_sequence ();
4507
4508 if (pass == 0)
4509 {
4510 tail_call_insns = insns;
4511
4512 /* Restore the pending stack adjustment now that we have
4513 finished generating the sibling call sequence. */
4514
4515 restore_pending_stack_adjust (&save);
4516
4517 /* Prepare arg structure for next iteration. */
4518 for (i = 0; i < num_actuals; i++)
4519 {
4520 args[i].value = 0;
4521 args[i].aligned_regs = 0;
4522 args[i].stack = 0;
4523 }
4524
4525 sbitmap_free (stored_args_map);
4526 internal_arg_pointer_exp_state.scan_start = NULL;
4527 internal_arg_pointer_exp_state.cache.release ();
4528 }
4529 else
4530 {
4531 normal_call_insns = insns;
4532
4533 /* Verify that we've deallocated all the stack we used. */
4534 gcc_assert ((flags & ECF_NORETURN)
4535 || known_eq (old_stack_allocated,
4536 stack_pointer_delta
4537 - pending_stack_adjust));
4538 }
4539
4540 /* If something prevents making this a sibling call,
4541 zero out the sequence. */
4542 if (sibcall_failure)
4543 tail_call_insns = NULL;
4544 else
4545 break;
4546 }
4547
4548 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4549 arguments too, as argument area is now clobbered by the call. */
4550 if (tail_call_insns)
4551 {
4552 emit_insn (tail_call_insns);
4553 crtl->tail_call_emit = true;
4554 }
4555 else
4556 {
4557 emit_insn (normal_call_insns);
4558 if (try_tail_call)
4559 /* Ideally we'd emit a message for all of the ways that it could
4560 have failed. */
4561 maybe_complain_about_tail_call (exp, "tail call production failed");
4562 }
4563
4564 currently_expanding_call--;
4565
4566 free (stack_usage_map_buf);
4567 free (args);
4568 return target;
4569 }
4570
4571 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4572 this function's incoming arguments.
4573
4574 At the start of RTL generation we know the only REG_EQUIV notes
4575 in the rtl chain are those for incoming arguments, so we can look
4576 for REG_EQUIV notes between the start of the function and the
4577 NOTE_INSN_FUNCTION_BEG.
4578
4579 This is (slight) overkill. We could keep track of the highest
4580 argument we clobber and be more selective in removing notes, but it
4581 does not seem to be worth the effort. */
4582
4583 void
4584 fixup_tail_calls (void)
4585 {
4586 rtx_insn *insn;
4587
4588 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4589 {
4590 rtx note;
4591
4592 /* There are never REG_EQUIV notes for the incoming arguments
4593 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4594 if (NOTE_P (insn)
4595 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4596 break;
4597
4598 note = find_reg_note (insn, REG_EQUIV, 0);
4599 if (note)
4600 remove_note (insn, note);
4601 note = find_reg_note (insn, REG_EQUIV, 0);
4602 gcc_assert (!note);
4603 }
4604 }
4605
4606 /* Traverse a list of TYPES and expand all complex types into their
4607 components. */
4608 static tree
4609 split_complex_types (tree types)
4610 {
4611 tree p;
4612
4613 /* Before allocating memory, check for the common case of no complex. */
4614 for (p = types; p; p = TREE_CHAIN (p))
4615 {
4616 tree type = TREE_VALUE (p);
4617 if (TREE_CODE (type) == COMPLEX_TYPE
4618 && targetm.calls.split_complex_arg (type))
4619 goto found;
4620 }
4621 return types;
4622
4623 found:
4624 types = copy_list (types);
4625
4626 for (p = types; p; p = TREE_CHAIN (p))
4627 {
4628 tree complex_type = TREE_VALUE (p);
4629
4630 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4631 && targetm.calls.split_complex_arg (complex_type))
4632 {
4633 tree next, imag;
4634
4635 /* Rewrite complex type with component type. */
4636 TREE_VALUE (p) = TREE_TYPE (complex_type);
4637 next = TREE_CHAIN (p);
4638
4639 /* Add another component type for the imaginary part. */
4640 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4641 TREE_CHAIN (p) = imag;
4642 TREE_CHAIN (imag) = next;
4643
4644 /* Skip the newly created node. */
4645 p = TREE_CHAIN (p);
4646 }
4647 }
4648
4649 return types;
4650 }
4651 \f
4652 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
4653 for a value of mode OUTMODE,
4654 with NARGS different arguments, passed as ARGS.
4655 Store the return value if RETVAL is nonzero: store it in VALUE if
4656 VALUE is nonnull, otherwise pick a convenient location. In either
4657 case return the location of the stored value.
4658
4659 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4660 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
4661 other types of library calls. */
4662
4663 rtx
4664 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4665 enum libcall_type fn_type,
4666 machine_mode outmode, int nargs, rtx_mode_t *args)
4667 {
4668 /* Total size in bytes of all the stack-parms scanned so far. */
4669 struct args_size args_size;
4670 /* Size of arguments before any adjustments (such as rounding). */
4671 struct args_size original_args_size;
4672 int argnum;
4673 rtx fun;
4674 /* Todo, choose the correct decl type of orgfun. Sadly this information
4675 isn't present here, so we default to native calling abi here. */
4676 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4677 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4678 int count;
4679 rtx argblock = 0;
4680 CUMULATIVE_ARGS args_so_far_v;
4681 cumulative_args_t args_so_far;
4682 struct arg
4683 {
4684 rtx value;
4685 machine_mode mode;
4686 rtx reg;
4687 int partial;
4688 struct locate_and_pad_arg_data locate;
4689 rtx save_area;
4690 };
4691 struct arg *argvec;
4692 int old_inhibit_defer_pop = inhibit_defer_pop;
4693 rtx call_fusage = 0;
4694 rtx mem_value = 0;
4695 rtx valreg;
4696 int pcc_struct_value = 0;
4697 poly_int64 struct_value_size = 0;
4698 int flags;
4699 int reg_parm_stack_space = 0;
4700 poly_int64 needed;
4701 rtx_insn *before_call;
4702 bool have_push_fusage;
4703 tree tfom; /* type_for_mode (outmode, 0) */
4704
4705 #ifdef REG_PARM_STACK_SPACE
4706 /* Define the boundary of the register parm stack space that needs to be
4707 save, if any. */
4708 int low_to_save = 0, high_to_save = 0;
4709 rtx save_area = 0; /* Place that it is saved. */
4710 #endif
4711
4712 /* Size of the stack reserved for parameter registers. */
4713 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
4714 char *initial_stack_usage_map = stack_usage_map;
4715 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
4716 char *stack_usage_map_buf = NULL;
4717
4718 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
4719
4720 #ifdef REG_PARM_STACK_SPACE
4721 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
4722 #endif
4723
4724 /* By default, library functions cannot throw. */
4725 flags = ECF_NOTHROW;
4726
4727 switch (fn_type)
4728 {
4729 case LCT_NORMAL:
4730 break;
4731 case LCT_CONST:
4732 flags |= ECF_CONST;
4733 break;
4734 case LCT_PURE:
4735 flags |= ECF_PURE;
4736 break;
4737 case LCT_NORETURN:
4738 flags |= ECF_NORETURN;
4739 break;
4740 case LCT_THROW:
4741 flags &= ~ECF_NOTHROW;
4742 break;
4743 case LCT_RETURNS_TWICE:
4744 flags = ECF_RETURNS_TWICE;
4745 break;
4746 }
4747 fun = orgfun;
4748
4749 /* Ensure current function's preferred stack boundary is at least
4750 what we need. */
4751 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
4752 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
4753
4754 /* If this kind of value comes back in memory,
4755 decide where in memory it should come back. */
4756 if (outmode != VOIDmode)
4757 {
4758 tfom = lang_hooks.types.type_for_mode (outmode, 0);
4759 if (aggregate_value_p (tfom, 0))
4760 {
4761 #ifdef PCC_STATIC_STRUCT_RETURN
4762 rtx pointer_reg
4763 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
4764 mem_value = gen_rtx_MEM (outmode, pointer_reg);
4765 pcc_struct_value = 1;
4766 if (value == 0)
4767 value = gen_reg_rtx (outmode);
4768 #else /* not PCC_STATIC_STRUCT_RETURN */
4769 struct_value_size = GET_MODE_SIZE (outmode);
4770 if (value != 0 && MEM_P (value))
4771 mem_value = value;
4772 else
4773 mem_value = assign_temp (tfom, 1, 1);
4774 #endif
4775 /* This call returns a big structure. */
4776 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
4777 }
4778 }
4779 else
4780 tfom = void_type_node;
4781
4782 /* ??? Unfinished: must pass the memory address as an argument. */
4783
4784 /* Copy all the libcall-arguments out of the varargs data
4785 and into a vector ARGVEC.
4786
4787 Compute how to pass each argument. We only support a very small subset
4788 of the full argument passing conventions to limit complexity here since
4789 library functions shouldn't have many args. */
4790
4791 argvec = XALLOCAVEC (struct arg, nargs + 1);
4792 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
4793
4794 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
4795 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
4796 #else
4797 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
4798 #endif
4799 args_so_far = pack_cumulative_args (&args_so_far_v);
4800
4801 args_size.constant = 0;
4802 args_size.var = 0;
4803
4804 count = 0;
4805
4806 push_temp_slots ();
4807
4808 /* If there's a structure value address to be passed,
4809 either pass it in the special place, or pass it as an extra argument. */
4810 if (mem_value && struct_value == 0 && ! pcc_struct_value)
4811 {
4812 rtx addr = XEXP (mem_value, 0);
4813
4814 nargs++;
4815
4816 /* Make sure it is a reasonable operand for a move or push insn. */
4817 if (!REG_P (addr) && !MEM_P (addr)
4818 && !(CONSTANT_P (addr)
4819 && targetm.legitimate_constant_p (Pmode, addr)))
4820 addr = force_operand (addr, NULL_RTX);
4821
4822 argvec[count].value = addr;
4823 argvec[count].mode = Pmode;
4824 argvec[count].partial = 0;
4825
4826 argvec[count].reg = targetm.calls.function_arg (args_so_far,
4827 Pmode, NULL_TREE, true);
4828 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
4829 NULL_TREE, 1) == 0);
4830
4831 locate_and_pad_parm (Pmode, NULL_TREE,
4832 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4833 1,
4834 #else
4835 argvec[count].reg != 0,
4836 #endif
4837 reg_parm_stack_space, 0,
4838 NULL_TREE, &args_size, &argvec[count].locate);
4839
4840 if (argvec[count].reg == 0 || argvec[count].partial != 0
4841 || reg_parm_stack_space > 0)
4842 args_size.constant += argvec[count].locate.size.constant;
4843
4844 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
4845
4846 count++;
4847 }
4848
4849 for (unsigned int i = 0; count < nargs; i++, count++)
4850 {
4851 rtx val = args[i].first;
4852 machine_mode mode = args[i].second;
4853 int unsigned_p = 0;
4854
4855 /* We cannot convert the arg value to the mode the library wants here;
4856 must do it earlier where we know the signedness of the arg. */
4857 gcc_assert (mode != BLKmode
4858 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
4859
4860 /* Make sure it is a reasonable operand for a move or push insn. */
4861 if (!REG_P (val) && !MEM_P (val)
4862 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
4863 val = force_operand (val, NULL_RTX);
4864
4865 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
4866 {
4867 rtx slot;
4868 int must_copy
4869 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
4870
4871 /* If this was a CONST function, it is now PURE since it now
4872 reads memory. */
4873 if (flags & ECF_CONST)
4874 {
4875 flags &= ~ECF_CONST;
4876 flags |= ECF_PURE;
4877 }
4878
4879 if (MEM_P (val) && !must_copy)
4880 {
4881 tree val_expr = MEM_EXPR (val);
4882 if (val_expr)
4883 mark_addressable (val_expr);
4884 slot = val;
4885 }
4886 else
4887 {
4888 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
4889 1, 1);
4890 emit_move_insn (slot, val);
4891 }
4892
4893 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4894 gen_rtx_USE (VOIDmode, slot),
4895 call_fusage);
4896 if (must_copy)
4897 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4898 gen_rtx_CLOBBER (VOIDmode,
4899 slot),
4900 call_fusage);
4901
4902 mode = Pmode;
4903 val = force_operand (XEXP (slot, 0), NULL_RTX);
4904 }
4905
4906 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
4907 argvec[count].mode = mode;
4908 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
4909 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
4910 NULL_TREE, true);
4911
4912 argvec[count].partial
4913 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
4914
4915 if (argvec[count].reg == 0
4916 || argvec[count].partial != 0
4917 || reg_parm_stack_space > 0)
4918 {
4919 locate_and_pad_parm (mode, NULL_TREE,
4920 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4921 1,
4922 #else
4923 argvec[count].reg != 0,
4924 #endif
4925 reg_parm_stack_space, argvec[count].partial,
4926 NULL_TREE, &args_size, &argvec[count].locate);
4927 args_size.constant += argvec[count].locate.size.constant;
4928 gcc_assert (!argvec[count].locate.size.var);
4929 }
4930 #ifdef BLOCK_REG_PADDING
4931 else
4932 /* The argument is passed entirely in registers. See at which
4933 end it should be padded. */
4934 argvec[count].locate.where_pad =
4935 BLOCK_REG_PADDING (mode, NULL_TREE,
4936 known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4937 #endif
4938
4939 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
4940 }
4941
4942 /* If this machine requires an external definition for library
4943 functions, write one out. */
4944 assemble_external_libcall (fun);
4945
4946 original_args_size = args_size;
4947 args_size.constant = (aligned_upper_bound (args_size.constant
4948 + stack_pointer_delta,
4949 STACK_BYTES)
4950 - stack_pointer_delta);
4951
4952 args_size.constant = upper_bound (args_size.constant,
4953 reg_parm_stack_space);
4954
4955 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4956 args_size.constant -= reg_parm_stack_space;
4957
4958 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
4959 args_size.constant);
4960
4961 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
4962 {
4963 poly_int64 pushed = args_size.constant + pending_stack_adjust;
4964 current_function_pushed_stack_size
4965 = upper_bound (current_function_pushed_stack_size, pushed);
4966 }
4967
4968 if (ACCUMULATE_OUTGOING_ARGS)
4969 {
4970 /* Since the stack pointer will never be pushed, it is possible for
4971 the evaluation of a parm to clobber something we have already
4972 written to the stack. Since most function calls on RISC machines
4973 do not use the stack, this is uncommon, but must work correctly.
4974
4975 Therefore, we save any area of the stack that was already written
4976 and that we are using. Here we set up to do this by making a new
4977 stack usage map from the old one.
4978
4979 Another approach might be to try to reorder the argument
4980 evaluations to avoid this conflicting stack usage. */
4981
4982 needed = args_size.constant;
4983
4984 /* Since we will be writing into the entire argument area, the
4985 map must be allocated for its entire size, not just the part that
4986 is the responsibility of the caller. */
4987 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4988 needed += reg_parm_stack_space;
4989
4990 poly_int64 limit = needed;
4991 if (ARGS_GROW_DOWNWARD)
4992 limit += 1;
4993
4994 /* For polynomial sizes, this is the maximum possible size needed
4995 for arguments with a constant size and offset. */
4996 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
4997 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
4998 const_limit);
4999
5000 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
5001 stack_usage_map = stack_usage_map_buf;
5002
5003 if (initial_highest_arg_in_use)
5004 memcpy (stack_usage_map, initial_stack_usage_map,
5005 initial_highest_arg_in_use);
5006
5007 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
5008 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
5009 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
5010 needed = 0;
5011
5012 /* We must be careful to use virtual regs before they're instantiated,
5013 and real regs afterwards. Loop optimization, for example, can create
5014 new libcalls after we've instantiated the virtual regs, and if we
5015 use virtuals anyway, they won't match the rtl patterns. */
5016
5017 if (virtuals_instantiated)
5018 argblock = plus_constant (Pmode, stack_pointer_rtx,
5019 STACK_POINTER_OFFSET);
5020 else
5021 argblock = virtual_outgoing_args_rtx;
5022 }
5023 else
5024 {
5025 if (!PUSH_ARGS)
5026 argblock = push_block (gen_int_mode (args_size.constant, Pmode), 0, 0);
5027 }
5028
5029 /* We push args individually in reverse order, perform stack alignment
5030 before the first push (the last arg). */
5031 if (argblock == 0)
5032 anti_adjust_stack (gen_int_mode (args_size.constant
5033 - original_args_size.constant,
5034 Pmode));
5035
5036 argnum = nargs - 1;
5037
5038 #ifdef REG_PARM_STACK_SPACE
5039 if (ACCUMULATE_OUTGOING_ARGS)
5040 {
5041 /* The argument list is the property of the called routine and it
5042 may clobber it. If the fixed area has been used for previous
5043 parameters, we must save and restore it. */
5044 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
5045 &low_to_save, &high_to_save);
5046 }
5047 #endif
5048
5049 /* When expanding a normal call, args are stored in push order,
5050 which is the reverse of what we have here. */
5051 bool any_regs = false;
5052 for (int i = nargs; i-- > 0; )
5053 if (argvec[i].reg != NULL_RTX)
5054 {
5055 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
5056 any_regs = true;
5057 }
5058 if (!any_regs)
5059 targetm.calls.call_args (pc_rtx, NULL_TREE);
5060
5061 /* Push the args that need to be pushed. */
5062
5063 have_push_fusage = false;
5064
5065 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5066 are to be pushed. */
5067 for (count = 0; count < nargs; count++, argnum--)
5068 {
5069 machine_mode mode = argvec[argnum].mode;
5070 rtx val = argvec[argnum].value;
5071 rtx reg = argvec[argnum].reg;
5072 int partial = argvec[argnum].partial;
5073 unsigned int parm_align = argvec[argnum].locate.boundary;
5074 poly_int64 lower_bound = 0, upper_bound = 0;
5075
5076 if (! (reg != 0 && partial == 0))
5077 {
5078 rtx use;
5079
5080 if (ACCUMULATE_OUTGOING_ARGS)
5081 {
5082 /* If this is being stored into a pre-allocated, fixed-size,
5083 stack area, save any previous data at that location. */
5084
5085 if (ARGS_GROW_DOWNWARD)
5086 {
5087 /* stack_slot is negative, but we want to index stack_usage_map
5088 with positive values. */
5089 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
5090 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
5091 }
5092 else
5093 {
5094 lower_bound = argvec[argnum].locate.slot_offset.constant;
5095 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
5096 }
5097
5098 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5099 reg_parm_stack_space))
5100 {
5101 /* We need to make a save area. */
5102 poly_uint64 size
5103 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
5104 machine_mode save_mode
5105 = int_mode_for_size (size, 1).else_blk ();
5106 rtx adr
5107 = plus_constant (Pmode, argblock,
5108 argvec[argnum].locate.offset.constant);
5109 rtx stack_area
5110 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
5111
5112 if (save_mode == BLKmode)
5113 {
5114 argvec[argnum].save_area
5115 = assign_stack_temp (BLKmode,
5116 argvec[argnum].locate.size.constant
5117 );
5118
5119 emit_block_move (validize_mem
5120 (copy_rtx (argvec[argnum].save_area)),
5121 stack_area,
5122 (gen_int_mode
5123 (argvec[argnum].locate.size.constant,
5124 Pmode)),
5125 BLOCK_OP_CALL_PARM);
5126 }
5127 else
5128 {
5129 argvec[argnum].save_area = gen_reg_rtx (save_mode);
5130
5131 emit_move_insn (argvec[argnum].save_area, stack_area);
5132 }
5133 }
5134 }
5135
5136 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
5137 partial, reg, 0, argblock,
5138 (gen_int_mode
5139 (argvec[argnum].locate.offset.constant, Pmode)),
5140 reg_parm_stack_space,
5141 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
5142
5143 /* Now mark the segment we just used. */
5144 if (ACCUMULATE_OUTGOING_ARGS)
5145 mark_stack_region_used (lower_bound, upper_bound);
5146
5147 NO_DEFER_POP;
5148
5149 /* Indicate argument access so that alias.c knows that these
5150 values are live. */
5151 if (argblock)
5152 use = plus_constant (Pmode, argblock,
5153 argvec[argnum].locate.offset.constant);
5154 else if (have_push_fusage)
5155 continue;
5156 else
5157 {
5158 /* When arguments are pushed, trying to tell alias.c where
5159 exactly this argument is won't work, because the
5160 auto-increment causes confusion. So we merely indicate
5161 that we access something with a known mode somewhere on
5162 the stack. */
5163 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
5164 gen_rtx_SCRATCH (Pmode));
5165 have_push_fusage = true;
5166 }
5167 use = gen_rtx_MEM (argvec[argnum].mode, use);
5168 use = gen_rtx_USE (VOIDmode, use);
5169 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
5170 }
5171 }
5172
5173 argnum = nargs - 1;
5174
5175 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
5176
5177 /* Now load any reg parms into their regs. */
5178
5179 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5180 are to be pushed. */
5181 for (count = 0; count < nargs; count++, argnum--)
5182 {
5183 machine_mode mode = argvec[argnum].mode;
5184 rtx val = argvec[argnum].value;
5185 rtx reg = argvec[argnum].reg;
5186 int partial = argvec[argnum].partial;
5187
5188 /* Handle calls that pass values in multiple non-contiguous
5189 locations. The PA64 has examples of this for library calls. */
5190 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5191 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
5192 else if (reg != 0 && partial == 0)
5193 {
5194 emit_move_insn (reg, val);
5195 #ifdef BLOCK_REG_PADDING
5196 poly_int64 size = GET_MODE_SIZE (argvec[argnum].mode);
5197
5198 /* Copied from load_register_parameters. */
5199
5200 /* Handle case where we have a value that needs shifting
5201 up to the msb. eg. a QImode value and we're padding
5202 upward on a BYTES_BIG_ENDIAN machine. */
5203 if (known_lt (size, UNITS_PER_WORD)
5204 && (argvec[argnum].locate.where_pad
5205 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5206 {
5207 rtx x;
5208 poly_int64 shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
5209
5210 /* Assigning REG here rather than a temp makes CALL_FUSAGE
5211 report the whole reg as used. Strictly speaking, the
5212 call only uses SIZE bytes at the msb end, but it doesn't
5213 seem worth generating rtl to say that. */
5214 reg = gen_rtx_REG (word_mode, REGNO (reg));
5215 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
5216 if (x != reg)
5217 emit_move_insn (reg, x);
5218 }
5219 #endif
5220 }
5221
5222 NO_DEFER_POP;
5223 }
5224
5225 /* Any regs containing parms remain in use through the call. */
5226 for (count = 0; count < nargs; count++)
5227 {
5228 rtx reg = argvec[count].reg;
5229 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5230 use_group_regs (&call_fusage, reg);
5231 else if (reg != 0)
5232 {
5233 int partial = argvec[count].partial;
5234 if (partial)
5235 {
5236 int nregs;
5237 gcc_assert (partial % UNITS_PER_WORD == 0);
5238 nregs = partial / UNITS_PER_WORD;
5239 use_regs (&call_fusage, REGNO (reg), nregs);
5240 }
5241 else
5242 use_reg (&call_fusage, reg);
5243 }
5244 }
5245
5246 /* Pass the function the address in which to return a structure value. */
5247 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
5248 {
5249 emit_move_insn (struct_value,
5250 force_reg (Pmode,
5251 force_operand (XEXP (mem_value, 0),
5252 NULL_RTX)));
5253 if (REG_P (struct_value))
5254 use_reg (&call_fusage, struct_value);
5255 }
5256
5257 /* Don't allow popping to be deferred, since then
5258 cse'ing of library calls could delete a call and leave the pop. */
5259 NO_DEFER_POP;
5260 valreg = (mem_value == 0 && outmode != VOIDmode
5261 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
5262
5263 /* Stack must be properly aligned now. */
5264 gcc_assert (multiple_p (stack_pointer_delta,
5265 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
5266
5267 before_call = get_last_insn ();
5268
5269 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
5270 will set inhibit_defer_pop to that value. */
5271 /* The return type is needed to decide how many bytes the function pops.
5272 Signedness plays no role in that, so for simplicity, we pretend it's
5273 always signed. We also assume that the list of arguments passed has
5274 no impact, so we pretend it is unknown. */
5275
5276 emit_call_1 (fun, NULL,
5277 get_identifier (XSTR (orgfun, 0)),
5278 build_function_type (tfom, NULL_TREE),
5279 original_args_size.constant, args_size.constant,
5280 struct_value_size,
5281 targetm.calls.function_arg (args_so_far,
5282 VOIDmode, void_type_node, true),
5283 valreg,
5284 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
5285
5286 if (flag_ipa_ra)
5287 {
5288 rtx datum = orgfun;
5289 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
5290 rtx_call_insn *last = last_call_insn ();
5291 add_reg_note (last, REG_CALL_DECL, datum);
5292 }
5293
5294 /* Right-shift returned value if necessary. */
5295 if (!pcc_struct_value
5296 && TYPE_MODE (tfom) != BLKmode
5297 && targetm.calls.return_in_msb (tfom))
5298 {
5299 shift_return_value (TYPE_MODE (tfom), false, valreg);
5300 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5301 }
5302
5303 targetm.calls.end_call_args ();
5304
5305 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5306 that it should complain if nonvolatile values are live. For
5307 functions that cannot return, inform flow that control does not
5308 fall through. */
5309 if (flags & ECF_NORETURN)
5310 {
5311 /* The barrier note must be emitted
5312 immediately after the CALL_INSN. Some ports emit more than
5313 just a CALL_INSN above, so we must search for it here. */
5314 rtx_insn *last = get_last_insn ();
5315 while (!CALL_P (last))
5316 {
5317 last = PREV_INSN (last);
5318 /* There was no CALL_INSN? */
5319 gcc_assert (last != before_call);
5320 }
5321
5322 emit_barrier_after (last);
5323 }
5324
5325 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5326 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5327 if (flags & ECF_NOTHROW)
5328 {
5329 rtx_insn *last = get_last_insn ();
5330 while (!CALL_P (last))
5331 {
5332 last = PREV_INSN (last);
5333 /* There was no CALL_INSN? */
5334 gcc_assert (last != before_call);
5335 }
5336
5337 make_reg_eh_region_note_nothrow_nononlocal (last);
5338 }
5339
5340 /* Now restore inhibit_defer_pop to its actual original value. */
5341 OK_DEFER_POP;
5342
5343 pop_temp_slots ();
5344
5345 /* Copy the value to the right place. */
5346 if (outmode != VOIDmode && retval)
5347 {
5348 if (mem_value)
5349 {
5350 if (value == 0)
5351 value = mem_value;
5352 if (value != mem_value)
5353 emit_move_insn (value, mem_value);
5354 }
5355 else if (GET_CODE (valreg) == PARALLEL)
5356 {
5357 if (value == 0)
5358 value = gen_reg_rtx (outmode);
5359 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5360 }
5361 else
5362 {
5363 /* Convert to the proper mode if a promotion has been active. */
5364 if (GET_MODE (valreg) != outmode)
5365 {
5366 int unsignedp = TYPE_UNSIGNED (tfom);
5367
5368 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5369 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5370 == GET_MODE (valreg));
5371 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5372 }
5373
5374 if (value != 0)
5375 emit_move_insn (value, valreg);
5376 else
5377 value = valreg;
5378 }
5379 }
5380
5381 if (ACCUMULATE_OUTGOING_ARGS)
5382 {
5383 #ifdef REG_PARM_STACK_SPACE
5384 if (save_area)
5385 restore_fixed_argument_area (save_area, argblock,
5386 high_to_save, low_to_save);
5387 #endif
5388
5389 /* If we saved any argument areas, restore them. */
5390 for (count = 0; count < nargs; count++)
5391 if (argvec[count].save_area)
5392 {
5393 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5394 rtx adr = plus_constant (Pmode, argblock,
5395 argvec[count].locate.offset.constant);
5396 rtx stack_area = gen_rtx_MEM (save_mode,
5397 memory_address (save_mode, adr));
5398
5399 if (save_mode == BLKmode)
5400 emit_block_move (stack_area,
5401 validize_mem
5402 (copy_rtx (argvec[count].save_area)),
5403 (gen_int_mode
5404 (argvec[count].locate.size.constant, Pmode)),
5405 BLOCK_OP_CALL_PARM);
5406 else
5407 emit_move_insn (stack_area, argvec[count].save_area);
5408 }
5409
5410 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5411 stack_usage_map = initial_stack_usage_map;
5412 stack_usage_watermark = initial_stack_usage_watermark;
5413 }
5414
5415 free (stack_usage_map_buf);
5416
5417 return value;
5418
5419 }
5420 \f
5421
5422 /* Store a single argument for a function call
5423 into the register or memory area where it must be passed.
5424 *ARG describes the argument value and where to pass it.
5425
5426 ARGBLOCK is the address of the stack-block for all the arguments,
5427 or 0 on a machine where arguments are pushed individually.
5428
5429 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5430 so must be careful about how the stack is used.
5431
5432 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5433 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5434 that we need not worry about saving and restoring the stack.
5435
5436 FNDECL is the declaration of the function we are calling.
5437
5438 Return nonzero if this arg should cause sibcall failure,
5439 zero otherwise. */
5440
5441 static int
5442 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5443 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5444 {
5445 tree pval = arg->tree_value;
5446 rtx reg = 0;
5447 int partial = 0;
5448 poly_int64 used = 0;
5449 poly_int64 lower_bound = 0, upper_bound = 0;
5450 int sibcall_failure = 0;
5451
5452 if (TREE_CODE (pval) == ERROR_MARK)
5453 return 1;
5454
5455 /* Push a new temporary level for any temporaries we make for
5456 this argument. */
5457 push_temp_slots ();
5458
5459 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5460 {
5461 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5462 save any previous data at that location. */
5463 if (argblock && ! variable_size && arg->stack)
5464 {
5465 if (ARGS_GROW_DOWNWARD)
5466 {
5467 /* stack_slot is negative, but we want to index stack_usage_map
5468 with positive values. */
5469 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5470 {
5471 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5472 upper_bound = -rtx_to_poly_int64 (offset) + 1;
5473 }
5474 else
5475 upper_bound = 0;
5476
5477 lower_bound = upper_bound - arg->locate.size.constant;
5478 }
5479 else
5480 {
5481 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5482 {
5483 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5484 lower_bound = rtx_to_poly_int64 (offset);
5485 }
5486 else
5487 lower_bound = 0;
5488
5489 upper_bound = lower_bound + arg->locate.size.constant;
5490 }
5491
5492 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5493 reg_parm_stack_space))
5494 {
5495 /* We need to make a save area. */
5496 poly_uint64 size = arg->locate.size.constant * BITS_PER_UNIT;
5497 machine_mode save_mode
5498 = int_mode_for_size (size, 1).else_blk ();
5499 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5500 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5501
5502 if (save_mode == BLKmode)
5503 {
5504 arg->save_area
5505 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5506 preserve_temp_slots (arg->save_area);
5507 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5508 stack_area,
5509 (gen_int_mode
5510 (arg->locate.size.constant, Pmode)),
5511 BLOCK_OP_CALL_PARM);
5512 }
5513 else
5514 {
5515 arg->save_area = gen_reg_rtx (save_mode);
5516 emit_move_insn (arg->save_area, stack_area);
5517 }
5518 }
5519 }
5520 }
5521
5522 /* If this isn't going to be placed on both the stack and in registers,
5523 set up the register and number of words. */
5524 if (! arg->pass_on_stack)
5525 {
5526 if (flags & ECF_SIBCALL)
5527 reg = arg->tail_call_reg;
5528 else
5529 reg = arg->reg;
5530 partial = arg->partial;
5531 }
5532
5533 /* Being passed entirely in a register. We shouldn't be called in
5534 this case. */
5535 gcc_assert (reg == 0 || partial != 0);
5536
5537 /* If this arg needs special alignment, don't load the registers
5538 here. */
5539 if (arg->n_aligned_regs != 0)
5540 reg = 0;
5541
5542 /* If this is being passed partially in a register, we can't evaluate
5543 it directly into its stack slot. Otherwise, we can. */
5544 if (arg->value == 0)
5545 {
5546 /* stack_arg_under_construction is nonzero if a function argument is
5547 being evaluated directly into the outgoing argument list and
5548 expand_call must take special action to preserve the argument list
5549 if it is called recursively.
5550
5551 For scalar function arguments stack_usage_map is sufficient to
5552 determine which stack slots must be saved and restored. Scalar
5553 arguments in general have pass_on_stack == 0.
5554
5555 If this argument is initialized by a function which takes the
5556 address of the argument (a C++ constructor or a C function
5557 returning a BLKmode structure), then stack_usage_map is
5558 insufficient and expand_call must push the stack around the
5559 function call. Such arguments have pass_on_stack == 1.
5560
5561 Note that it is always safe to set stack_arg_under_construction,
5562 but this generates suboptimal code if set when not needed. */
5563
5564 if (arg->pass_on_stack)
5565 stack_arg_under_construction++;
5566
5567 arg->value = expand_expr (pval,
5568 (partial
5569 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5570 ? NULL_RTX : arg->stack,
5571 VOIDmode, EXPAND_STACK_PARM);
5572
5573 /* If we are promoting object (or for any other reason) the mode
5574 doesn't agree, convert the mode. */
5575
5576 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5577 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5578 arg->value, arg->unsignedp);
5579
5580 if (arg->pass_on_stack)
5581 stack_arg_under_construction--;
5582 }
5583
5584 /* Check for overlap with already clobbered argument area. */
5585 if ((flags & ECF_SIBCALL)
5586 && MEM_P (arg->value)
5587 && mem_might_overlap_already_clobbered_arg_p (XEXP (arg->value, 0),
5588 arg->locate.size.constant))
5589 sibcall_failure = 1;
5590
5591 /* Don't allow anything left on stack from computation
5592 of argument to alloca. */
5593 if (flags & ECF_MAY_BE_ALLOCA)
5594 do_pending_stack_adjust ();
5595
5596 if (arg->value == arg->stack)
5597 /* If the value is already in the stack slot, we are done. */
5598 ;
5599 else if (arg->mode != BLKmode)
5600 {
5601 unsigned int parm_align;
5602
5603 /* Argument is a scalar, not entirely passed in registers.
5604 (If part is passed in registers, arg->partial says how much
5605 and emit_push_insn will take care of putting it there.)
5606
5607 Push it, and if its size is less than the
5608 amount of space allocated to it,
5609 also bump stack pointer by the additional space.
5610 Note that in C the default argument promotions
5611 will prevent such mismatches. */
5612
5613 poly_int64 size = (TYPE_EMPTY_P (TREE_TYPE (pval))
5614 ? 0 : GET_MODE_SIZE (arg->mode));
5615
5616 /* Compute how much space the push instruction will push.
5617 On many machines, pushing a byte will advance the stack
5618 pointer by a halfword. */
5619 #ifdef PUSH_ROUNDING
5620 size = PUSH_ROUNDING (size);
5621 #endif
5622 used = size;
5623
5624 /* Compute how much space the argument should get:
5625 round up to a multiple of the alignment for arguments. */
5626 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5627 != PAD_NONE)
5628 /* At the moment we don't (need to) support ABIs for which the
5629 padding isn't known at compile time. In principle it should
5630 be easy to add though. */
5631 used = force_align_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
5632
5633 /* Compute the alignment of the pushed argument. */
5634 parm_align = arg->locate.boundary;
5635 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5636 == PAD_DOWNWARD)
5637 {
5638 poly_int64 pad = used - size;
5639 unsigned int pad_align = known_alignment (pad) * BITS_PER_UNIT;
5640 if (pad_align != 0)
5641 parm_align = MIN (parm_align, pad_align);
5642 }
5643
5644 /* This isn't already where we want it on the stack, so put it there.
5645 This can either be done with push or copy insns. */
5646 if (maybe_ne (used, 0)
5647 && !emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval),
5648 NULL_RTX, parm_align, partial, reg, used - size,
5649 argblock, ARGS_SIZE_RTX (arg->locate.offset),
5650 reg_parm_stack_space,
5651 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5652 sibcall_failure = 1;
5653
5654 /* Unless this is a partially-in-register argument, the argument is now
5655 in the stack. */
5656 if (partial == 0)
5657 arg->value = arg->stack;
5658 }
5659 else
5660 {
5661 /* BLKmode, at least partly to be pushed. */
5662
5663 unsigned int parm_align;
5664 poly_int64 excess;
5665 rtx size_rtx;
5666
5667 /* Pushing a nonscalar.
5668 If part is passed in registers, PARTIAL says how much
5669 and emit_push_insn will take care of putting it there. */
5670
5671 /* Round its size up to a multiple
5672 of the allocation unit for arguments. */
5673
5674 if (arg->locate.size.var != 0)
5675 {
5676 excess = 0;
5677 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
5678 }
5679 else
5680 {
5681 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
5682 for BLKmode is careful to avoid it. */
5683 excess = (arg->locate.size.constant
5684 - arg_int_size_in_bytes (TREE_TYPE (pval))
5685 + partial);
5686 size_rtx = expand_expr (arg_size_in_bytes (TREE_TYPE (pval)),
5687 NULL_RTX, TYPE_MODE (sizetype),
5688 EXPAND_NORMAL);
5689 }
5690
5691 parm_align = arg->locate.boundary;
5692
5693 /* When an argument is padded down, the block is aligned to
5694 PARM_BOUNDARY, but the actual argument isn't. */
5695 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5696 == PAD_DOWNWARD)
5697 {
5698 if (arg->locate.size.var)
5699 parm_align = BITS_PER_UNIT;
5700 else
5701 {
5702 unsigned int excess_align
5703 = known_alignment (excess) * BITS_PER_UNIT;
5704 if (excess_align != 0)
5705 parm_align = MIN (parm_align, excess_align);
5706 }
5707 }
5708
5709 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
5710 {
5711 /* emit_push_insn might not work properly if arg->value and
5712 argblock + arg->locate.offset areas overlap. */
5713 rtx x = arg->value;
5714 poly_int64 i = 0;
5715
5716 if (strip_offset (XEXP (x, 0), &i)
5717 == crtl->args.internal_arg_pointer)
5718 {
5719 /* arg.locate doesn't contain the pretend_args_size offset,
5720 it's part of argblock. Ensure we don't count it in I. */
5721 if (STACK_GROWS_DOWNWARD)
5722 i -= crtl->args.pretend_args_size;
5723 else
5724 i += crtl->args.pretend_args_size;
5725
5726 /* expand_call should ensure this. */
5727 gcc_assert (!arg->locate.offset.var
5728 && arg->locate.size.var == 0);
5729 poly_int64 size_val = rtx_to_poly_int64 (size_rtx);
5730
5731 if (known_eq (arg->locate.offset.constant, i))
5732 {
5733 /* Even though they appear to be at the same location,
5734 if part of the outgoing argument is in registers,
5735 they aren't really at the same location. Check for
5736 this by making sure that the incoming size is the
5737 same as the outgoing size. */
5738 if (maybe_ne (arg->locate.size.constant, size_val))
5739 sibcall_failure = 1;
5740 }
5741 else if (maybe_in_range_p (arg->locate.offset.constant,
5742 i, size_val))
5743 sibcall_failure = 1;
5744 /* Use arg->locate.size.constant instead of size_rtx
5745 because we only care about the part of the argument
5746 on the stack. */
5747 else if (maybe_in_range_p (i, arg->locate.offset.constant,
5748 arg->locate.size.constant))
5749 sibcall_failure = 1;
5750 }
5751 }
5752
5753 if (!CONST_INT_P (size_rtx) || INTVAL (size_rtx) != 0)
5754 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5755 parm_align, partial, reg, excess, argblock,
5756 ARGS_SIZE_RTX (arg->locate.offset),
5757 reg_parm_stack_space,
5758 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5759
5760 /* Unless this is a partially-in-register argument, the argument is now
5761 in the stack.
5762
5763 ??? Unlike the case above, in which we want the actual
5764 address of the data, so that we can load it directly into a
5765 register, here we want the address of the stack slot, so that
5766 it's properly aligned for word-by-word copying or something
5767 like that. It's not clear that this is always correct. */
5768 if (partial == 0)
5769 arg->value = arg->stack_slot;
5770 }
5771
5772 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5773 {
5774 tree type = TREE_TYPE (arg->tree_value);
5775 arg->parallel_value
5776 = emit_group_load_into_temps (arg->reg, arg->value, type,
5777 int_size_in_bytes (type));
5778 }
5779
5780 /* Mark all slots this store used. */
5781 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5782 && argblock && ! variable_size && arg->stack)
5783 mark_stack_region_used (lower_bound, upper_bound);
5784
5785 /* Once we have pushed something, pops can't safely
5786 be deferred during the rest of the arguments. */
5787 NO_DEFER_POP;
5788
5789 /* Free any temporary slots made in processing this argument. */
5790 pop_temp_slots ();
5791
5792 return sibcall_failure;
5793 }
5794
5795 /* Nonzero if we do not know how to pass TYPE solely in registers. */
5796
5797 bool
5798 must_pass_in_stack_var_size (machine_mode mode ATTRIBUTE_UNUSED,
5799 const_tree type)
5800 {
5801 if (!type)
5802 return false;
5803
5804 /* If the type has variable size... */
5805 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5806 return true;
5807
5808 /* If the type is marked as addressable (it is required
5809 to be constructed into the stack)... */
5810 if (TREE_ADDRESSABLE (type))
5811 return true;
5812
5813 return false;
5814 }
5815
5816 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5817 takes trailing padding of a structure into account. */
5818 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5819
5820 bool
5821 must_pass_in_stack_var_size_or_pad (machine_mode mode, const_tree type)
5822 {
5823 if (!type)
5824 return false;
5825
5826 /* If the type has variable size... */
5827 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5828 return true;
5829
5830 /* If the type is marked as addressable (it is required
5831 to be constructed into the stack)... */
5832 if (TREE_ADDRESSABLE (type))
5833 return true;
5834
5835 if (TYPE_EMPTY_P (type))
5836 return false;
5837
5838 /* If the padding and mode of the type is such that a copy into
5839 a register would put it into the wrong part of the register. */
5840 if (mode == BLKmode
5841 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5842 && (targetm.calls.function_arg_padding (mode, type)
5843 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5844 return true;
5845
5846 return false;
5847 }
5848
5849 /* Tell the garbage collector about GTY markers in this source file. */
5850 #include "gt-calls.h"