]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.c
Patch for RTL expand bug affecting aarch64 vector code.
[thirdparty/gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-chkp.h"
51 #include "tree-vrp.h"
52 #include "tree-ssanames.h"
53 #include "rtl-chkp.h"
54 #include "intl.h"
55
56 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
57 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
58
59 /* Data structure and subroutines used within expand_call. */
60
61 struct arg_data
62 {
63 /* Tree node for this argument. */
64 tree tree_value;
65 /* Mode for value; TYPE_MODE unless promoted. */
66 machine_mode mode;
67 /* Current RTL value for argument, or 0 if it isn't precomputed. */
68 rtx value;
69 /* Initially-compute RTL value for argument; only for const functions. */
70 rtx initial_value;
71 /* Register to pass this argument in, 0 if passed on stack, or an
72 PARALLEL if the arg is to be copied into multiple non-contiguous
73 registers. */
74 rtx reg;
75 /* Register to pass this argument in when generating tail call sequence.
76 This is not the same register as for normal calls on machines with
77 register windows. */
78 rtx tail_call_reg;
79 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
80 form for emit_group_move. */
81 rtx parallel_value;
82 /* If value is passed in neither reg nor stack, this field holds a number
83 of a special slot to be used. */
84 rtx special_slot;
85 /* For pointer bounds hold an index of parm bounds are bound to. -1 if
86 there is no such pointer. */
87 int pointer_arg;
88 /* If pointer_arg refers a structure, then pointer_offset holds an offset
89 of a pointer in this structure. */
90 int pointer_offset;
91 /* If REG was promoted from the actual mode of the argument expression,
92 indicates whether the promotion is sign- or zero-extended. */
93 int unsignedp;
94 /* Number of bytes to put in registers. 0 means put the whole arg
95 in registers. Also 0 if not passed in registers. */
96 int partial;
97 /* Nonzero if argument must be passed on stack.
98 Note that some arguments may be passed on the stack
99 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
100 pass_on_stack identifies arguments that *cannot* go in registers. */
101 int pass_on_stack;
102 /* Some fields packaged up for locate_and_pad_parm. */
103 struct locate_and_pad_arg_data locate;
104 /* Location on the stack at which parameter should be stored. The store
105 has already been done if STACK == VALUE. */
106 rtx stack;
107 /* Location on the stack of the start of this argument slot. This can
108 differ from STACK if this arg pads downward. This location is known
109 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
110 rtx stack_slot;
111 /* Place that this stack area has been saved, if needed. */
112 rtx save_area;
113 /* If an argument's alignment does not permit direct copying into registers,
114 copy in smaller-sized pieces into pseudos. These are stored in a
115 block pointed to by this field. The next field says how many
116 word-sized pseudos we made. */
117 rtx *aligned_regs;
118 int n_aligned_regs;
119 };
120
121 /* A vector of one char per byte of stack space. A byte if nonzero if
122 the corresponding stack location has been used.
123 This vector is used to prevent a function call within an argument from
124 clobbering any stack already set up. */
125 static char *stack_usage_map;
126
127 /* Size of STACK_USAGE_MAP. */
128 static int highest_outgoing_arg_in_use;
129
130 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
131 stack location's tail call argument has been already stored into the stack.
132 This bitmap is used to prevent sibling call optimization if function tries
133 to use parent's incoming argument slots when they have been already
134 overwritten with tail call arguments. */
135 static sbitmap stored_args_map;
136
137 /* stack_arg_under_construction is nonzero when an argument may be
138 initialized with a constructor call (including a C function that
139 returns a BLKmode struct) and expand_call must take special action
140 to make sure the object being constructed does not overlap the
141 argument list for the constructor call. */
142 static int stack_arg_under_construction;
143
144 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
145 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
146 cumulative_args_t);
147 static void precompute_register_parameters (int, struct arg_data *, int *);
148 static void store_bounds (struct arg_data *, struct arg_data *);
149 static int store_one_arg (struct arg_data *, rtx, int, int, int);
150 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
151 static int finalize_must_preallocate (int, int, struct arg_data *,
152 struct args_size *);
153 static void precompute_arguments (int, struct arg_data *);
154 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
155 static void initialize_argument_information (int, struct arg_data *,
156 struct args_size *, int,
157 tree, tree,
158 tree, tree, cumulative_args_t, int,
159 rtx *, int *, int *, int *,
160 bool *, bool);
161 static void compute_argument_addresses (struct arg_data *, rtx, int);
162 static rtx rtx_for_function_call (tree, tree);
163 static void load_register_parameters (struct arg_data *, int, rtx *, int,
164 int, int *);
165 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
166 machine_mode, int, va_list);
167 static int special_function_p (const_tree, int);
168 static int check_sibcall_argument_overlap_1 (rtx);
169 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
170
171 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
172 unsigned int);
173 static tree split_complex_types (tree);
174
175 #ifdef REG_PARM_STACK_SPACE
176 static rtx save_fixed_argument_area (int, rtx, int *, int *);
177 static void restore_fixed_argument_area (rtx, rtx, int, int);
178 #endif
179 \f
180 /* Force FUNEXP into a form suitable for the address of a CALL,
181 and return that as an rtx. Also load the static chain register
182 if FNDECL is a nested function.
183
184 CALL_FUSAGE points to a variable holding the prospective
185 CALL_INSN_FUNCTION_USAGE information. */
186
187 rtx
188 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
189 rtx *call_fusage, int reg_parm_seen, int flags)
190 {
191 /* Make a valid memory address and copy constants through pseudo-regs,
192 but not for a constant address if -fno-function-cse. */
193 if (GET_CODE (funexp) != SYMBOL_REF)
194 {
195 /* If it's an indirect call by descriptor, generate code to perform
196 runtime identification of the pointer and load the descriptor. */
197 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
198 {
199 const int bit_val = targetm.calls.custom_function_descriptors;
200 rtx call_lab = gen_label_rtx ();
201
202 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
203 fndecl_or_type
204 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
205 fndecl_or_type);
206 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
207 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
208
209 if (GET_MODE (funexp) != Pmode)
210 funexp = convert_memory_address (Pmode, funexp);
211
212 /* Avoid long live ranges around function calls. */
213 funexp = copy_to_mode_reg (Pmode, funexp);
214
215 if (REG_P (chain))
216 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
217
218 /* Emit the runtime identification pattern. */
219 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
220 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
221 call_lab);
222
223 /* Statically predict the branch to very likely taken. */
224 rtx_insn *insn = get_last_insn ();
225 if (JUMP_P (insn))
226 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
227
228 /* Load the descriptor. */
229 rtx mem = gen_rtx_MEM (ptr_mode,
230 plus_constant (Pmode, funexp, - bit_val));
231 MEM_NOTRAP_P (mem) = 1;
232 mem = convert_memory_address (Pmode, mem);
233 emit_move_insn (chain, mem);
234
235 mem = gen_rtx_MEM (ptr_mode,
236 plus_constant (Pmode, funexp,
237 POINTER_SIZE / BITS_PER_UNIT
238 - bit_val));
239 MEM_NOTRAP_P (mem) = 1;
240 mem = convert_memory_address (Pmode, mem);
241 emit_move_insn (funexp, mem);
242
243 emit_label (call_lab);
244
245 if (REG_P (chain))
246 {
247 use_reg (call_fusage, chain);
248 STATIC_CHAIN_REG_P (chain) = 1;
249 }
250
251 /* Make sure we're not going to be overwritten below. */
252 gcc_assert (!static_chain_value);
253 }
254
255 /* If we are using registers for parameters, force the
256 function address into a register now. */
257 funexp = ((reg_parm_seen
258 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
259 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
260 : memory_address (FUNCTION_MODE, funexp));
261 }
262 else
263 {
264 /* funexp could be a SYMBOL_REF represents a function pointer which is
265 of ptr_mode. In this case, it should be converted into address mode
266 to be a valid address for memory rtx pattern. See PR 64971. */
267 if (GET_MODE (funexp) != Pmode)
268 funexp = convert_memory_address (Pmode, funexp);
269
270 if (!(flags & ECF_SIBCALL))
271 {
272 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
273 funexp = force_reg (Pmode, funexp);
274 }
275 }
276
277 if (static_chain_value != 0
278 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
279 || DECL_STATIC_CHAIN (fndecl_or_type)))
280 {
281 rtx chain;
282
283 chain = targetm.calls.static_chain (fndecl_or_type, false);
284 static_chain_value = convert_memory_address (Pmode, static_chain_value);
285
286 emit_move_insn (chain, static_chain_value);
287 if (REG_P (chain))
288 {
289 use_reg (call_fusage, chain);
290 STATIC_CHAIN_REG_P (chain) = 1;
291 }
292 }
293
294 return funexp;
295 }
296
297 /* Generate instructions to call function FUNEXP,
298 and optionally pop the results.
299 The CALL_INSN is the first insn generated.
300
301 FNDECL is the declaration node of the function. This is given to the
302 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
303 its own args.
304
305 FUNTYPE is the data type of the function. This is given to the hook
306 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
307 own args. We used to allow an identifier for library functions, but
308 that doesn't work when the return type is an aggregate type and the
309 calling convention says that the pointer to this aggregate is to be
310 popped by the callee.
311
312 STACK_SIZE is the number of bytes of arguments on the stack,
313 ROUNDED_STACK_SIZE is that number rounded up to
314 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
315 both to put into the call insn and to generate explicit popping
316 code if necessary.
317
318 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
319 It is zero if this call doesn't want a structure value.
320
321 NEXT_ARG_REG is the rtx that results from executing
322 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
323 just after all the args have had their registers assigned.
324 This could be whatever you like, but normally it is the first
325 arg-register beyond those used for args in this call,
326 or 0 if all the arg-registers are used in this call.
327 It is passed on to `gen_call' so you can put this info in the call insn.
328
329 VALREG is a hard register in which a value is returned,
330 or 0 if the call does not return a value.
331
332 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
333 the args to this call were processed.
334 We restore `inhibit_defer_pop' to that value.
335
336 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
337 denote registers used by the called function. */
338
339 static void
340 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
341 tree funtype ATTRIBUTE_UNUSED,
342 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
343 HOST_WIDE_INT rounded_stack_size,
344 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
345 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
346 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
347 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
348 {
349 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
350 rtx call, funmem, pat;
351 int already_popped = 0;
352 HOST_WIDE_INT n_popped = 0;
353
354 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
355 patterns exist). Any popping that the callee does on return will
356 be from our caller's frame rather than ours. */
357 if (!(ecf_flags & ECF_SIBCALL))
358 {
359 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
360
361 #ifdef CALL_POPS_ARGS
362 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
363 #endif
364 }
365
366 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
367 and we don't want to load it into a register as an optimization,
368 because prepare_call_address already did it if it should be done. */
369 if (GET_CODE (funexp) != SYMBOL_REF)
370 funexp = memory_address (FUNCTION_MODE, funexp);
371
372 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
373 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
374 {
375 tree t = fndecl;
376
377 /* Although a built-in FUNCTION_DECL and its non-__builtin
378 counterpart compare equal and get a shared mem_attrs, they
379 produce different dump output in compare-debug compilations,
380 if an entry gets garbage collected in one compilation, then
381 adds a different (but equivalent) entry, while the other
382 doesn't run the garbage collector at the same spot and then
383 shares the mem_attr with the equivalent entry. */
384 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
385 {
386 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
387 if (t2)
388 t = t2;
389 }
390
391 set_mem_expr (funmem, t);
392 }
393 else if (fntree)
394 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
395
396 if (ecf_flags & ECF_SIBCALL)
397 {
398 if (valreg)
399 pat = targetm.gen_sibcall_value (valreg, funmem,
400 rounded_stack_size_rtx,
401 next_arg_reg, NULL_RTX);
402 else
403 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
404 next_arg_reg, GEN_INT (struct_value_size));
405 }
406 /* If the target has "call" or "call_value" insns, then prefer them
407 if no arguments are actually popped. If the target does not have
408 "call" or "call_value" insns, then we must use the popping versions
409 even if the call has no arguments to pop. */
410 else if (n_popped > 0
411 || !(valreg
412 ? targetm.have_call_value ()
413 : targetm.have_call ()))
414 {
415 rtx n_pop = GEN_INT (n_popped);
416
417 /* If this subroutine pops its own args, record that in the call insn
418 if possible, for the sake of frame pointer elimination. */
419
420 if (valreg)
421 pat = targetm.gen_call_value_pop (valreg, funmem,
422 rounded_stack_size_rtx,
423 next_arg_reg, n_pop);
424 else
425 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
426 next_arg_reg, n_pop);
427
428 already_popped = 1;
429 }
430 else
431 {
432 if (valreg)
433 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
434 next_arg_reg, NULL_RTX);
435 else
436 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
437 GEN_INT (struct_value_size));
438 }
439 emit_insn (pat);
440
441 /* Find the call we just emitted. */
442 rtx_call_insn *call_insn = last_call_insn ();
443
444 /* Some target create a fresh MEM instead of reusing the one provided
445 above. Set its MEM_EXPR. */
446 call = get_call_rtx_from (call_insn);
447 if (call
448 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
449 && MEM_EXPR (funmem) != NULL_TREE)
450 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
451
452 /* Mark instrumented calls. */
453 if (call && fntree)
454 CALL_EXPR_WITH_BOUNDS_P (call) = CALL_WITH_BOUNDS_P (fntree);
455
456 /* Put the register usage information there. */
457 add_function_usage_to (call_insn, call_fusage);
458
459 /* If this is a const call, then set the insn's unchanging bit. */
460 if (ecf_flags & ECF_CONST)
461 RTL_CONST_CALL_P (call_insn) = 1;
462
463 /* If this is a pure call, then set the insn's unchanging bit. */
464 if (ecf_flags & ECF_PURE)
465 RTL_PURE_CALL_P (call_insn) = 1;
466
467 /* If this is a const call, then set the insn's unchanging bit. */
468 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
469 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
470
471 /* Create a nothrow REG_EH_REGION note, if needed. */
472 make_reg_eh_region_note (call_insn, ecf_flags, 0);
473
474 if (ecf_flags & ECF_NORETURN)
475 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
476
477 if (ecf_flags & ECF_RETURNS_TWICE)
478 {
479 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
480 cfun->calls_setjmp = 1;
481 }
482
483 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
484
485 /* Restore this now, so that we do defer pops for this call's args
486 if the context of the call as a whole permits. */
487 inhibit_defer_pop = old_inhibit_defer_pop;
488
489 if (n_popped > 0)
490 {
491 if (!already_popped)
492 CALL_INSN_FUNCTION_USAGE (call_insn)
493 = gen_rtx_EXPR_LIST (VOIDmode,
494 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
495 CALL_INSN_FUNCTION_USAGE (call_insn));
496 rounded_stack_size -= n_popped;
497 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
498 stack_pointer_delta -= n_popped;
499
500 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
501
502 /* If popup is needed, stack realign must use DRAP */
503 if (SUPPORTS_STACK_ALIGNMENT)
504 crtl->need_drap = true;
505 }
506 /* For noreturn calls when not accumulating outgoing args force
507 REG_ARGS_SIZE note to prevent crossjumping of calls with different
508 args sizes. */
509 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
510 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
511
512 if (!ACCUMULATE_OUTGOING_ARGS)
513 {
514 /* If returning from the subroutine does not automatically pop the args,
515 we need an instruction to pop them sooner or later.
516 Perhaps do it now; perhaps just record how much space to pop later.
517
518 If returning from the subroutine does pop the args, indicate that the
519 stack pointer will be changed. */
520
521 if (rounded_stack_size != 0)
522 {
523 if (ecf_flags & ECF_NORETURN)
524 /* Just pretend we did the pop. */
525 stack_pointer_delta -= rounded_stack_size;
526 else if (flag_defer_pop && inhibit_defer_pop == 0
527 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
528 pending_stack_adjust += rounded_stack_size;
529 else
530 adjust_stack (rounded_stack_size_rtx);
531 }
532 }
533 /* When we accumulate outgoing args, we must avoid any stack manipulations.
534 Restore the stack pointer to its original value now. Usually
535 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
536 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
537 popping variants of functions exist as well.
538
539 ??? We may optimize similar to defer_pop above, but it is
540 probably not worthwhile.
541
542 ??? It will be worthwhile to enable combine_stack_adjustments even for
543 such machines. */
544 else if (n_popped)
545 anti_adjust_stack (GEN_INT (n_popped));
546 }
547
548 /* Determine if the function identified by FNDECL is one with
549 special properties we wish to know about. Modify FLAGS accordingly.
550
551 For example, if the function might return more than one time (setjmp), then
552 set ECF_RETURNS_TWICE.
553
554 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
555 space from the stack such as alloca. */
556
557 static int
558 special_function_p (const_tree fndecl, int flags)
559 {
560 tree name_decl = DECL_NAME (fndecl);
561
562 /* For instrumentation clones we want to derive flags
563 from the original name. */
564 if (cgraph_node::get (fndecl)
565 && cgraph_node::get (fndecl)->instrumentation_clone)
566 name_decl = DECL_NAME (cgraph_node::get (fndecl)->orig_decl);
567
568 if (fndecl && name_decl
569 && IDENTIFIER_LENGTH (name_decl) <= 11
570 /* Exclude functions not at the file scope, or not `extern',
571 since they are not the magic functions we would otherwise
572 think they are.
573 FIXME: this should be handled with attributes, not with this
574 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
575 because you can declare fork() inside a function if you
576 wish. */
577 && (DECL_CONTEXT (fndecl) == NULL_TREE
578 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
579 && TREE_PUBLIC (fndecl))
580 {
581 const char *name = IDENTIFIER_POINTER (name_decl);
582 const char *tname = name;
583
584 /* We assume that alloca will always be called by name. It
585 makes no sense to pass it as a pointer-to-function to
586 anything that does not understand its behavior. */
587 if (IDENTIFIER_LENGTH (name_decl) == 6
588 && name[0] == 'a'
589 && ! strcmp (name, "alloca"))
590 flags |= ECF_MAY_BE_ALLOCA;
591
592 /* Disregard prefix _ or __. */
593 if (name[0] == '_')
594 {
595 if (name[1] == '_')
596 tname += 2;
597 else
598 tname += 1;
599 }
600
601 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
602 if (! strcmp (tname, "setjmp")
603 || ! strcmp (tname, "sigsetjmp")
604 || ! strcmp (name, "savectx")
605 || ! strcmp (name, "vfork")
606 || ! strcmp (name, "getcontext"))
607 flags |= ECF_RETURNS_TWICE;
608 }
609
610 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
611 switch (DECL_FUNCTION_CODE (fndecl))
612 {
613 case BUILT_IN_ALLOCA:
614 case BUILT_IN_ALLOCA_WITH_ALIGN:
615 flags |= ECF_MAY_BE_ALLOCA;
616 break;
617 default:
618 break;
619 }
620
621 return flags;
622 }
623
624 /* Similar to special_function_p; return a set of ERF_ flags for the
625 function FNDECL. */
626 static int
627 decl_return_flags (tree fndecl)
628 {
629 tree attr;
630 tree type = TREE_TYPE (fndecl);
631 if (!type)
632 return 0;
633
634 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
635 if (!attr)
636 return 0;
637
638 attr = TREE_VALUE (TREE_VALUE (attr));
639 if (!attr || TREE_STRING_LENGTH (attr) < 1)
640 return 0;
641
642 switch (TREE_STRING_POINTER (attr)[0])
643 {
644 case '1':
645 case '2':
646 case '3':
647 case '4':
648 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
649
650 case 'm':
651 return ERF_NOALIAS;
652
653 case '.':
654 default:
655 return 0;
656 }
657 }
658
659 /* Return nonzero when FNDECL represents a call to setjmp. */
660
661 int
662 setjmp_call_p (const_tree fndecl)
663 {
664 if (DECL_IS_RETURNS_TWICE (fndecl))
665 return ECF_RETURNS_TWICE;
666 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
667 }
668
669
670 /* Return true if STMT may be an alloca call. */
671
672 bool
673 gimple_maybe_alloca_call_p (const gimple *stmt)
674 {
675 tree fndecl;
676
677 if (!is_gimple_call (stmt))
678 return false;
679
680 fndecl = gimple_call_fndecl (stmt);
681 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
682 return true;
683
684 return false;
685 }
686
687 /* Return true if STMT is a builtin alloca call. */
688
689 bool
690 gimple_alloca_call_p (const gimple *stmt)
691 {
692 tree fndecl;
693
694 if (!is_gimple_call (stmt))
695 return false;
696
697 fndecl = gimple_call_fndecl (stmt);
698 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
699 switch (DECL_FUNCTION_CODE (fndecl))
700 {
701 case BUILT_IN_ALLOCA:
702 case BUILT_IN_ALLOCA_WITH_ALIGN:
703 return true;
704 default:
705 break;
706 }
707
708 return false;
709 }
710
711 /* Return true when exp contains a builtin alloca call. */
712
713 bool
714 alloca_call_p (const_tree exp)
715 {
716 tree fndecl;
717 if (TREE_CODE (exp) == CALL_EXPR
718 && (fndecl = get_callee_fndecl (exp))
719 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
720 switch (DECL_FUNCTION_CODE (fndecl))
721 {
722 case BUILT_IN_ALLOCA:
723 case BUILT_IN_ALLOCA_WITH_ALIGN:
724 return true;
725 default:
726 break;
727 }
728
729 return false;
730 }
731
732 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
733 function. Return FALSE otherwise. */
734
735 static bool
736 is_tm_builtin (const_tree fndecl)
737 {
738 if (fndecl == NULL)
739 return false;
740
741 if (decl_is_tm_clone (fndecl))
742 return true;
743
744 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
745 {
746 switch (DECL_FUNCTION_CODE (fndecl))
747 {
748 case BUILT_IN_TM_COMMIT:
749 case BUILT_IN_TM_COMMIT_EH:
750 case BUILT_IN_TM_ABORT:
751 case BUILT_IN_TM_IRREVOCABLE:
752 case BUILT_IN_TM_GETTMCLONE_IRR:
753 case BUILT_IN_TM_MEMCPY:
754 case BUILT_IN_TM_MEMMOVE:
755 case BUILT_IN_TM_MEMSET:
756 CASE_BUILT_IN_TM_STORE (1):
757 CASE_BUILT_IN_TM_STORE (2):
758 CASE_BUILT_IN_TM_STORE (4):
759 CASE_BUILT_IN_TM_STORE (8):
760 CASE_BUILT_IN_TM_STORE (FLOAT):
761 CASE_BUILT_IN_TM_STORE (DOUBLE):
762 CASE_BUILT_IN_TM_STORE (LDOUBLE):
763 CASE_BUILT_IN_TM_STORE (M64):
764 CASE_BUILT_IN_TM_STORE (M128):
765 CASE_BUILT_IN_TM_STORE (M256):
766 CASE_BUILT_IN_TM_LOAD (1):
767 CASE_BUILT_IN_TM_LOAD (2):
768 CASE_BUILT_IN_TM_LOAD (4):
769 CASE_BUILT_IN_TM_LOAD (8):
770 CASE_BUILT_IN_TM_LOAD (FLOAT):
771 CASE_BUILT_IN_TM_LOAD (DOUBLE):
772 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
773 CASE_BUILT_IN_TM_LOAD (M64):
774 CASE_BUILT_IN_TM_LOAD (M128):
775 CASE_BUILT_IN_TM_LOAD (M256):
776 case BUILT_IN_TM_LOG:
777 case BUILT_IN_TM_LOG_1:
778 case BUILT_IN_TM_LOG_2:
779 case BUILT_IN_TM_LOG_4:
780 case BUILT_IN_TM_LOG_8:
781 case BUILT_IN_TM_LOG_FLOAT:
782 case BUILT_IN_TM_LOG_DOUBLE:
783 case BUILT_IN_TM_LOG_LDOUBLE:
784 case BUILT_IN_TM_LOG_M64:
785 case BUILT_IN_TM_LOG_M128:
786 case BUILT_IN_TM_LOG_M256:
787 return true;
788 default:
789 break;
790 }
791 }
792 return false;
793 }
794
795 /* Detect flags (function attributes) from the function decl or type node. */
796
797 int
798 flags_from_decl_or_type (const_tree exp)
799 {
800 int flags = 0;
801
802 if (DECL_P (exp))
803 {
804 /* The function exp may have the `malloc' attribute. */
805 if (DECL_IS_MALLOC (exp))
806 flags |= ECF_MALLOC;
807
808 /* The function exp may have the `returns_twice' attribute. */
809 if (DECL_IS_RETURNS_TWICE (exp))
810 flags |= ECF_RETURNS_TWICE;
811
812 /* Process the pure and const attributes. */
813 if (TREE_READONLY (exp))
814 flags |= ECF_CONST;
815 if (DECL_PURE_P (exp))
816 flags |= ECF_PURE;
817 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
818 flags |= ECF_LOOPING_CONST_OR_PURE;
819
820 if (DECL_IS_NOVOPS (exp))
821 flags |= ECF_NOVOPS;
822 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
823 flags |= ECF_LEAF;
824
825 if (TREE_NOTHROW (exp))
826 flags |= ECF_NOTHROW;
827
828 if (flag_tm)
829 {
830 if (is_tm_builtin (exp))
831 flags |= ECF_TM_BUILTIN;
832 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
833 || lookup_attribute ("transaction_pure",
834 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
835 flags |= ECF_TM_PURE;
836 }
837
838 flags = special_function_p (exp, flags);
839 }
840 else if (TYPE_P (exp))
841 {
842 if (TYPE_READONLY (exp))
843 flags |= ECF_CONST;
844
845 if (flag_tm
846 && ((flags & ECF_CONST) != 0
847 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
848 flags |= ECF_TM_PURE;
849 }
850 else
851 gcc_unreachable ();
852
853 if (TREE_THIS_VOLATILE (exp))
854 {
855 flags |= ECF_NORETURN;
856 if (flags & (ECF_CONST|ECF_PURE))
857 flags |= ECF_LOOPING_CONST_OR_PURE;
858 }
859
860 return flags;
861 }
862
863 /* Detect flags from a CALL_EXPR. */
864
865 int
866 call_expr_flags (const_tree t)
867 {
868 int flags;
869 tree decl = get_callee_fndecl (t);
870
871 if (decl)
872 flags = flags_from_decl_or_type (decl);
873 else if (CALL_EXPR_FN (t) == NULL_TREE)
874 flags = internal_fn_flags (CALL_EXPR_IFN (t));
875 else
876 {
877 tree type = TREE_TYPE (CALL_EXPR_FN (t));
878 if (type && TREE_CODE (type) == POINTER_TYPE)
879 flags = flags_from_decl_or_type (TREE_TYPE (type));
880 else
881 flags = 0;
882 if (CALL_EXPR_BY_DESCRIPTOR (t))
883 flags |= ECF_BY_DESCRIPTOR;
884 }
885
886 return flags;
887 }
888
889 /* Return true if TYPE should be passed by invisible reference. */
890
891 bool
892 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
893 tree type, bool named_arg)
894 {
895 if (type)
896 {
897 /* If this type contains non-trivial constructors, then it is
898 forbidden for the middle-end to create any new copies. */
899 if (TREE_ADDRESSABLE (type))
900 return true;
901
902 /* GCC post 3.4 passes *all* variable sized types by reference. */
903 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
904 return true;
905
906 /* If a record type should be passed the same as its first (and only)
907 member, use the type and mode of that member. */
908 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
909 {
910 type = TREE_TYPE (first_field (type));
911 mode = TYPE_MODE (type);
912 }
913 }
914
915 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
916 type, named_arg);
917 }
918
919 /* Return true if TYPE, which is passed by reference, should be callee
920 copied instead of caller copied. */
921
922 bool
923 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
924 tree type, bool named_arg)
925 {
926 if (type && TREE_ADDRESSABLE (type))
927 return false;
928 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
929 named_arg);
930 }
931
932
933 /* Precompute all register parameters as described by ARGS, storing values
934 into fields within the ARGS array.
935
936 NUM_ACTUALS indicates the total number elements in the ARGS array.
937
938 Set REG_PARM_SEEN if we encounter a register parameter. */
939
940 static void
941 precompute_register_parameters (int num_actuals, struct arg_data *args,
942 int *reg_parm_seen)
943 {
944 int i;
945
946 *reg_parm_seen = 0;
947
948 for (i = 0; i < num_actuals; i++)
949 if (args[i].reg != 0 && ! args[i].pass_on_stack)
950 {
951 *reg_parm_seen = 1;
952
953 if (args[i].value == 0)
954 {
955 push_temp_slots ();
956 args[i].value = expand_normal (args[i].tree_value);
957 preserve_temp_slots (args[i].value);
958 pop_temp_slots ();
959 }
960
961 /* If we are to promote the function arg to a wider mode,
962 do it now. */
963
964 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
965 args[i].value
966 = convert_modes (args[i].mode,
967 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
968 args[i].value, args[i].unsignedp);
969
970 /* If the value is a non-legitimate constant, force it into a
971 pseudo now. TLS symbols sometimes need a call to resolve. */
972 if (CONSTANT_P (args[i].value)
973 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
974 args[i].value = force_reg (args[i].mode, args[i].value);
975
976 /* If we're going to have to load the value by parts, pull the
977 parts into pseudos. The part extraction process can involve
978 non-trivial computation. */
979 if (GET_CODE (args[i].reg) == PARALLEL)
980 {
981 tree type = TREE_TYPE (args[i].tree_value);
982 args[i].parallel_value
983 = emit_group_load_into_temps (args[i].reg, args[i].value,
984 type, int_size_in_bytes (type));
985 }
986
987 /* If the value is expensive, and we are inside an appropriately
988 short loop, put the value into a pseudo and then put the pseudo
989 into the hard reg.
990
991 For small register classes, also do this if this call uses
992 register parameters. This is to avoid reload conflicts while
993 loading the parameters registers. */
994
995 else if ((! (REG_P (args[i].value)
996 || (GET_CODE (args[i].value) == SUBREG
997 && REG_P (SUBREG_REG (args[i].value)))))
998 && args[i].mode != BLKmode
999 && (set_src_cost (args[i].value, args[i].mode,
1000 optimize_insn_for_speed_p ())
1001 > COSTS_N_INSNS (1))
1002 && ((*reg_parm_seen
1003 && targetm.small_register_classes_for_mode_p (args[i].mode))
1004 || optimize))
1005 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1006 }
1007 }
1008
1009 #ifdef REG_PARM_STACK_SPACE
1010
1011 /* The argument list is the property of the called routine and it
1012 may clobber it. If the fixed area has been used for previous
1013 parameters, we must save and restore it. */
1014
1015 static rtx
1016 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1017 {
1018 int low;
1019 int high;
1020
1021 /* Compute the boundary of the area that needs to be saved, if any. */
1022 high = reg_parm_stack_space;
1023 if (ARGS_GROW_DOWNWARD)
1024 high += 1;
1025
1026 if (high > highest_outgoing_arg_in_use)
1027 high = highest_outgoing_arg_in_use;
1028
1029 for (low = 0; low < high; low++)
1030 if (stack_usage_map[low] != 0)
1031 {
1032 int num_to_save;
1033 machine_mode save_mode;
1034 int delta;
1035 rtx addr;
1036 rtx stack_area;
1037 rtx save_area;
1038
1039 while (stack_usage_map[--high] == 0)
1040 ;
1041
1042 *low_to_save = low;
1043 *high_to_save = high;
1044
1045 num_to_save = high - low + 1;
1046 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
1047
1048 /* If we don't have the required alignment, must do this
1049 in BLKmode. */
1050 if ((low & (MIN (GET_MODE_SIZE (save_mode),
1051 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
1052 save_mode = BLKmode;
1053
1054 if (ARGS_GROW_DOWNWARD)
1055 delta = -high;
1056 else
1057 delta = low;
1058
1059 addr = plus_constant (Pmode, argblock, delta);
1060 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1061
1062 set_mem_align (stack_area, PARM_BOUNDARY);
1063 if (save_mode == BLKmode)
1064 {
1065 save_area = assign_stack_temp (BLKmode, num_to_save);
1066 emit_block_move (validize_mem (save_area), stack_area,
1067 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1068 }
1069 else
1070 {
1071 save_area = gen_reg_rtx (save_mode);
1072 emit_move_insn (save_area, stack_area);
1073 }
1074
1075 return save_area;
1076 }
1077
1078 return NULL_RTX;
1079 }
1080
1081 static void
1082 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1083 {
1084 machine_mode save_mode = GET_MODE (save_area);
1085 int delta;
1086 rtx addr, stack_area;
1087
1088 if (ARGS_GROW_DOWNWARD)
1089 delta = -high_to_save;
1090 else
1091 delta = low_to_save;
1092
1093 addr = plus_constant (Pmode, argblock, delta);
1094 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1095 set_mem_align (stack_area, PARM_BOUNDARY);
1096
1097 if (save_mode != BLKmode)
1098 emit_move_insn (stack_area, save_area);
1099 else
1100 emit_block_move (stack_area, validize_mem (save_area),
1101 GEN_INT (high_to_save - low_to_save + 1),
1102 BLOCK_OP_CALL_PARM);
1103 }
1104 #endif /* REG_PARM_STACK_SPACE */
1105
1106 /* If any elements in ARGS refer to parameters that are to be passed in
1107 registers, but not in memory, and whose alignment does not permit a
1108 direct copy into registers. Copy the values into a group of pseudos
1109 which we will later copy into the appropriate hard registers.
1110
1111 Pseudos for each unaligned argument will be stored into the array
1112 args[argnum].aligned_regs. The caller is responsible for deallocating
1113 the aligned_regs array if it is nonzero. */
1114
1115 static void
1116 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1117 {
1118 int i, j;
1119
1120 for (i = 0; i < num_actuals; i++)
1121 if (args[i].reg != 0 && ! args[i].pass_on_stack
1122 && GET_CODE (args[i].reg) != PARALLEL
1123 && args[i].mode == BLKmode
1124 && MEM_P (args[i].value)
1125 && (MEM_ALIGN (args[i].value)
1126 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1127 {
1128 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1129 int endian_correction = 0;
1130
1131 if (args[i].partial)
1132 {
1133 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1134 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1135 }
1136 else
1137 {
1138 args[i].n_aligned_regs
1139 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1140 }
1141
1142 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1143
1144 /* Structures smaller than a word are normally aligned to the
1145 least significant byte. On a BYTES_BIG_ENDIAN machine,
1146 this means we must skip the empty high order bytes when
1147 calculating the bit offset. */
1148 if (bytes < UNITS_PER_WORD
1149 #ifdef BLOCK_REG_PADDING
1150 && (BLOCK_REG_PADDING (args[i].mode,
1151 TREE_TYPE (args[i].tree_value), 1)
1152 == downward)
1153 #else
1154 && BYTES_BIG_ENDIAN
1155 #endif
1156 )
1157 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1158
1159 for (j = 0; j < args[i].n_aligned_regs; j++)
1160 {
1161 rtx reg = gen_reg_rtx (word_mode);
1162 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1163 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1164
1165 args[i].aligned_regs[j] = reg;
1166 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1167 word_mode, word_mode, false, NULL);
1168
1169 /* There is no need to restrict this code to loading items
1170 in TYPE_ALIGN sized hunks. The bitfield instructions can
1171 load up entire word sized registers efficiently.
1172
1173 ??? This may not be needed anymore.
1174 We use to emit a clobber here but that doesn't let later
1175 passes optimize the instructions we emit. By storing 0 into
1176 the register later passes know the first AND to zero out the
1177 bitfield being set in the register is unnecessary. The store
1178 of 0 will be deleted as will at least the first AND. */
1179
1180 emit_move_insn (reg, const0_rtx);
1181
1182 bytes -= bitsize / BITS_PER_UNIT;
1183 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1184 word_mode, word, false);
1185 }
1186 }
1187 }
1188
1189 /* The limit set by -Walloc-larger-than=. */
1190 static GTY(()) tree alloc_object_size_limit;
1191
1192 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1193 setting if the option is specified, or to the maximum object size if it
1194 is not. Return the initialized value. */
1195
1196 static tree
1197 alloc_max_size (void)
1198 {
1199 if (!alloc_object_size_limit)
1200 {
1201 alloc_object_size_limit = TYPE_MAX_VALUE (ssizetype);
1202
1203 if (warn_alloc_size_limit)
1204 {
1205 char *end = NULL;
1206 errno = 0;
1207 unsigned HOST_WIDE_INT unit = 1;
1208 unsigned HOST_WIDE_INT limit
1209 = strtoull (warn_alloc_size_limit, &end, 10);
1210
1211 if (!errno)
1212 {
1213 if (end && *end)
1214 {
1215 /* Numeric option arguments are at most INT_MAX. Make it
1216 possible to specify a larger value by accepting common
1217 suffixes. */
1218 if (!strcmp (end, "kB"))
1219 unit = 1000;
1220 else if (!strcasecmp (end, "KiB") || strcmp (end, "KB"))
1221 unit = 1024;
1222 else if (!strcmp (end, "MB"))
1223 unit = 1000LU * 1000;
1224 else if (!strcasecmp (end, "MiB"))
1225 unit = 1024LU * 1024;
1226 else if (!strcasecmp (end, "GB"))
1227 unit = 1000LU * 1000 * 1000;
1228 else if (!strcasecmp (end, "GiB"))
1229 unit = 1024LU * 1024 * 1024;
1230 else if (!strcasecmp (end, "TB"))
1231 unit = 1000LU * 1000 * 1000 * 1000;
1232 else if (!strcasecmp (end, "TiB"))
1233 unit = 1024LU * 1024 * 1024 * 1024;
1234 else if (!strcasecmp (end, "PB"))
1235 unit = 1000LU * 1000 * 1000 * 1000 * 1000;
1236 else if (!strcasecmp (end, "PiB"))
1237 unit = 1024LU * 1024 * 1024 * 1024 * 1024;
1238 else if (!strcasecmp (end, "EB"))
1239 unit = 1000LU * 1000 * 1000 * 1000 * 1000 * 1000;
1240 else if (!strcasecmp (end, "EiB"))
1241 unit = 1024LU * 1024 * 1024 * 1024 * 1024 * 1024;
1242 else
1243 unit = 0;
1244 }
1245
1246 if (unit)
1247 alloc_object_size_limit
1248 = build_int_cst (ssizetype, limit * unit);
1249 }
1250 }
1251 }
1252 return alloc_object_size_limit;
1253 }
1254
1255 /* Return true when EXP's range can be determined and set RANGE[] to it
1256 after adjusting it if necessary to make EXP a valid size argument to
1257 an allocation function declared with attribute alloc_size (whose
1258 argument may be signed), or to a string manipulation function like
1259 memset. */
1260
1261 bool
1262 get_size_range (tree exp, tree range[2])
1263 {
1264 if (tree_fits_uhwi_p (exp))
1265 {
1266 /* EXP is a constant. */
1267 range[0] = range[1] = exp;
1268 return true;
1269 }
1270
1271 wide_int min, max;
1272 enum value_range_type range_type
1273 = ((TREE_CODE (exp) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (exp)))
1274 ? get_range_info (exp, &min, &max) : VR_VARYING);
1275
1276 if (range_type == VR_VARYING)
1277 {
1278 /* No range information available. */
1279 range[0] = NULL_TREE;
1280 range[1] = NULL_TREE;
1281 return false;
1282 }
1283
1284 tree exptype = TREE_TYPE (exp);
1285 unsigned expprec = TYPE_PRECISION (exptype);
1286 wide_int wzero = wi::zero (expprec);
1287 wide_int wmaxval = wide_int (TYPE_MAX_VALUE (exptype));
1288
1289 bool signed_p = !TYPE_UNSIGNED (exptype);
1290
1291 if (range_type == VR_ANTI_RANGE)
1292 {
1293 if (signed_p)
1294 {
1295 if (wi::les_p (max, wzero))
1296 {
1297 /* EXP is not in a strictly negative range. That means
1298 it must be in some (not necessarily strictly) positive
1299 range which includes zero. Since in signed to unsigned
1300 conversions negative values end up converted to large
1301 positive values, and otherwise they are not valid sizes,
1302 the resulting range is in both cases [0, TYPE_MAX]. */
1303 min = wzero;
1304 max = wmaxval;
1305 }
1306 else if (wi::les_p (min - 1, wzero))
1307 {
1308 /* EXP is not in a negative-positive range. That means EXP
1309 is either negative, or greater than max. Since negative
1310 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1311 min = max + 1;
1312 max = wmaxval;
1313 }
1314 else
1315 {
1316 max = min - 1;
1317 min = wzero;
1318 }
1319 }
1320 else if (wi::eq_p (wzero, min - 1))
1321 {
1322 /* EXP is unsigned and not in the range [1, MAX]. That means
1323 it's either zero or greater than MAX. Even though 0 would
1324 normally be detected by -Walloc-zero set the range to
1325 [MAX, TYPE_MAX] so that when MAX is greater than the limit
1326 the whole range is diagnosed. */
1327 min = max + 1;
1328 max = wmaxval;
1329 }
1330 else
1331 {
1332 max = min - 1;
1333 min = wzero;
1334 }
1335 }
1336
1337 range[0] = wide_int_to_tree (exptype, min);
1338 range[1] = wide_int_to_tree (exptype, max);
1339
1340 return true;
1341 }
1342
1343 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1344 whose argument numbers given by IDX with values given by ARGS exceed
1345 the maximum object size or cause an unsigned oveflow (wrapping) when
1346 multiplied. When ARGS[0] is null the function does nothing. ARGS[1]
1347 may be null for functions like malloc, and non-null for those like
1348 calloc that are decorated with a two-argument attribute alloc_size. */
1349
1350 void
1351 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1352 {
1353 /* The range each of the (up to) two arguments is known to be in. */
1354 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1355
1356 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1357 tree maxobjsize = alloc_max_size ();
1358
1359 location_t loc = EXPR_LOCATION (exp);
1360
1361 bool warned = false;
1362
1363 /* Validate each argument individually. */
1364 for (unsigned i = 0; i != 2 && args[i]; ++i)
1365 {
1366 if (TREE_CODE (args[i]) == INTEGER_CST)
1367 {
1368 argrange[i][0] = args[i];
1369 argrange[i][1] = args[i];
1370
1371 if (tree_int_cst_lt (args[i], integer_zero_node))
1372 {
1373 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1374 "%Kargument %i value %qE is negative",
1375 exp, idx[i] + 1, args[i]);
1376 }
1377 else if (integer_zerop (args[i]))
1378 {
1379 /* Avoid issuing -Walloc-zero for allocation functions other
1380 than __builtin_alloca that are declared with attribute
1381 returns_nonnull because there's no portability risk. This
1382 avoids warning for such calls to libiberty's xmalloc and
1383 friends.
1384 Also avoid issuing the warning for calls to function named
1385 "alloca". */
1386 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_ALLOCA
1387 && IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6)
1388 || (DECL_FUNCTION_CODE (fn) != BUILT_IN_ALLOCA
1389 && !lookup_attribute ("returns_nonnull",
1390 TYPE_ATTRIBUTES (TREE_TYPE (fn)))))
1391 warned = warning_at (loc, OPT_Walloc_zero,
1392 "%Kargument %i value is zero",
1393 exp, idx[i] + 1);
1394 }
1395 else if (tree_int_cst_lt (maxobjsize, args[i]))
1396 {
1397 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1398 mode and with -fno-exceptions as a way to indicate array
1399 size overflow. There's no good way to detect C++98 here
1400 so avoid diagnosing these calls for all C++ modes. */
1401 if (i == 0
1402 && !args[1]
1403 && lang_GNU_CXX ()
1404 && DECL_IS_OPERATOR_NEW (fn)
1405 && integer_all_onesp (args[i]))
1406 continue;
1407
1408 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1409 "%Kargument %i value %qE exceeds "
1410 "maximum object size %E",
1411 exp, idx[i] + 1, args[i], maxobjsize);
1412 }
1413 }
1414 else if (TREE_CODE (args[i]) == SSA_NAME
1415 && get_size_range (args[i], argrange[i]))
1416 {
1417 /* Verify that the argument's range is not negative (including
1418 upper bound of zero). */
1419 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1420 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1421 {
1422 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1423 "%Kargument %i range [%E, %E] is negative",
1424 exp, idx[i] + 1,
1425 argrange[i][0], argrange[i][1]);
1426 }
1427 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1428 {
1429 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1430 "%Kargument %i range [%E, %E] exceeds "
1431 "maximum object size %E",
1432 exp, idx[i] + 1,
1433 argrange[i][0], argrange[i][1],
1434 maxobjsize);
1435 }
1436 }
1437 }
1438
1439 if (!argrange[0])
1440 return;
1441
1442 /* For a two-argument alloc_size, validate the product of the two
1443 arguments if both of their values or ranges are known. */
1444 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1445 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1446 && !integer_onep (argrange[0][0])
1447 && !integer_onep (argrange[1][0]))
1448 {
1449 /* Check for overflow in the product of a function decorated with
1450 attribute alloc_size (X, Y). */
1451 unsigned szprec = TYPE_PRECISION (size_type_node);
1452 wide_int x = wi::to_wide (argrange[0][0], szprec);
1453 wide_int y = wi::to_wide (argrange[1][0], szprec);
1454
1455 bool vflow;
1456 wide_int prod = wi::umul (x, y, &vflow);
1457
1458 if (vflow)
1459 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1460 "%Kproduct %<%E * %E%> of arguments %i and %i "
1461 "exceeds %<SIZE_MAX%>",
1462 exp, argrange[0][0], argrange[1][0],
1463 idx[0] + 1, idx[1] + 1);
1464 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1465 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1466 "%Kproduct %<%E * %E%> of arguments %i and %i "
1467 "exceeds maximum object size %E",
1468 exp, argrange[0][0], argrange[1][0],
1469 idx[0] + 1, idx[1] + 1,
1470 maxobjsize);
1471
1472 if (warned)
1473 {
1474 /* Print the full range of each of the two arguments to make
1475 it clear when it is, in fact, in a range and not constant. */
1476 if (argrange[0][0] != argrange [0][1])
1477 inform (loc, "argument %i in the range [%E, %E]",
1478 idx[0] + 1, argrange[0][0], argrange[0][1]);
1479 if (argrange[1][0] != argrange [1][1])
1480 inform (loc, "argument %i in the range [%E, %E]",
1481 idx[1] + 1, argrange[1][0], argrange[1][1]);
1482 }
1483 }
1484
1485 if (warned)
1486 {
1487 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1488
1489 if (DECL_IS_BUILTIN (fn))
1490 inform (loc,
1491 "in a call to built-in allocation function %qD", fn);
1492 else
1493 inform (fnloc,
1494 "in a call to allocation function %qD declared here", fn);
1495 }
1496 }
1497
1498 /* Issue an error if CALL_EXPR was flagged as requiring
1499 tall-call optimization. */
1500
1501 static void
1502 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1503 {
1504 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1505 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1506 return;
1507
1508 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1509 }
1510
1511 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1512 CALL_EXPR EXP.
1513
1514 NUM_ACTUALS is the total number of parameters.
1515
1516 N_NAMED_ARGS is the total number of named arguments.
1517
1518 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1519 value, or null.
1520
1521 FNDECL is the tree code for the target of this call (if known)
1522
1523 ARGS_SO_FAR holds state needed by the target to know where to place
1524 the next argument.
1525
1526 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1527 for arguments which are passed in registers.
1528
1529 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1530 and may be modified by this routine.
1531
1532 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1533 flags which may be modified by this routine.
1534
1535 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1536 that requires allocation of stack space.
1537
1538 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1539 the thunked-to function. */
1540
1541 static void
1542 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1543 struct arg_data *args,
1544 struct args_size *args_size,
1545 int n_named_args ATTRIBUTE_UNUSED,
1546 tree exp, tree struct_value_addr_value,
1547 tree fndecl, tree fntype,
1548 cumulative_args_t args_so_far,
1549 int reg_parm_stack_space,
1550 rtx *old_stack_level, int *old_pending_adj,
1551 int *must_preallocate, int *ecf_flags,
1552 bool *may_tailcall, bool call_from_thunk_p)
1553 {
1554 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1555 location_t loc = EXPR_LOCATION (exp);
1556
1557 /* Count arg position in order args appear. */
1558 int argpos;
1559
1560 int i;
1561
1562 args_size->constant = 0;
1563 args_size->var = 0;
1564
1565 bitmap_obstack_initialize (NULL);
1566
1567 /* In this loop, we consider args in the order they are written.
1568 We fill up ARGS from the back. */
1569
1570 i = num_actuals - 1;
1571 {
1572 int j = i, ptr_arg = -1;
1573 call_expr_arg_iterator iter;
1574 tree arg;
1575 bitmap slots = NULL;
1576
1577 if (struct_value_addr_value)
1578 {
1579 args[j].tree_value = struct_value_addr_value;
1580 j--;
1581
1582 /* If we pass structure address then we need to
1583 create bounds for it. Since created bounds is
1584 a call statement, we expand it right here to avoid
1585 fixing all other places where it may be expanded. */
1586 if (CALL_WITH_BOUNDS_P (exp))
1587 {
1588 args[j].value = gen_reg_rtx (targetm.chkp_bound_mode ());
1589 args[j].tree_value
1590 = chkp_make_bounds_for_struct_addr (struct_value_addr_value);
1591 expand_expr_real (args[j].tree_value, args[j].value, VOIDmode,
1592 EXPAND_NORMAL, 0, false);
1593 args[j].pointer_arg = j + 1;
1594 j--;
1595 }
1596 }
1597 argpos = 0;
1598 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1599 {
1600 tree argtype = TREE_TYPE (arg);
1601
1602 /* Remember last param with pointer and associate it
1603 with following pointer bounds. */
1604 if (CALL_WITH_BOUNDS_P (exp)
1605 && chkp_type_has_pointer (argtype))
1606 {
1607 if (slots)
1608 BITMAP_FREE (slots);
1609 ptr_arg = j;
1610 if (!BOUNDED_TYPE_P (argtype))
1611 {
1612 slots = BITMAP_ALLOC (NULL);
1613 chkp_find_bound_slots (argtype, slots);
1614 }
1615 }
1616 else if (CALL_WITH_BOUNDS_P (exp)
1617 && pass_by_reference (NULL, TYPE_MODE (argtype), argtype,
1618 argpos < n_named_args))
1619 {
1620 if (slots)
1621 BITMAP_FREE (slots);
1622 ptr_arg = j;
1623 }
1624 else if (POINTER_BOUNDS_TYPE_P (argtype))
1625 {
1626 /* We expect bounds in instrumented calls only.
1627 Otherwise it is a sign we lost flag due to some optimization
1628 and may emit call args incorrectly. */
1629 gcc_assert (CALL_WITH_BOUNDS_P (exp));
1630
1631 /* For structures look for the next available pointer. */
1632 if (ptr_arg != -1 && slots)
1633 {
1634 unsigned bnd_no = bitmap_first_set_bit (slots);
1635 args[j].pointer_offset =
1636 bnd_no * POINTER_SIZE / BITS_PER_UNIT;
1637
1638 bitmap_clear_bit (slots, bnd_no);
1639
1640 /* Check we have no more pointers in the structure. */
1641 if (bitmap_empty_p (slots))
1642 BITMAP_FREE (slots);
1643 }
1644 args[j].pointer_arg = ptr_arg;
1645
1646 /* Check we covered all pointers in the previous
1647 non bounds arg. */
1648 if (!slots)
1649 ptr_arg = -1;
1650 }
1651 else
1652 ptr_arg = -1;
1653
1654 if (targetm.calls.split_complex_arg
1655 && argtype
1656 && TREE_CODE (argtype) == COMPLEX_TYPE
1657 && targetm.calls.split_complex_arg (argtype))
1658 {
1659 tree subtype = TREE_TYPE (argtype);
1660 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1661 j--;
1662 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1663 }
1664 else
1665 args[j].tree_value = arg;
1666 j--;
1667 argpos++;
1668 }
1669
1670 if (slots)
1671 BITMAP_FREE (slots);
1672 }
1673
1674 bitmap_obstack_release (NULL);
1675
1676 /* Extract attribute alloc_size and if set, store the indices of
1677 the corresponding arguments in ALLOC_IDX, and then the actual
1678 argument(s) at those indices in ALLOC_ARGS. */
1679 int alloc_idx[2] = { -1, -1 };
1680 if (tree alloc_size
1681 = (fndecl ? lookup_attribute ("alloc_size",
1682 TYPE_ATTRIBUTES (TREE_TYPE (fndecl)))
1683 : NULL_TREE))
1684 {
1685 tree args = TREE_VALUE (alloc_size);
1686 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
1687 if (TREE_CHAIN (args))
1688 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
1689 }
1690
1691 /* Array for up to the two attribute alloc_size arguments. */
1692 tree alloc_args[] = { NULL_TREE, NULL_TREE };
1693
1694 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1695 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1696 {
1697 tree type = TREE_TYPE (args[i].tree_value);
1698 int unsignedp;
1699 machine_mode mode;
1700
1701 /* Replace erroneous argument with constant zero. */
1702 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1703 args[i].tree_value = integer_zero_node, type = integer_type_node;
1704
1705 /* If TYPE is a transparent union or record, pass things the way
1706 we would pass the first field of the union or record. We have
1707 already verified that the modes are the same. */
1708 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1709 && TYPE_TRANSPARENT_AGGR (type))
1710 type = TREE_TYPE (first_field (type));
1711
1712 /* Decide where to pass this arg.
1713
1714 args[i].reg is nonzero if all or part is passed in registers.
1715
1716 args[i].partial is nonzero if part but not all is passed in registers,
1717 and the exact value says how many bytes are passed in registers.
1718
1719 args[i].pass_on_stack is nonzero if the argument must at least be
1720 computed on the stack. It may then be loaded back into registers
1721 if args[i].reg is nonzero.
1722
1723 These decisions are driven by the FUNCTION_... macros and must agree
1724 with those made by function.c. */
1725
1726 /* See if this argument should be passed by invisible reference. */
1727 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1728 type, argpos < n_named_args))
1729 {
1730 bool callee_copies;
1731 tree base = NULL_TREE;
1732
1733 callee_copies
1734 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1735 type, argpos < n_named_args);
1736
1737 /* If we're compiling a thunk, pass through invisible references
1738 instead of making a copy. */
1739 if (call_from_thunk_p
1740 || (callee_copies
1741 && !TREE_ADDRESSABLE (type)
1742 && (base = get_base_address (args[i].tree_value))
1743 && TREE_CODE (base) != SSA_NAME
1744 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1745 {
1746 /* We may have turned the parameter value into an SSA name.
1747 Go back to the original parameter so we can take the
1748 address. */
1749 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
1750 {
1751 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
1752 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
1753 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
1754 }
1755 /* Argument setup code may have copied the value to register. We
1756 revert that optimization now because the tail call code must
1757 use the original location. */
1758 if (TREE_CODE (args[i].tree_value) == PARM_DECL
1759 && !MEM_P (DECL_RTL (args[i].tree_value))
1760 && DECL_INCOMING_RTL (args[i].tree_value)
1761 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
1762 set_decl_rtl (args[i].tree_value,
1763 DECL_INCOMING_RTL (args[i].tree_value));
1764
1765 mark_addressable (args[i].tree_value);
1766
1767 /* We can't use sibcalls if a callee-copied argument is
1768 stored in the current function's frame. */
1769 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1770 {
1771 *may_tailcall = false;
1772 maybe_complain_about_tail_call (exp,
1773 "a callee-copied argument is"
1774 " stored in the current "
1775 " function's frame");
1776 }
1777
1778 args[i].tree_value = build_fold_addr_expr_loc (loc,
1779 args[i].tree_value);
1780 type = TREE_TYPE (args[i].tree_value);
1781
1782 if (*ecf_flags & ECF_CONST)
1783 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1784 }
1785 else
1786 {
1787 /* We make a copy of the object and pass the address to the
1788 function being called. */
1789 rtx copy;
1790
1791 if (!COMPLETE_TYPE_P (type)
1792 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1793 || (flag_stack_check == GENERIC_STACK_CHECK
1794 && compare_tree_int (TYPE_SIZE_UNIT (type),
1795 STACK_CHECK_MAX_VAR_SIZE) > 0))
1796 {
1797 /* This is a variable-sized object. Make space on the stack
1798 for it. */
1799 rtx size_rtx = expr_size (args[i].tree_value);
1800
1801 if (*old_stack_level == 0)
1802 {
1803 emit_stack_save (SAVE_BLOCK, old_stack_level);
1804 *old_pending_adj = pending_stack_adjust;
1805 pending_stack_adjust = 0;
1806 }
1807
1808 /* We can pass TRUE as the 4th argument because we just
1809 saved the stack pointer and will restore it right after
1810 the call. */
1811 copy = allocate_dynamic_stack_space (size_rtx,
1812 TYPE_ALIGN (type),
1813 TYPE_ALIGN (type),
1814 true);
1815 copy = gen_rtx_MEM (BLKmode, copy);
1816 set_mem_attributes (copy, type, 1);
1817 }
1818 else
1819 copy = assign_temp (type, 1, 0);
1820
1821 store_expr (args[i].tree_value, copy, 0, false, false);
1822
1823 /* Just change the const function to pure and then let
1824 the next test clear the pure based on
1825 callee_copies. */
1826 if (*ecf_flags & ECF_CONST)
1827 {
1828 *ecf_flags &= ~ECF_CONST;
1829 *ecf_flags |= ECF_PURE;
1830 }
1831
1832 if (!callee_copies && *ecf_flags & ECF_PURE)
1833 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1834
1835 args[i].tree_value
1836 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1837 type = TREE_TYPE (args[i].tree_value);
1838 *may_tailcall = false;
1839 maybe_complain_about_tail_call (exp,
1840 "argument must be passed"
1841 " by copying");
1842 }
1843 }
1844
1845 unsignedp = TYPE_UNSIGNED (type);
1846 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1847 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1848
1849 args[i].unsignedp = unsignedp;
1850 args[i].mode = mode;
1851
1852 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1853 argpos < n_named_args);
1854
1855 if (args[i].reg && CONST_INT_P (args[i].reg))
1856 {
1857 args[i].special_slot = args[i].reg;
1858 args[i].reg = NULL;
1859 }
1860
1861 /* If this is a sibling call and the machine has register windows, the
1862 register window has to be unwinded before calling the routine, so
1863 arguments have to go into the incoming registers. */
1864 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1865 args[i].tail_call_reg
1866 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1867 argpos < n_named_args);
1868 else
1869 args[i].tail_call_reg = args[i].reg;
1870
1871 if (args[i].reg)
1872 args[i].partial
1873 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1874 argpos < n_named_args);
1875
1876 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1877
1878 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1879 it means that we are to pass this arg in the register(s) designated
1880 by the PARALLEL, but also to pass it in the stack. */
1881 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1882 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1883 args[i].pass_on_stack = 1;
1884
1885 /* If this is an addressable type, we must preallocate the stack
1886 since we must evaluate the object into its final location.
1887
1888 If this is to be passed in both registers and the stack, it is simpler
1889 to preallocate. */
1890 if (TREE_ADDRESSABLE (type)
1891 || (args[i].pass_on_stack && args[i].reg != 0))
1892 *must_preallocate = 1;
1893
1894 /* No stack allocation and padding for bounds. */
1895 if (POINTER_BOUNDS_P (args[i].tree_value))
1896 ;
1897 /* Compute the stack-size of this argument. */
1898 else if (args[i].reg == 0 || args[i].partial != 0
1899 || reg_parm_stack_space > 0
1900 || args[i].pass_on_stack)
1901 locate_and_pad_parm (mode, type,
1902 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1903 1,
1904 #else
1905 args[i].reg != 0,
1906 #endif
1907 reg_parm_stack_space,
1908 args[i].pass_on_stack ? 0 : args[i].partial,
1909 fndecl, args_size, &args[i].locate);
1910 #ifdef BLOCK_REG_PADDING
1911 else
1912 /* The argument is passed entirely in registers. See at which
1913 end it should be padded. */
1914 args[i].locate.where_pad =
1915 BLOCK_REG_PADDING (mode, type,
1916 int_size_in_bytes (type) <= UNITS_PER_WORD);
1917 #endif
1918
1919 /* Update ARGS_SIZE, the total stack space for args so far. */
1920
1921 args_size->constant += args[i].locate.size.constant;
1922 if (args[i].locate.size.var)
1923 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1924
1925 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1926 have been used, etc. */
1927
1928 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1929 type, argpos < n_named_args);
1930
1931 /* Store argument values for functions decorated with attribute
1932 alloc_size. */
1933 if (argpos == alloc_idx[0])
1934 alloc_args[0] = args[i].tree_value;
1935 else if (argpos == alloc_idx[1])
1936 alloc_args[1] = args[i].tree_value;
1937 }
1938
1939 if (alloc_args[0])
1940 {
1941 /* Check the arguments of functions decorated with attribute
1942 alloc_size. */
1943 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
1944 }
1945 }
1946
1947 /* Update ARGS_SIZE to contain the total size for the argument block.
1948 Return the original constant component of the argument block's size.
1949
1950 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1951 for arguments passed in registers. */
1952
1953 static int
1954 compute_argument_block_size (int reg_parm_stack_space,
1955 struct args_size *args_size,
1956 tree fndecl ATTRIBUTE_UNUSED,
1957 tree fntype ATTRIBUTE_UNUSED,
1958 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1959 {
1960 int unadjusted_args_size = args_size->constant;
1961
1962 /* For accumulate outgoing args mode we don't need to align, since the frame
1963 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1964 backends from generating misaligned frame sizes. */
1965 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1966 preferred_stack_boundary = STACK_BOUNDARY;
1967
1968 /* Compute the actual size of the argument block required. The variable
1969 and constant sizes must be combined, the size may have to be rounded,
1970 and there may be a minimum required size. */
1971
1972 if (args_size->var)
1973 {
1974 args_size->var = ARGS_SIZE_TREE (*args_size);
1975 args_size->constant = 0;
1976
1977 preferred_stack_boundary /= BITS_PER_UNIT;
1978 if (preferred_stack_boundary > 1)
1979 {
1980 /* We don't handle this case yet. To handle it correctly we have
1981 to add the delta, round and subtract the delta.
1982 Currently no machine description requires this support. */
1983 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1984 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1985 }
1986
1987 if (reg_parm_stack_space > 0)
1988 {
1989 args_size->var
1990 = size_binop (MAX_EXPR, args_size->var,
1991 ssize_int (reg_parm_stack_space));
1992
1993 /* The area corresponding to register parameters is not to count in
1994 the size of the block we need. So make the adjustment. */
1995 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1996 args_size->var
1997 = size_binop (MINUS_EXPR, args_size->var,
1998 ssize_int (reg_parm_stack_space));
1999 }
2000 }
2001 else
2002 {
2003 preferred_stack_boundary /= BITS_PER_UNIT;
2004 if (preferred_stack_boundary < 1)
2005 preferred_stack_boundary = 1;
2006 args_size->constant = (((args_size->constant
2007 + stack_pointer_delta
2008 + preferred_stack_boundary - 1)
2009 / preferred_stack_boundary
2010 * preferred_stack_boundary)
2011 - stack_pointer_delta);
2012
2013 args_size->constant = MAX (args_size->constant,
2014 reg_parm_stack_space);
2015
2016 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2017 args_size->constant -= reg_parm_stack_space;
2018 }
2019 return unadjusted_args_size;
2020 }
2021
2022 /* Precompute parameters as needed for a function call.
2023
2024 FLAGS is mask of ECF_* constants.
2025
2026 NUM_ACTUALS is the number of arguments.
2027
2028 ARGS is an array containing information for each argument; this
2029 routine fills in the INITIAL_VALUE and VALUE fields for each
2030 precomputed argument. */
2031
2032 static void
2033 precompute_arguments (int num_actuals, struct arg_data *args)
2034 {
2035 int i;
2036
2037 /* If this is a libcall, then precompute all arguments so that we do not
2038 get extraneous instructions emitted as part of the libcall sequence. */
2039
2040 /* If we preallocated the stack space, and some arguments must be passed
2041 on the stack, then we must precompute any parameter which contains a
2042 function call which will store arguments on the stack.
2043 Otherwise, evaluating the parameter may clobber previous parameters
2044 which have already been stored into the stack. (we have code to avoid
2045 such case by saving the outgoing stack arguments, but it results in
2046 worse code) */
2047 if (!ACCUMULATE_OUTGOING_ARGS)
2048 return;
2049
2050 for (i = 0; i < num_actuals; i++)
2051 {
2052 tree type;
2053 machine_mode mode;
2054
2055 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2056 continue;
2057
2058 /* If this is an addressable type, we cannot pre-evaluate it. */
2059 type = TREE_TYPE (args[i].tree_value);
2060 gcc_assert (!TREE_ADDRESSABLE (type));
2061
2062 args[i].initial_value = args[i].value
2063 = expand_normal (args[i].tree_value);
2064
2065 mode = TYPE_MODE (type);
2066 if (mode != args[i].mode)
2067 {
2068 int unsignedp = args[i].unsignedp;
2069 args[i].value
2070 = convert_modes (args[i].mode, mode,
2071 args[i].value, args[i].unsignedp);
2072
2073 /* CSE will replace this only if it contains args[i].value
2074 pseudo, so convert it down to the declared mode using
2075 a SUBREG. */
2076 if (REG_P (args[i].value)
2077 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2078 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2079 {
2080 args[i].initial_value
2081 = gen_lowpart_SUBREG (mode, args[i].value);
2082 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2083 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2084 }
2085 }
2086 }
2087 }
2088
2089 /* Given the current state of MUST_PREALLOCATE and information about
2090 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2091 compute and return the final value for MUST_PREALLOCATE. */
2092
2093 static int
2094 finalize_must_preallocate (int must_preallocate, int num_actuals,
2095 struct arg_data *args, struct args_size *args_size)
2096 {
2097 /* See if we have or want to preallocate stack space.
2098
2099 If we would have to push a partially-in-regs parm
2100 before other stack parms, preallocate stack space instead.
2101
2102 If the size of some parm is not a multiple of the required stack
2103 alignment, we must preallocate.
2104
2105 If the total size of arguments that would otherwise create a copy in
2106 a temporary (such as a CALL) is more than half the total argument list
2107 size, preallocation is faster.
2108
2109 Another reason to preallocate is if we have a machine (like the m88k)
2110 where stack alignment is required to be maintained between every
2111 pair of insns, not just when the call is made. However, we assume here
2112 that such machines either do not have push insns (and hence preallocation
2113 would occur anyway) or the problem is taken care of with
2114 PUSH_ROUNDING. */
2115
2116 if (! must_preallocate)
2117 {
2118 int partial_seen = 0;
2119 int copy_to_evaluate_size = 0;
2120 int i;
2121
2122 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2123 {
2124 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2125 partial_seen = 1;
2126 else if (partial_seen && args[i].reg == 0)
2127 must_preallocate = 1;
2128 /* We preallocate in case there are bounds passed
2129 in the bounds table to have precomputed address
2130 for bounds association. */
2131 else if (POINTER_BOUNDS_P (args[i].tree_value)
2132 && !args[i].reg)
2133 must_preallocate = 1;
2134
2135 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2136 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2137 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2138 || TREE_CODE (args[i].tree_value) == COND_EXPR
2139 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2140 copy_to_evaluate_size
2141 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2142 }
2143
2144 if (copy_to_evaluate_size * 2 >= args_size->constant
2145 && args_size->constant > 0)
2146 must_preallocate = 1;
2147 }
2148 return must_preallocate;
2149 }
2150
2151 /* If we preallocated stack space, compute the address of each argument
2152 and store it into the ARGS array.
2153
2154 We need not ensure it is a valid memory address here; it will be
2155 validized when it is used.
2156
2157 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2158
2159 static void
2160 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2161 {
2162 if (argblock)
2163 {
2164 rtx arg_reg = argblock;
2165 int i, arg_offset = 0;
2166
2167 if (GET_CODE (argblock) == PLUS)
2168 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
2169
2170 for (i = 0; i < num_actuals; i++)
2171 {
2172 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2173 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2174 rtx addr;
2175 unsigned int align, boundary;
2176 unsigned int units_on_stack = 0;
2177 machine_mode partial_mode = VOIDmode;
2178
2179 /* Skip this parm if it will not be passed on the stack. */
2180 if (! args[i].pass_on_stack
2181 && args[i].reg != 0
2182 && args[i].partial == 0)
2183 continue;
2184
2185 /* Pointer Bounds are never passed on the stack. */
2186 if (POINTER_BOUNDS_P (args[i].tree_value))
2187 continue;
2188
2189 if (CONST_INT_P (offset))
2190 addr = plus_constant (Pmode, arg_reg, INTVAL (offset));
2191 else
2192 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
2193
2194 addr = plus_constant (Pmode, addr, arg_offset);
2195
2196 if (args[i].partial != 0)
2197 {
2198 /* Only part of the parameter is being passed on the stack.
2199 Generate a simple memory reference of the correct size. */
2200 units_on_stack = args[i].locate.size.constant;
2201 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
2202 MODE_INT, 1);
2203 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2204 set_mem_size (args[i].stack, units_on_stack);
2205 }
2206 else
2207 {
2208 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2209 set_mem_attributes (args[i].stack,
2210 TREE_TYPE (args[i].tree_value), 1);
2211 }
2212 align = BITS_PER_UNIT;
2213 boundary = args[i].locate.boundary;
2214 if (args[i].locate.where_pad != downward)
2215 align = boundary;
2216 else if (CONST_INT_P (offset))
2217 {
2218 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
2219 align = least_bit_hwi (align);
2220 }
2221 set_mem_align (args[i].stack, align);
2222
2223 if (CONST_INT_P (slot_offset))
2224 addr = plus_constant (Pmode, arg_reg, INTVAL (slot_offset));
2225 else
2226 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
2227
2228 addr = plus_constant (Pmode, addr, arg_offset);
2229
2230 if (args[i].partial != 0)
2231 {
2232 /* Only part of the parameter is being passed on the stack.
2233 Generate a simple memory reference of the correct size.
2234 */
2235 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2236 set_mem_size (args[i].stack_slot, units_on_stack);
2237 }
2238 else
2239 {
2240 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2241 set_mem_attributes (args[i].stack_slot,
2242 TREE_TYPE (args[i].tree_value), 1);
2243 }
2244 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2245
2246 /* Function incoming arguments may overlap with sibling call
2247 outgoing arguments and we cannot allow reordering of reads
2248 from function arguments with stores to outgoing arguments
2249 of sibling calls. */
2250 set_mem_alias_set (args[i].stack, 0);
2251 set_mem_alias_set (args[i].stack_slot, 0);
2252 }
2253 }
2254 }
2255
2256 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2257 in a call instruction.
2258
2259 FNDECL is the tree node for the target function. For an indirect call
2260 FNDECL will be NULL_TREE.
2261
2262 ADDR is the operand 0 of CALL_EXPR for this call. */
2263
2264 static rtx
2265 rtx_for_function_call (tree fndecl, tree addr)
2266 {
2267 rtx funexp;
2268
2269 /* Get the function to call, in the form of RTL. */
2270 if (fndecl)
2271 {
2272 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2273 TREE_USED (fndecl) = 1;
2274
2275 /* Get a SYMBOL_REF rtx for the function address. */
2276 funexp = XEXP (DECL_RTL (fndecl), 0);
2277 }
2278 else
2279 /* Generate an rtx (probably a pseudo-register) for the address. */
2280 {
2281 push_temp_slots ();
2282 funexp = expand_normal (addr);
2283 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2284 }
2285 return funexp;
2286 }
2287
2288 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2289 static struct
2290 {
2291 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2292 or NULL_RTX if none has been scanned yet. */
2293 rtx_insn *scan_start;
2294 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2295 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2296 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2297 with fixed offset, or PC if this is with variable or unknown offset. */
2298 vec<rtx> cache;
2299 } internal_arg_pointer_exp_state;
2300
2301 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2302
2303 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2304 the tail call sequence, starting with first insn that hasn't been
2305 scanned yet, and note for each pseudo on the LHS whether it is based
2306 on crtl->args.internal_arg_pointer or not, and what offset from that
2307 that pointer it has. */
2308
2309 static void
2310 internal_arg_pointer_based_exp_scan (void)
2311 {
2312 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2313
2314 if (scan_start == NULL_RTX)
2315 insn = get_insns ();
2316 else
2317 insn = NEXT_INSN (scan_start);
2318
2319 while (insn)
2320 {
2321 rtx set = single_set (insn);
2322 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2323 {
2324 rtx val = NULL_RTX;
2325 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2326 /* Punt on pseudos set multiple times. */
2327 if (idx < internal_arg_pointer_exp_state.cache.length ()
2328 && (internal_arg_pointer_exp_state.cache[idx]
2329 != NULL_RTX))
2330 val = pc_rtx;
2331 else
2332 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2333 if (val != NULL_RTX)
2334 {
2335 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2336 internal_arg_pointer_exp_state.cache
2337 .safe_grow_cleared (idx + 1);
2338 internal_arg_pointer_exp_state.cache[idx] = val;
2339 }
2340 }
2341 if (NEXT_INSN (insn) == NULL_RTX)
2342 scan_start = insn;
2343 insn = NEXT_INSN (insn);
2344 }
2345
2346 internal_arg_pointer_exp_state.scan_start = scan_start;
2347 }
2348
2349 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2350 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2351 it with fixed offset, or PC if this is with variable or unknown offset.
2352 TOPLEVEL is true if the function is invoked at the topmost level. */
2353
2354 static rtx
2355 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2356 {
2357 if (CONSTANT_P (rtl))
2358 return NULL_RTX;
2359
2360 if (rtl == crtl->args.internal_arg_pointer)
2361 return const0_rtx;
2362
2363 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2364 return NULL_RTX;
2365
2366 if (GET_CODE (rtl) == PLUS && CONST_INT_P (XEXP (rtl, 1)))
2367 {
2368 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2369 if (val == NULL_RTX || val == pc_rtx)
2370 return val;
2371 return plus_constant (Pmode, val, INTVAL (XEXP (rtl, 1)));
2372 }
2373
2374 /* When called at the topmost level, scan pseudo assignments in between the
2375 last scanned instruction in the tail call sequence and the latest insn
2376 in that sequence. */
2377 if (toplevel)
2378 internal_arg_pointer_based_exp_scan ();
2379
2380 if (REG_P (rtl))
2381 {
2382 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2383 if (idx < internal_arg_pointer_exp_state.cache.length ())
2384 return internal_arg_pointer_exp_state.cache[idx];
2385
2386 return NULL_RTX;
2387 }
2388
2389 subrtx_iterator::array_type array;
2390 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2391 {
2392 const_rtx x = *iter;
2393 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2394 return pc_rtx;
2395 if (MEM_P (x))
2396 iter.skip_subrtxes ();
2397 }
2398
2399 return NULL_RTX;
2400 }
2401
2402 /* Return true if and only if SIZE storage units (usually bytes)
2403 starting from address ADDR overlap with already clobbered argument
2404 area. This function is used to determine if we should give up a
2405 sibcall. */
2406
2407 static bool
2408 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
2409 {
2410 HOST_WIDE_INT i;
2411 rtx val;
2412
2413 if (bitmap_empty_p (stored_args_map))
2414 return false;
2415 val = internal_arg_pointer_based_exp (addr, true);
2416 if (val == NULL_RTX)
2417 return false;
2418 else if (val == pc_rtx)
2419 return true;
2420 else
2421 i = INTVAL (val);
2422
2423 if (STACK_GROWS_DOWNWARD)
2424 i -= crtl->args.pretend_args_size;
2425 else
2426 i += crtl->args.pretend_args_size;
2427
2428
2429 if (ARGS_GROW_DOWNWARD)
2430 i = -i - size;
2431
2432 if (size > 0)
2433 {
2434 unsigned HOST_WIDE_INT k;
2435
2436 for (k = 0; k < size; k++)
2437 if (i + k < SBITMAP_SIZE (stored_args_map)
2438 && bitmap_bit_p (stored_args_map, i + k))
2439 return true;
2440 }
2441
2442 return false;
2443 }
2444
2445 /* Do the register loads required for any wholly-register parms or any
2446 parms which are passed both on the stack and in a register. Their
2447 expressions were already evaluated.
2448
2449 Mark all register-parms as living through the call, putting these USE
2450 insns in the CALL_INSN_FUNCTION_USAGE field.
2451
2452 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2453 checking, setting *SIBCALL_FAILURE if appropriate. */
2454
2455 static void
2456 load_register_parameters (struct arg_data *args, int num_actuals,
2457 rtx *call_fusage, int flags, int is_sibcall,
2458 int *sibcall_failure)
2459 {
2460 int i, j;
2461
2462 for (i = 0; i < num_actuals; i++)
2463 {
2464 rtx reg = ((flags & ECF_SIBCALL)
2465 ? args[i].tail_call_reg : args[i].reg);
2466 if (reg)
2467 {
2468 int partial = args[i].partial;
2469 int nregs;
2470 int size = 0;
2471 rtx_insn *before_arg = get_last_insn ();
2472 /* Set non-negative if we must move a word at a time, even if
2473 just one word (e.g, partial == 4 && mode == DFmode). Set
2474 to -1 if we just use a normal move insn. This value can be
2475 zero if the argument is a zero size structure. */
2476 nregs = -1;
2477 if (GET_CODE (reg) == PARALLEL)
2478 ;
2479 else if (partial)
2480 {
2481 gcc_assert (partial % UNITS_PER_WORD == 0);
2482 nregs = partial / UNITS_PER_WORD;
2483 }
2484 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
2485 {
2486 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2487 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2488 }
2489 else
2490 size = GET_MODE_SIZE (args[i].mode);
2491
2492 /* Handle calls that pass values in multiple non-contiguous
2493 locations. The Irix 6 ABI has examples of this. */
2494
2495 if (GET_CODE (reg) == PARALLEL)
2496 emit_group_move (reg, args[i].parallel_value);
2497
2498 /* If simple case, just do move. If normal partial, store_one_arg
2499 has already loaded the register for us. In all other cases,
2500 load the register(s) from memory. */
2501
2502 else if (nregs == -1)
2503 {
2504 emit_move_insn (reg, args[i].value);
2505 #ifdef BLOCK_REG_PADDING
2506 /* Handle case where we have a value that needs shifting
2507 up to the msb. eg. a QImode value and we're padding
2508 upward on a BYTES_BIG_ENDIAN machine. */
2509 if (size < UNITS_PER_WORD
2510 && (args[i].locate.where_pad
2511 == (BYTES_BIG_ENDIAN ? upward : downward)))
2512 {
2513 rtx x;
2514 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2515
2516 /* Assigning REG here rather than a temp makes CALL_FUSAGE
2517 report the whole reg as used. Strictly speaking, the
2518 call only uses SIZE bytes at the msb end, but it doesn't
2519 seem worth generating rtl to say that. */
2520 reg = gen_rtx_REG (word_mode, REGNO (reg));
2521 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
2522 if (x != reg)
2523 emit_move_insn (reg, x);
2524 }
2525 #endif
2526 }
2527
2528 /* If we have pre-computed the values to put in the registers in
2529 the case of non-aligned structures, copy them in now. */
2530
2531 else if (args[i].n_aligned_regs != 0)
2532 for (j = 0; j < args[i].n_aligned_regs; j++)
2533 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2534 args[i].aligned_regs[j]);
2535
2536 else if (partial == 0 || args[i].pass_on_stack)
2537 {
2538 rtx mem = validize_mem (copy_rtx (args[i].value));
2539
2540 /* Check for overlap with already clobbered argument area,
2541 providing that this has non-zero size. */
2542 if (is_sibcall
2543 && size != 0
2544 && (mem_overlaps_already_clobbered_arg_p
2545 (XEXP (args[i].value, 0), size)))
2546 *sibcall_failure = 1;
2547
2548 if (size % UNITS_PER_WORD == 0
2549 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2550 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2551 else
2552 {
2553 if (nregs > 1)
2554 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2555 args[i].mode);
2556 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2557 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2558 unsigned int bitsize = size * BITS_PER_UNIT - bitoff;
2559 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
2560 word_mode, word_mode, false,
2561 NULL);
2562 if (BYTES_BIG_ENDIAN)
2563 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2564 BITS_PER_WORD - bitsize, dest, 1);
2565 if (x != dest)
2566 emit_move_insn (dest, x);
2567 }
2568
2569 /* Handle a BLKmode that needs shifting. */
2570 if (nregs == 1 && size < UNITS_PER_WORD
2571 #ifdef BLOCK_REG_PADDING
2572 && args[i].locate.where_pad == downward
2573 #else
2574 && BYTES_BIG_ENDIAN
2575 #endif
2576 )
2577 {
2578 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2579 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2580 enum tree_code dir = (BYTES_BIG_ENDIAN
2581 ? RSHIFT_EXPR : LSHIFT_EXPR);
2582 rtx x;
2583
2584 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2585 if (x != dest)
2586 emit_move_insn (dest, x);
2587 }
2588 }
2589
2590 /* When a parameter is a block, and perhaps in other cases, it is
2591 possible that it did a load from an argument slot that was
2592 already clobbered. */
2593 if (is_sibcall
2594 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
2595 *sibcall_failure = 1;
2596
2597 /* Handle calls that pass values in multiple non-contiguous
2598 locations. The Irix 6 ABI has examples of this. */
2599 if (GET_CODE (reg) == PARALLEL)
2600 use_group_regs (call_fusage, reg);
2601 else if (nregs == -1)
2602 use_reg_mode (call_fusage, reg,
2603 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2604 else if (nregs > 0)
2605 use_regs (call_fusage, REGNO (reg), nregs);
2606 }
2607 }
2608 }
2609
2610 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2611 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2612 bytes, then we would need to push some additional bytes to pad the
2613 arguments. So, we compute an adjust to the stack pointer for an
2614 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2615 bytes. Then, when the arguments are pushed the stack will be perfectly
2616 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
2617 be popped after the call. Returns the adjustment. */
2618
2619 static int
2620 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
2621 struct args_size *args_size,
2622 unsigned int preferred_unit_stack_boundary)
2623 {
2624 /* The number of bytes to pop so that the stack will be
2625 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2626 HOST_WIDE_INT adjustment;
2627 /* The alignment of the stack after the arguments are pushed, if we
2628 just pushed the arguments without adjust the stack here. */
2629 unsigned HOST_WIDE_INT unadjusted_alignment;
2630
2631 unadjusted_alignment
2632 = ((stack_pointer_delta + unadjusted_args_size)
2633 % preferred_unit_stack_boundary);
2634
2635 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2636 as possible -- leaving just enough left to cancel out the
2637 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2638 PENDING_STACK_ADJUST is non-negative, and congruent to
2639 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2640
2641 /* Begin by trying to pop all the bytes. */
2642 unadjusted_alignment
2643 = (unadjusted_alignment
2644 - (pending_stack_adjust % preferred_unit_stack_boundary));
2645 adjustment = pending_stack_adjust;
2646 /* Push enough additional bytes that the stack will be aligned
2647 after the arguments are pushed. */
2648 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
2649 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2650
2651 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2652 bytes after the call. The right number is the entire
2653 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2654 by the arguments in the first place. */
2655 args_size->constant
2656 = pending_stack_adjust - adjustment + unadjusted_args_size;
2657
2658 return adjustment;
2659 }
2660
2661 /* Scan X expression if it does not dereference any argument slots
2662 we already clobbered by tail call arguments (as noted in stored_args_map
2663 bitmap).
2664 Return nonzero if X expression dereferences such argument slots,
2665 zero otherwise. */
2666
2667 static int
2668 check_sibcall_argument_overlap_1 (rtx x)
2669 {
2670 RTX_CODE code;
2671 int i, j;
2672 const char *fmt;
2673
2674 if (x == NULL_RTX)
2675 return 0;
2676
2677 code = GET_CODE (x);
2678
2679 /* We need not check the operands of the CALL expression itself. */
2680 if (code == CALL)
2681 return 0;
2682
2683 if (code == MEM)
2684 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
2685 GET_MODE_SIZE (GET_MODE (x)));
2686
2687 /* Scan all subexpressions. */
2688 fmt = GET_RTX_FORMAT (code);
2689 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2690 {
2691 if (*fmt == 'e')
2692 {
2693 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
2694 return 1;
2695 }
2696 else if (*fmt == 'E')
2697 {
2698 for (j = 0; j < XVECLEN (x, i); j++)
2699 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
2700 return 1;
2701 }
2702 }
2703 return 0;
2704 }
2705
2706 /* Scan sequence after INSN if it does not dereference any argument slots
2707 we already clobbered by tail call arguments (as noted in stored_args_map
2708 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
2709 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
2710 should be 0). Return nonzero if sequence after INSN dereferences such argument
2711 slots, zero otherwise. */
2712
2713 static int
2714 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
2715 int mark_stored_args_map)
2716 {
2717 int low, high;
2718
2719 if (insn == NULL_RTX)
2720 insn = get_insns ();
2721 else
2722 insn = NEXT_INSN (insn);
2723
2724 for (; insn; insn = NEXT_INSN (insn))
2725 if (INSN_P (insn)
2726 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
2727 break;
2728
2729 if (mark_stored_args_map)
2730 {
2731 if (ARGS_GROW_DOWNWARD)
2732 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
2733 else
2734 low = arg->locate.slot_offset.constant;
2735
2736 for (high = low + arg->locate.size.constant; low < high; low++)
2737 bitmap_set_bit (stored_args_map, low);
2738 }
2739 return insn != NULL_RTX;
2740 }
2741
2742 /* Given that a function returns a value of mode MODE at the most
2743 significant end of hard register VALUE, shift VALUE left or right
2744 as specified by LEFT_P. Return true if some action was needed. */
2745
2746 bool
2747 shift_return_value (machine_mode mode, bool left_p, rtx value)
2748 {
2749 HOST_WIDE_INT shift;
2750
2751 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
2752 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
2753 if (shift == 0)
2754 return false;
2755
2756 /* Use ashr rather than lshr for right shifts. This is for the benefit
2757 of the MIPS port, which requires SImode values to be sign-extended
2758 when stored in 64-bit registers. */
2759 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
2760 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
2761 gcc_unreachable ();
2762 return true;
2763 }
2764
2765 /* If X is a likely-spilled register value, copy it to a pseudo
2766 register and return that register. Return X otherwise. */
2767
2768 static rtx
2769 avoid_likely_spilled_reg (rtx x)
2770 {
2771 rtx new_rtx;
2772
2773 if (REG_P (x)
2774 && HARD_REGISTER_P (x)
2775 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2776 {
2777 /* Make sure that we generate a REG rather than a CONCAT.
2778 Moves into CONCATs can need nontrivial instructions,
2779 and the whole point of this function is to avoid
2780 using the hard register directly in such a situation. */
2781 generating_concat_p = 0;
2782 new_rtx = gen_reg_rtx (GET_MODE (x));
2783 generating_concat_p = 1;
2784 emit_move_insn (new_rtx, x);
2785 return new_rtx;
2786 }
2787 return x;
2788 }
2789
2790 /* Helper function for expand_call.
2791 Return false is EXP is not implementable as a sibling call. */
2792
2793 static bool
2794 can_implement_as_sibling_call_p (tree exp,
2795 rtx structure_value_addr,
2796 tree funtype,
2797 int reg_parm_stack_space ATTRIBUTE_UNUSED,
2798 tree fndecl,
2799 int flags,
2800 tree addr,
2801 const args_size &args_size)
2802 {
2803 if (!targetm.have_sibcall_epilogue ())
2804 {
2805 maybe_complain_about_tail_call
2806 (exp,
2807 "machine description does not have"
2808 " a sibcall_epilogue instruction pattern");
2809 return false;
2810 }
2811
2812 /* Doing sibling call optimization needs some work, since
2813 structure_value_addr can be allocated on the stack.
2814 It does not seem worth the effort since few optimizable
2815 sibling calls will return a structure. */
2816 if (structure_value_addr != NULL_RTX)
2817 {
2818 maybe_complain_about_tail_call (exp, "callee returns a structure");
2819 return false;
2820 }
2821
2822 #ifdef REG_PARM_STACK_SPACE
2823 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2824 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2825 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
2826 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
2827 {
2828 maybe_complain_about_tail_call (exp,
2829 "inconsistent size of stack space"
2830 " allocated for arguments which are"
2831 " passed in registers");
2832 return false;
2833 }
2834 #endif
2835
2836 /* Check whether the target is able to optimize the call
2837 into a sibcall. */
2838 if (!targetm.function_ok_for_sibcall (fndecl, exp))
2839 {
2840 maybe_complain_about_tail_call (exp,
2841 "target is not able to optimize the"
2842 " call into a sibling call");
2843 return false;
2844 }
2845
2846 /* Functions that do not return exactly once may not be sibcall
2847 optimized. */
2848 if (flags & ECF_RETURNS_TWICE)
2849 {
2850 maybe_complain_about_tail_call (exp, "callee returns twice");
2851 return false;
2852 }
2853 if (flags & ECF_NORETURN)
2854 {
2855 maybe_complain_about_tail_call (exp, "callee does not return");
2856 return false;
2857 }
2858
2859 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
2860 {
2861 maybe_complain_about_tail_call (exp, "volatile function type");
2862 return false;
2863 }
2864
2865 /* If the called function is nested in the current one, it might access
2866 some of the caller's arguments, but could clobber them beforehand if
2867 the argument areas are shared. */
2868 if (fndecl && decl_function_context (fndecl) == current_function_decl)
2869 {
2870 maybe_complain_about_tail_call (exp, "nested function");
2871 return false;
2872 }
2873
2874 /* If this function requires more stack slots than the current
2875 function, we cannot change it into a sibling call.
2876 crtl->args.pretend_args_size is not part of the
2877 stack allocated by our caller. */
2878 if (args_size.constant > (crtl->args.size - crtl->args.pretend_args_size))
2879 {
2880 maybe_complain_about_tail_call (exp,
2881 "callee required more stack slots"
2882 " than the caller");
2883 return false;
2884 }
2885
2886 /* If the callee pops its own arguments, then it must pop exactly
2887 the same number of arguments as the current function. */
2888 if (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2889 != targetm.calls.return_pops_args (current_function_decl,
2890 TREE_TYPE (current_function_decl),
2891 crtl->args.size))
2892 {
2893 maybe_complain_about_tail_call (exp,
2894 "inconsistent number of"
2895 " popped arguments");
2896 return false;
2897 }
2898
2899 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
2900 {
2901 maybe_complain_about_tail_call (exp, "frontend does not support"
2902 " sibling call");
2903 return false;
2904 }
2905
2906 /* All checks passed. */
2907 return true;
2908 }
2909
2910 /* Generate all the code for a CALL_EXPR exp
2911 and return an rtx for its value.
2912 Store the value in TARGET (specified as an rtx) if convenient.
2913 If the value is stored in TARGET then TARGET is returned.
2914 If IGNORE is nonzero, then we ignore the value of the function call. */
2915
2916 rtx
2917 expand_call (tree exp, rtx target, int ignore)
2918 {
2919 /* Nonzero if we are currently expanding a call. */
2920 static int currently_expanding_call = 0;
2921
2922 /* RTX for the function to be called. */
2923 rtx funexp;
2924 /* Sequence of insns to perform a normal "call". */
2925 rtx_insn *normal_call_insns = NULL;
2926 /* Sequence of insns to perform a tail "call". */
2927 rtx_insn *tail_call_insns = NULL;
2928 /* Data type of the function. */
2929 tree funtype;
2930 tree type_arg_types;
2931 tree rettype;
2932 /* Declaration of the function being called,
2933 or 0 if the function is computed (not known by name). */
2934 tree fndecl = 0;
2935 /* The type of the function being called. */
2936 tree fntype;
2937 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
2938 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
2939 int pass;
2940
2941 /* Register in which non-BLKmode value will be returned,
2942 or 0 if no value or if value is BLKmode. */
2943 rtx valreg;
2944 /* Register(s) in which bounds are returned. */
2945 rtx valbnd = NULL;
2946 /* Address where we should return a BLKmode value;
2947 0 if value not BLKmode. */
2948 rtx structure_value_addr = 0;
2949 /* Nonzero if that address is being passed by treating it as
2950 an extra, implicit first parameter. Otherwise,
2951 it is passed by being copied directly into struct_value_rtx. */
2952 int structure_value_addr_parm = 0;
2953 /* Holds the value of implicit argument for the struct value. */
2954 tree structure_value_addr_value = NULL_TREE;
2955 /* Size of aggregate value wanted, or zero if none wanted
2956 or if we are using the non-reentrant PCC calling convention
2957 or expecting the value in registers. */
2958 HOST_WIDE_INT struct_value_size = 0;
2959 /* Nonzero if called function returns an aggregate in memory PCC style,
2960 by returning the address of where to find it. */
2961 int pcc_struct_value = 0;
2962 rtx struct_value = 0;
2963
2964 /* Number of actual parameters in this call, including struct value addr. */
2965 int num_actuals;
2966 /* Number of named args. Args after this are anonymous ones
2967 and they must all go on the stack. */
2968 int n_named_args;
2969 /* Number of complex actual arguments that need to be split. */
2970 int num_complex_actuals = 0;
2971
2972 /* Vector of information about each argument.
2973 Arguments are numbered in the order they will be pushed,
2974 not the order they are written. */
2975 struct arg_data *args;
2976
2977 /* Total size in bytes of all the stack-parms scanned so far. */
2978 struct args_size args_size;
2979 struct args_size adjusted_args_size;
2980 /* Size of arguments before any adjustments (such as rounding). */
2981 int unadjusted_args_size;
2982 /* Data on reg parms scanned so far. */
2983 CUMULATIVE_ARGS args_so_far_v;
2984 cumulative_args_t args_so_far;
2985 /* Nonzero if a reg parm has been scanned. */
2986 int reg_parm_seen;
2987 /* Nonzero if this is an indirect function call. */
2988
2989 /* Nonzero if we must avoid push-insns in the args for this call.
2990 If stack space is allocated for register parameters, but not by the
2991 caller, then it is preallocated in the fixed part of the stack frame.
2992 So the entire argument block must then be preallocated (i.e., we
2993 ignore PUSH_ROUNDING in that case). */
2994
2995 int must_preallocate = !PUSH_ARGS;
2996
2997 /* Size of the stack reserved for parameter registers. */
2998 int reg_parm_stack_space = 0;
2999
3000 /* Address of space preallocated for stack parms
3001 (on machines that lack push insns), or 0 if space not preallocated. */
3002 rtx argblock = 0;
3003
3004 /* Mask of ECF_ and ERF_ flags. */
3005 int flags = 0;
3006 int return_flags = 0;
3007 #ifdef REG_PARM_STACK_SPACE
3008 /* Define the boundary of the register parm stack space that needs to be
3009 saved, if any. */
3010 int low_to_save, high_to_save;
3011 rtx save_area = 0; /* Place that it is saved */
3012 #endif
3013
3014 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3015 char *initial_stack_usage_map = stack_usage_map;
3016 char *stack_usage_map_buf = NULL;
3017
3018 int old_stack_allocated;
3019
3020 /* State variables to track stack modifications. */
3021 rtx old_stack_level = 0;
3022 int old_stack_arg_under_construction = 0;
3023 int old_pending_adj = 0;
3024 int old_inhibit_defer_pop = inhibit_defer_pop;
3025
3026 /* Some stack pointer alterations we make are performed via
3027 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3028 which we then also need to save/restore along the way. */
3029 int old_stack_pointer_delta = 0;
3030
3031 rtx call_fusage;
3032 tree addr = CALL_EXPR_FN (exp);
3033 int i;
3034 /* The alignment of the stack, in bits. */
3035 unsigned HOST_WIDE_INT preferred_stack_boundary;
3036 /* The alignment of the stack, in bytes. */
3037 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3038 /* The static chain value to use for this call. */
3039 rtx static_chain_value;
3040 /* See if this is "nothrow" function call. */
3041 if (TREE_NOTHROW (exp))
3042 flags |= ECF_NOTHROW;
3043
3044 /* See if we can find a DECL-node for the actual function, and get the
3045 function attributes (flags) from the function decl or type node. */
3046 fndecl = get_callee_fndecl (exp);
3047 if (fndecl)
3048 {
3049 fntype = TREE_TYPE (fndecl);
3050 flags |= flags_from_decl_or_type (fndecl);
3051 return_flags |= decl_return_flags (fndecl);
3052 }
3053 else
3054 {
3055 fntype = TREE_TYPE (TREE_TYPE (addr));
3056 flags |= flags_from_decl_or_type (fntype);
3057 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3058 flags |= ECF_BY_DESCRIPTOR;
3059 }
3060 rettype = TREE_TYPE (exp);
3061
3062 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3063
3064 /* Warn if this value is an aggregate type,
3065 regardless of which calling convention we are using for it. */
3066 if (AGGREGATE_TYPE_P (rettype))
3067 warning (OPT_Waggregate_return, "function call has aggregate value");
3068
3069 /* If the result of a non looping pure or const function call is
3070 ignored (or void), and none of its arguments are volatile, we can
3071 avoid expanding the call and just evaluate the arguments for
3072 side-effects. */
3073 if ((flags & (ECF_CONST | ECF_PURE))
3074 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3075 && (ignore || target == const0_rtx
3076 || TYPE_MODE (rettype) == VOIDmode))
3077 {
3078 bool volatilep = false;
3079 tree arg;
3080 call_expr_arg_iterator iter;
3081
3082 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3083 if (TREE_THIS_VOLATILE (arg))
3084 {
3085 volatilep = true;
3086 break;
3087 }
3088
3089 if (! volatilep)
3090 {
3091 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3092 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3093 return const0_rtx;
3094 }
3095 }
3096
3097 #ifdef REG_PARM_STACK_SPACE
3098 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3099 #endif
3100
3101 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3102 && reg_parm_stack_space > 0 && PUSH_ARGS)
3103 must_preallocate = 1;
3104
3105 /* Set up a place to return a structure. */
3106
3107 /* Cater to broken compilers. */
3108 if (aggregate_value_p (exp, fntype))
3109 {
3110 /* This call returns a big structure. */
3111 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3112
3113 #ifdef PCC_STATIC_STRUCT_RETURN
3114 {
3115 pcc_struct_value = 1;
3116 }
3117 #else /* not PCC_STATIC_STRUCT_RETURN */
3118 {
3119 struct_value_size = int_size_in_bytes (rettype);
3120
3121 /* Even if it is semantically safe to use the target as the return
3122 slot, it may be not sufficiently aligned for the return type. */
3123 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3124 && target
3125 && MEM_P (target)
3126 && !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3127 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (rettype),
3128 MEM_ALIGN (target))))
3129 structure_value_addr = XEXP (target, 0);
3130 else
3131 {
3132 /* For variable-sized objects, we must be called with a target
3133 specified. If we were to allocate space on the stack here,
3134 we would have no way of knowing when to free it. */
3135 rtx d = assign_temp (rettype, 1, 1);
3136 structure_value_addr = XEXP (d, 0);
3137 target = 0;
3138 }
3139 }
3140 #endif /* not PCC_STATIC_STRUCT_RETURN */
3141 }
3142
3143 /* Figure out the amount to which the stack should be aligned. */
3144 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3145 if (fndecl)
3146 {
3147 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3148 /* Without automatic stack alignment, we can't increase preferred
3149 stack boundary. With automatic stack alignment, it is
3150 unnecessary since unless we can guarantee that all callers will
3151 align the outgoing stack properly, callee has to align its
3152 stack anyway. */
3153 if (i
3154 && i->preferred_incoming_stack_boundary
3155 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3156 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3157 }
3158
3159 /* Operand 0 is a pointer-to-function; get the type of the function. */
3160 funtype = TREE_TYPE (addr);
3161 gcc_assert (POINTER_TYPE_P (funtype));
3162 funtype = TREE_TYPE (funtype);
3163
3164 /* Count whether there are actual complex arguments that need to be split
3165 into their real and imaginary parts. Munge the type_arg_types
3166 appropriately here as well. */
3167 if (targetm.calls.split_complex_arg)
3168 {
3169 call_expr_arg_iterator iter;
3170 tree arg;
3171 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3172 {
3173 tree type = TREE_TYPE (arg);
3174 if (type && TREE_CODE (type) == COMPLEX_TYPE
3175 && targetm.calls.split_complex_arg (type))
3176 num_complex_actuals++;
3177 }
3178 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3179 }
3180 else
3181 type_arg_types = TYPE_ARG_TYPES (funtype);
3182
3183 if (flags & ECF_MAY_BE_ALLOCA)
3184 cfun->calls_alloca = 1;
3185
3186 /* If struct_value_rtx is 0, it means pass the address
3187 as if it were an extra parameter. Put the argument expression
3188 in structure_value_addr_value. */
3189 if (structure_value_addr && struct_value == 0)
3190 {
3191 /* If structure_value_addr is a REG other than
3192 virtual_outgoing_args_rtx, we can use always use it. If it
3193 is not a REG, we must always copy it into a register.
3194 If it is virtual_outgoing_args_rtx, we must copy it to another
3195 register in some cases. */
3196 rtx temp = (!REG_P (structure_value_addr)
3197 || (ACCUMULATE_OUTGOING_ARGS
3198 && stack_arg_under_construction
3199 && structure_value_addr == virtual_outgoing_args_rtx)
3200 ? copy_addr_to_reg (convert_memory_address
3201 (Pmode, structure_value_addr))
3202 : structure_value_addr);
3203
3204 structure_value_addr_value =
3205 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3206 structure_value_addr_parm = CALL_WITH_BOUNDS_P (exp) ? 2 : 1;
3207 }
3208
3209 /* Count the arguments and set NUM_ACTUALS. */
3210 num_actuals =
3211 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3212
3213 /* Compute number of named args.
3214 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3215
3216 if (type_arg_types != 0)
3217 n_named_args
3218 = (list_length (type_arg_types)
3219 /* Count the struct value address, if it is passed as a parm. */
3220 + structure_value_addr_parm);
3221 else
3222 /* If we know nothing, treat all args as named. */
3223 n_named_args = num_actuals;
3224
3225 /* Start updating where the next arg would go.
3226
3227 On some machines (such as the PA) indirect calls have a different
3228 calling convention than normal calls. The fourth argument in
3229 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3230 or not. */
3231 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3232 args_so_far = pack_cumulative_args (&args_so_far_v);
3233
3234 /* Now possibly adjust the number of named args.
3235 Normally, don't include the last named arg if anonymous args follow.
3236 We do include the last named arg if
3237 targetm.calls.strict_argument_naming() returns nonzero.
3238 (If no anonymous args follow, the result of list_length is actually
3239 one too large. This is harmless.)
3240
3241 If targetm.calls.pretend_outgoing_varargs_named() returns
3242 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3243 this machine will be able to place unnamed args that were passed
3244 in registers into the stack. So treat all args as named. This
3245 allows the insns emitting for a specific argument list to be
3246 independent of the function declaration.
3247
3248 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3249 we do not have any reliable way to pass unnamed args in
3250 registers, so we must force them into memory. */
3251
3252 if (type_arg_types != 0
3253 && targetm.calls.strict_argument_naming (args_so_far))
3254 ;
3255 else if (type_arg_types != 0
3256 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3257 /* Don't include the last named arg. */
3258 --n_named_args;
3259 else
3260 /* Treat all args as named. */
3261 n_named_args = num_actuals;
3262
3263 /* Make a vector to hold all the information about each arg. */
3264 args = XCNEWVEC (struct arg_data, num_actuals);
3265
3266 /* Build up entries in the ARGS array, compute the size of the
3267 arguments into ARGS_SIZE, etc. */
3268 initialize_argument_information (num_actuals, args, &args_size,
3269 n_named_args, exp,
3270 structure_value_addr_value, fndecl, fntype,
3271 args_so_far, reg_parm_stack_space,
3272 &old_stack_level, &old_pending_adj,
3273 &must_preallocate, &flags,
3274 &try_tail_call, CALL_FROM_THUNK_P (exp));
3275
3276 if (args_size.var)
3277 must_preallocate = 1;
3278
3279 /* Now make final decision about preallocating stack space. */
3280 must_preallocate = finalize_must_preallocate (must_preallocate,
3281 num_actuals, args,
3282 &args_size);
3283
3284 /* If the structure value address will reference the stack pointer, we
3285 must stabilize it. We don't need to do this if we know that we are
3286 not going to adjust the stack pointer in processing this call. */
3287
3288 if (structure_value_addr
3289 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3290 || reg_mentioned_p (virtual_outgoing_args_rtx,
3291 structure_value_addr))
3292 && (args_size.var
3293 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
3294 structure_value_addr = copy_to_reg (structure_value_addr);
3295
3296 /* Tail calls can make things harder to debug, and we've traditionally
3297 pushed these optimizations into -O2. Don't try if we're already
3298 expanding a call, as that means we're an argument. Don't try if
3299 there's cleanups, as we know there's code to follow the call. */
3300
3301 if (currently_expanding_call++ != 0
3302 || !flag_optimize_sibling_calls
3303 || args_size.var
3304 || dbg_cnt (tail_call) == false)
3305 try_tail_call = 0;
3306
3307 /* If the user has marked the function as requiring tail-call
3308 optimization, attempt it. */
3309 if (must_tail_call)
3310 try_tail_call = 1;
3311
3312 /* Rest of purposes for tail call optimizations to fail. */
3313 if (try_tail_call)
3314 try_tail_call = can_implement_as_sibling_call_p (exp,
3315 structure_value_addr,
3316 funtype,
3317 reg_parm_stack_space,
3318 fndecl,
3319 flags, addr, args_size);
3320
3321 /* Check if caller and callee disagree in promotion of function
3322 return value. */
3323 if (try_tail_call)
3324 {
3325 machine_mode caller_mode, caller_promoted_mode;
3326 machine_mode callee_mode, callee_promoted_mode;
3327 int caller_unsignedp, callee_unsignedp;
3328 tree caller_res = DECL_RESULT (current_function_decl);
3329
3330 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3331 caller_mode = DECL_MODE (caller_res);
3332 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3333 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3334 caller_promoted_mode
3335 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3336 &caller_unsignedp,
3337 TREE_TYPE (current_function_decl), 1);
3338 callee_promoted_mode
3339 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3340 &callee_unsignedp,
3341 funtype, 1);
3342 if (caller_mode != VOIDmode
3343 && (caller_promoted_mode != callee_promoted_mode
3344 || ((caller_mode != caller_promoted_mode
3345 || callee_mode != callee_promoted_mode)
3346 && (caller_unsignedp != callee_unsignedp
3347 || GET_MODE_BITSIZE (caller_mode)
3348 < GET_MODE_BITSIZE (callee_mode)))))
3349 {
3350 try_tail_call = 0;
3351 maybe_complain_about_tail_call (exp,
3352 "caller and callee disagree in"
3353 " promotion of function"
3354 " return value");
3355 }
3356 }
3357
3358 /* Ensure current function's preferred stack boundary is at least
3359 what we need. Stack alignment may also increase preferred stack
3360 boundary. */
3361 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
3362 crtl->preferred_stack_boundary = preferred_stack_boundary;
3363 else
3364 preferred_stack_boundary = crtl->preferred_stack_boundary;
3365
3366 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
3367
3368 /* We want to make two insn chains; one for a sibling call, the other
3369 for a normal call. We will select one of the two chains after
3370 initial RTL generation is complete. */
3371 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
3372 {
3373 int sibcall_failure = 0;
3374 /* We want to emit any pending stack adjustments before the tail
3375 recursion "call". That way we know any adjustment after the tail
3376 recursion call can be ignored if we indeed use the tail
3377 call expansion. */
3378 saved_pending_stack_adjust save;
3379 rtx_insn *insns, *before_call, *after_args;
3380 rtx next_arg_reg;
3381
3382 if (pass == 0)
3383 {
3384 /* State variables we need to save and restore between
3385 iterations. */
3386 save_pending_stack_adjust (&save);
3387 }
3388 if (pass)
3389 flags &= ~ECF_SIBCALL;
3390 else
3391 flags |= ECF_SIBCALL;
3392
3393 /* Other state variables that we must reinitialize each time
3394 through the loop (that are not initialized by the loop itself). */
3395 argblock = 0;
3396 call_fusage = 0;
3397
3398 /* Start a new sequence for the normal call case.
3399
3400 From this point on, if the sibling call fails, we want to set
3401 sibcall_failure instead of continuing the loop. */
3402 start_sequence ();
3403
3404 /* Don't let pending stack adjusts add up to too much.
3405 Also, do all pending adjustments now if there is any chance
3406 this might be a call to alloca or if we are expanding a sibling
3407 call sequence.
3408 Also do the adjustments before a throwing call, otherwise
3409 exception handling can fail; PR 19225. */
3410 if (pending_stack_adjust >= 32
3411 || (pending_stack_adjust > 0
3412 && (flags & ECF_MAY_BE_ALLOCA))
3413 || (pending_stack_adjust > 0
3414 && flag_exceptions && !(flags & ECF_NOTHROW))
3415 || pass == 0)
3416 do_pending_stack_adjust ();
3417
3418 /* Precompute any arguments as needed. */
3419 if (pass)
3420 precompute_arguments (num_actuals, args);
3421
3422 /* Now we are about to start emitting insns that can be deleted
3423 if a libcall is deleted. */
3424 if (pass && (flags & ECF_MALLOC))
3425 start_sequence ();
3426
3427 if (pass == 0
3428 && crtl->stack_protect_guard
3429 && targetm.stack_protect_runtime_enabled_p ())
3430 stack_protect_epilogue ();
3431
3432 adjusted_args_size = args_size;
3433 /* Compute the actual size of the argument block required. The variable
3434 and constant sizes must be combined, the size may have to be rounded,
3435 and there may be a minimum required size. When generating a sibcall
3436 pattern, do not round up, since we'll be re-using whatever space our
3437 caller provided. */
3438 unadjusted_args_size
3439 = compute_argument_block_size (reg_parm_stack_space,
3440 &adjusted_args_size,
3441 fndecl, fntype,
3442 (pass == 0 ? 0
3443 : preferred_stack_boundary));
3444
3445 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3446
3447 /* The argument block when performing a sibling call is the
3448 incoming argument block. */
3449 if (pass == 0)
3450 {
3451 argblock = crtl->args.internal_arg_pointer;
3452 if (STACK_GROWS_DOWNWARD)
3453 argblock
3454 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
3455 else
3456 argblock
3457 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
3458
3459 stored_args_map = sbitmap_alloc (args_size.constant);
3460 bitmap_clear (stored_args_map);
3461 }
3462
3463 /* If we have no actual push instructions, or shouldn't use them,
3464 make space for all args right now. */
3465 else if (adjusted_args_size.var != 0)
3466 {
3467 if (old_stack_level == 0)
3468 {
3469 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3470 old_stack_pointer_delta = stack_pointer_delta;
3471 old_pending_adj = pending_stack_adjust;
3472 pending_stack_adjust = 0;
3473 /* stack_arg_under_construction says whether a stack arg is
3474 being constructed at the old stack level. Pushing the stack
3475 gets a clean outgoing argument block. */
3476 old_stack_arg_under_construction = stack_arg_under_construction;
3477 stack_arg_under_construction = 0;
3478 }
3479 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
3480 if (flag_stack_usage_info)
3481 current_function_has_unbounded_dynamic_stack_size = 1;
3482 }
3483 else
3484 {
3485 /* Note that we must go through the motions of allocating an argument
3486 block even if the size is zero because we may be storing args
3487 in the area reserved for register arguments, which may be part of
3488 the stack frame. */
3489
3490 int needed = adjusted_args_size.constant;
3491
3492 /* Store the maximum argument space used. It will be pushed by
3493 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
3494 checking). */
3495
3496 if (needed > crtl->outgoing_args_size)
3497 crtl->outgoing_args_size = needed;
3498
3499 if (must_preallocate)
3500 {
3501 if (ACCUMULATE_OUTGOING_ARGS)
3502 {
3503 /* Since the stack pointer will never be pushed, it is
3504 possible for the evaluation of a parm to clobber
3505 something we have already written to the stack.
3506 Since most function calls on RISC machines do not use
3507 the stack, this is uncommon, but must work correctly.
3508
3509 Therefore, we save any area of the stack that was already
3510 written and that we are using. Here we set up to do this
3511 by making a new stack usage map from the old one. The
3512 actual save will be done by store_one_arg.
3513
3514 Another approach might be to try to reorder the argument
3515 evaluations to avoid this conflicting stack usage. */
3516
3517 /* Since we will be writing into the entire argument area,
3518 the map must be allocated for its entire size, not just
3519 the part that is the responsibility of the caller. */
3520 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3521 needed += reg_parm_stack_space;
3522
3523 if (ARGS_GROW_DOWNWARD)
3524 highest_outgoing_arg_in_use
3525 = MAX (initial_highest_arg_in_use, needed + 1);
3526 else
3527 highest_outgoing_arg_in_use
3528 = MAX (initial_highest_arg_in_use, needed);
3529
3530 free (stack_usage_map_buf);
3531 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3532 stack_usage_map = stack_usage_map_buf;
3533
3534 if (initial_highest_arg_in_use)
3535 memcpy (stack_usage_map, initial_stack_usage_map,
3536 initial_highest_arg_in_use);
3537
3538 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3539 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3540 (highest_outgoing_arg_in_use
3541 - initial_highest_arg_in_use));
3542 needed = 0;
3543
3544 /* The address of the outgoing argument list must not be
3545 copied to a register here, because argblock would be left
3546 pointing to the wrong place after the call to
3547 allocate_dynamic_stack_space below. */
3548
3549 argblock = virtual_outgoing_args_rtx;
3550 }
3551 else
3552 {
3553 if (inhibit_defer_pop == 0)
3554 {
3555 /* Try to reuse some or all of the pending_stack_adjust
3556 to get this space. */
3557 needed
3558 = (combine_pending_stack_adjustment_and_call
3559 (unadjusted_args_size,
3560 &adjusted_args_size,
3561 preferred_unit_stack_boundary));
3562
3563 /* combine_pending_stack_adjustment_and_call computes
3564 an adjustment before the arguments are allocated.
3565 Account for them and see whether or not the stack
3566 needs to go up or down. */
3567 needed = unadjusted_args_size - needed;
3568
3569 if (needed < 0)
3570 {
3571 /* We're releasing stack space. */
3572 /* ??? We can avoid any adjustment at all if we're
3573 already aligned. FIXME. */
3574 pending_stack_adjust = -needed;
3575 do_pending_stack_adjust ();
3576 needed = 0;
3577 }
3578 else
3579 /* We need to allocate space. We'll do that in
3580 push_block below. */
3581 pending_stack_adjust = 0;
3582 }
3583
3584 /* Special case this because overhead of `push_block' in
3585 this case is non-trivial. */
3586 if (needed == 0)
3587 argblock = virtual_outgoing_args_rtx;
3588 else
3589 {
3590 argblock = push_block (GEN_INT (needed), 0, 0);
3591 if (ARGS_GROW_DOWNWARD)
3592 argblock = plus_constant (Pmode, argblock, needed);
3593 }
3594
3595 /* We only really need to call `copy_to_reg' in the case
3596 where push insns are going to be used to pass ARGBLOCK
3597 to a function call in ARGS. In that case, the stack
3598 pointer changes value from the allocation point to the
3599 call point, and hence the value of
3600 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3601 as well always do it. */
3602 argblock = copy_to_reg (argblock);
3603 }
3604 }
3605 }
3606
3607 if (ACCUMULATE_OUTGOING_ARGS)
3608 {
3609 /* The save/restore code in store_one_arg handles all
3610 cases except one: a constructor call (including a C
3611 function returning a BLKmode struct) to initialize
3612 an argument. */
3613 if (stack_arg_under_construction)
3614 {
3615 rtx push_size
3616 = GEN_INT (adjusted_args_size.constant
3617 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
3618 : TREE_TYPE (fndecl))) ? 0
3619 : reg_parm_stack_space));
3620 if (old_stack_level == 0)
3621 {
3622 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3623 old_stack_pointer_delta = stack_pointer_delta;
3624 old_pending_adj = pending_stack_adjust;
3625 pending_stack_adjust = 0;
3626 /* stack_arg_under_construction says whether a stack
3627 arg is being constructed at the old stack level.
3628 Pushing the stack gets a clean outgoing argument
3629 block. */
3630 old_stack_arg_under_construction
3631 = stack_arg_under_construction;
3632 stack_arg_under_construction = 0;
3633 /* Make a new map for the new argument list. */
3634 free (stack_usage_map_buf);
3635 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
3636 stack_usage_map = stack_usage_map_buf;
3637 highest_outgoing_arg_in_use = 0;
3638 }
3639 /* We can pass TRUE as the 4th argument because we just
3640 saved the stack pointer and will restore it right after
3641 the call. */
3642 allocate_dynamic_stack_space (push_size, 0,
3643 BIGGEST_ALIGNMENT, true);
3644 }
3645
3646 /* If argument evaluation might modify the stack pointer,
3647 copy the address of the argument list to a register. */
3648 for (i = 0; i < num_actuals; i++)
3649 if (args[i].pass_on_stack)
3650 {
3651 argblock = copy_addr_to_reg (argblock);
3652 break;
3653 }
3654 }
3655
3656 compute_argument_addresses (args, argblock, num_actuals);
3657
3658 /* Stack is properly aligned, pops can't safely be deferred during
3659 the evaluation of the arguments. */
3660 NO_DEFER_POP;
3661
3662 /* Precompute all register parameters. It isn't safe to compute
3663 anything once we have started filling any specific hard regs.
3664 TLS symbols sometimes need a call to resolve. Precompute
3665 register parameters before any stack pointer manipulation
3666 to avoid unaligned stack in the called function. */
3667 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
3668
3669 OK_DEFER_POP;
3670
3671 /* Perform stack alignment before the first push (the last arg). */
3672 if (argblock == 0
3673 && adjusted_args_size.constant > reg_parm_stack_space
3674 && adjusted_args_size.constant != unadjusted_args_size)
3675 {
3676 /* When the stack adjustment is pending, we get better code
3677 by combining the adjustments. */
3678 if (pending_stack_adjust
3679 && ! inhibit_defer_pop)
3680 {
3681 pending_stack_adjust
3682 = (combine_pending_stack_adjustment_and_call
3683 (unadjusted_args_size,
3684 &adjusted_args_size,
3685 preferred_unit_stack_boundary));
3686 do_pending_stack_adjust ();
3687 }
3688 else if (argblock == 0)
3689 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
3690 - unadjusted_args_size));
3691 }
3692 /* Now that the stack is properly aligned, pops can't safely
3693 be deferred during the evaluation of the arguments. */
3694 NO_DEFER_POP;
3695
3696 /* Record the maximum pushed stack space size. We need to delay
3697 doing it this far to take into account the optimization done
3698 by combine_pending_stack_adjustment_and_call. */
3699 if (flag_stack_usage_info
3700 && !ACCUMULATE_OUTGOING_ARGS
3701 && pass
3702 && adjusted_args_size.var == 0)
3703 {
3704 int pushed = adjusted_args_size.constant + pending_stack_adjust;
3705 if (pushed > current_function_pushed_stack_size)
3706 current_function_pushed_stack_size = pushed;
3707 }
3708
3709 funexp = rtx_for_function_call (fndecl, addr);
3710
3711 if (CALL_EXPR_STATIC_CHAIN (exp))
3712 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
3713 else
3714 static_chain_value = 0;
3715
3716 #ifdef REG_PARM_STACK_SPACE
3717 /* Save the fixed argument area if it's part of the caller's frame and
3718 is clobbered by argument setup for this call. */
3719 if (ACCUMULATE_OUTGOING_ARGS && pass)
3720 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3721 &low_to_save, &high_to_save);
3722 #endif
3723
3724 /* Now store (and compute if necessary) all non-register parms.
3725 These come before register parms, since they can require block-moves,
3726 which could clobber the registers used for register parms.
3727 Parms which have partial registers are not stored here,
3728 but we do preallocate space here if they want that. */
3729
3730 for (i = 0; i < num_actuals; i++)
3731 {
3732 /* Delay bounds until all other args are stored. */
3733 if (POINTER_BOUNDS_P (args[i].tree_value))
3734 continue;
3735 else if (args[i].reg == 0 || args[i].pass_on_stack)
3736 {
3737 rtx_insn *before_arg = get_last_insn ();
3738
3739 /* We don't allow passing huge (> 2^30 B) arguments
3740 by value. It would cause an overflow later on. */
3741 if (adjusted_args_size.constant
3742 >= (1 << (HOST_BITS_PER_INT - 2)))
3743 {
3744 sorry ("passing too large argument on stack");
3745 continue;
3746 }
3747
3748 if (store_one_arg (&args[i], argblock, flags,
3749 adjusted_args_size.var != 0,
3750 reg_parm_stack_space)
3751 || (pass == 0
3752 && check_sibcall_argument_overlap (before_arg,
3753 &args[i], 1)))
3754 sibcall_failure = 1;
3755 }
3756
3757 if (args[i].stack)
3758 call_fusage
3759 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
3760 gen_rtx_USE (VOIDmode, args[i].stack),
3761 call_fusage);
3762 }
3763
3764 /* If we have a parm that is passed in registers but not in memory
3765 and whose alignment does not permit a direct copy into registers,
3766 make a group of pseudos that correspond to each register that we
3767 will later fill. */
3768 if (STRICT_ALIGNMENT)
3769 store_unaligned_arguments_into_pseudos (args, num_actuals);
3770
3771 /* Now store any partially-in-registers parm.
3772 This is the last place a block-move can happen. */
3773 if (reg_parm_seen)
3774 for (i = 0; i < num_actuals; i++)
3775 if (args[i].partial != 0 && ! args[i].pass_on_stack)
3776 {
3777 rtx_insn *before_arg = get_last_insn ();
3778
3779 /* On targets with weird calling conventions (e.g. PA) it's
3780 hard to ensure that all cases of argument overlap between
3781 stack and registers work. Play it safe and bail out. */
3782 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
3783 {
3784 sibcall_failure = 1;
3785 break;
3786 }
3787
3788 if (store_one_arg (&args[i], argblock, flags,
3789 adjusted_args_size.var != 0,
3790 reg_parm_stack_space)
3791 || (pass == 0
3792 && check_sibcall_argument_overlap (before_arg,
3793 &args[i], 1)))
3794 sibcall_failure = 1;
3795 }
3796
3797 bool any_regs = false;
3798 for (i = 0; i < num_actuals; i++)
3799 if (args[i].reg != NULL_RTX)
3800 {
3801 any_regs = true;
3802 targetm.calls.call_args (args[i].reg, funtype);
3803 }
3804 if (!any_regs)
3805 targetm.calls.call_args (pc_rtx, funtype);
3806
3807 /* Figure out the register where the value, if any, will come back. */
3808 valreg = 0;
3809 valbnd = 0;
3810 if (TYPE_MODE (rettype) != VOIDmode
3811 && ! structure_value_addr)
3812 {
3813 if (pcc_struct_value)
3814 {
3815 valreg = hard_function_value (build_pointer_type (rettype),
3816 fndecl, NULL, (pass == 0));
3817 if (CALL_WITH_BOUNDS_P (exp))
3818 valbnd = targetm.calls.
3819 chkp_function_value_bounds (build_pointer_type (rettype),
3820 fndecl, (pass == 0));
3821 }
3822 else
3823 {
3824 valreg = hard_function_value (rettype, fndecl, fntype,
3825 (pass == 0));
3826 if (CALL_WITH_BOUNDS_P (exp))
3827 valbnd = targetm.calls.chkp_function_value_bounds (rettype,
3828 fndecl,
3829 (pass == 0));
3830 }
3831
3832 /* If VALREG is a PARALLEL whose first member has a zero
3833 offset, use that. This is for targets such as m68k that
3834 return the same value in multiple places. */
3835 if (GET_CODE (valreg) == PARALLEL)
3836 {
3837 rtx elem = XVECEXP (valreg, 0, 0);
3838 rtx where = XEXP (elem, 0);
3839 rtx offset = XEXP (elem, 1);
3840 if (offset == const0_rtx
3841 && GET_MODE (where) == GET_MODE (valreg))
3842 valreg = where;
3843 }
3844 }
3845
3846 /* Store all bounds not passed in registers. */
3847 for (i = 0; i < num_actuals; i++)
3848 {
3849 if (POINTER_BOUNDS_P (args[i].tree_value)
3850 && !args[i].reg)
3851 store_bounds (&args[i],
3852 args[i].pointer_arg == -1
3853 ? NULL
3854 : &args[args[i].pointer_arg]);
3855 }
3856
3857 /* If register arguments require space on the stack and stack space
3858 was not preallocated, allocate stack space here for arguments
3859 passed in registers. */
3860 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3861 && !ACCUMULATE_OUTGOING_ARGS
3862 && must_preallocate == 0 && reg_parm_stack_space > 0)
3863 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
3864
3865 /* Pass the function the address in which to return a
3866 structure value. */
3867 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
3868 {
3869 structure_value_addr
3870 = convert_memory_address (Pmode, structure_value_addr);
3871 emit_move_insn (struct_value,
3872 force_reg (Pmode,
3873 force_operand (structure_value_addr,
3874 NULL_RTX)));
3875
3876 if (REG_P (struct_value))
3877 use_reg (&call_fusage, struct_value);
3878 }
3879
3880 after_args = get_last_insn ();
3881 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
3882 static_chain_value, &call_fusage,
3883 reg_parm_seen, flags);
3884
3885 load_register_parameters (args, num_actuals, &call_fusage, flags,
3886 pass == 0, &sibcall_failure);
3887
3888 /* Save a pointer to the last insn before the call, so that we can
3889 later safely search backwards to find the CALL_INSN. */
3890 before_call = get_last_insn ();
3891
3892 /* Set up next argument register. For sibling calls on machines
3893 with register windows this should be the incoming register. */
3894 if (pass == 0)
3895 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
3896 VOIDmode,
3897 void_type_node,
3898 true);
3899 else
3900 next_arg_reg = targetm.calls.function_arg (args_so_far,
3901 VOIDmode, void_type_node,
3902 true);
3903
3904 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
3905 {
3906 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
3907 arg_nr = num_actuals - arg_nr - 1;
3908 if (arg_nr >= 0
3909 && arg_nr < num_actuals
3910 && args[arg_nr].reg
3911 && valreg
3912 && REG_P (valreg)
3913 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
3914 call_fusage
3915 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
3916 gen_rtx_SET (valreg, args[arg_nr].reg),
3917 call_fusage);
3918 }
3919 /* All arguments and registers used for the call must be set up by
3920 now! */
3921
3922 /* Stack must be properly aligned now. */
3923 gcc_assert (!pass
3924 || !(stack_pointer_delta % preferred_unit_stack_boundary));
3925
3926 /* Generate the actual call instruction. */
3927 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
3928 adjusted_args_size.constant, struct_value_size,
3929 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
3930 flags, args_so_far);
3931
3932 if (flag_ipa_ra)
3933 {
3934 rtx_call_insn *last;
3935 rtx datum = NULL_RTX;
3936 if (fndecl != NULL_TREE)
3937 {
3938 datum = XEXP (DECL_RTL (fndecl), 0);
3939 gcc_assert (datum != NULL_RTX
3940 && GET_CODE (datum) == SYMBOL_REF);
3941 }
3942 last = last_call_insn ();
3943 add_reg_note (last, REG_CALL_DECL, datum);
3944 }
3945
3946 /* If the call setup or the call itself overlaps with anything
3947 of the argument setup we probably clobbered our call address.
3948 In that case we can't do sibcalls. */
3949 if (pass == 0
3950 && check_sibcall_argument_overlap (after_args, 0, 0))
3951 sibcall_failure = 1;
3952
3953 /* If a non-BLKmode value is returned at the most significant end
3954 of a register, shift the register right by the appropriate amount
3955 and update VALREG accordingly. BLKmode values are handled by the
3956 group load/store machinery below. */
3957 if (!structure_value_addr
3958 && !pcc_struct_value
3959 && TYPE_MODE (rettype) != VOIDmode
3960 && TYPE_MODE (rettype) != BLKmode
3961 && REG_P (valreg)
3962 && targetm.calls.return_in_msb (rettype))
3963 {
3964 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
3965 sibcall_failure = 1;
3966 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
3967 }
3968
3969 if (pass && (flags & ECF_MALLOC))
3970 {
3971 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3972 rtx_insn *last, *insns;
3973
3974 /* The return value from a malloc-like function is a pointer. */
3975 if (TREE_CODE (rettype) == POINTER_TYPE)
3976 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
3977
3978 emit_move_insn (temp, valreg);
3979
3980 /* The return value from a malloc-like function can not alias
3981 anything else. */
3982 last = get_last_insn ();
3983 add_reg_note (last, REG_NOALIAS, temp);
3984
3985 /* Write out the sequence. */
3986 insns = get_insns ();
3987 end_sequence ();
3988 emit_insn (insns);
3989 valreg = temp;
3990 }
3991
3992 /* For calls to `setjmp', etc., inform
3993 function.c:setjmp_warnings that it should complain if
3994 nonvolatile values are live. For functions that cannot
3995 return, inform flow that control does not fall through. */
3996
3997 if ((flags & ECF_NORETURN) || pass == 0)
3998 {
3999 /* The barrier must be emitted
4000 immediately after the CALL_INSN. Some ports emit more
4001 than just a CALL_INSN above, so we must search for it here. */
4002
4003 rtx_insn *last = get_last_insn ();
4004 while (!CALL_P (last))
4005 {
4006 last = PREV_INSN (last);
4007 /* There was no CALL_INSN? */
4008 gcc_assert (last != before_call);
4009 }
4010
4011 emit_barrier_after (last);
4012
4013 /* Stack adjustments after a noreturn call are dead code.
4014 However when NO_DEFER_POP is in effect, we must preserve
4015 stack_pointer_delta. */
4016 if (inhibit_defer_pop == 0)
4017 {
4018 stack_pointer_delta = old_stack_allocated;
4019 pending_stack_adjust = 0;
4020 }
4021 }
4022
4023 /* If value type not void, return an rtx for the value. */
4024
4025 if (TYPE_MODE (rettype) == VOIDmode
4026 || ignore)
4027 target = const0_rtx;
4028 else if (structure_value_addr)
4029 {
4030 if (target == 0 || !MEM_P (target))
4031 {
4032 target
4033 = gen_rtx_MEM (TYPE_MODE (rettype),
4034 memory_address (TYPE_MODE (rettype),
4035 structure_value_addr));
4036 set_mem_attributes (target, rettype, 1);
4037 }
4038 }
4039 else if (pcc_struct_value)
4040 {
4041 /* This is the special C++ case where we need to
4042 know what the true target was. We take care to
4043 never use this value more than once in one expression. */
4044 target = gen_rtx_MEM (TYPE_MODE (rettype),
4045 copy_to_reg (valreg));
4046 set_mem_attributes (target, rettype, 1);
4047 }
4048 /* Handle calls that return values in multiple non-contiguous locations.
4049 The Irix 6 ABI has examples of this. */
4050 else if (GET_CODE (valreg) == PARALLEL)
4051 {
4052 if (target == 0)
4053 target = emit_group_move_into_temps (valreg);
4054 else if (rtx_equal_p (target, valreg))
4055 ;
4056 else if (GET_CODE (target) == PARALLEL)
4057 /* Handle the result of a emit_group_move_into_temps
4058 call in the previous pass. */
4059 emit_group_move (target, valreg);
4060 else
4061 emit_group_store (target, valreg, rettype,
4062 int_size_in_bytes (rettype));
4063 }
4064 else if (target
4065 && GET_MODE (target) == TYPE_MODE (rettype)
4066 && GET_MODE (target) == GET_MODE (valreg))
4067 {
4068 bool may_overlap = false;
4069
4070 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4071 reg to a plain register. */
4072 if (!REG_P (target) || HARD_REGISTER_P (target))
4073 valreg = avoid_likely_spilled_reg (valreg);
4074
4075 /* If TARGET is a MEM in the argument area, and we have
4076 saved part of the argument area, then we can't store
4077 directly into TARGET as it may get overwritten when we
4078 restore the argument save area below. Don't work too
4079 hard though and simply force TARGET to a register if it
4080 is a MEM; the optimizer is quite likely to sort it out. */
4081 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4082 for (i = 0; i < num_actuals; i++)
4083 if (args[i].save_area)
4084 {
4085 may_overlap = true;
4086 break;
4087 }
4088
4089 if (may_overlap)
4090 target = copy_to_reg (valreg);
4091 else
4092 {
4093 /* TARGET and VALREG cannot be equal at this point
4094 because the latter would not have
4095 REG_FUNCTION_VALUE_P true, while the former would if
4096 it were referring to the same register.
4097
4098 If they refer to the same register, this move will be
4099 a no-op, except when function inlining is being
4100 done. */
4101 emit_move_insn (target, valreg);
4102
4103 /* If we are setting a MEM, this code must be executed.
4104 Since it is emitted after the call insn, sibcall
4105 optimization cannot be performed in that case. */
4106 if (MEM_P (target))
4107 sibcall_failure = 1;
4108 }
4109 }
4110 else
4111 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4112
4113 /* If we promoted this return value, make the proper SUBREG.
4114 TARGET might be const0_rtx here, so be careful. */
4115 if (REG_P (target)
4116 && TYPE_MODE (rettype) != BLKmode
4117 && GET_MODE (target) != TYPE_MODE (rettype))
4118 {
4119 tree type = rettype;
4120 int unsignedp = TYPE_UNSIGNED (type);
4121 int offset = 0;
4122 machine_mode pmode;
4123
4124 /* Ensure we promote as expected, and get the new unsignedness. */
4125 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4126 funtype, 1);
4127 gcc_assert (GET_MODE (target) == pmode);
4128
4129 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
4130 && (GET_MODE_SIZE (GET_MODE (target))
4131 > GET_MODE_SIZE (TYPE_MODE (type))))
4132 {
4133 offset = GET_MODE_SIZE (GET_MODE (target))
4134 - GET_MODE_SIZE (TYPE_MODE (type));
4135 if (! BYTES_BIG_ENDIAN)
4136 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
4137 else if (! WORDS_BIG_ENDIAN)
4138 offset %= UNITS_PER_WORD;
4139 }
4140
4141 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4142 SUBREG_PROMOTED_VAR_P (target) = 1;
4143 SUBREG_PROMOTED_SET (target, unsignedp);
4144 }
4145
4146 /* If size of args is variable or this was a constructor call for a stack
4147 argument, restore saved stack-pointer value. */
4148
4149 if (old_stack_level)
4150 {
4151 rtx_insn *prev = get_last_insn ();
4152
4153 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4154 stack_pointer_delta = old_stack_pointer_delta;
4155
4156 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4157
4158 pending_stack_adjust = old_pending_adj;
4159 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4160 stack_arg_under_construction = old_stack_arg_under_construction;
4161 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4162 stack_usage_map = initial_stack_usage_map;
4163 sibcall_failure = 1;
4164 }
4165 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4166 {
4167 #ifdef REG_PARM_STACK_SPACE
4168 if (save_area)
4169 restore_fixed_argument_area (save_area, argblock,
4170 high_to_save, low_to_save);
4171 #endif
4172
4173 /* If we saved any argument areas, restore them. */
4174 for (i = 0; i < num_actuals; i++)
4175 if (args[i].save_area)
4176 {
4177 machine_mode save_mode = GET_MODE (args[i].save_area);
4178 rtx stack_area
4179 = gen_rtx_MEM (save_mode,
4180 memory_address (save_mode,
4181 XEXP (args[i].stack_slot, 0)));
4182
4183 if (save_mode != BLKmode)
4184 emit_move_insn (stack_area, args[i].save_area);
4185 else
4186 emit_block_move (stack_area, args[i].save_area,
4187 GEN_INT (args[i].locate.size.constant),
4188 BLOCK_OP_CALL_PARM);
4189 }
4190
4191 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4192 stack_usage_map = initial_stack_usage_map;
4193 }
4194
4195 /* If this was alloca, record the new stack level. */
4196 if (flags & ECF_MAY_BE_ALLOCA)
4197 record_new_stack_level ();
4198
4199 /* Free up storage we no longer need. */
4200 for (i = 0; i < num_actuals; ++i)
4201 free (args[i].aligned_regs);
4202
4203 targetm.calls.end_call_args ();
4204
4205 insns = get_insns ();
4206 end_sequence ();
4207
4208 if (pass == 0)
4209 {
4210 tail_call_insns = insns;
4211
4212 /* Restore the pending stack adjustment now that we have
4213 finished generating the sibling call sequence. */
4214
4215 restore_pending_stack_adjust (&save);
4216
4217 /* Prepare arg structure for next iteration. */
4218 for (i = 0; i < num_actuals; i++)
4219 {
4220 args[i].value = 0;
4221 args[i].aligned_regs = 0;
4222 args[i].stack = 0;
4223 }
4224
4225 sbitmap_free (stored_args_map);
4226 internal_arg_pointer_exp_state.scan_start = NULL;
4227 internal_arg_pointer_exp_state.cache.release ();
4228 }
4229 else
4230 {
4231 normal_call_insns = insns;
4232
4233 /* Verify that we've deallocated all the stack we used. */
4234 gcc_assert ((flags & ECF_NORETURN)
4235 || (old_stack_allocated
4236 == stack_pointer_delta - pending_stack_adjust));
4237 }
4238
4239 /* If something prevents making this a sibling call,
4240 zero out the sequence. */
4241 if (sibcall_failure)
4242 tail_call_insns = NULL;
4243 else
4244 break;
4245 }
4246
4247 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4248 arguments too, as argument area is now clobbered by the call. */
4249 if (tail_call_insns)
4250 {
4251 emit_insn (tail_call_insns);
4252 crtl->tail_call_emit = true;
4253 }
4254 else
4255 {
4256 emit_insn (normal_call_insns);
4257 if (try_tail_call)
4258 /* Ideally we'd emit a message for all of the ways that it could
4259 have failed. */
4260 maybe_complain_about_tail_call (exp, "tail call production failed");
4261 }
4262
4263 currently_expanding_call--;
4264
4265 free (stack_usage_map_buf);
4266 free (args);
4267
4268 /* Join result with returned bounds so caller may use them if needed. */
4269 target = chkp_join_splitted_slot (target, valbnd);
4270
4271 return target;
4272 }
4273
4274 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4275 this function's incoming arguments.
4276
4277 At the start of RTL generation we know the only REG_EQUIV notes
4278 in the rtl chain are those for incoming arguments, so we can look
4279 for REG_EQUIV notes between the start of the function and the
4280 NOTE_INSN_FUNCTION_BEG.
4281
4282 This is (slight) overkill. We could keep track of the highest
4283 argument we clobber and be more selective in removing notes, but it
4284 does not seem to be worth the effort. */
4285
4286 void
4287 fixup_tail_calls (void)
4288 {
4289 rtx_insn *insn;
4290
4291 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4292 {
4293 rtx note;
4294
4295 /* There are never REG_EQUIV notes for the incoming arguments
4296 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4297 if (NOTE_P (insn)
4298 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4299 break;
4300
4301 note = find_reg_note (insn, REG_EQUIV, 0);
4302 if (note)
4303 remove_note (insn, note);
4304 note = find_reg_note (insn, REG_EQUIV, 0);
4305 gcc_assert (!note);
4306 }
4307 }
4308
4309 /* Traverse a list of TYPES and expand all complex types into their
4310 components. */
4311 static tree
4312 split_complex_types (tree types)
4313 {
4314 tree p;
4315
4316 /* Before allocating memory, check for the common case of no complex. */
4317 for (p = types; p; p = TREE_CHAIN (p))
4318 {
4319 tree type = TREE_VALUE (p);
4320 if (TREE_CODE (type) == COMPLEX_TYPE
4321 && targetm.calls.split_complex_arg (type))
4322 goto found;
4323 }
4324 return types;
4325
4326 found:
4327 types = copy_list (types);
4328
4329 for (p = types; p; p = TREE_CHAIN (p))
4330 {
4331 tree complex_type = TREE_VALUE (p);
4332
4333 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4334 && targetm.calls.split_complex_arg (complex_type))
4335 {
4336 tree next, imag;
4337
4338 /* Rewrite complex type with component type. */
4339 TREE_VALUE (p) = TREE_TYPE (complex_type);
4340 next = TREE_CHAIN (p);
4341
4342 /* Add another component type for the imaginary part. */
4343 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4344 TREE_CHAIN (p) = imag;
4345 TREE_CHAIN (imag) = next;
4346
4347 /* Skip the newly created node. */
4348 p = TREE_CHAIN (p);
4349 }
4350 }
4351
4352 return types;
4353 }
4354 \f
4355 /* Output a library call to function FUN (a SYMBOL_REF rtx).
4356 The RETVAL parameter specifies whether return value needs to be saved, other
4357 parameters are documented in the emit_library_call function below. */
4358
4359 static rtx
4360 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4361 enum libcall_type fn_type,
4362 machine_mode outmode, int nargs, va_list p)
4363 {
4364 /* Total size in bytes of all the stack-parms scanned so far. */
4365 struct args_size args_size;
4366 /* Size of arguments before any adjustments (such as rounding). */
4367 struct args_size original_args_size;
4368 int argnum;
4369 rtx fun;
4370 /* Todo, choose the correct decl type of orgfun. Sadly this information
4371 isn't present here, so we default to native calling abi here. */
4372 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4373 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4374 int count;
4375 rtx argblock = 0;
4376 CUMULATIVE_ARGS args_so_far_v;
4377 cumulative_args_t args_so_far;
4378 struct arg
4379 {
4380 rtx value;
4381 machine_mode mode;
4382 rtx reg;
4383 int partial;
4384 struct locate_and_pad_arg_data locate;
4385 rtx save_area;
4386 };
4387 struct arg *argvec;
4388 int old_inhibit_defer_pop = inhibit_defer_pop;
4389 rtx call_fusage = 0;
4390 rtx mem_value = 0;
4391 rtx valreg;
4392 int pcc_struct_value = 0;
4393 int struct_value_size = 0;
4394 int flags;
4395 int reg_parm_stack_space = 0;
4396 int needed;
4397 rtx_insn *before_call;
4398 bool have_push_fusage;
4399 tree tfom; /* type_for_mode (outmode, 0) */
4400
4401 #ifdef REG_PARM_STACK_SPACE
4402 /* Define the boundary of the register parm stack space that needs to be
4403 save, if any. */
4404 int low_to_save = 0, high_to_save = 0;
4405 rtx save_area = 0; /* Place that it is saved. */
4406 #endif
4407
4408 /* Size of the stack reserved for parameter registers. */
4409 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
4410 char *initial_stack_usage_map = stack_usage_map;
4411 char *stack_usage_map_buf = NULL;
4412
4413 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
4414
4415 #ifdef REG_PARM_STACK_SPACE
4416 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
4417 #endif
4418
4419 /* By default, library functions cannot throw. */
4420 flags = ECF_NOTHROW;
4421
4422 switch (fn_type)
4423 {
4424 case LCT_NORMAL:
4425 break;
4426 case LCT_CONST:
4427 flags |= ECF_CONST;
4428 break;
4429 case LCT_PURE:
4430 flags |= ECF_PURE;
4431 break;
4432 case LCT_NORETURN:
4433 flags |= ECF_NORETURN;
4434 break;
4435 case LCT_THROW:
4436 flags &= ~ECF_NOTHROW;
4437 break;
4438 case LCT_RETURNS_TWICE:
4439 flags = ECF_RETURNS_TWICE;
4440 break;
4441 }
4442 fun = orgfun;
4443
4444 /* Ensure current function's preferred stack boundary is at least
4445 what we need. */
4446 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
4447 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
4448
4449 /* If this kind of value comes back in memory,
4450 decide where in memory it should come back. */
4451 if (outmode != VOIDmode)
4452 {
4453 tfom = lang_hooks.types.type_for_mode (outmode, 0);
4454 if (aggregate_value_p (tfom, 0))
4455 {
4456 #ifdef PCC_STATIC_STRUCT_RETURN
4457 rtx pointer_reg
4458 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
4459 mem_value = gen_rtx_MEM (outmode, pointer_reg);
4460 pcc_struct_value = 1;
4461 if (value == 0)
4462 value = gen_reg_rtx (outmode);
4463 #else /* not PCC_STATIC_STRUCT_RETURN */
4464 struct_value_size = GET_MODE_SIZE (outmode);
4465 if (value != 0 && MEM_P (value))
4466 mem_value = value;
4467 else
4468 mem_value = assign_temp (tfom, 1, 1);
4469 #endif
4470 /* This call returns a big structure. */
4471 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
4472 }
4473 }
4474 else
4475 tfom = void_type_node;
4476
4477 /* ??? Unfinished: must pass the memory address as an argument. */
4478
4479 /* Copy all the libcall-arguments out of the varargs data
4480 and into a vector ARGVEC.
4481
4482 Compute how to pass each argument. We only support a very small subset
4483 of the full argument passing conventions to limit complexity here since
4484 library functions shouldn't have many args. */
4485
4486 argvec = XALLOCAVEC (struct arg, nargs + 1);
4487 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
4488
4489 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
4490 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
4491 #else
4492 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
4493 #endif
4494 args_so_far = pack_cumulative_args (&args_so_far_v);
4495
4496 args_size.constant = 0;
4497 args_size.var = 0;
4498
4499 count = 0;
4500
4501 push_temp_slots ();
4502
4503 /* If there's a structure value address to be passed,
4504 either pass it in the special place, or pass it as an extra argument. */
4505 if (mem_value && struct_value == 0 && ! pcc_struct_value)
4506 {
4507 rtx addr = XEXP (mem_value, 0);
4508
4509 nargs++;
4510
4511 /* Make sure it is a reasonable operand for a move or push insn. */
4512 if (!REG_P (addr) && !MEM_P (addr)
4513 && !(CONSTANT_P (addr)
4514 && targetm.legitimate_constant_p (Pmode, addr)))
4515 addr = force_operand (addr, NULL_RTX);
4516
4517 argvec[count].value = addr;
4518 argvec[count].mode = Pmode;
4519 argvec[count].partial = 0;
4520
4521 argvec[count].reg = targetm.calls.function_arg (args_so_far,
4522 Pmode, NULL_TREE, true);
4523 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
4524 NULL_TREE, 1) == 0);
4525
4526 locate_and_pad_parm (Pmode, NULL_TREE,
4527 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4528 1,
4529 #else
4530 argvec[count].reg != 0,
4531 #endif
4532 reg_parm_stack_space, 0,
4533 NULL_TREE, &args_size, &argvec[count].locate);
4534
4535 if (argvec[count].reg == 0 || argvec[count].partial != 0
4536 || reg_parm_stack_space > 0)
4537 args_size.constant += argvec[count].locate.size.constant;
4538
4539 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
4540
4541 count++;
4542 }
4543
4544 for (; count < nargs; count++)
4545 {
4546 rtx val = va_arg (p, rtx);
4547 machine_mode mode = (machine_mode) va_arg (p, int);
4548 int unsigned_p = 0;
4549
4550 /* We cannot convert the arg value to the mode the library wants here;
4551 must do it earlier where we know the signedness of the arg. */
4552 gcc_assert (mode != BLKmode
4553 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
4554
4555 /* Make sure it is a reasonable operand for a move or push insn. */
4556 if (!REG_P (val) && !MEM_P (val)
4557 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
4558 val = force_operand (val, NULL_RTX);
4559
4560 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
4561 {
4562 rtx slot;
4563 int must_copy
4564 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
4565
4566 /* If this was a CONST function, it is now PURE since it now
4567 reads memory. */
4568 if (flags & ECF_CONST)
4569 {
4570 flags &= ~ECF_CONST;
4571 flags |= ECF_PURE;
4572 }
4573
4574 if (MEM_P (val) && !must_copy)
4575 {
4576 tree val_expr = MEM_EXPR (val);
4577 if (val_expr)
4578 mark_addressable (val_expr);
4579 slot = val;
4580 }
4581 else
4582 {
4583 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
4584 1, 1);
4585 emit_move_insn (slot, val);
4586 }
4587
4588 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4589 gen_rtx_USE (VOIDmode, slot),
4590 call_fusage);
4591 if (must_copy)
4592 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4593 gen_rtx_CLOBBER (VOIDmode,
4594 slot),
4595 call_fusage);
4596
4597 mode = Pmode;
4598 val = force_operand (XEXP (slot, 0), NULL_RTX);
4599 }
4600
4601 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
4602 argvec[count].mode = mode;
4603 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
4604 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
4605 NULL_TREE, true);
4606
4607 argvec[count].partial
4608 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
4609
4610 if (argvec[count].reg == 0
4611 || argvec[count].partial != 0
4612 || reg_parm_stack_space > 0)
4613 {
4614 locate_and_pad_parm (mode, NULL_TREE,
4615 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4616 1,
4617 #else
4618 argvec[count].reg != 0,
4619 #endif
4620 reg_parm_stack_space, argvec[count].partial,
4621 NULL_TREE, &args_size, &argvec[count].locate);
4622 args_size.constant += argvec[count].locate.size.constant;
4623 gcc_assert (!argvec[count].locate.size.var);
4624 }
4625 #ifdef BLOCK_REG_PADDING
4626 else
4627 /* The argument is passed entirely in registers. See at which
4628 end it should be padded. */
4629 argvec[count].locate.where_pad =
4630 BLOCK_REG_PADDING (mode, NULL_TREE,
4631 GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
4632 #endif
4633
4634 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
4635 }
4636
4637 /* If this machine requires an external definition for library
4638 functions, write one out. */
4639 assemble_external_libcall (fun);
4640
4641 original_args_size = args_size;
4642 args_size.constant = (((args_size.constant
4643 + stack_pointer_delta
4644 + STACK_BYTES - 1)
4645 / STACK_BYTES
4646 * STACK_BYTES)
4647 - stack_pointer_delta);
4648
4649 args_size.constant = MAX (args_size.constant,
4650 reg_parm_stack_space);
4651
4652 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4653 args_size.constant -= reg_parm_stack_space;
4654
4655 if (args_size.constant > crtl->outgoing_args_size)
4656 crtl->outgoing_args_size = args_size.constant;
4657
4658 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
4659 {
4660 int pushed = args_size.constant + pending_stack_adjust;
4661 if (pushed > current_function_pushed_stack_size)
4662 current_function_pushed_stack_size = pushed;
4663 }
4664
4665 if (ACCUMULATE_OUTGOING_ARGS)
4666 {
4667 /* Since the stack pointer will never be pushed, it is possible for
4668 the evaluation of a parm to clobber something we have already
4669 written to the stack. Since most function calls on RISC machines
4670 do not use the stack, this is uncommon, but must work correctly.
4671
4672 Therefore, we save any area of the stack that was already written
4673 and that we are using. Here we set up to do this by making a new
4674 stack usage map from the old one.
4675
4676 Another approach might be to try to reorder the argument
4677 evaluations to avoid this conflicting stack usage. */
4678
4679 needed = args_size.constant;
4680
4681 /* Since we will be writing into the entire argument area, the
4682 map must be allocated for its entire size, not just the part that
4683 is the responsibility of the caller. */
4684 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4685 needed += reg_parm_stack_space;
4686
4687 if (ARGS_GROW_DOWNWARD)
4688 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
4689 needed + 1);
4690 else
4691 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, needed);
4692
4693 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
4694 stack_usage_map = stack_usage_map_buf;
4695
4696 if (initial_highest_arg_in_use)
4697 memcpy (stack_usage_map, initial_stack_usage_map,
4698 initial_highest_arg_in_use);
4699
4700 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
4701 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
4702 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
4703 needed = 0;
4704
4705 /* We must be careful to use virtual regs before they're instantiated,
4706 and real regs afterwards. Loop optimization, for example, can create
4707 new libcalls after we've instantiated the virtual regs, and if we
4708 use virtuals anyway, they won't match the rtl patterns. */
4709
4710 if (virtuals_instantiated)
4711 argblock = plus_constant (Pmode, stack_pointer_rtx,
4712 STACK_POINTER_OFFSET);
4713 else
4714 argblock = virtual_outgoing_args_rtx;
4715 }
4716 else
4717 {
4718 if (!PUSH_ARGS)
4719 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
4720 }
4721
4722 /* We push args individually in reverse order, perform stack alignment
4723 before the first push (the last arg). */
4724 if (argblock == 0)
4725 anti_adjust_stack (GEN_INT (args_size.constant
4726 - original_args_size.constant));
4727
4728 argnum = nargs - 1;
4729
4730 #ifdef REG_PARM_STACK_SPACE
4731 if (ACCUMULATE_OUTGOING_ARGS)
4732 {
4733 /* The argument list is the property of the called routine and it
4734 may clobber it. If the fixed area has been used for previous
4735 parameters, we must save and restore it. */
4736 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4737 &low_to_save, &high_to_save);
4738 }
4739 #endif
4740
4741 /* When expanding a normal call, args are stored in push order,
4742 which is the reverse of what we have here. */
4743 bool any_regs = false;
4744 for (int i = nargs; i-- > 0; )
4745 if (argvec[i].reg != NULL_RTX)
4746 {
4747 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
4748 any_regs = true;
4749 }
4750 if (!any_regs)
4751 targetm.calls.call_args (pc_rtx, NULL_TREE);
4752
4753 /* Push the args that need to be pushed. */
4754
4755 have_push_fusage = false;
4756
4757 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4758 are to be pushed. */
4759 for (count = 0; count < nargs; count++, argnum--)
4760 {
4761 machine_mode mode = argvec[argnum].mode;
4762 rtx val = argvec[argnum].value;
4763 rtx reg = argvec[argnum].reg;
4764 int partial = argvec[argnum].partial;
4765 unsigned int parm_align = argvec[argnum].locate.boundary;
4766 int lower_bound = 0, upper_bound = 0, i;
4767
4768 if (! (reg != 0 && partial == 0))
4769 {
4770 rtx use;
4771
4772 if (ACCUMULATE_OUTGOING_ARGS)
4773 {
4774 /* If this is being stored into a pre-allocated, fixed-size,
4775 stack area, save any previous data at that location. */
4776
4777 if (ARGS_GROW_DOWNWARD)
4778 {
4779 /* stack_slot is negative, but we want to index stack_usage_map
4780 with positive values. */
4781 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
4782 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
4783 }
4784 else
4785 {
4786 lower_bound = argvec[argnum].locate.slot_offset.constant;
4787 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
4788 }
4789
4790 i = lower_bound;
4791 /* Don't worry about things in the fixed argument area;
4792 it has already been saved. */
4793 if (i < reg_parm_stack_space)
4794 i = reg_parm_stack_space;
4795 while (i < upper_bound && stack_usage_map[i] == 0)
4796 i++;
4797
4798 if (i < upper_bound)
4799 {
4800 /* We need to make a save area. */
4801 unsigned int size
4802 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
4803 machine_mode save_mode
4804 = mode_for_size (size, MODE_INT, 1);
4805 rtx adr
4806 = plus_constant (Pmode, argblock,
4807 argvec[argnum].locate.offset.constant);
4808 rtx stack_area
4809 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
4810
4811 if (save_mode == BLKmode)
4812 {
4813 argvec[argnum].save_area
4814 = assign_stack_temp (BLKmode,
4815 argvec[argnum].locate.size.constant
4816 );
4817
4818 emit_block_move (validize_mem
4819 (copy_rtx (argvec[argnum].save_area)),
4820 stack_area,
4821 GEN_INT (argvec[argnum].locate.size.constant),
4822 BLOCK_OP_CALL_PARM);
4823 }
4824 else
4825 {
4826 argvec[argnum].save_area = gen_reg_rtx (save_mode);
4827
4828 emit_move_insn (argvec[argnum].save_area, stack_area);
4829 }
4830 }
4831 }
4832
4833 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
4834 partial, reg, 0, argblock,
4835 GEN_INT (argvec[argnum].locate.offset.constant),
4836 reg_parm_stack_space,
4837 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
4838
4839 /* Now mark the segment we just used. */
4840 if (ACCUMULATE_OUTGOING_ARGS)
4841 for (i = lower_bound; i < upper_bound; i++)
4842 stack_usage_map[i] = 1;
4843
4844 NO_DEFER_POP;
4845
4846 /* Indicate argument access so that alias.c knows that these
4847 values are live. */
4848 if (argblock)
4849 use = plus_constant (Pmode, argblock,
4850 argvec[argnum].locate.offset.constant);
4851 else if (have_push_fusage)
4852 continue;
4853 else
4854 {
4855 /* When arguments are pushed, trying to tell alias.c where
4856 exactly this argument is won't work, because the
4857 auto-increment causes confusion. So we merely indicate
4858 that we access something with a known mode somewhere on
4859 the stack. */
4860 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4861 gen_rtx_SCRATCH (Pmode));
4862 have_push_fusage = true;
4863 }
4864 use = gen_rtx_MEM (argvec[argnum].mode, use);
4865 use = gen_rtx_USE (VOIDmode, use);
4866 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
4867 }
4868 }
4869
4870 argnum = nargs - 1;
4871
4872 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
4873
4874 /* Now load any reg parms into their regs. */
4875
4876 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4877 are to be pushed. */
4878 for (count = 0; count < nargs; count++, argnum--)
4879 {
4880 machine_mode mode = argvec[argnum].mode;
4881 rtx val = argvec[argnum].value;
4882 rtx reg = argvec[argnum].reg;
4883 int partial = argvec[argnum].partial;
4884 #ifdef BLOCK_REG_PADDING
4885 int size = 0;
4886 #endif
4887
4888 /* Handle calls that pass values in multiple non-contiguous
4889 locations. The PA64 has examples of this for library calls. */
4890 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4891 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
4892 else if (reg != 0 && partial == 0)
4893 {
4894 emit_move_insn (reg, val);
4895 #ifdef BLOCK_REG_PADDING
4896 size = GET_MODE_SIZE (argvec[argnum].mode);
4897
4898 /* Copied from load_register_parameters. */
4899
4900 /* Handle case where we have a value that needs shifting
4901 up to the msb. eg. a QImode value and we're padding
4902 upward on a BYTES_BIG_ENDIAN machine. */
4903 if (size < UNITS_PER_WORD
4904 && (argvec[argnum].locate.where_pad
4905 == (BYTES_BIG_ENDIAN ? upward : downward)))
4906 {
4907 rtx x;
4908 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4909
4910 /* Assigning REG here rather than a temp makes CALL_FUSAGE
4911 report the whole reg as used. Strictly speaking, the
4912 call only uses SIZE bytes at the msb end, but it doesn't
4913 seem worth generating rtl to say that. */
4914 reg = gen_rtx_REG (word_mode, REGNO (reg));
4915 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
4916 if (x != reg)
4917 emit_move_insn (reg, x);
4918 }
4919 #endif
4920 }
4921
4922 NO_DEFER_POP;
4923 }
4924
4925 /* Any regs containing parms remain in use through the call. */
4926 for (count = 0; count < nargs; count++)
4927 {
4928 rtx reg = argvec[count].reg;
4929 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4930 use_group_regs (&call_fusage, reg);
4931 else if (reg != 0)
4932 {
4933 int partial = argvec[count].partial;
4934 if (partial)
4935 {
4936 int nregs;
4937 gcc_assert (partial % UNITS_PER_WORD == 0);
4938 nregs = partial / UNITS_PER_WORD;
4939 use_regs (&call_fusage, REGNO (reg), nregs);
4940 }
4941 else
4942 use_reg (&call_fusage, reg);
4943 }
4944 }
4945
4946 /* Pass the function the address in which to return a structure value. */
4947 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
4948 {
4949 emit_move_insn (struct_value,
4950 force_reg (Pmode,
4951 force_operand (XEXP (mem_value, 0),
4952 NULL_RTX)));
4953 if (REG_P (struct_value))
4954 use_reg (&call_fusage, struct_value);
4955 }
4956
4957 /* Don't allow popping to be deferred, since then
4958 cse'ing of library calls could delete a call and leave the pop. */
4959 NO_DEFER_POP;
4960 valreg = (mem_value == 0 && outmode != VOIDmode
4961 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
4962
4963 /* Stack must be properly aligned now. */
4964 gcc_assert (!(stack_pointer_delta
4965 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
4966
4967 before_call = get_last_insn ();
4968
4969 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4970 will set inhibit_defer_pop to that value. */
4971 /* The return type is needed to decide how many bytes the function pops.
4972 Signedness plays no role in that, so for simplicity, we pretend it's
4973 always signed. We also assume that the list of arguments passed has
4974 no impact, so we pretend it is unknown. */
4975
4976 emit_call_1 (fun, NULL,
4977 get_identifier (XSTR (orgfun, 0)),
4978 build_function_type (tfom, NULL_TREE),
4979 original_args_size.constant, args_size.constant,
4980 struct_value_size,
4981 targetm.calls.function_arg (args_so_far,
4982 VOIDmode, void_type_node, true),
4983 valreg,
4984 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
4985
4986 if (flag_ipa_ra)
4987 {
4988 rtx datum = orgfun;
4989 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
4990 rtx_call_insn *last = last_call_insn ();
4991 add_reg_note (last, REG_CALL_DECL, datum);
4992 }
4993
4994 /* Right-shift returned value if necessary. */
4995 if (!pcc_struct_value
4996 && TYPE_MODE (tfom) != BLKmode
4997 && targetm.calls.return_in_msb (tfom))
4998 {
4999 shift_return_value (TYPE_MODE (tfom), false, valreg);
5000 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5001 }
5002
5003 targetm.calls.end_call_args ();
5004
5005 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5006 that it should complain if nonvolatile values are live. For
5007 functions that cannot return, inform flow that control does not
5008 fall through. */
5009 if (flags & ECF_NORETURN)
5010 {
5011 /* The barrier note must be emitted
5012 immediately after the CALL_INSN. Some ports emit more than
5013 just a CALL_INSN above, so we must search for it here. */
5014 rtx_insn *last = get_last_insn ();
5015 while (!CALL_P (last))
5016 {
5017 last = PREV_INSN (last);
5018 /* There was no CALL_INSN? */
5019 gcc_assert (last != before_call);
5020 }
5021
5022 emit_barrier_after (last);
5023 }
5024
5025 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5026 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5027 if (flags & ECF_NOTHROW)
5028 {
5029 rtx_insn *last = get_last_insn ();
5030 while (!CALL_P (last))
5031 {
5032 last = PREV_INSN (last);
5033 /* There was no CALL_INSN? */
5034 gcc_assert (last != before_call);
5035 }
5036
5037 make_reg_eh_region_note_nothrow_nononlocal (last);
5038 }
5039
5040 /* Now restore inhibit_defer_pop to its actual original value. */
5041 OK_DEFER_POP;
5042
5043 pop_temp_slots ();
5044
5045 /* Copy the value to the right place. */
5046 if (outmode != VOIDmode && retval)
5047 {
5048 if (mem_value)
5049 {
5050 if (value == 0)
5051 value = mem_value;
5052 if (value != mem_value)
5053 emit_move_insn (value, mem_value);
5054 }
5055 else if (GET_CODE (valreg) == PARALLEL)
5056 {
5057 if (value == 0)
5058 value = gen_reg_rtx (outmode);
5059 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5060 }
5061 else
5062 {
5063 /* Convert to the proper mode if a promotion has been active. */
5064 if (GET_MODE (valreg) != outmode)
5065 {
5066 int unsignedp = TYPE_UNSIGNED (tfom);
5067
5068 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5069 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5070 == GET_MODE (valreg));
5071 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5072 }
5073
5074 if (value != 0)
5075 emit_move_insn (value, valreg);
5076 else
5077 value = valreg;
5078 }
5079 }
5080
5081 if (ACCUMULATE_OUTGOING_ARGS)
5082 {
5083 #ifdef REG_PARM_STACK_SPACE
5084 if (save_area)
5085 restore_fixed_argument_area (save_area, argblock,
5086 high_to_save, low_to_save);
5087 #endif
5088
5089 /* If we saved any argument areas, restore them. */
5090 for (count = 0; count < nargs; count++)
5091 if (argvec[count].save_area)
5092 {
5093 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5094 rtx adr = plus_constant (Pmode, argblock,
5095 argvec[count].locate.offset.constant);
5096 rtx stack_area = gen_rtx_MEM (save_mode,
5097 memory_address (save_mode, adr));
5098
5099 if (save_mode == BLKmode)
5100 emit_block_move (stack_area,
5101 validize_mem
5102 (copy_rtx (argvec[count].save_area)),
5103 GEN_INT (argvec[count].locate.size.constant),
5104 BLOCK_OP_CALL_PARM);
5105 else
5106 emit_move_insn (stack_area, argvec[count].save_area);
5107 }
5108
5109 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5110 stack_usage_map = initial_stack_usage_map;
5111 }
5112
5113 free (stack_usage_map_buf);
5114
5115 return value;
5116
5117 }
5118 \f
5119 /* Output a library call to function FUN (a SYMBOL_REF rtx)
5120 (emitting the queue unless NO_QUEUE is nonzero),
5121 for a value of mode OUTMODE,
5122 with NARGS different arguments, passed as alternating rtx values
5123 and machine_modes to convert them to.
5124
5125 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
5126 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
5127 other types of library calls. */
5128
5129 void
5130 emit_library_call (rtx orgfun, enum libcall_type fn_type,
5131 machine_mode outmode, int nargs, ...)
5132 {
5133 va_list p;
5134
5135 va_start (p, nargs);
5136 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
5137 va_end (p);
5138 }
5139 \f
5140 /* Like emit_library_call except that an extra argument, VALUE,
5141 comes second and says where to store the result.
5142 (If VALUE is zero, this function chooses a convenient way
5143 to return the value.
5144
5145 This function returns an rtx for where the value is to be found.
5146 If VALUE is nonzero, VALUE is returned. */
5147
5148 rtx
5149 emit_library_call_value (rtx orgfun, rtx value,
5150 enum libcall_type fn_type,
5151 machine_mode outmode, int nargs, ...)
5152 {
5153 rtx result;
5154 va_list p;
5155
5156 va_start (p, nargs);
5157 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
5158 nargs, p);
5159 va_end (p);
5160
5161 return result;
5162 }
5163 \f
5164
5165 /* Store pointer bounds argument ARG into Bounds Table entry
5166 associated with PARM. */
5167 static void
5168 store_bounds (struct arg_data *arg, struct arg_data *parm)
5169 {
5170 rtx slot = NULL, ptr = NULL, addr = NULL;
5171
5172 /* We may pass bounds not associated with any pointer. */
5173 if (!parm)
5174 {
5175 gcc_assert (arg->special_slot);
5176 slot = arg->special_slot;
5177 ptr = const0_rtx;
5178 }
5179 /* Find pointer associated with bounds and where it is
5180 passed. */
5181 else
5182 {
5183 if (!parm->reg)
5184 {
5185 gcc_assert (!arg->special_slot);
5186
5187 addr = adjust_address (parm->stack, Pmode, arg->pointer_offset);
5188 }
5189 else if (REG_P (parm->reg))
5190 {
5191 gcc_assert (arg->special_slot);
5192 slot = arg->special_slot;
5193
5194 if (MEM_P (parm->value))
5195 addr = adjust_address (parm->value, Pmode, arg->pointer_offset);
5196 else if (REG_P (parm->value))
5197 ptr = gen_rtx_SUBREG (Pmode, parm->value, arg->pointer_offset);
5198 else
5199 {
5200 gcc_assert (!arg->pointer_offset);
5201 ptr = parm->value;
5202 }
5203 }
5204 else
5205 {
5206 gcc_assert (GET_CODE (parm->reg) == PARALLEL);
5207
5208 gcc_assert (arg->special_slot);
5209 slot = arg->special_slot;
5210
5211 if (parm->parallel_value)
5212 ptr = chkp_get_value_with_offs (parm->parallel_value,
5213 GEN_INT (arg->pointer_offset));
5214 else
5215 gcc_unreachable ();
5216 }
5217 }
5218
5219 /* Expand bounds. */
5220 if (!arg->value)
5221 arg->value = expand_normal (arg->tree_value);
5222
5223 targetm.calls.store_bounds_for_arg (ptr, addr, arg->value, slot);
5224 }
5225
5226 /* Store a single argument for a function call
5227 into the register or memory area where it must be passed.
5228 *ARG describes the argument value and where to pass it.
5229
5230 ARGBLOCK is the address of the stack-block for all the arguments,
5231 or 0 on a machine where arguments are pushed individually.
5232
5233 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5234 so must be careful about how the stack is used.
5235
5236 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5237 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5238 that we need not worry about saving and restoring the stack.
5239
5240 FNDECL is the declaration of the function we are calling.
5241
5242 Return nonzero if this arg should cause sibcall failure,
5243 zero otherwise. */
5244
5245 static int
5246 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5247 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5248 {
5249 tree pval = arg->tree_value;
5250 rtx reg = 0;
5251 int partial = 0;
5252 int used = 0;
5253 int i, lower_bound = 0, upper_bound = 0;
5254 int sibcall_failure = 0;
5255
5256 if (TREE_CODE (pval) == ERROR_MARK)
5257 return 1;
5258
5259 /* Push a new temporary level for any temporaries we make for
5260 this argument. */
5261 push_temp_slots ();
5262
5263 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5264 {
5265 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5266 save any previous data at that location. */
5267 if (argblock && ! variable_size && arg->stack)
5268 {
5269 if (ARGS_GROW_DOWNWARD)
5270 {
5271 /* stack_slot is negative, but we want to index stack_usage_map
5272 with positive values. */
5273 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5274 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
5275 else
5276 upper_bound = 0;
5277
5278 lower_bound = upper_bound - arg->locate.size.constant;
5279 }
5280 else
5281 {
5282 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5283 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
5284 else
5285 lower_bound = 0;
5286
5287 upper_bound = lower_bound + arg->locate.size.constant;
5288 }
5289
5290 i = lower_bound;
5291 /* Don't worry about things in the fixed argument area;
5292 it has already been saved. */
5293 if (i < reg_parm_stack_space)
5294 i = reg_parm_stack_space;
5295 while (i < upper_bound && stack_usage_map[i] == 0)
5296 i++;
5297
5298 if (i < upper_bound)
5299 {
5300 /* We need to make a save area. */
5301 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
5302 machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
5303 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5304 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5305
5306 if (save_mode == BLKmode)
5307 {
5308 arg->save_area
5309 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5310 preserve_temp_slots (arg->save_area);
5311 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5312 stack_area,
5313 GEN_INT (arg->locate.size.constant),
5314 BLOCK_OP_CALL_PARM);
5315 }
5316 else
5317 {
5318 arg->save_area = gen_reg_rtx (save_mode);
5319 emit_move_insn (arg->save_area, stack_area);
5320 }
5321 }
5322 }
5323 }
5324
5325 /* If this isn't going to be placed on both the stack and in registers,
5326 set up the register and number of words. */
5327 if (! arg->pass_on_stack)
5328 {
5329 if (flags & ECF_SIBCALL)
5330 reg = arg->tail_call_reg;
5331 else
5332 reg = arg->reg;
5333 partial = arg->partial;
5334 }
5335
5336 /* Being passed entirely in a register. We shouldn't be called in
5337 this case. */
5338 gcc_assert (reg == 0 || partial != 0);
5339
5340 /* If this arg needs special alignment, don't load the registers
5341 here. */
5342 if (arg->n_aligned_regs != 0)
5343 reg = 0;
5344
5345 /* If this is being passed partially in a register, we can't evaluate
5346 it directly into its stack slot. Otherwise, we can. */
5347 if (arg->value == 0)
5348 {
5349 /* stack_arg_under_construction is nonzero if a function argument is
5350 being evaluated directly into the outgoing argument list and
5351 expand_call must take special action to preserve the argument list
5352 if it is called recursively.
5353
5354 For scalar function arguments stack_usage_map is sufficient to
5355 determine which stack slots must be saved and restored. Scalar
5356 arguments in general have pass_on_stack == 0.
5357
5358 If this argument is initialized by a function which takes the
5359 address of the argument (a C++ constructor or a C function
5360 returning a BLKmode structure), then stack_usage_map is
5361 insufficient and expand_call must push the stack around the
5362 function call. Such arguments have pass_on_stack == 1.
5363
5364 Note that it is always safe to set stack_arg_under_construction,
5365 but this generates suboptimal code if set when not needed. */
5366
5367 if (arg->pass_on_stack)
5368 stack_arg_under_construction++;
5369
5370 arg->value = expand_expr (pval,
5371 (partial
5372 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5373 ? NULL_RTX : arg->stack,
5374 VOIDmode, EXPAND_STACK_PARM);
5375
5376 /* If we are promoting object (or for any other reason) the mode
5377 doesn't agree, convert the mode. */
5378
5379 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5380 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5381 arg->value, arg->unsignedp);
5382
5383 if (arg->pass_on_stack)
5384 stack_arg_under_construction--;
5385 }
5386
5387 /* Check for overlap with already clobbered argument area. */
5388 if ((flags & ECF_SIBCALL)
5389 && MEM_P (arg->value)
5390 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
5391 arg->locate.size.constant))
5392 sibcall_failure = 1;
5393
5394 /* Don't allow anything left on stack from computation
5395 of argument to alloca. */
5396 if (flags & ECF_MAY_BE_ALLOCA)
5397 do_pending_stack_adjust ();
5398
5399 if (arg->value == arg->stack)
5400 /* If the value is already in the stack slot, we are done. */
5401 ;
5402 else if (arg->mode != BLKmode)
5403 {
5404 int size;
5405 unsigned int parm_align;
5406
5407 /* Argument is a scalar, not entirely passed in registers.
5408 (If part is passed in registers, arg->partial says how much
5409 and emit_push_insn will take care of putting it there.)
5410
5411 Push it, and if its size is less than the
5412 amount of space allocated to it,
5413 also bump stack pointer by the additional space.
5414 Note that in C the default argument promotions
5415 will prevent such mismatches. */
5416
5417 size = GET_MODE_SIZE (arg->mode);
5418 /* Compute how much space the push instruction will push.
5419 On many machines, pushing a byte will advance the stack
5420 pointer by a halfword. */
5421 #ifdef PUSH_ROUNDING
5422 size = PUSH_ROUNDING (size);
5423 #endif
5424 used = size;
5425
5426 /* Compute how much space the argument should get:
5427 round up to a multiple of the alignment for arguments. */
5428 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
5429 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
5430 / (PARM_BOUNDARY / BITS_PER_UNIT))
5431 * (PARM_BOUNDARY / BITS_PER_UNIT));
5432
5433 /* Compute the alignment of the pushed argument. */
5434 parm_align = arg->locate.boundary;
5435 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
5436 {
5437 int pad = used - size;
5438 if (pad)
5439 {
5440 unsigned int pad_align = least_bit_hwi (pad) * BITS_PER_UNIT;
5441 parm_align = MIN (parm_align, pad_align);
5442 }
5443 }
5444
5445 /* This isn't already where we want it on the stack, so put it there.
5446 This can either be done with push or copy insns. */
5447 if (!emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
5448 parm_align, partial, reg, used - size, argblock,
5449 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
5450 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5451 sibcall_failure = 1;
5452
5453 /* Unless this is a partially-in-register argument, the argument is now
5454 in the stack. */
5455 if (partial == 0)
5456 arg->value = arg->stack;
5457 }
5458 else
5459 {
5460 /* BLKmode, at least partly to be pushed. */
5461
5462 unsigned int parm_align;
5463 int excess;
5464 rtx size_rtx;
5465
5466 /* Pushing a nonscalar.
5467 If part is passed in registers, PARTIAL says how much
5468 and emit_push_insn will take care of putting it there. */
5469
5470 /* Round its size up to a multiple
5471 of the allocation unit for arguments. */
5472
5473 if (arg->locate.size.var != 0)
5474 {
5475 excess = 0;
5476 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
5477 }
5478 else
5479 {
5480 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
5481 for BLKmode is careful to avoid it. */
5482 excess = (arg->locate.size.constant
5483 - int_size_in_bytes (TREE_TYPE (pval))
5484 + partial);
5485 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
5486 NULL_RTX, TYPE_MODE (sizetype),
5487 EXPAND_NORMAL);
5488 }
5489
5490 parm_align = arg->locate.boundary;
5491
5492 /* When an argument is padded down, the block is aligned to
5493 PARM_BOUNDARY, but the actual argument isn't. */
5494 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
5495 {
5496 if (arg->locate.size.var)
5497 parm_align = BITS_PER_UNIT;
5498 else if (excess)
5499 {
5500 unsigned int excess_align = least_bit_hwi (excess) * BITS_PER_UNIT;
5501 parm_align = MIN (parm_align, excess_align);
5502 }
5503 }
5504
5505 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
5506 {
5507 /* emit_push_insn might not work properly if arg->value and
5508 argblock + arg->locate.offset areas overlap. */
5509 rtx x = arg->value;
5510 int i = 0;
5511
5512 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
5513 || (GET_CODE (XEXP (x, 0)) == PLUS
5514 && XEXP (XEXP (x, 0), 0) ==
5515 crtl->args.internal_arg_pointer
5516 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
5517 {
5518 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
5519 i = INTVAL (XEXP (XEXP (x, 0), 1));
5520
5521 /* arg.locate doesn't contain the pretend_args_size offset,
5522 it's part of argblock. Ensure we don't count it in I. */
5523 if (STACK_GROWS_DOWNWARD)
5524 i -= crtl->args.pretend_args_size;
5525 else
5526 i += crtl->args.pretend_args_size;
5527
5528 /* expand_call should ensure this. */
5529 gcc_assert (!arg->locate.offset.var
5530 && arg->locate.size.var == 0
5531 && CONST_INT_P (size_rtx));
5532
5533 if (arg->locate.offset.constant > i)
5534 {
5535 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
5536 sibcall_failure = 1;
5537 }
5538 else if (arg->locate.offset.constant < i)
5539 {
5540 /* Use arg->locate.size.constant instead of size_rtx
5541 because we only care about the part of the argument
5542 on the stack. */
5543 if (i < (arg->locate.offset.constant
5544 + arg->locate.size.constant))
5545 sibcall_failure = 1;
5546 }
5547 else
5548 {
5549 /* Even though they appear to be at the same location,
5550 if part of the outgoing argument is in registers,
5551 they aren't really at the same location. Check for
5552 this by making sure that the incoming size is the
5553 same as the outgoing size. */
5554 if (arg->locate.size.constant != INTVAL (size_rtx))
5555 sibcall_failure = 1;
5556 }
5557 }
5558 }
5559
5560 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5561 parm_align, partial, reg, excess, argblock,
5562 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
5563 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5564
5565 /* Unless this is a partially-in-register argument, the argument is now
5566 in the stack.
5567
5568 ??? Unlike the case above, in which we want the actual
5569 address of the data, so that we can load it directly into a
5570 register, here we want the address of the stack slot, so that
5571 it's properly aligned for word-by-word copying or something
5572 like that. It's not clear that this is always correct. */
5573 if (partial == 0)
5574 arg->value = arg->stack_slot;
5575 }
5576
5577 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5578 {
5579 tree type = TREE_TYPE (arg->tree_value);
5580 arg->parallel_value
5581 = emit_group_load_into_temps (arg->reg, arg->value, type,
5582 int_size_in_bytes (type));
5583 }
5584
5585 /* Mark all slots this store used. */
5586 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5587 && argblock && ! variable_size && arg->stack)
5588 for (i = lower_bound; i < upper_bound; i++)
5589 stack_usage_map[i] = 1;
5590
5591 /* Once we have pushed something, pops can't safely
5592 be deferred during the rest of the arguments. */
5593 NO_DEFER_POP;
5594
5595 /* Free any temporary slots made in processing this argument. */
5596 pop_temp_slots ();
5597
5598 return sibcall_failure;
5599 }
5600
5601 /* Nonzero if we do not know how to pass TYPE solely in registers. */
5602
5603 bool
5604 must_pass_in_stack_var_size (machine_mode mode ATTRIBUTE_UNUSED,
5605 const_tree type)
5606 {
5607 if (!type)
5608 return false;
5609
5610 /* If the type has variable size... */
5611 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5612 return true;
5613
5614 /* If the type is marked as addressable (it is required
5615 to be constructed into the stack)... */
5616 if (TREE_ADDRESSABLE (type))
5617 return true;
5618
5619 return false;
5620 }
5621
5622 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5623 takes trailing padding of a structure into account. */
5624 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5625
5626 bool
5627 must_pass_in_stack_var_size_or_pad (machine_mode mode, const_tree type)
5628 {
5629 if (!type)
5630 return false;
5631
5632 /* If the type has variable size... */
5633 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5634 return true;
5635
5636 /* If the type is marked as addressable (it is required
5637 to be constructed into the stack)... */
5638 if (TREE_ADDRESSABLE (type))
5639 return true;
5640
5641 /* If the padding and mode of the type is such that a copy into
5642 a register would put it into the wrong part of the register. */
5643 if (mode == BLKmode
5644 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5645 && (FUNCTION_ARG_PADDING (mode, type)
5646 == (BYTES_BIG_ENDIAN ? upward : downward)))
5647 return true;
5648
5649 return false;
5650 }
5651
5652 /* Tell the garbage collector about GTY markers in this source file. */
5653 #include "gt-calls.h"