]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/calls.cc
check undefine_p for one more vr
[thirdparty/gcc.git] / gcc / calls.cc
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-vrp.h"
51 #include "tree-ssanames.h"
52 #include "intl.h"
53 #include "stringpool.h"
54 #include "hash-map.h"
55 #include "hash-traits.h"
56 #include "attribs.h"
57 #include "builtins.h"
58 #include "gimple-iterator.h"
59 #include "gimple-fold.h"
60 #include "attr-fnspec.h"
61 #include "value-query.h"
62 #include "tree-pretty-print.h"
63 #include "tree-eh.h"
64
65 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
66 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
67
68 /* Data structure and subroutines used within expand_call. */
69
70 struct arg_data
71 {
72 /* Tree node for this argument. */
73 tree tree_value;
74 /* Mode for value; TYPE_MODE unless promoted. */
75 machine_mode mode;
76 /* Current RTL value for argument, or 0 if it isn't precomputed. */
77 rtx value;
78 /* Initially-compute RTL value for argument; only for const functions. */
79 rtx initial_value;
80 /* Register to pass this argument in, 0 if passed on stack, or an
81 PARALLEL if the arg is to be copied into multiple non-contiguous
82 registers. */
83 rtx reg;
84 /* Register to pass this argument in when generating tail call sequence.
85 This is not the same register as for normal calls on machines with
86 register windows. */
87 rtx tail_call_reg;
88 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
89 form for emit_group_move. */
90 rtx parallel_value;
91 /* If REG was promoted from the actual mode of the argument expression,
92 indicates whether the promotion is sign- or zero-extended. */
93 int unsignedp;
94 /* Number of bytes to put in registers. 0 means put the whole arg
95 in registers. Also 0 if not passed in registers. */
96 int partial;
97 /* True if argument must be passed on stack.
98 Note that some arguments may be passed on the stack
99 even though pass_on_stack is false, just because FUNCTION_ARG says so.
100 pass_on_stack identifies arguments that *cannot* go in registers. */
101 bool pass_on_stack;
102 /* Some fields packaged up for locate_and_pad_parm. */
103 struct locate_and_pad_arg_data locate;
104 /* Location on the stack at which parameter should be stored. The store
105 has already been done if STACK == VALUE. */
106 rtx stack;
107 /* Location on the stack of the start of this argument slot. This can
108 differ from STACK if this arg pads downward. This location is known
109 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
110 rtx stack_slot;
111 /* Place that this stack area has been saved, if needed. */
112 rtx save_area;
113 /* If an argument's alignment does not permit direct copying into registers,
114 copy in smaller-sized pieces into pseudos. These are stored in a
115 block pointed to by this field. The next field says how many
116 word-sized pseudos we made. */
117 rtx *aligned_regs;
118 int n_aligned_regs;
119 };
120
121 /* A vector of one char per byte of stack space. A byte if nonzero if
122 the corresponding stack location has been used.
123 This vector is used to prevent a function call within an argument from
124 clobbering any stack already set up. */
125 static char *stack_usage_map;
126
127 /* Size of STACK_USAGE_MAP. */
128 static unsigned int highest_outgoing_arg_in_use;
129
130 /* Assume that any stack location at this byte index is used,
131 without checking the contents of stack_usage_map. */
132 static unsigned HOST_WIDE_INT stack_usage_watermark = HOST_WIDE_INT_M1U;
133
134 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
135 stack location's tail call argument has been already stored into the stack.
136 This bitmap is used to prevent sibling call optimization if function tries
137 to use parent's incoming argument slots when they have been already
138 overwritten with tail call arguments. */
139 static sbitmap stored_args_map;
140
141 /* Assume that any virtual-incoming location at this byte index has been
142 stored, without checking the contents of stored_args_map. */
143 static unsigned HOST_WIDE_INT stored_args_watermark;
144
145 /* stack_arg_under_construction is nonzero when an argument may be
146 initialized with a constructor call (including a C function that
147 returns a BLKmode struct) and expand_call must take special action
148 to make sure the object being constructed does not overlap the
149 argument list for the constructor call. */
150 static int stack_arg_under_construction;
151
152 static void precompute_register_parameters (int, struct arg_data *, int *);
153 static bool store_one_arg (struct arg_data *, rtx, int, int, int);
154 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
155 static bool finalize_must_preallocate (bool, int, struct arg_data *,
156 struct args_size *);
157 static void precompute_arguments (int, struct arg_data *);
158 static void compute_argument_addresses (struct arg_data *, rtx, int);
159 static rtx rtx_for_function_call (tree, tree);
160 static void load_register_parameters (struct arg_data *, int, rtx *, int,
161 int, bool *);
162 static int special_function_p (const_tree, int);
163 static bool check_sibcall_argument_overlap_1 (rtx);
164 static bool check_sibcall_argument_overlap (rtx_insn *, struct arg_data *,
165 bool);
166 static tree split_complex_types (tree);
167
168 #ifdef REG_PARM_STACK_SPACE
169 static rtx save_fixed_argument_area (int, rtx, int *, int *);
170 static void restore_fixed_argument_area (rtx, rtx, int, int);
171 #endif
172 \f
173 /* Return true if bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
174 stack region might already be in use. */
175
176 static bool
177 stack_region_maybe_used_p (poly_uint64 lower_bound, poly_uint64 upper_bound,
178 unsigned int reg_parm_stack_space)
179 {
180 unsigned HOST_WIDE_INT const_lower, const_upper;
181 const_lower = constant_lower_bound (lower_bound);
182 if (!upper_bound.is_constant (&const_upper))
183 const_upper = HOST_WIDE_INT_M1U;
184
185 if (const_upper > stack_usage_watermark)
186 return true;
187
188 /* Don't worry about things in the fixed argument area;
189 it has already been saved. */
190 const_lower = MAX (const_lower, reg_parm_stack_space);
191 const_upper = MIN (const_upper, highest_outgoing_arg_in_use);
192 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
193 if (stack_usage_map[i])
194 return true;
195 return false;
196 }
197
198 /* Record that bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
199 stack region are now in use. */
200
201 static void
202 mark_stack_region_used (poly_uint64 lower_bound, poly_uint64 upper_bound)
203 {
204 unsigned HOST_WIDE_INT const_lower, const_upper;
205 const_lower = constant_lower_bound (lower_bound);
206 if (upper_bound.is_constant (&const_upper)
207 && const_upper <= highest_outgoing_arg_in_use)
208 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
209 stack_usage_map[i] = 1;
210 else
211 stack_usage_watermark = MIN (stack_usage_watermark, const_lower);
212 }
213
214 /* Force FUNEXP into a form suitable for the address of a CALL,
215 and return that as an rtx. Also load the static chain register
216 if FNDECL is a nested function.
217
218 CALL_FUSAGE points to a variable holding the prospective
219 CALL_INSN_FUNCTION_USAGE information. */
220
221 rtx
222 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
223 rtx *call_fusage, int reg_parm_seen, int flags)
224 {
225 /* Make a valid memory address and copy constants through pseudo-regs,
226 but not for a constant address if -fno-function-cse. */
227 if (GET_CODE (funexp) != SYMBOL_REF)
228 {
229 /* If it's an indirect call by descriptor, generate code to perform
230 runtime identification of the pointer and load the descriptor. */
231 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
232 {
233 const int bit_val = targetm.calls.custom_function_descriptors;
234 rtx call_lab = gen_label_rtx ();
235
236 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
237 fndecl_or_type
238 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
239 fndecl_or_type);
240 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
241 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
242
243 if (GET_MODE (funexp) != Pmode)
244 funexp = convert_memory_address (Pmode, funexp);
245
246 /* Avoid long live ranges around function calls. */
247 funexp = copy_to_mode_reg (Pmode, funexp);
248
249 if (REG_P (chain))
250 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
251
252 /* Emit the runtime identification pattern. */
253 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
254 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
255 call_lab);
256
257 /* Statically predict the branch to very likely taken. */
258 rtx_insn *insn = get_last_insn ();
259 if (JUMP_P (insn))
260 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
261
262 /* Load the descriptor. */
263 rtx mem = gen_rtx_MEM (ptr_mode,
264 plus_constant (Pmode, funexp, - bit_val));
265 MEM_NOTRAP_P (mem) = 1;
266 mem = convert_memory_address (Pmode, mem);
267 emit_move_insn (chain, mem);
268
269 mem = gen_rtx_MEM (ptr_mode,
270 plus_constant (Pmode, funexp,
271 POINTER_SIZE / BITS_PER_UNIT
272 - bit_val));
273 MEM_NOTRAP_P (mem) = 1;
274 mem = convert_memory_address (Pmode, mem);
275 emit_move_insn (funexp, mem);
276
277 emit_label (call_lab);
278
279 if (REG_P (chain))
280 {
281 use_reg (call_fusage, chain);
282 STATIC_CHAIN_REG_P (chain) = 1;
283 }
284
285 /* Make sure we're not going to be overwritten below. */
286 gcc_assert (!static_chain_value);
287 }
288
289 /* If we are using registers for parameters, force the
290 function address into a register now. */
291 funexp = ((reg_parm_seen
292 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
293 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
294 : memory_address (FUNCTION_MODE, funexp));
295 }
296 else
297 {
298 /* funexp could be a SYMBOL_REF represents a function pointer which is
299 of ptr_mode. In this case, it should be converted into address mode
300 to be a valid address for memory rtx pattern. See PR 64971. */
301 if (GET_MODE (funexp) != Pmode)
302 funexp = convert_memory_address (Pmode, funexp);
303
304 if (!(flags & ECF_SIBCALL))
305 {
306 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
307 funexp = force_reg (Pmode, funexp);
308 }
309 }
310
311 if (static_chain_value != 0
312 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
313 || DECL_STATIC_CHAIN (fndecl_or_type)))
314 {
315 rtx chain;
316
317 chain = targetm.calls.static_chain (fndecl_or_type, false);
318 static_chain_value = convert_memory_address (Pmode, static_chain_value);
319
320 emit_move_insn (chain, static_chain_value);
321 if (REG_P (chain))
322 {
323 use_reg (call_fusage, chain);
324 STATIC_CHAIN_REG_P (chain) = 1;
325 }
326 }
327
328 return funexp;
329 }
330
331 /* Generate instructions to call function FUNEXP,
332 and optionally pop the results.
333 The CALL_INSN is the first insn generated.
334
335 FNDECL is the declaration node of the function. This is given to the
336 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
337 its own args.
338
339 FUNTYPE is the data type of the function. This is given to the hook
340 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
341 own args. We used to allow an identifier for library functions, but
342 that doesn't work when the return type is an aggregate type and the
343 calling convention says that the pointer to this aggregate is to be
344 popped by the callee.
345
346 STACK_SIZE is the number of bytes of arguments on the stack,
347 ROUNDED_STACK_SIZE is that number rounded up to
348 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
349 both to put into the call insn and to generate explicit popping
350 code if necessary.
351
352 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
353 It is zero if this call doesn't want a structure value.
354
355 NEXT_ARG_REG is the rtx that results from executing
356 targetm.calls.function_arg (&args_so_far,
357 function_arg_info::end_marker ());
358 just after all the args have had their registers assigned.
359 This could be whatever you like, but normally it is the first
360 arg-register beyond those used for args in this call,
361 or 0 if all the arg-registers are used in this call.
362 It is passed on to `gen_call' so you can put this info in the call insn.
363
364 VALREG is a hard register in which a value is returned,
365 or 0 if the call does not return a value.
366
367 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
368 the args to this call were processed.
369 We restore `inhibit_defer_pop' to that value.
370
371 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
372 denote registers used by the called function. */
373
374 static void
375 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
376 tree funtype ATTRIBUTE_UNUSED,
377 poly_int64 stack_size ATTRIBUTE_UNUSED,
378 poly_int64 rounded_stack_size,
379 poly_int64 struct_value_size ATTRIBUTE_UNUSED,
380 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
381 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
382 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
383 {
384 rtx rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
385 rtx call, funmem, pat;
386 bool already_popped = false;
387 poly_int64 n_popped = 0;
388
389 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
390 patterns exist). Any popping that the callee does on return will
391 be from our caller's frame rather than ours. */
392 if (!(ecf_flags & ECF_SIBCALL))
393 {
394 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
395
396 #ifdef CALL_POPS_ARGS
397 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
398 #endif
399 }
400
401 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
402 and we don't want to load it into a register as an optimization,
403 because prepare_call_address already did it if it should be done. */
404 if (GET_CODE (funexp) != SYMBOL_REF)
405 funexp = memory_address (FUNCTION_MODE, funexp);
406
407 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
408 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
409 {
410 tree t = fndecl;
411
412 /* Although a built-in FUNCTION_DECL and its non-__builtin
413 counterpart compare equal and get a shared mem_attrs, they
414 produce different dump output in compare-debug compilations,
415 if an entry gets garbage collected in one compilation, then
416 adds a different (but equivalent) entry, while the other
417 doesn't run the garbage collector at the same spot and then
418 shares the mem_attr with the equivalent entry. */
419 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
420 {
421 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
422 if (t2)
423 t = t2;
424 }
425
426 set_mem_expr (funmem, t);
427 }
428 else if (fntree)
429 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
430
431 if (ecf_flags & ECF_SIBCALL)
432 {
433 if (valreg)
434 pat = targetm.gen_sibcall_value (valreg, funmem,
435 rounded_stack_size_rtx,
436 next_arg_reg, NULL_RTX);
437 else
438 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
439 next_arg_reg,
440 gen_int_mode (struct_value_size, Pmode));
441 }
442 /* If the target has "call" or "call_value" insns, then prefer them
443 if no arguments are actually popped. If the target does not have
444 "call" or "call_value" insns, then we must use the popping versions
445 even if the call has no arguments to pop. */
446 else if (maybe_ne (n_popped, 0)
447 || !(valreg
448 ? targetm.have_call_value ()
449 : targetm.have_call ()))
450 {
451 rtx n_pop = gen_int_mode (n_popped, Pmode);
452
453 /* If this subroutine pops its own args, record that in the call insn
454 if possible, for the sake of frame pointer elimination. */
455
456 if (valreg)
457 pat = targetm.gen_call_value_pop (valreg, funmem,
458 rounded_stack_size_rtx,
459 next_arg_reg, n_pop);
460 else
461 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
462 next_arg_reg, n_pop);
463
464 already_popped = true;
465 }
466 else
467 {
468 if (valreg)
469 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
470 next_arg_reg, NULL_RTX);
471 else
472 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
473 gen_int_mode (struct_value_size, Pmode));
474 }
475 emit_insn (pat);
476
477 /* Find the call we just emitted. */
478 rtx_call_insn *call_insn = last_call_insn ();
479
480 /* Some target create a fresh MEM instead of reusing the one provided
481 above. Set its MEM_EXPR. */
482 call = get_call_rtx_from (call_insn);
483 if (call
484 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
485 && MEM_EXPR (funmem) != NULL_TREE)
486 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
487
488 /* Put the register usage information there. */
489 add_function_usage_to (call_insn, call_fusage);
490
491 /* If this is a const call, then set the insn's unchanging bit. */
492 if (ecf_flags & ECF_CONST)
493 RTL_CONST_CALL_P (call_insn) = 1;
494
495 /* If this is a pure call, then set the insn's unchanging bit. */
496 if (ecf_flags & ECF_PURE)
497 RTL_PURE_CALL_P (call_insn) = 1;
498
499 /* If this is a const call, then set the insn's unchanging bit. */
500 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
501 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
502
503 /* Create a nothrow REG_EH_REGION note, if needed. */
504 make_reg_eh_region_note (call_insn, ecf_flags, 0);
505
506 if (ecf_flags & ECF_NORETURN)
507 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
508
509 if (ecf_flags & ECF_RETURNS_TWICE)
510 {
511 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
512 cfun->calls_setjmp = 1;
513 }
514
515 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
516
517 /* Restore this now, so that we do defer pops for this call's args
518 if the context of the call as a whole permits. */
519 inhibit_defer_pop = old_inhibit_defer_pop;
520
521 if (maybe_ne (n_popped, 0))
522 {
523 if (!already_popped)
524 CALL_INSN_FUNCTION_USAGE (call_insn)
525 = gen_rtx_EXPR_LIST (VOIDmode,
526 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
527 CALL_INSN_FUNCTION_USAGE (call_insn));
528 rounded_stack_size -= n_popped;
529 rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
530 stack_pointer_delta -= n_popped;
531
532 add_args_size_note (call_insn, stack_pointer_delta);
533
534 /* If popup is needed, stack realign must use DRAP */
535 if (SUPPORTS_STACK_ALIGNMENT)
536 crtl->need_drap = true;
537 }
538 /* For noreturn calls when not accumulating outgoing args force
539 REG_ARGS_SIZE note to prevent crossjumping of calls with different
540 args sizes. */
541 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
542 add_args_size_note (call_insn, stack_pointer_delta);
543
544 if (!ACCUMULATE_OUTGOING_ARGS)
545 {
546 /* If returning from the subroutine does not automatically pop the args,
547 we need an instruction to pop them sooner or later.
548 Perhaps do it now; perhaps just record how much space to pop later.
549
550 If returning from the subroutine does pop the args, indicate that the
551 stack pointer will be changed. */
552
553 if (maybe_ne (rounded_stack_size, 0))
554 {
555 if (ecf_flags & ECF_NORETURN)
556 /* Just pretend we did the pop. */
557 stack_pointer_delta -= rounded_stack_size;
558 else if (flag_defer_pop && inhibit_defer_pop == 0
559 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
560 pending_stack_adjust += rounded_stack_size;
561 else
562 adjust_stack (rounded_stack_size_rtx);
563 }
564 }
565 /* When we accumulate outgoing args, we must avoid any stack manipulations.
566 Restore the stack pointer to its original value now. Usually
567 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
568 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
569 popping variants of functions exist as well.
570
571 ??? We may optimize similar to defer_pop above, but it is
572 probably not worthwhile.
573
574 ??? It will be worthwhile to enable combine_stack_adjustments even for
575 such machines. */
576 else if (maybe_ne (n_popped, 0))
577 anti_adjust_stack (gen_int_mode (n_popped, Pmode));
578 }
579
580 /* Determine if the function identified by FNDECL is one with
581 special properties we wish to know about. Modify FLAGS accordingly.
582
583 For example, if the function might return more than one time (setjmp), then
584 set ECF_RETURNS_TWICE.
585
586 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
587 space from the stack such as alloca. */
588
589 static int
590 special_function_p (const_tree fndecl, int flags)
591 {
592 tree name_decl = DECL_NAME (fndecl);
593
594 if (maybe_special_function_p (fndecl)
595 && IDENTIFIER_LENGTH (name_decl) <= 11)
596 {
597 const char *name = IDENTIFIER_POINTER (name_decl);
598 const char *tname = name;
599
600 /* We assume that alloca will always be called by name. It
601 makes no sense to pass it as a pointer-to-function to
602 anything that does not understand its behavior. */
603 if (IDENTIFIER_LENGTH (name_decl) == 6
604 && name[0] == 'a'
605 && ! strcmp (name, "alloca"))
606 flags |= ECF_MAY_BE_ALLOCA;
607
608 /* Disregard prefix _ or __. */
609 if (name[0] == '_')
610 {
611 if (name[1] == '_')
612 tname += 2;
613 else
614 tname += 1;
615 }
616
617 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
618 if (! strcmp (tname, "setjmp")
619 || ! strcmp (tname, "sigsetjmp")
620 || ! strcmp (name, "savectx")
621 || ! strcmp (name, "vfork")
622 || ! strcmp (name, "getcontext"))
623 flags |= ECF_RETURNS_TWICE;
624 }
625
626 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
627 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
628 flags |= ECF_MAY_BE_ALLOCA;
629
630 return flags;
631 }
632
633 /* Return fnspec for DECL. */
634
635 static attr_fnspec
636 decl_fnspec (tree fndecl)
637 {
638 tree attr;
639 tree type = TREE_TYPE (fndecl);
640 if (type)
641 {
642 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
643 if (attr)
644 {
645 return TREE_VALUE (TREE_VALUE (attr));
646 }
647 }
648 if (fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
649 return builtin_fnspec (fndecl);
650 return "";
651 }
652
653 /* Similar to special_function_p; return a set of ERF_ flags for the
654 function FNDECL. */
655 static int
656 decl_return_flags (tree fndecl)
657 {
658 attr_fnspec fnspec = decl_fnspec (fndecl);
659
660 unsigned int arg;
661 if (fnspec.returns_arg (&arg))
662 return ERF_RETURNS_ARG | arg;
663
664 if (fnspec.returns_noalias_p ())
665 return ERF_NOALIAS;
666 return 0;
667 }
668
669 /* Return true when FNDECL represents a call to setjmp. */
670
671 bool
672 setjmp_call_p (const_tree fndecl)
673 {
674 if (DECL_IS_RETURNS_TWICE (fndecl))
675 return true;
676 if (special_function_p (fndecl, 0) & ECF_RETURNS_TWICE)
677 return true;
678
679 return false;
680 }
681
682
683 /* Return true if STMT may be an alloca call. */
684
685 bool
686 gimple_maybe_alloca_call_p (const gimple *stmt)
687 {
688 tree fndecl;
689
690 if (!is_gimple_call (stmt))
691 return false;
692
693 fndecl = gimple_call_fndecl (stmt);
694 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
695 return true;
696
697 return false;
698 }
699
700 /* Return true if STMT is a builtin alloca call. */
701
702 bool
703 gimple_alloca_call_p (const gimple *stmt)
704 {
705 tree fndecl;
706
707 if (!is_gimple_call (stmt))
708 return false;
709
710 fndecl = gimple_call_fndecl (stmt);
711 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
712 switch (DECL_FUNCTION_CODE (fndecl))
713 {
714 CASE_BUILT_IN_ALLOCA:
715 return gimple_call_num_args (stmt) > 0;
716 default:
717 break;
718 }
719
720 return false;
721 }
722
723 /* Return true when exp contains a builtin alloca call. */
724
725 bool
726 alloca_call_p (const_tree exp)
727 {
728 tree fndecl;
729 if (TREE_CODE (exp) == CALL_EXPR
730 && (fndecl = get_callee_fndecl (exp))
731 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
732 switch (DECL_FUNCTION_CODE (fndecl))
733 {
734 CASE_BUILT_IN_ALLOCA:
735 return true;
736 default:
737 break;
738 }
739
740 return false;
741 }
742
743 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
744 function. Return FALSE otherwise. */
745
746 static bool
747 is_tm_builtin (const_tree fndecl)
748 {
749 if (fndecl == NULL)
750 return false;
751
752 if (decl_is_tm_clone (fndecl))
753 return true;
754
755 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
756 {
757 switch (DECL_FUNCTION_CODE (fndecl))
758 {
759 case BUILT_IN_TM_COMMIT:
760 case BUILT_IN_TM_COMMIT_EH:
761 case BUILT_IN_TM_ABORT:
762 case BUILT_IN_TM_IRREVOCABLE:
763 case BUILT_IN_TM_GETTMCLONE_IRR:
764 case BUILT_IN_TM_MEMCPY:
765 case BUILT_IN_TM_MEMMOVE:
766 case BUILT_IN_TM_MEMSET:
767 CASE_BUILT_IN_TM_STORE (1):
768 CASE_BUILT_IN_TM_STORE (2):
769 CASE_BUILT_IN_TM_STORE (4):
770 CASE_BUILT_IN_TM_STORE (8):
771 CASE_BUILT_IN_TM_STORE (FLOAT):
772 CASE_BUILT_IN_TM_STORE (DOUBLE):
773 CASE_BUILT_IN_TM_STORE (LDOUBLE):
774 CASE_BUILT_IN_TM_STORE (M64):
775 CASE_BUILT_IN_TM_STORE (M128):
776 CASE_BUILT_IN_TM_STORE (M256):
777 CASE_BUILT_IN_TM_LOAD (1):
778 CASE_BUILT_IN_TM_LOAD (2):
779 CASE_BUILT_IN_TM_LOAD (4):
780 CASE_BUILT_IN_TM_LOAD (8):
781 CASE_BUILT_IN_TM_LOAD (FLOAT):
782 CASE_BUILT_IN_TM_LOAD (DOUBLE):
783 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
784 CASE_BUILT_IN_TM_LOAD (M64):
785 CASE_BUILT_IN_TM_LOAD (M128):
786 CASE_BUILT_IN_TM_LOAD (M256):
787 case BUILT_IN_TM_LOG:
788 case BUILT_IN_TM_LOG_1:
789 case BUILT_IN_TM_LOG_2:
790 case BUILT_IN_TM_LOG_4:
791 case BUILT_IN_TM_LOG_8:
792 case BUILT_IN_TM_LOG_FLOAT:
793 case BUILT_IN_TM_LOG_DOUBLE:
794 case BUILT_IN_TM_LOG_LDOUBLE:
795 case BUILT_IN_TM_LOG_M64:
796 case BUILT_IN_TM_LOG_M128:
797 case BUILT_IN_TM_LOG_M256:
798 return true;
799 default:
800 break;
801 }
802 }
803 return false;
804 }
805
806 /* Detect flags (function attributes) from the function decl or type node. */
807
808 int
809 flags_from_decl_or_type (const_tree exp)
810 {
811 int flags = 0;
812
813 if (DECL_P (exp))
814 {
815 /* The function exp may have the `malloc' attribute. */
816 if (DECL_IS_MALLOC (exp))
817 flags |= ECF_MALLOC;
818
819 /* The function exp may have the `returns_twice' attribute. */
820 if (DECL_IS_RETURNS_TWICE (exp))
821 flags |= ECF_RETURNS_TWICE;
822
823 /* Process the pure and const attributes. */
824 if (TREE_READONLY (exp))
825 flags |= ECF_CONST;
826 if (DECL_PURE_P (exp))
827 flags |= ECF_PURE;
828 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
829 flags |= ECF_LOOPING_CONST_OR_PURE;
830
831 if (DECL_IS_NOVOPS (exp))
832 flags |= ECF_NOVOPS;
833 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
834 flags |= ECF_LEAF;
835 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
836 flags |= ECF_COLD;
837
838 if (TREE_NOTHROW (exp))
839 flags |= ECF_NOTHROW;
840
841 if (flag_tm)
842 {
843 if (is_tm_builtin (exp))
844 flags |= ECF_TM_BUILTIN;
845 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
846 || lookup_attribute ("transaction_pure",
847 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
848 flags |= ECF_TM_PURE;
849 }
850
851 flags = special_function_p (exp, flags);
852 }
853 else if (TYPE_P (exp))
854 {
855 if (TYPE_READONLY (exp))
856 flags |= ECF_CONST;
857
858 if (flag_tm
859 && ((flags & ECF_CONST) != 0
860 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
861 flags |= ECF_TM_PURE;
862 }
863 else
864 gcc_unreachable ();
865
866 if (TREE_THIS_VOLATILE (exp))
867 {
868 flags |= ECF_NORETURN;
869 if (flags & (ECF_CONST|ECF_PURE))
870 flags |= ECF_LOOPING_CONST_OR_PURE;
871 }
872
873 return flags;
874 }
875
876 /* Detect flags from a CALL_EXPR. */
877
878 int
879 call_expr_flags (const_tree t)
880 {
881 int flags;
882 tree decl = get_callee_fndecl (t);
883
884 if (decl)
885 flags = flags_from_decl_or_type (decl);
886 else if (CALL_EXPR_FN (t) == NULL_TREE)
887 flags = internal_fn_flags (CALL_EXPR_IFN (t));
888 else
889 {
890 tree type = TREE_TYPE (CALL_EXPR_FN (t));
891 if (type && TREE_CODE (type) == POINTER_TYPE)
892 flags = flags_from_decl_or_type (TREE_TYPE (type));
893 else
894 flags = 0;
895 if (CALL_EXPR_BY_DESCRIPTOR (t))
896 flags |= ECF_BY_DESCRIPTOR;
897 }
898
899 return flags;
900 }
901
902 /* Return true if ARG should be passed by invisible reference. */
903
904 bool
905 pass_by_reference (CUMULATIVE_ARGS *ca, function_arg_info arg)
906 {
907 if (tree type = arg.type)
908 {
909 /* If this type contains non-trivial constructors, then it is
910 forbidden for the middle-end to create any new copies. */
911 if (TREE_ADDRESSABLE (type))
912 return true;
913
914 /* GCC post 3.4 passes *all* variable sized types by reference. */
915 if (!TYPE_SIZE (type) || !poly_int_tree_p (TYPE_SIZE (type)))
916 return true;
917
918 /* If a record type should be passed the same as its first (and only)
919 member, use the type and mode of that member. */
920 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
921 {
922 arg.type = TREE_TYPE (first_field (type));
923 arg.mode = TYPE_MODE (arg.type);
924 }
925 }
926
927 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), arg);
928 }
929
930 /* Return true if TYPE should be passed by reference when passed to
931 the "..." arguments of a function. */
932
933 bool
934 pass_va_arg_by_reference (tree type)
935 {
936 return pass_by_reference (NULL, function_arg_info (type, /*named=*/false));
937 }
938
939 /* Decide whether ARG, which occurs in the state described by CA,
940 should be passed by reference. Return true if so and update
941 ARG accordingly. */
942
943 bool
944 apply_pass_by_reference_rules (CUMULATIVE_ARGS *ca, function_arg_info &arg)
945 {
946 if (pass_by_reference (ca, arg))
947 {
948 arg.type = build_pointer_type (arg.type);
949 arg.mode = TYPE_MODE (arg.type);
950 arg.pass_by_reference = true;
951 return true;
952 }
953 return false;
954 }
955
956 /* Return true if ARG, which is passed by reference, should be callee
957 copied instead of caller copied. */
958
959 bool
960 reference_callee_copied (CUMULATIVE_ARGS *ca, const function_arg_info &arg)
961 {
962 if (arg.type && TREE_ADDRESSABLE (arg.type))
963 return false;
964 return targetm.calls.callee_copies (pack_cumulative_args (ca), arg);
965 }
966
967
968 /* Precompute all register parameters as described by ARGS, storing values
969 into fields within the ARGS array.
970
971 NUM_ACTUALS indicates the total number elements in the ARGS array.
972
973 Set REG_PARM_SEEN if we encounter a register parameter. */
974
975 static void
976 precompute_register_parameters (int num_actuals, struct arg_data *args,
977 int *reg_parm_seen)
978 {
979 int i;
980
981 *reg_parm_seen = 0;
982
983 for (i = 0; i < num_actuals; i++)
984 if (args[i].reg != 0 && ! args[i].pass_on_stack)
985 {
986 *reg_parm_seen = 1;
987
988 if (args[i].value == 0)
989 {
990 push_temp_slots ();
991 args[i].value = expand_normal (args[i].tree_value);
992 preserve_temp_slots (args[i].value);
993 pop_temp_slots ();
994 }
995
996 /* If we are to promote the function arg to a wider mode,
997 do it now. */
998
999 machine_mode old_mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1000
1001 /* Some ABIs require scalar floating point modes to be returned
1002 in a wider scalar integer mode. We need to explicitly
1003 reinterpret to an integer mode of the correct precision
1004 before extending to the desired result. */
1005 if (SCALAR_INT_MODE_P (args[i].mode)
1006 && SCALAR_FLOAT_MODE_P (old_mode)
1007 && known_gt (GET_MODE_SIZE (args[i].mode),
1008 GET_MODE_SIZE (old_mode)))
1009 args[i].value = convert_float_to_wider_int (args[i].mode, old_mode,
1010 args[i].value);
1011 else if (args[i].mode != old_mode)
1012 args[i].value = convert_modes (args[i].mode, old_mode,
1013 args[i].value, args[i].unsignedp);
1014
1015 /* If the value is a non-legitimate constant, force it into a
1016 pseudo now. TLS symbols sometimes need a call to resolve. */
1017 if (CONSTANT_P (args[i].value)
1018 && (!targetm.legitimate_constant_p (args[i].mode, args[i].value)
1019 || targetm.precompute_tls_p (args[i].mode, args[i].value)))
1020 args[i].value = force_reg (args[i].mode, args[i].value);
1021
1022 /* If we're going to have to load the value by parts, pull the
1023 parts into pseudos. The part extraction process can involve
1024 non-trivial computation. */
1025 if (GET_CODE (args[i].reg) == PARALLEL)
1026 {
1027 tree type = TREE_TYPE (args[i].tree_value);
1028 args[i].parallel_value
1029 = emit_group_load_into_temps (args[i].reg, args[i].value,
1030 type, int_size_in_bytes (type));
1031 }
1032
1033 /* If the value is expensive, and we are inside an appropriately
1034 short loop, put the value into a pseudo and then put the pseudo
1035 into the hard reg.
1036
1037 For small register classes, also do this if this call uses
1038 register parameters. This is to avoid reload conflicts while
1039 loading the parameters registers. */
1040
1041 else if ((! (REG_P (args[i].value)
1042 || (GET_CODE (args[i].value) == SUBREG
1043 && REG_P (SUBREG_REG (args[i].value)))))
1044 && args[i].mode != BLKmode
1045 && (set_src_cost (args[i].value, args[i].mode,
1046 optimize_insn_for_speed_p ())
1047 > COSTS_N_INSNS (1))
1048 && ((*reg_parm_seen
1049 && targetm.small_register_classes_for_mode_p (args[i].mode))
1050 || optimize))
1051 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1052 }
1053 }
1054
1055 #ifdef REG_PARM_STACK_SPACE
1056
1057 /* The argument list is the property of the called routine and it
1058 may clobber it. If the fixed area has been used for previous
1059 parameters, we must save and restore it. */
1060
1061 static rtx
1062 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1063 {
1064 unsigned int low;
1065 unsigned int high;
1066
1067 /* Compute the boundary of the area that needs to be saved, if any. */
1068 high = reg_parm_stack_space;
1069 if (ARGS_GROW_DOWNWARD)
1070 high += 1;
1071
1072 if (high > highest_outgoing_arg_in_use)
1073 high = highest_outgoing_arg_in_use;
1074
1075 for (low = 0; low < high; low++)
1076 if (stack_usage_map[low] != 0 || low >= stack_usage_watermark)
1077 {
1078 int num_to_save;
1079 machine_mode save_mode;
1080 int delta;
1081 rtx addr;
1082 rtx stack_area;
1083 rtx save_area;
1084
1085 while (stack_usage_map[--high] == 0)
1086 ;
1087
1088 *low_to_save = low;
1089 *high_to_save = high;
1090
1091 num_to_save = high - low + 1;
1092
1093 /* If we don't have the required alignment, must do this
1094 in BLKmode. */
1095 scalar_int_mode imode;
1096 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1097 && (low & (MIN (GET_MODE_SIZE (imode),
1098 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1099 save_mode = imode;
1100 else
1101 save_mode = BLKmode;
1102
1103 if (ARGS_GROW_DOWNWARD)
1104 delta = -high;
1105 else
1106 delta = low;
1107
1108 addr = plus_constant (Pmode, argblock, delta);
1109 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1110
1111 set_mem_align (stack_area, PARM_BOUNDARY);
1112 if (save_mode == BLKmode)
1113 {
1114 save_area = assign_stack_temp (BLKmode, num_to_save);
1115 emit_block_move (validize_mem (save_area), stack_area,
1116 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1117 }
1118 else
1119 {
1120 save_area = gen_reg_rtx (save_mode);
1121 emit_move_insn (save_area, stack_area);
1122 }
1123
1124 return save_area;
1125 }
1126
1127 return NULL_RTX;
1128 }
1129
1130 static void
1131 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1132 {
1133 machine_mode save_mode = GET_MODE (save_area);
1134 int delta;
1135 rtx addr, stack_area;
1136
1137 if (ARGS_GROW_DOWNWARD)
1138 delta = -high_to_save;
1139 else
1140 delta = low_to_save;
1141
1142 addr = plus_constant (Pmode, argblock, delta);
1143 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1144 set_mem_align (stack_area, PARM_BOUNDARY);
1145
1146 if (save_mode != BLKmode)
1147 emit_move_insn (stack_area, save_area);
1148 else
1149 emit_block_move (stack_area, validize_mem (save_area),
1150 GEN_INT (high_to_save - low_to_save + 1),
1151 BLOCK_OP_CALL_PARM);
1152 }
1153 #endif /* REG_PARM_STACK_SPACE */
1154
1155 /* If any elements in ARGS refer to parameters that are to be passed in
1156 registers, but not in memory, and whose alignment does not permit a
1157 direct copy into registers. Copy the values into a group of pseudos
1158 which we will later copy into the appropriate hard registers.
1159
1160 Pseudos for each unaligned argument will be stored into the array
1161 args[argnum].aligned_regs. The caller is responsible for deallocating
1162 the aligned_regs array if it is nonzero. */
1163
1164 static void
1165 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1166 {
1167 int i, j;
1168
1169 for (i = 0; i < num_actuals; i++)
1170 if (args[i].reg != 0 && ! args[i].pass_on_stack
1171 && GET_CODE (args[i].reg) != PARALLEL
1172 && args[i].mode == BLKmode
1173 && MEM_P (args[i].value)
1174 && (MEM_ALIGN (args[i].value)
1175 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1176 {
1177 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1178 int endian_correction = 0;
1179
1180 if (args[i].partial)
1181 {
1182 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1183 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1184 }
1185 else
1186 {
1187 args[i].n_aligned_regs
1188 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1189 }
1190
1191 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1192
1193 /* Structures smaller than a word are normally aligned to the
1194 least significant byte. On a BYTES_BIG_ENDIAN machine,
1195 this means we must skip the empty high order bytes when
1196 calculating the bit offset. */
1197 if (bytes < UNITS_PER_WORD
1198 #ifdef BLOCK_REG_PADDING
1199 && (BLOCK_REG_PADDING (args[i].mode,
1200 TREE_TYPE (args[i].tree_value), 1)
1201 == PAD_DOWNWARD)
1202 #else
1203 && BYTES_BIG_ENDIAN
1204 #endif
1205 )
1206 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1207
1208 for (j = 0; j < args[i].n_aligned_regs; j++)
1209 {
1210 rtx reg = gen_reg_rtx (word_mode);
1211 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1212 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1213
1214 args[i].aligned_regs[j] = reg;
1215 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1216 word_mode, word_mode, false, NULL);
1217
1218 /* There is no need to restrict this code to loading items
1219 in TYPE_ALIGN sized hunks. The bitfield instructions can
1220 load up entire word sized registers efficiently.
1221
1222 ??? This may not be needed anymore.
1223 We use to emit a clobber here but that doesn't let later
1224 passes optimize the instructions we emit. By storing 0 into
1225 the register later passes know the first AND to zero out the
1226 bitfield being set in the register is unnecessary. The store
1227 of 0 will be deleted as will at least the first AND. */
1228
1229 emit_move_insn (reg, const0_rtx);
1230
1231 bytes -= bitsize / BITS_PER_UNIT;
1232 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1233 word_mode, word, false, false);
1234 }
1235 }
1236 }
1237
1238 /* Issue an error if CALL_EXPR was flagged as requiring
1239 tall-call optimization. */
1240
1241 void
1242 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1243 {
1244 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1245 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1246 return;
1247
1248 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1249 }
1250
1251 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1252 CALL_EXPR EXP.
1253
1254 NUM_ACTUALS is the total number of parameters.
1255
1256 N_NAMED_ARGS is the total number of named arguments.
1257
1258 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1259 value, or null.
1260
1261 FNDECL is the tree code for the target of this call (if known)
1262
1263 ARGS_SO_FAR holds state needed by the target to know where to place
1264 the next argument.
1265
1266 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1267 for arguments which are passed in registers.
1268
1269 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1270 and may be modified by this routine.
1271
1272 OLD_PENDING_ADJ and FLAGS are pointers to integer flags which
1273 may be modified by this routine.
1274
1275 MUST_PREALLOCATE is a pointer to bool which may be
1276 modified by this routine.
1277
1278 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1279 that requires allocation of stack space.
1280
1281 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1282 the thunked-to function. */
1283
1284 static void
1285 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1286 struct arg_data *args,
1287 struct args_size *args_size,
1288 int n_named_args ATTRIBUTE_UNUSED,
1289 tree exp, tree struct_value_addr_value,
1290 tree fndecl, tree fntype,
1291 cumulative_args_t args_so_far,
1292 int reg_parm_stack_space,
1293 rtx *old_stack_level,
1294 poly_int64_pod *old_pending_adj,
1295 bool *must_preallocate, int *ecf_flags,
1296 bool *may_tailcall, bool call_from_thunk_p)
1297 {
1298 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1299 location_t loc = EXPR_LOCATION (exp);
1300
1301 /* Count arg position in order args appear. */
1302 int argpos;
1303
1304 int i;
1305
1306 args_size->constant = 0;
1307 args_size->var = 0;
1308
1309 /* In this loop, we consider args in the order they are written.
1310 We fill up ARGS from the back. */
1311
1312 i = num_actuals - 1;
1313 {
1314 int j = i;
1315 call_expr_arg_iterator iter;
1316 tree arg;
1317
1318 if (struct_value_addr_value)
1319 {
1320 args[j].tree_value = struct_value_addr_value;
1321 j--;
1322 }
1323 argpos = 0;
1324 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1325 {
1326 tree argtype = TREE_TYPE (arg);
1327
1328 if (targetm.calls.split_complex_arg
1329 && argtype
1330 && TREE_CODE (argtype) == COMPLEX_TYPE
1331 && targetm.calls.split_complex_arg (argtype))
1332 {
1333 tree subtype = TREE_TYPE (argtype);
1334 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1335 j--;
1336 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1337 }
1338 else
1339 args[j].tree_value = arg;
1340 j--;
1341 argpos++;
1342 }
1343 }
1344
1345 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1346 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1347 {
1348 tree type = TREE_TYPE (args[i].tree_value);
1349 int unsignedp;
1350
1351 /* Replace erroneous argument with constant zero. */
1352 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1353 args[i].tree_value = integer_zero_node, type = integer_type_node;
1354
1355 /* If TYPE is a transparent union or record, pass things the way
1356 we would pass the first field of the union or record. We have
1357 already verified that the modes are the same. */
1358 if (RECORD_OR_UNION_TYPE_P (type) && TYPE_TRANSPARENT_AGGR (type))
1359 type = TREE_TYPE (first_field (type));
1360
1361 /* Decide where to pass this arg.
1362
1363 args[i].reg is nonzero if all or part is passed in registers.
1364
1365 args[i].partial is nonzero if part but not all is passed in registers,
1366 and the exact value says how many bytes are passed in registers.
1367
1368 args[i].pass_on_stack is true if the argument must at least be
1369 computed on the stack. It may then be loaded back into registers
1370 if args[i].reg is nonzero.
1371
1372 These decisions are driven by the FUNCTION_... macros and must agree
1373 with those made by function.cc. */
1374
1375 /* See if this argument should be passed by invisible reference. */
1376 function_arg_info arg (type, argpos < n_named_args);
1377 if (pass_by_reference (args_so_far_pnt, arg))
1378 {
1379 const bool callee_copies
1380 = reference_callee_copied (args_so_far_pnt, arg);
1381 tree base;
1382
1383 /* If we're compiling a thunk, pass directly the address of an object
1384 already in memory, instead of making a copy. Likewise if we want
1385 to make the copy in the callee instead of the caller. */
1386 if ((call_from_thunk_p || callee_copies)
1387 && TREE_CODE (args[i].tree_value) != WITH_SIZE_EXPR
1388 && ((base = get_base_address (args[i].tree_value)), true)
1389 && TREE_CODE (base) != SSA_NAME
1390 && (!DECL_P (base) || MEM_P (DECL_RTL (base))))
1391 {
1392 /* We may have turned the parameter value into an SSA name.
1393 Go back to the original parameter so we can take the
1394 address. */
1395 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
1396 {
1397 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
1398 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
1399 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
1400 }
1401 /* Argument setup code may have copied the value to register. We
1402 revert that optimization now because the tail call code must
1403 use the original location. */
1404 if (TREE_CODE (args[i].tree_value) == PARM_DECL
1405 && !MEM_P (DECL_RTL (args[i].tree_value))
1406 && DECL_INCOMING_RTL (args[i].tree_value)
1407 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
1408 set_decl_rtl (args[i].tree_value,
1409 DECL_INCOMING_RTL (args[i].tree_value));
1410
1411 mark_addressable (args[i].tree_value);
1412
1413 /* We can't use sibcalls if a callee-copied argument is
1414 stored in the current function's frame. */
1415 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1416 {
1417 *may_tailcall = false;
1418 maybe_complain_about_tail_call (exp,
1419 "a callee-copied argument is"
1420 " stored in the current"
1421 " function's frame");
1422 }
1423
1424 args[i].tree_value = build_fold_addr_expr_loc (loc,
1425 args[i].tree_value);
1426 type = TREE_TYPE (args[i].tree_value);
1427
1428 if (*ecf_flags & ECF_CONST)
1429 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1430 }
1431 else
1432 {
1433 /* We make a copy of the object and pass the address to the
1434 function being called. */
1435 rtx copy;
1436
1437 if (!COMPLETE_TYPE_P (type)
1438 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1439 || (flag_stack_check == GENERIC_STACK_CHECK
1440 && compare_tree_int (TYPE_SIZE_UNIT (type),
1441 STACK_CHECK_MAX_VAR_SIZE) > 0))
1442 {
1443 /* This is a variable-sized object. Make space on the stack
1444 for it. */
1445 rtx size_rtx = expr_size (args[i].tree_value);
1446
1447 if (*old_stack_level == 0)
1448 {
1449 emit_stack_save (SAVE_BLOCK, old_stack_level);
1450 *old_pending_adj = pending_stack_adjust;
1451 pending_stack_adjust = 0;
1452 }
1453
1454 /* We can pass TRUE as the 4th argument because we just
1455 saved the stack pointer and will restore it right after
1456 the call. */
1457 copy = allocate_dynamic_stack_space (size_rtx,
1458 TYPE_ALIGN (type),
1459 TYPE_ALIGN (type),
1460 max_int_size_in_bytes
1461 (type),
1462 true);
1463 copy = gen_rtx_MEM (BLKmode, copy);
1464 set_mem_attributes (copy, type, 1);
1465 }
1466 else
1467 copy = assign_temp (type, 1, 0);
1468
1469 store_expr (args[i].tree_value, copy, 0, false, false);
1470
1471 /* Just change the const function to pure and then let
1472 the next test clear the pure based on
1473 callee_copies. */
1474 if (*ecf_flags & ECF_CONST)
1475 {
1476 *ecf_flags &= ~ECF_CONST;
1477 *ecf_flags |= ECF_PURE;
1478 }
1479
1480 if (!callee_copies && *ecf_flags & ECF_PURE)
1481 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1482
1483 args[i].tree_value
1484 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1485 type = TREE_TYPE (args[i].tree_value);
1486 *may_tailcall = false;
1487 maybe_complain_about_tail_call (exp,
1488 "argument must be passed"
1489 " by copying");
1490 }
1491 arg.pass_by_reference = true;
1492 }
1493
1494 unsignedp = TYPE_UNSIGNED (type);
1495 arg.type = type;
1496 arg.mode
1497 = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1498 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1499
1500 args[i].unsignedp = unsignedp;
1501 args[i].mode = arg.mode;
1502
1503 targetm.calls.warn_parameter_passing_abi (args_so_far, type);
1504
1505 args[i].reg = targetm.calls.function_arg (args_so_far, arg);
1506
1507 /* If this is a sibling call and the machine has register windows, the
1508 register window has to be unwinded before calling the routine, so
1509 arguments have to go into the incoming registers. */
1510 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1511 args[i].tail_call_reg
1512 = targetm.calls.function_incoming_arg (args_so_far, arg);
1513 else
1514 args[i].tail_call_reg = args[i].reg;
1515
1516 if (args[i].reg)
1517 args[i].partial = targetm.calls.arg_partial_bytes (args_so_far, arg);
1518
1519 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (arg);
1520
1521 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1522 it means that we are to pass this arg in the register(s) designated
1523 by the PARALLEL, but also to pass it in the stack. */
1524 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1525 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1526 args[i].pass_on_stack = true;
1527
1528 /* If this is an addressable type, we must preallocate the stack
1529 since we must evaluate the object into its final location.
1530
1531 If this is to be passed in both registers and the stack, it is simpler
1532 to preallocate. */
1533 if (TREE_ADDRESSABLE (type)
1534 || (args[i].pass_on_stack && args[i].reg != 0))
1535 *must_preallocate = true;
1536
1537 /* Compute the stack-size of this argument. */
1538 if (args[i].reg == 0 || args[i].partial != 0
1539 || reg_parm_stack_space > 0
1540 || args[i].pass_on_stack)
1541 locate_and_pad_parm (arg.mode, type,
1542 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1543 1,
1544 #else
1545 args[i].reg != 0,
1546 #endif
1547 reg_parm_stack_space,
1548 args[i].pass_on_stack ? 0 : args[i].partial,
1549 fndecl, args_size, &args[i].locate);
1550 #ifdef BLOCK_REG_PADDING
1551 else
1552 /* The argument is passed entirely in registers. See at which
1553 end it should be padded. */
1554 args[i].locate.where_pad =
1555 BLOCK_REG_PADDING (arg.mode, type,
1556 int_size_in_bytes (type) <= UNITS_PER_WORD);
1557 #endif
1558
1559 /* Update ARGS_SIZE, the total stack space for args so far. */
1560
1561 args_size->constant += args[i].locate.size.constant;
1562 if (args[i].locate.size.var)
1563 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1564
1565 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1566 have been used, etc. */
1567
1568 /* ??? Traditionally we've passed TYPE_MODE here, instead of the
1569 promoted_mode used for function_arg above. However, the
1570 corresponding handling of incoming arguments in function.cc
1571 does pass the promoted mode. */
1572 arg.mode = TYPE_MODE (type);
1573 targetm.calls.function_arg_advance (args_so_far, arg);
1574 }
1575 }
1576
1577 /* Update ARGS_SIZE to contain the total size for the argument block.
1578 Return the original constant component of the argument block's size.
1579
1580 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1581 for arguments passed in registers. */
1582
1583 static poly_int64
1584 compute_argument_block_size (int reg_parm_stack_space,
1585 struct args_size *args_size,
1586 tree fndecl ATTRIBUTE_UNUSED,
1587 tree fntype ATTRIBUTE_UNUSED,
1588 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1589 {
1590 poly_int64 unadjusted_args_size = args_size->constant;
1591
1592 /* For accumulate outgoing args mode we don't need to align, since the frame
1593 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1594 backends from generating misaligned frame sizes. */
1595 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1596 preferred_stack_boundary = STACK_BOUNDARY;
1597
1598 /* Compute the actual size of the argument block required. The variable
1599 and constant sizes must be combined, the size may have to be rounded,
1600 and there may be a minimum required size. */
1601
1602 if (args_size->var)
1603 {
1604 args_size->var = ARGS_SIZE_TREE (*args_size);
1605 args_size->constant = 0;
1606
1607 preferred_stack_boundary /= BITS_PER_UNIT;
1608 if (preferred_stack_boundary > 1)
1609 {
1610 /* We don't handle this case yet. To handle it correctly we have
1611 to add the delta, round and subtract the delta.
1612 Currently no machine description requires this support. */
1613 gcc_assert (multiple_p (stack_pointer_delta,
1614 preferred_stack_boundary));
1615 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1616 }
1617
1618 if (reg_parm_stack_space > 0)
1619 {
1620 args_size->var
1621 = size_binop (MAX_EXPR, args_size->var,
1622 ssize_int (reg_parm_stack_space));
1623
1624 /* The area corresponding to register parameters is not to count in
1625 the size of the block we need. So make the adjustment. */
1626 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1627 args_size->var
1628 = size_binop (MINUS_EXPR, args_size->var,
1629 ssize_int (reg_parm_stack_space));
1630 }
1631 }
1632 else
1633 {
1634 preferred_stack_boundary /= BITS_PER_UNIT;
1635 if (preferred_stack_boundary < 1)
1636 preferred_stack_boundary = 1;
1637 args_size->constant = (aligned_upper_bound (args_size->constant
1638 + stack_pointer_delta,
1639 preferred_stack_boundary)
1640 - stack_pointer_delta);
1641
1642 args_size->constant = upper_bound (args_size->constant,
1643 reg_parm_stack_space);
1644
1645 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1646 args_size->constant -= reg_parm_stack_space;
1647 }
1648 return unadjusted_args_size;
1649 }
1650
1651 /* Precompute parameters as needed for a function call.
1652
1653 FLAGS is mask of ECF_* constants.
1654
1655 NUM_ACTUALS is the number of arguments.
1656
1657 ARGS is an array containing information for each argument; this
1658 routine fills in the INITIAL_VALUE and VALUE fields for each
1659 precomputed argument. */
1660
1661 static void
1662 precompute_arguments (int num_actuals, struct arg_data *args)
1663 {
1664 int i;
1665
1666 /* If this is a libcall, then precompute all arguments so that we do not
1667 get extraneous instructions emitted as part of the libcall sequence. */
1668
1669 /* If we preallocated the stack space, and some arguments must be passed
1670 on the stack, then we must precompute any parameter which contains a
1671 function call which will store arguments on the stack.
1672 Otherwise, evaluating the parameter may clobber previous parameters
1673 which have already been stored into the stack. (we have code to avoid
1674 such case by saving the outgoing stack arguments, but it results in
1675 worse code) */
1676 if (!ACCUMULATE_OUTGOING_ARGS)
1677 return;
1678
1679 for (i = 0; i < num_actuals; i++)
1680 {
1681 tree type;
1682 machine_mode mode;
1683
1684 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1685 continue;
1686
1687 /* If this is an addressable type, we cannot pre-evaluate it. */
1688 type = TREE_TYPE (args[i].tree_value);
1689 gcc_assert (!TREE_ADDRESSABLE (type));
1690
1691 args[i].initial_value = args[i].value
1692 = expand_normal (args[i].tree_value);
1693
1694 mode = TYPE_MODE (type);
1695 if (mode != args[i].mode)
1696 {
1697 int unsignedp = args[i].unsignedp;
1698 args[i].value
1699 = convert_modes (args[i].mode, mode,
1700 args[i].value, args[i].unsignedp);
1701
1702 /* CSE will replace this only if it contains args[i].value
1703 pseudo, so convert it down to the declared mode using
1704 a SUBREG. */
1705 if (REG_P (args[i].value)
1706 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1707 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1708 {
1709 args[i].initial_value
1710 = gen_lowpart_SUBREG (mode, args[i].value);
1711 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1712 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
1713 }
1714 }
1715 }
1716 }
1717
1718 /* Given the current state of MUST_PREALLOCATE and information about
1719 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1720 compute and return the final value for MUST_PREALLOCATE. */
1721
1722 static bool
1723 finalize_must_preallocate (bool must_preallocate, int num_actuals,
1724 struct arg_data *args, struct args_size *args_size)
1725 {
1726 /* See if we have or want to preallocate stack space.
1727
1728 If we would have to push a partially-in-regs parm
1729 before other stack parms, preallocate stack space instead.
1730
1731 If the size of some parm is not a multiple of the required stack
1732 alignment, we must preallocate.
1733
1734 If the total size of arguments that would otherwise create a copy in
1735 a temporary (such as a CALL) is more than half the total argument list
1736 size, preallocation is faster.
1737
1738 Another reason to preallocate is if we have a machine (like the m88k)
1739 where stack alignment is required to be maintained between every
1740 pair of insns, not just when the call is made. However, we assume here
1741 that such machines either do not have push insns (and hence preallocation
1742 would occur anyway) or the problem is taken care of with
1743 PUSH_ROUNDING. */
1744
1745 if (! must_preallocate)
1746 {
1747 bool partial_seen = false;
1748 poly_int64 copy_to_evaluate_size = 0;
1749 int i;
1750
1751 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1752 {
1753 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1754 partial_seen = true;
1755 else if (partial_seen && args[i].reg == 0)
1756 must_preallocate = true;
1757
1758 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1759 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1760 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1761 || TREE_CODE (args[i].tree_value) == COND_EXPR
1762 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1763 copy_to_evaluate_size
1764 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1765 }
1766
1767 if (maybe_ne (args_size->constant, 0)
1768 && maybe_ge (copy_to_evaluate_size * 2, args_size->constant))
1769 must_preallocate = true;
1770 }
1771 return must_preallocate;
1772 }
1773
1774 /* If we preallocated stack space, compute the address of each argument
1775 and store it into the ARGS array.
1776
1777 We need not ensure it is a valid memory address here; it will be
1778 validized when it is used.
1779
1780 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1781
1782 static void
1783 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1784 {
1785 if (argblock)
1786 {
1787 rtx arg_reg = argblock;
1788 int i;
1789 poly_int64 arg_offset = 0;
1790
1791 if (GET_CODE (argblock) == PLUS)
1792 {
1793 arg_reg = XEXP (argblock, 0);
1794 arg_offset = rtx_to_poly_int64 (XEXP (argblock, 1));
1795 }
1796
1797 for (i = 0; i < num_actuals; i++)
1798 {
1799 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1800 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1801 rtx addr;
1802 unsigned int align, boundary;
1803 poly_uint64 units_on_stack = 0;
1804 machine_mode partial_mode = VOIDmode;
1805
1806 /* Skip this parm if it will not be passed on the stack. */
1807 if (! args[i].pass_on_stack
1808 && args[i].reg != 0
1809 && args[i].partial == 0)
1810 continue;
1811
1812 if (TYPE_EMPTY_P (TREE_TYPE (args[i].tree_value)))
1813 continue;
1814
1815 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
1816 addr = plus_constant (Pmode, addr, arg_offset);
1817
1818 if (args[i].partial != 0)
1819 {
1820 /* Only part of the parameter is being passed on the stack.
1821 Generate a simple memory reference of the correct size. */
1822 units_on_stack = args[i].locate.size.constant;
1823 poly_uint64 bits_on_stack = units_on_stack * BITS_PER_UNIT;
1824 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
1825 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1826 set_mem_size (args[i].stack, units_on_stack);
1827 }
1828 else
1829 {
1830 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1831 set_mem_attributes (args[i].stack,
1832 TREE_TYPE (args[i].tree_value), 1);
1833 }
1834 align = BITS_PER_UNIT;
1835 boundary = args[i].locate.boundary;
1836 poly_int64 offset_val;
1837 if (args[i].locate.where_pad != PAD_DOWNWARD)
1838 align = boundary;
1839 else if (poly_int_rtx_p (offset, &offset_val))
1840 {
1841 align = least_bit_hwi (boundary);
1842 unsigned int offset_align
1843 = known_alignment (offset_val) * BITS_PER_UNIT;
1844 if (offset_align != 0)
1845 align = MIN (align, offset_align);
1846 }
1847 set_mem_align (args[i].stack, align);
1848
1849 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
1850 addr = plus_constant (Pmode, addr, arg_offset);
1851
1852 if (args[i].partial != 0)
1853 {
1854 /* Only part of the parameter is being passed on the stack.
1855 Generate a simple memory reference of the correct size.
1856 */
1857 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1858 set_mem_size (args[i].stack_slot, units_on_stack);
1859 }
1860 else
1861 {
1862 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1863 set_mem_attributes (args[i].stack_slot,
1864 TREE_TYPE (args[i].tree_value), 1);
1865 }
1866 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1867
1868 /* Function incoming arguments may overlap with sibling call
1869 outgoing arguments and we cannot allow reordering of reads
1870 from function arguments with stores to outgoing arguments
1871 of sibling calls. */
1872 set_mem_alias_set (args[i].stack, 0);
1873 set_mem_alias_set (args[i].stack_slot, 0);
1874 }
1875 }
1876 }
1877
1878 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1879 in a call instruction.
1880
1881 FNDECL is the tree node for the target function. For an indirect call
1882 FNDECL will be NULL_TREE.
1883
1884 ADDR is the operand 0 of CALL_EXPR for this call. */
1885
1886 static rtx
1887 rtx_for_function_call (tree fndecl, tree addr)
1888 {
1889 rtx funexp;
1890
1891 /* Get the function to call, in the form of RTL. */
1892 if (fndecl)
1893 {
1894 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1895 TREE_USED (fndecl) = 1;
1896
1897 /* Get a SYMBOL_REF rtx for the function address. */
1898 funexp = XEXP (DECL_RTL (fndecl), 0);
1899 }
1900 else
1901 /* Generate an rtx (probably a pseudo-register) for the address. */
1902 {
1903 push_temp_slots ();
1904 funexp = expand_normal (addr);
1905 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1906 }
1907 return funexp;
1908 }
1909
1910 /* Return the static chain for this function, if any. */
1911
1912 rtx
1913 rtx_for_static_chain (const_tree fndecl_or_type, bool incoming_p)
1914 {
1915 if (DECL_P (fndecl_or_type) && !DECL_STATIC_CHAIN (fndecl_or_type))
1916 return NULL;
1917
1918 return targetm.calls.static_chain (fndecl_or_type, incoming_p);
1919 }
1920
1921 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
1922 static struct
1923 {
1924 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
1925 or NULL_RTX if none has been scanned yet. */
1926 rtx_insn *scan_start;
1927 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
1928 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
1929 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
1930 with fixed offset, or PC if this is with variable or unknown offset. */
1931 vec<rtx> cache;
1932 } internal_arg_pointer_exp_state;
1933
1934 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
1935
1936 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
1937 the tail call sequence, starting with first insn that hasn't been
1938 scanned yet, and note for each pseudo on the LHS whether it is based
1939 on crtl->args.internal_arg_pointer or not, and what offset from that
1940 that pointer it has. */
1941
1942 static void
1943 internal_arg_pointer_based_exp_scan (void)
1944 {
1945 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
1946
1947 if (scan_start == NULL_RTX)
1948 insn = get_insns ();
1949 else
1950 insn = NEXT_INSN (scan_start);
1951
1952 while (insn)
1953 {
1954 rtx set = single_set (insn);
1955 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
1956 {
1957 rtx val = NULL_RTX;
1958 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
1959 /* Punt on pseudos set multiple times. */
1960 if (idx < internal_arg_pointer_exp_state.cache.length ()
1961 && (internal_arg_pointer_exp_state.cache[idx]
1962 != NULL_RTX))
1963 val = pc_rtx;
1964 else
1965 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
1966 if (val != NULL_RTX)
1967 {
1968 if (idx >= internal_arg_pointer_exp_state.cache.length ())
1969 internal_arg_pointer_exp_state.cache
1970 .safe_grow_cleared (idx + 1, true);
1971 internal_arg_pointer_exp_state.cache[idx] = val;
1972 }
1973 }
1974 if (NEXT_INSN (insn) == NULL_RTX)
1975 scan_start = insn;
1976 insn = NEXT_INSN (insn);
1977 }
1978
1979 internal_arg_pointer_exp_state.scan_start = scan_start;
1980 }
1981
1982 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
1983 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
1984 it with fixed offset, or PC if this is with variable or unknown offset.
1985 TOPLEVEL is true if the function is invoked at the topmost level. */
1986
1987 static rtx
1988 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
1989 {
1990 if (CONSTANT_P (rtl))
1991 return NULL_RTX;
1992
1993 if (rtl == crtl->args.internal_arg_pointer)
1994 return const0_rtx;
1995
1996 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
1997 return NULL_RTX;
1998
1999 poly_int64 offset;
2000 if (GET_CODE (rtl) == PLUS && poly_int_rtx_p (XEXP (rtl, 1), &offset))
2001 {
2002 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2003 if (val == NULL_RTX || val == pc_rtx)
2004 return val;
2005 return plus_constant (Pmode, val, offset);
2006 }
2007
2008 /* When called at the topmost level, scan pseudo assignments in between the
2009 last scanned instruction in the tail call sequence and the latest insn
2010 in that sequence. */
2011 if (toplevel)
2012 internal_arg_pointer_based_exp_scan ();
2013
2014 if (REG_P (rtl))
2015 {
2016 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2017 if (idx < internal_arg_pointer_exp_state.cache.length ())
2018 return internal_arg_pointer_exp_state.cache[idx];
2019
2020 return NULL_RTX;
2021 }
2022
2023 subrtx_iterator::array_type array;
2024 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2025 {
2026 const_rtx x = *iter;
2027 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2028 return pc_rtx;
2029 if (MEM_P (x))
2030 iter.skip_subrtxes ();
2031 }
2032
2033 return NULL_RTX;
2034 }
2035
2036 /* Return true if SIZE bytes starting from address ADDR might overlap an
2037 already-clobbered argument area. This function is used to determine
2038 if we should give up a sibcall. */
2039
2040 static bool
2041 mem_might_overlap_already_clobbered_arg_p (rtx addr, poly_uint64 size)
2042 {
2043 poly_int64 i;
2044 unsigned HOST_WIDE_INT start, end;
2045 rtx val;
2046
2047 if (bitmap_empty_p (stored_args_map)
2048 && stored_args_watermark == HOST_WIDE_INT_M1U)
2049 return false;
2050 val = internal_arg_pointer_based_exp (addr, true);
2051 if (val == NULL_RTX)
2052 return false;
2053 else if (!poly_int_rtx_p (val, &i))
2054 return true;
2055
2056 if (known_eq (size, 0U))
2057 return false;
2058
2059 if (STACK_GROWS_DOWNWARD)
2060 i -= crtl->args.pretend_args_size;
2061 else
2062 i += crtl->args.pretend_args_size;
2063
2064 if (ARGS_GROW_DOWNWARD)
2065 i = -i - size;
2066
2067 /* We can ignore any references to the function's pretend args,
2068 which at this point would manifest as negative values of I. */
2069 if (known_le (i, 0) && known_le (size, poly_uint64 (-i)))
2070 return false;
2071
2072 start = maybe_lt (i, 0) ? 0 : constant_lower_bound (i);
2073 if (!(i + size).is_constant (&end))
2074 end = HOST_WIDE_INT_M1U;
2075
2076 if (end > stored_args_watermark)
2077 return true;
2078
2079 end = MIN (end, SBITMAP_SIZE (stored_args_map));
2080 for (unsigned HOST_WIDE_INT k = start; k < end; ++k)
2081 if (bitmap_bit_p (stored_args_map, k))
2082 return true;
2083
2084 return false;
2085 }
2086
2087 /* Do the register loads required for any wholly-register parms or any
2088 parms which are passed both on the stack and in a register. Their
2089 expressions were already evaluated.
2090
2091 Mark all register-parms as living through the call, putting these USE
2092 insns in the CALL_INSN_FUNCTION_USAGE field.
2093
2094 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2095 checking, setting *SIBCALL_FAILURE if appropriate. */
2096
2097 static void
2098 load_register_parameters (struct arg_data *args, int num_actuals,
2099 rtx *call_fusage, int flags, int is_sibcall,
2100 bool *sibcall_failure)
2101 {
2102 int i, j;
2103
2104 for (i = 0; i < num_actuals; i++)
2105 {
2106 rtx reg = ((flags & ECF_SIBCALL)
2107 ? args[i].tail_call_reg : args[i].reg);
2108 if (reg)
2109 {
2110 int partial = args[i].partial;
2111 int nregs;
2112 poly_int64 size = 0;
2113 HOST_WIDE_INT const_size = 0;
2114 rtx_insn *before_arg = get_last_insn ();
2115 tree tree_value = args[i].tree_value;
2116 tree type = TREE_TYPE (tree_value);
2117 if (RECORD_OR_UNION_TYPE_P (type) && TYPE_TRANSPARENT_AGGR (type))
2118 type = TREE_TYPE (first_field (type));
2119 /* Set non-negative if we must move a word at a time, even if
2120 just one word (e.g, partial == 4 && mode == DFmode). Set
2121 to -1 if we just use a normal move insn. This value can be
2122 zero if the argument is a zero size structure. */
2123 nregs = -1;
2124 if (GET_CODE (reg) == PARALLEL)
2125 ;
2126 else if (partial)
2127 {
2128 gcc_assert (partial % UNITS_PER_WORD == 0);
2129 nregs = partial / UNITS_PER_WORD;
2130 }
2131 else if (TYPE_MODE (type) == BLKmode)
2132 {
2133 /* Variable-sized parameters should be described by a
2134 PARALLEL instead. */
2135 const_size = int_size_in_bytes (type);
2136 gcc_assert (const_size >= 0);
2137 nregs = (const_size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2138 size = const_size;
2139 }
2140 else
2141 size = GET_MODE_SIZE (args[i].mode);
2142
2143 /* Handle calls that pass values in multiple non-contiguous
2144 locations. The Irix 6 ABI has examples of this. */
2145
2146 if (GET_CODE (reg) == PARALLEL)
2147 emit_group_move (reg, args[i].parallel_value);
2148
2149 /* If simple case, just do move. If normal partial, store_one_arg
2150 has already loaded the register for us. In all other cases,
2151 load the register(s) from memory. */
2152
2153 else if (nregs == -1)
2154 {
2155 emit_move_insn (reg, args[i].value);
2156 #ifdef BLOCK_REG_PADDING
2157 /* Handle case where we have a value that needs shifting
2158 up to the msb. eg. a QImode value and we're padding
2159 upward on a BYTES_BIG_ENDIAN machine. */
2160 if (args[i].locate.where_pad
2161 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))
2162 {
2163 gcc_checking_assert (ordered_p (size, UNITS_PER_WORD));
2164 if (maybe_lt (size, UNITS_PER_WORD))
2165 {
2166 rtx x;
2167 poly_int64 shift
2168 = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2169
2170 /* Assigning REG here rather than a temp makes
2171 CALL_FUSAGE report the whole reg as used.
2172 Strictly speaking, the call only uses SIZE
2173 bytes at the msb end, but it doesn't seem worth
2174 generating rtl to say that. */
2175 reg = gen_rtx_REG (word_mode, REGNO (reg));
2176 x = expand_shift (LSHIFT_EXPR, word_mode,
2177 reg, shift, reg, 1);
2178 if (x != reg)
2179 emit_move_insn (reg, x);
2180 }
2181 }
2182 #endif
2183 }
2184
2185 /* If we have pre-computed the values to put in the registers in
2186 the case of non-aligned structures, copy them in now. */
2187
2188 else if (args[i].n_aligned_regs != 0)
2189 for (j = 0; j < args[i].n_aligned_regs; j++)
2190 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2191 args[i].aligned_regs[j]);
2192
2193 /* If we need a single register and the source is a constant
2194 VAR_DECL with a simple constructor, expand that constructor
2195 via a pseudo rather than read from (possibly misaligned)
2196 memory. PR middle-end/95126. */
2197 else if (nregs == 1
2198 && partial == 0
2199 && !args[i].pass_on_stack
2200 && VAR_P (tree_value)
2201 && TREE_READONLY (tree_value)
2202 && !TREE_SIDE_EFFECTS (tree_value)
2203 && immediate_const_ctor_p (DECL_INITIAL (tree_value)))
2204 {
2205 rtx target = gen_reg_rtx (word_mode);
2206 store_constructor (DECL_INITIAL (tree_value), target, 0,
2207 int_expr_size (DECL_INITIAL (tree_value)),
2208 false);
2209 reg = gen_rtx_REG (word_mode, REGNO (reg));
2210 emit_move_insn (reg, target);
2211 }
2212 else if (partial == 0 || args[i].pass_on_stack)
2213 {
2214 /* SIZE and CONST_SIZE are 0 for partial arguments and
2215 the size of a BLKmode type otherwise. */
2216 gcc_checking_assert (known_eq (size, const_size));
2217 rtx mem = validize_mem (copy_rtx (args[i].value));
2218
2219 /* Check for overlap with already clobbered argument area,
2220 providing that this has non-zero size. */
2221 if (is_sibcall
2222 && const_size != 0
2223 && (mem_might_overlap_already_clobbered_arg_p
2224 (XEXP (args[i].value, 0), const_size)))
2225 *sibcall_failure = true;
2226
2227 if (const_size % UNITS_PER_WORD == 0
2228 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2229 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2230 else
2231 {
2232 if (nregs > 1)
2233 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2234 args[i].mode);
2235 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2236 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2237 unsigned int bitsize = const_size * BITS_PER_UNIT - bitoff;
2238 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
2239 word_mode, word_mode, false,
2240 NULL);
2241 if (BYTES_BIG_ENDIAN)
2242 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2243 BITS_PER_WORD - bitsize, dest, 1);
2244 if (x != dest)
2245 emit_move_insn (dest, x);
2246 }
2247
2248 /* Handle a BLKmode that needs shifting. */
2249 if (nregs == 1 && const_size < UNITS_PER_WORD
2250 #ifdef BLOCK_REG_PADDING
2251 && args[i].locate.where_pad == PAD_DOWNWARD
2252 #else
2253 && BYTES_BIG_ENDIAN
2254 #endif
2255 )
2256 {
2257 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2258 int shift = (UNITS_PER_WORD - const_size) * BITS_PER_UNIT;
2259 enum tree_code dir = (BYTES_BIG_ENDIAN
2260 ? RSHIFT_EXPR : LSHIFT_EXPR);
2261 rtx x;
2262
2263 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2264 if (x != dest)
2265 emit_move_insn (dest, x);
2266 }
2267 }
2268
2269 /* When a parameter is a block, and perhaps in other cases, it is
2270 possible that it did a load from an argument slot that was
2271 already clobbered. */
2272 if (is_sibcall
2273 && check_sibcall_argument_overlap (before_arg, &args[i], false))
2274 *sibcall_failure = true;
2275
2276 /* Handle calls that pass values in multiple non-contiguous
2277 locations. The Irix 6 ABI has examples of this. */
2278 if (GET_CODE (reg) == PARALLEL)
2279 use_group_regs (call_fusage, reg);
2280 else if (nregs == -1)
2281 use_reg_mode (call_fusage, reg, TYPE_MODE (type));
2282 else if (nregs > 0)
2283 use_regs (call_fusage, REGNO (reg), nregs);
2284 }
2285 }
2286 }
2287
2288 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2289 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2290 bytes, then we would need to push some additional bytes to pad the
2291 arguments. So, we try to compute an adjust to the stack pointer for an
2292 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2293 bytes. Then, when the arguments are pushed the stack will be perfectly
2294 aligned.
2295
2296 Return true if this optimization is possible, storing the adjustment
2297 in ADJUSTMENT_OUT and setting ARGS_SIZE->CONSTANT to the number of
2298 bytes that should be popped after the call. */
2299
2300 static bool
2301 combine_pending_stack_adjustment_and_call (poly_int64_pod *adjustment_out,
2302 poly_int64 unadjusted_args_size,
2303 struct args_size *args_size,
2304 unsigned int preferred_unit_stack_boundary)
2305 {
2306 /* The number of bytes to pop so that the stack will be
2307 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2308 poly_int64 adjustment;
2309 /* The alignment of the stack after the arguments are pushed, if we
2310 just pushed the arguments without adjust the stack here. */
2311 unsigned HOST_WIDE_INT unadjusted_alignment;
2312
2313 if (!known_misalignment (stack_pointer_delta + unadjusted_args_size,
2314 preferred_unit_stack_boundary,
2315 &unadjusted_alignment))
2316 return false;
2317
2318 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2319 as possible -- leaving just enough left to cancel out the
2320 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2321 PENDING_STACK_ADJUST is non-negative, and congruent to
2322 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2323
2324 /* Begin by trying to pop all the bytes. */
2325 unsigned HOST_WIDE_INT tmp_misalignment;
2326 if (!known_misalignment (pending_stack_adjust,
2327 preferred_unit_stack_boundary,
2328 &tmp_misalignment))
2329 return false;
2330 unadjusted_alignment -= tmp_misalignment;
2331 adjustment = pending_stack_adjust;
2332 /* Push enough additional bytes that the stack will be aligned
2333 after the arguments are pushed. */
2334 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
2335 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2336
2337 /* We need to know whether the adjusted argument size
2338 (UNADJUSTED_ARGS_SIZE - ADJUSTMENT) constitutes an allocation
2339 or a deallocation. */
2340 if (!ordered_p (adjustment, unadjusted_args_size))
2341 return false;
2342
2343 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2344 bytes after the call. The right number is the entire
2345 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2346 by the arguments in the first place. */
2347 args_size->constant
2348 = pending_stack_adjust - adjustment + unadjusted_args_size;
2349
2350 *adjustment_out = adjustment;
2351 return true;
2352 }
2353
2354 /* Scan X expression if it does not dereference any argument slots
2355 we already clobbered by tail call arguments (as noted in stored_args_map
2356 bitmap).
2357 Return true if X expression dereferences such argument slots,
2358 false otherwise. */
2359
2360 static bool
2361 check_sibcall_argument_overlap_1 (rtx x)
2362 {
2363 RTX_CODE code;
2364 int i, j;
2365 const char *fmt;
2366
2367 if (x == NULL_RTX)
2368 return false;
2369
2370 code = GET_CODE (x);
2371
2372 /* We need not check the operands of the CALL expression itself. */
2373 if (code == CALL)
2374 return false;
2375
2376 if (code == MEM)
2377 return (mem_might_overlap_already_clobbered_arg_p
2378 (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x))));
2379
2380 /* Scan all subexpressions. */
2381 fmt = GET_RTX_FORMAT (code);
2382 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2383 {
2384 if (*fmt == 'e')
2385 {
2386 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
2387 return true;
2388 }
2389 else if (*fmt == 'E')
2390 {
2391 for (j = 0; j < XVECLEN (x, i); j++)
2392 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
2393 return true;
2394 }
2395 }
2396 return false;
2397 }
2398
2399 /* Scan sequence after INSN if it does not dereference any argument slots
2400 we already clobbered by tail call arguments (as noted in stored_args_map
2401 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
2402 stored_args_map bitmap afterwards (when ARG is a register
2403 MARK_STORED_ARGS_MAP should be false). Return true if sequence after
2404 INSN dereferences such argument slots, false otherwise. */
2405
2406 static bool
2407 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
2408 bool mark_stored_args_map)
2409 {
2410 poly_uint64 low, high;
2411 unsigned HOST_WIDE_INT const_low, const_high;
2412
2413 if (insn == NULL_RTX)
2414 insn = get_insns ();
2415 else
2416 insn = NEXT_INSN (insn);
2417
2418 for (; insn; insn = NEXT_INSN (insn))
2419 if (INSN_P (insn)
2420 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
2421 break;
2422
2423 if (mark_stored_args_map)
2424 {
2425 if (ARGS_GROW_DOWNWARD)
2426 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
2427 else
2428 low = arg->locate.slot_offset.constant;
2429 high = low + arg->locate.size.constant;
2430
2431 const_low = constant_lower_bound (low);
2432 if (high.is_constant (&const_high))
2433 for (unsigned HOST_WIDE_INT i = const_low; i < const_high; ++i)
2434 bitmap_set_bit (stored_args_map, i);
2435 else
2436 stored_args_watermark = MIN (stored_args_watermark, const_low);
2437 }
2438 return insn != NULL_RTX;
2439 }
2440
2441 /* Given that a function returns a value of mode MODE at the most
2442 significant end of hard register VALUE, shift VALUE left or right
2443 as specified by LEFT_P. Return true if some action was needed. */
2444
2445 bool
2446 shift_return_value (machine_mode mode, bool left_p, rtx value)
2447 {
2448 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
2449 machine_mode value_mode = GET_MODE (value);
2450 poly_int64 shift = GET_MODE_BITSIZE (value_mode) - GET_MODE_BITSIZE (mode);
2451
2452 if (known_eq (shift, 0))
2453 return false;
2454
2455 /* Use ashr rather than lshr for right shifts. This is for the benefit
2456 of the MIPS port, which requires SImode values to be sign-extended
2457 when stored in 64-bit registers. */
2458 if (!force_expand_binop (value_mode, left_p ? ashl_optab : ashr_optab,
2459 value, gen_int_shift_amount (value_mode, shift),
2460 value, 1, OPTAB_WIDEN))
2461 gcc_unreachable ();
2462 return true;
2463 }
2464
2465 /* If X is a likely-spilled register value, copy it to a pseudo
2466 register and return that register. Return X otherwise. */
2467
2468 static rtx
2469 avoid_likely_spilled_reg (rtx x)
2470 {
2471 rtx new_rtx;
2472
2473 if (REG_P (x)
2474 && HARD_REGISTER_P (x)
2475 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2476 {
2477 /* Make sure that we generate a REG rather than a CONCAT.
2478 Moves into CONCATs can need nontrivial instructions,
2479 and the whole point of this function is to avoid
2480 using the hard register directly in such a situation. */
2481 generating_concat_p = 0;
2482 new_rtx = gen_reg_rtx (GET_MODE (x));
2483 generating_concat_p = 1;
2484 emit_move_insn (new_rtx, x);
2485 return new_rtx;
2486 }
2487 return x;
2488 }
2489
2490 /* Helper function for expand_call.
2491 Return false is EXP is not implementable as a sibling call. */
2492
2493 static bool
2494 can_implement_as_sibling_call_p (tree exp,
2495 rtx structure_value_addr,
2496 tree funtype,
2497 tree fndecl,
2498 int flags,
2499 tree addr,
2500 const args_size &args_size)
2501 {
2502 if (!targetm.have_sibcall_epilogue ())
2503 {
2504 maybe_complain_about_tail_call
2505 (exp,
2506 "machine description does not have"
2507 " a sibcall_epilogue instruction pattern");
2508 return false;
2509 }
2510
2511 /* Doing sibling call optimization needs some work, since
2512 structure_value_addr can be allocated on the stack.
2513 It does not seem worth the effort since few optimizable
2514 sibling calls will return a structure. */
2515 if (structure_value_addr != NULL_RTX)
2516 {
2517 maybe_complain_about_tail_call (exp, "callee returns a structure");
2518 return false;
2519 }
2520
2521 /* Check whether the target is able to optimize the call
2522 into a sibcall. */
2523 if (!targetm.function_ok_for_sibcall (fndecl, exp))
2524 {
2525 maybe_complain_about_tail_call (exp,
2526 "target is not able to optimize the"
2527 " call into a sibling call");
2528 return false;
2529 }
2530
2531 /* Functions that do not return exactly once may not be sibcall
2532 optimized. */
2533 if (flags & ECF_RETURNS_TWICE)
2534 {
2535 maybe_complain_about_tail_call (exp, "callee returns twice");
2536 return false;
2537 }
2538 if (flags & ECF_NORETURN)
2539 {
2540 maybe_complain_about_tail_call (exp, "callee does not return");
2541 return false;
2542 }
2543
2544 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
2545 {
2546 maybe_complain_about_tail_call (exp, "volatile function type");
2547 return false;
2548 }
2549
2550 /* __sanitizer_cov_trace_pc is supposed to inspect its return address
2551 to identify the caller, and therefore should not be tailcalled. */
2552 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2553 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SANITIZER_COV_TRACE_PC)
2554 {
2555 /* No need for maybe_complain_about_tail_call here:
2556 the call is synthesized by the compiler. */
2557 return false;
2558 }
2559
2560 /* If the called function is nested in the current one, it might access
2561 some of the caller's arguments, but could clobber them beforehand if
2562 the argument areas are shared. */
2563 if (fndecl && decl_function_context (fndecl) == current_function_decl)
2564 {
2565 maybe_complain_about_tail_call (exp, "nested function");
2566 return false;
2567 }
2568
2569 /* If this function requires more stack slots than the current
2570 function, we cannot change it into a sibling call.
2571 crtl->args.pretend_args_size is not part of the
2572 stack allocated by our caller. */
2573 if (maybe_gt (args_size.constant,
2574 crtl->args.size - crtl->args.pretend_args_size))
2575 {
2576 maybe_complain_about_tail_call (exp,
2577 "callee required more stack slots"
2578 " than the caller");
2579 return false;
2580 }
2581
2582 /* If the callee pops its own arguments, then it must pop exactly
2583 the same number of arguments as the current function. */
2584 if (maybe_ne (targetm.calls.return_pops_args (fndecl, funtype,
2585 args_size.constant),
2586 targetm.calls.return_pops_args (current_function_decl,
2587 TREE_TYPE
2588 (current_function_decl),
2589 crtl->args.size)))
2590 {
2591 maybe_complain_about_tail_call (exp,
2592 "inconsistent number of"
2593 " popped arguments");
2594 return false;
2595 }
2596
2597 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
2598 {
2599 maybe_complain_about_tail_call (exp, "frontend does not support"
2600 " sibling call");
2601 return false;
2602 }
2603
2604 /* All checks passed. */
2605 return true;
2606 }
2607
2608 /* Update stack alignment when the parameter is passed in the stack
2609 since the outgoing parameter requires extra alignment on the calling
2610 function side. */
2611
2612 static void
2613 update_stack_alignment_for_call (struct locate_and_pad_arg_data *locate)
2614 {
2615 if (crtl->stack_alignment_needed < locate->boundary)
2616 crtl->stack_alignment_needed = locate->boundary;
2617 if (crtl->preferred_stack_boundary < locate->boundary)
2618 crtl->preferred_stack_boundary = locate->boundary;
2619 }
2620
2621 /* Generate all the code for a CALL_EXPR exp
2622 and return an rtx for its value.
2623 Store the value in TARGET (specified as an rtx) if convenient.
2624 If the value is stored in TARGET then TARGET is returned.
2625 If IGNORE is nonzero, then we ignore the value of the function call. */
2626
2627 rtx
2628 expand_call (tree exp, rtx target, int ignore)
2629 {
2630 /* Nonzero if we are currently expanding a call. */
2631 static int currently_expanding_call = 0;
2632
2633 /* RTX for the function to be called. */
2634 rtx funexp;
2635 /* Sequence of insns to perform a normal "call". */
2636 rtx_insn *normal_call_insns = NULL;
2637 /* Sequence of insns to perform a tail "call". */
2638 rtx_insn *tail_call_insns = NULL;
2639 /* Data type of the function. */
2640 tree funtype;
2641 tree type_arg_types;
2642 tree rettype;
2643 /* Declaration of the function being called,
2644 or 0 if the function is computed (not known by name). */
2645 tree fndecl = 0;
2646 /* The type of the function being called. */
2647 tree fntype;
2648 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
2649 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
2650 int pass;
2651
2652 /* Register in which non-BLKmode value will be returned,
2653 or 0 if no value or if value is BLKmode. */
2654 rtx valreg;
2655 /* Address where we should return a BLKmode value;
2656 0 if value not BLKmode. */
2657 rtx structure_value_addr = 0;
2658 /* Nonzero if that address is being passed by treating it as
2659 an extra, implicit first parameter. Otherwise,
2660 it is passed by being copied directly into struct_value_rtx. */
2661 int structure_value_addr_parm = 0;
2662 /* Holds the value of implicit argument for the struct value. */
2663 tree structure_value_addr_value = NULL_TREE;
2664 /* Size of aggregate value wanted, or zero if none wanted
2665 or if we are using the non-reentrant PCC calling convention
2666 or expecting the value in registers. */
2667 poly_int64 struct_value_size = 0;
2668 /* True if called function returns an aggregate in memory PCC style,
2669 by returning the address of where to find it. */
2670 bool pcc_struct_value = false;
2671 rtx struct_value = 0;
2672
2673 /* Number of actual parameters in this call, including struct value addr. */
2674 int num_actuals;
2675 /* Number of named args. Args after this are anonymous ones
2676 and they must all go on the stack. */
2677 int n_named_args;
2678 /* Number of complex actual arguments that need to be split. */
2679 int num_complex_actuals = 0;
2680
2681 /* Vector of information about each argument.
2682 Arguments are numbered in the order they will be pushed,
2683 not the order they are written. */
2684 struct arg_data *args;
2685
2686 /* Total size in bytes of all the stack-parms scanned so far. */
2687 struct args_size args_size;
2688 struct args_size adjusted_args_size;
2689 /* Size of arguments before any adjustments (such as rounding). */
2690 poly_int64 unadjusted_args_size;
2691 /* Data on reg parms scanned so far. */
2692 CUMULATIVE_ARGS args_so_far_v;
2693 cumulative_args_t args_so_far;
2694 /* Nonzero if a reg parm has been scanned. */
2695 int reg_parm_seen;
2696
2697 /* True if we must avoid push-insns in the args for this call.
2698 If stack space is allocated for register parameters, but not by the
2699 caller, then it is preallocated in the fixed part of the stack frame.
2700 So the entire argument block must then be preallocated (i.e., we
2701 ignore PUSH_ROUNDING in that case). */
2702 bool must_preallocate = !targetm.calls.push_argument (0);
2703
2704 /* Size of the stack reserved for parameter registers. */
2705 int reg_parm_stack_space = 0;
2706
2707 /* Address of space preallocated for stack parms
2708 (on machines that lack push insns), or 0 if space not preallocated. */
2709 rtx argblock = 0;
2710
2711 /* Mask of ECF_ and ERF_ flags. */
2712 int flags = 0;
2713 int return_flags = 0;
2714 #ifdef REG_PARM_STACK_SPACE
2715 /* Define the boundary of the register parm stack space that needs to be
2716 saved, if any. */
2717 int low_to_save, high_to_save;
2718 rtx save_area = 0; /* Place that it is saved */
2719 #endif
2720
2721 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2722 char *initial_stack_usage_map = stack_usage_map;
2723 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
2724 char *stack_usage_map_buf = NULL;
2725
2726 poly_int64 old_stack_allocated;
2727
2728 /* State variables to track stack modifications. */
2729 rtx old_stack_level = 0;
2730 int old_stack_arg_under_construction = 0;
2731 poly_int64 old_pending_adj = 0;
2732 int old_inhibit_defer_pop = inhibit_defer_pop;
2733
2734 /* Some stack pointer alterations we make are performed via
2735 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2736 which we then also need to save/restore along the way. */
2737 poly_int64 old_stack_pointer_delta = 0;
2738
2739 rtx call_fusage;
2740 tree addr = CALL_EXPR_FN (exp);
2741 int i;
2742 /* The alignment of the stack, in bits. */
2743 unsigned HOST_WIDE_INT preferred_stack_boundary;
2744 /* The alignment of the stack, in bytes. */
2745 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2746 /* The static chain value to use for this call. */
2747 rtx static_chain_value;
2748 /* See if this is "nothrow" function call. */
2749 if (TREE_NOTHROW (exp))
2750 flags |= ECF_NOTHROW;
2751
2752 /* See if we can find a DECL-node for the actual function, and get the
2753 function attributes (flags) from the function decl or type node. */
2754 fndecl = get_callee_fndecl (exp);
2755 if (fndecl)
2756 {
2757 fntype = TREE_TYPE (fndecl);
2758 flags |= flags_from_decl_or_type (fndecl);
2759 return_flags |= decl_return_flags (fndecl);
2760 }
2761 else
2762 {
2763 fntype = TREE_TYPE (TREE_TYPE (addr));
2764 flags |= flags_from_decl_or_type (fntype);
2765 if (CALL_EXPR_BY_DESCRIPTOR (exp))
2766 flags |= ECF_BY_DESCRIPTOR;
2767 }
2768 rettype = TREE_TYPE (exp);
2769
2770 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2771
2772 /* Warn if this value is an aggregate type,
2773 regardless of which calling convention we are using for it. */
2774 if (AGGREGATE_TYPE_P (rettype))
2775 warning (OPT_Waggregate_return, "function call has aggregate value");
2776
2777 /* If the result of a non looping pure or const function call is
2778 ignored (or void), and none of its arguments are volatile, we can
2779 avoid expanding the call and just evaluate the arguments for
2780 side-effects. */
2781 if ((flags & (ECF_CONST | ECF_PURE))
2782 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2783 && (flags & ECF_NOTHROW)
2784 && (ignore || target == const0_rtx
2785 || TYPE_MODE (rettype) == VOIDmode))
2786 {
2787 bool volatilep = false;
2788 tree arg;
2789 call_expr_arg_iterator iter;
2790
2791 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2792 if (TREE_THIS_VOLATILE (arg))
2793 {
2794 volatilep = true;
2795 break;
2796 }
2797
2798 if (! volatilep)
2799 {
2800 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2801 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2802 return const0_rtx;
2803 }
2804 }
2805
2806 #ifdef REG_PARM_STACK_SPACE
2807 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2808 #endif
2809
2810 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2811 && reg_parm_stack_space > 0 && targetm.calls.push_argument (0))
2812 must_preallocate = true;
2813
2814 /* Set up a place to return a structure. */
2815
2816 /* Cater to broken compilers. */
2817 if (aggregate_value_p (exp, fntype))
2818 {
2819 /* This call returns a big structure. */
2820 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2821
2822 #ifdef PCC_STATIC_STRUCT_RETURN
2823 {
2824 pcc_struct_value = true;
2825 }
2826 #else /* not PCC_STATIC_STRUCT_RETURN */
2827 {
2828 if (!poly_int_tree_p (TYPE_SIZE_UNIT (rettype), &struct_value_size))
2829 struct_value_size = -1;
2830
2831 /* Even if it is semantically safe to use the target as the return
2832 slot, it may be not sufficiently aligned for the return type. */
2833 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
2834 && target
2835 && MEM_P (target)
2836 /* If rettype is addressable, we may not create a temporary.
2837 If target is properly aligned at runtime and the compiler
2838 just doesn't know about it, it will work fine, otherwise it
2839 will be UB. */
2840 && (TREE_ADDRESSABLE (rettype)
2841 || !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
2842 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
2843 MEM_ALIGN (target)))))
2844 structure_value_addr = XEXP (target, 0);
2845 else
2846 {
2847 /* For variable-sized objects, we must be called with a target
2848 specified. If we were to allocate space on the stack here,
2849 we would have no way of knowing when to free it. */
2850 rtx d = assign_temp (rettype, 1, 1);
2851 structure_value_addr = XEXP (d, 0);
2852 target = 0;
2853 }
2854 }
2855 #endif /* not PCC_STATIC_STRUCT_RETURN */
2856 }
2857
2858 /* Figure out the amount to which the stack should be aligned. */
2859 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2860 if (fndecl)
2861 {
2862 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
2863 /* Without automatic stack alignment, we can't increase preferred
2864 stack boundary. With automatic stack alignment, it is
2865 unnecessary since unless we can guarantee that all callers will
2866 align the outgoing stack properly, callee has to align its
2867 stack anyway. */
2868 if (i
2869 && i->preferred_incoming_stack_boundary
2870 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2871 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2872 }
2873
2874 /* Operand 0 is a pointer-to-function; get the type of the function. */
2875 funtype = TREE_TYPE (addr);
2876 gcc_assert (POINTER_TYPE_P (funtype));
2877 funtype = TREE_TYPE (funtype);
2878
2879 /* Count whether there are actual complex arguments that need to be split
2880 into their real and imaginary parts. Munge the type_arg_types
2881 appropriately here as well. */
2882 if (targetm.calls.split_complex_arg)
2883 {
2884 call_expr_arg_iterator iter;
2885 tree arg;
2886 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2887 {
2888 tree type = TREE_TYPE (arg);
2889 if (type && TREE_CODE (type) == COMPLEX_TYPE
2890 && targetm.calls.split_complex_arg (type))
2891 num_complex_actuals++;
2892 }
2893 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2894 }
2895 else
2896 type_arg_types = TYPE_ARG_TYPES (funtype);
2897
2898 if (flags & ECF_MAY_BE_ALLOCA)
2899 cfun->calls_alloca = 1;
2900
2901 /* If struct_value_rtx is 0, it means pass the address
2902 as if it were an extra parameter. Put the argument expression
2903 in structure_value_addr_value. */
2904 if (structure_value_addr && struct_value == 0)
2905 {
2906 /* If structure_value_addr is a REG other than
2907 virtual_outgoing_args_rtx, we can use always use it. If it
2908 is not a REG, we must always copy it into a register.
2909 If it is virtual_outgoing_args_rtx, we must copy it to another
2910 register in some cases. */
2911 rtx temp = (!REG_P (structure_value_addr)
2912 || (ACCUMULATE_OUTGOING_ARGS
2913 && stack_arg_under_construction
2914 && structure_value_addr == virtual_outgoing_args_rtx)
2915 ? copy_addr_to_reg (convert_memory_address
2916 (Pmode, structure_value_addr))
2917 : structure_value_addr);
2918
2919 structure_value_addr_value =
2920 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2921 structure_value_addr_parm = 1;
2922 }
2923
2924 /* Count the arguments and set NUM_ACTUALS. */
2925 num_actuals
2926 = call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2927
2928 /* Compute number of named args.
2929 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2930
2931 if (type_arg_types != 0)
2932 n_named_args
2933 = (list_length (type_arg_types)
2934 /* Count the struct value address, if it is passed as a parm. */
2935 + structure_value_addr_parm);
2936 else if (TYPE_NO_NAMED_ARGS_STDARG_P (funtype))
2937 n_named_args = 0;
2938 else
2939 /* If we know nothing, treat all args as named. */
2940 n_named_args = num_actuals;
2941
2942 /* Start updating where the next arg would go.
2943
2944 On some machines (such as the PA) indirect calls have a different
2945 calling convention than normal calls. The fourth argument in
2946 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2947 or not. */
2948 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
2949 args_so_far = pack_cumulative_args (&args_so_far_v);
2950
2951 /* Now possibly adjust the number of named args.
2952 Normally, don't include the last named arg if anonymous args follow.
2953 We do include the last named arg if
2954 targetm.calls.strict_argument_naming() returns nonzero.
2955 (If no anonymous args follow, the result of list_length is actually
2956 one too large. This is harmless.)
2957
2958 If targetm.calls.pretend_outgoing_varargs_named() returns
2959 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2960 this machine will be able to place unnamed args that were passed
2961 in registers into the stack. So treat all args as named. This
2962 allows the insns emitting for a specific argument list to be
2963 independent of the function declaration.
2964
2965 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2966 we do not have any reliable way to pass unnamed args in
2967 registers, so we must force them into memory. */
2968
2969 if (type_arg_types != 0
2970 && targetm.calls.strict_argument_naming (args_so_far))
2971 ;
2972 else if (type_arg_types != 0
2973 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
2974 /* Don't include the last named arg. */
2975 --n_named_args;
2976 else if (TYPE_NO_NAMED_ARGS_STDARG_P (funtype))
2977 n_named_args = 0;
2978 else
2979 /* Treat all args as named. */
2980 n_named_args = num_actuals;
2981
2982 /* Make a vector to hold all the information about each arg. */
2983 args = XCNEWVEC (struct arg_data, num_actuals);
2984
2985 /* Build up entries in the ARGS array, compute the size of the
2986 arguments into ARGS_SIZE, etc. */
2987 initialize_argument_information (num_actuals, args, &args_size,
2988 n_named_args, exp,
2989 structure_value_addr_value, fndecl, fntype,
2990 args_so_far, reg_parm_stack_space,
2991 &old_stack_level, &old_pending_adj,
2992 &must_preallocate, &flags,
2993 &try_tail_call, CALL_FROM_THUNK_P (exp));
2994
2995 if (args_size.var)
2996 must_preallocate = true;
2997
2998 /* Now make final decision about preallocating stack space. */
2999 must_preallocate = finalize_must_preallocate (must_preallocate,
3000 num_actuals, args,
3001 &args_size);
3002
3003 /* If the structure value address will reference the stack pointer, we
3004 must stabilize it. We don't need to do this if we know that we are
3005 not going to adjust the stack pointer in processing this call. */
3006
3007 if (structure_value_addr
3008 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3009 || reg_mentioned_p (virtual_outgoing_args_rtx,
3010 structure_value_addr))
3011 && (args_size.var
3012 || (!ACCUMULATE_OUTGOING_ARGS
3013 && maybe_ne (args_size.constant, 0))))
3014 structure_value_addr = copy_to_reg (structure_value_addr);
3015
3016 /* Tail calls can make things harder to debug, and we've traditionally
3017 pushed these optimizations into -O2. Don't try if we're already
3018 expanding a call, as that means we're an argument. Don't try if
3019 there's cleanups, as we know there's code to follow the call. */
3020 if (currently_expanding_call++ != 0
3021 || (!flag_optimize_sibling_calls && !CALL_FROM_THUNK_P (exp))
3022 || args_size.var
3023 || dbg_cnt (tail_call) == false)
3024 try_tail_call = 0;
3025
3026 /* Workaround buggy C/C++ wrappers around Fortran routines with
3027 character(len=constant) arguments if the hidden string length arguments
3028 are passed on the stack; if the callers forget to pass those arguments,
3029 attempting to tail call in such routines leads to stack corruption.
3030 Avoid tail calls in functions where at least one such hidden string
3031 length argument is passed (partially or fully) on the stack in the
3032 caller and the callee needs to pass any arguments on the stack.
3033 See PR90329. */
3034 if (try_tail_call && maybe_ne (args_size.constant, 0))
3035 for (tree arg = DECL_ARGUMENTS (current_function_decl);
3036 arg; arg = DECL_CHAIN (arg))
3037 if (DECL_HIDDEN_STRING_LENGTH (arg) && DECL_INCOMING_RTL (arg))
3038 {
3039 subrtx_iterator::array_type array;
3040 FOR_EACH_SUBRTX (iter, array, DECL_INCOMING_RTL (arg), NONCONST)
3041 if (MEM_P (*iter))
3042 {
3043 try_tail_call = 0;
3044 break;
3045 }
3046 }
3047
3048 /* If the user has marked the function as requiring tail-call
3049 optimization, attempt it. */
3050 if (must_tail_call)
3051 try_tail_call = 1;
3052
3053 /* Rest of purposes for tail call optimizations to fail. */
3054 if (try_tail_call)
3055 try_tail_call = can_implement_as_sibling_call_p (exp,
3056 structure_value_addr,
3057 funtype,
3058 fndecl,
3059 flags, addr, args_size);
3060
3061 /* Check if caller and callee disagree in promotion of function
3062 return value. */
3063 if (try_tail_call)
3064 {
3065 machine_mode caller_mode, caller_promoted_mode;
3066 machine_mode callee_mode, callee_promoted_mode;
3067 int caller_unsignedp, callee_unsignedp;
3068 tree caller_res = DECL_RESULT (current_function_decl);
3069
3070 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3071 caller_mode = DECL_MODE (caller_res);
3072 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3073 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3074 caller_promoted_mode
3075 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3076 &caller_unsignedp,
3077 TREE_TYPE (current_function_decl), 1);
3078 callee_promoted_mode
3079 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3080 &callee_unsignedp,
3081 funtype, 1);
3082 if (caller_mode != VOIDmode
3083 && (caller_promoted_mode != callee_promoted_mode
3084 || ((caller_mode != caller_promoted_mode
3085 || callee_mode != callee_promoted_mode)
3086 && (caller_unsignedp != callee_unsignedp
3087 || partial_subreg_p (caller_mode, callee_mode)))))
3088 {
3089 try_tail_call = 0;
3090 maybe_complain_about_tail_call (exp,
3091 "caller and callee disagree in"
3092 " promotion of function"
3093 " return value");
3094 }
3095 }
3096
3097 /* Ensure current function's preferred stack boundary is at least
3098 what we need. Stack alignment may also increase preferred stack
3099 boundary. */
3100 for (i = 0; i < num_actuals; i++)
3101 if (reg_parm_stack_space > 0
3102 || args[i].reg == 0
3103 || args[i].partial != 0
3104 || args[i].pass_on_stack)
3105 update_stack_alignment_for_call (&args[i].locate);
3106 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
3107 crtl->preferred_stack_boundary = preferred_stack_boundary;
3108 else
3109 preferred_stack_boundary = crtl->preferred_stack_boundary;
3110
3111 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
3112
3113 if (flag_callgraph_info)
3114 record_final_call (fndecl, EXPR_LOCATION (exp));
3115
3116 /* We want to make two insn chains; one for a sibling call, the other
3117 for a normal call. We will select one of the two chains after
3118 initial RTL generation is complete. */
3119 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
3120 {
3121 bool sibcall_failure = false;
3122 bool normal_failure = false;
3123 /* We want to emit any pending stack adjustments before the tail
3124 recursion "call". That way we know any adjustment after the tail
3125 recursion call can be ignored if we indeed use the tail
3126 call expansion. */
3127 saved_pending_stack_adjust save;
3128 rtx_insn *insns, *before_call, *after_args;
3129 rtx next_arg_reg;
3130
3131 if (pass == 0)
3132 {
3133 /* State variables we need to save and restore between
3134 iterations. */
3135 save_pending_stack_adjust (&save);
3136 }
3137 if (pass)
3138 flags &= ~ECF_SIBCALL;
3139 else
3140 flags |= ECF_SIBCALL;
3141
3142 /* Other state variables that we must reinitialize each time
3143 through the loop (that are not initialized by the loop itself). */
3144 argblock = 0;
3145 call_fusage = 0;
3146
3147 /* Start a new sequence for the normal call case.
3148
3149 From this point on, if the sibling call fails, we want to set
3150 sibcall_failure instead of continuing the loop. */
3151 start_sequence ();
3152
3153 /* Don't let pending stack adjusts add up to too much.
3154 Also, do all pending adjustments now if there is any chance
3155 this might be a call to alloca or if we are expanding a sibling
3156 call sequence.
3157 Also do the adjustments before a throwing call, otherwise
3158 exception handling can fail; PR 19225. */
3159 if (maybe_ge (pending_stack_adjust, 32)
3160 || (maybe_ne (pending_stack_adjust, 0)
3161 && (flags & ECF_MAY_BE_ALLOCA))
3162 || (maybe_ne (pending_stack_adjust, 0)
3163 && flag_exceptions && !(flags & ECF_NOTHROW))
3164 || pass == 0)
3165 do_pending_stack_adjust ();
3166
3167 /* Precompute any arguments as needed. */
3168 if (pass)
3169 precompute_arguments (num_actuals, args);
3170
3171 /* Now we are about to start emitting insns that can be deleted
3172 if a libcall is deleted. */
3173 if (pass && (flags & ECF_MALLOC))
3174 start_sequence ();
3175
3176 /* Check the canary value for sibcall or function which doesn't
3177 return and could throw. */
3178 if ((pass == 0
3179 || ((flags & ECF_NORETURN) != 0 && tree_could_throw_p (exp)))
3180 && crtl->stack_protect_guard
3181 && targetm.stack_protect_runtime_enabled_p ())
3182 stack_protect_epilogue ();
3183
3184 adjusted_args_size = args_size;
3185 /* Compute the actual size of the argument block required. The variable
3186 and constant sizes must be combined, the size may have to be rounded,
3187 and there may be a minimum required size. When generating a sibcall
3188 pattern, do not round up, since we'll be re-using whatever space our
3189 caller provided. */
3190 unadjusted_args_size
3191 = compute_argument_block_size (reg_parm_stack_space,
3192 &adjusted_args_size,
3193 fndecl, fntype,
3194 (pass == 0 ? 0
3195 : preferred_stack_boundary));
3196
3197 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3198
3199 /* The argument block when performing a sibling call is the
3200 incoming argument block. */
3201 if (pass == 0)
3202 {
3203 argblock = crtl->args.internal_arg_pointer;
3204 if (STACK_GROWS_DOWNWARD)
3205 argblock
3206 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
3207 else
3208 argblock
3209 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
3210
3211 HOST_WIDE_INT map_size = constant_lower_bound (args_size.constant);
3212 stored_args_map = sbitmap_alloc (map_size);
3213 bitmap_clear (stored_args_map);
3214 stored_args_watermark = HOST_WIDE_INT_M1U;
3215 }
3216
3217 /* If we have no actual push instructions, or shouldn't use them,
3218 make space for all args right now. */
3219 else if (adjusted_args_size.var != 0)
3220 {
3221 if (old_stack_level == 0)
3222 {
3223 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3224 old_stack_pointer_delta = stack_pointer_delta;
3225 old_pending_adj = pending_stack_adjust;
3226 pending_stack_adjust = 0;
3227 /* stack_arg_under_construction says whether a stack arg is
3228 being constructed at the old stack level. Pushing the stack
3229 gets a clean outgoing argument block. */
3230 old_stack_arg_under_construction = stack_arg_under_construction;
3231 stack_arg_under_construction = 0;
3232 }
3233 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
3234 if (flag_stack_usage_info)
3235 current_function_has_unbounded_dynamic_stack_size = 1;
3236 }
3237 else
3238 {
3239 /* Note that we must go through the motions of allocating an argument
3240 block even if the size is zero because we may be storing args
3241 in the area reserved for register arguments, which may be part of
3242 the stack frame. */
3243
3244 poly_int64 needed = adjusted_args_size.constant;
3245
3246 /* Store the maximum argument space used. It will be pushed by
3247 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
3248 checking). */
3249
3250 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
3251 needed);
3252
3253 if (must_preallocate)
3254 {
3255 if (ACCUMULATE_OUTGOING_ARGS)
3256 {
3257 /* Since the stack pointer will never be pushed, it is
3258 possible for the evaluation of a parm to clobber
3259 something we have already written to the stack.
3260 Since most function calls on RISC machines do not use
3261 the stack, this is uncommon, but must work correctly.
3262
3263 Therefore, we save any area of the stack that was already
3264 written and that we are using. Here we set up to do this
3265 by making a new stack usage map from the old one. The
3266 actual save will be done by store_one_arg.
3267
3268 Another approach might be to try to reorder the argument
3269 evaluations to avoid this conflicting stack usage. */
3270
3271 /* Since we will be writing into the entire argument area,
3272 the map must be allocated for its entire size, not just
3273 the part that is the responsibility of the caller. */
3274 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3275 needed += reg_parm_stack_space;
3276
3277 poly_int64 limit = needed;
3278 if (ARGS_GROW_DOWNWARD)
3279 limit += 1;
3280
3281 /* For polynomial sizes, this is the maximum possible
3282 size needed for arguments with a constant size
3283 and offset. */
3284 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
3285 highest_outgoing_arg_in_use
3286 = MAX (initial_highest_arg_in_use, const_limit);
3287
3288 free (stack_usage_map_buf);
3289 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3290 stack_usage_map = stack_usage_map_buf;
3291
3292 if (initial_highest_arg_in_use)
3293 memcpy (stack_usage_map, initial_stack_usage_map,
3294 initial_highest_arg_in_use);
3295
3296 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3297 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3298 (highest_outgoing_arg_in_use
3299 - initial_highest_arg_in_use));
3300 needed = 0;
3301
3302 /* The address of the outgoing argument list must not be
3303 copied to a register here, because argblock would be left
3304 pointing to the wrong place after the call to
3305 allocate_dynamic_stack_space below. */
3306
3307 argblock = virtual_outgoing_args_rtx;
3308 }
3309 else
3310 {
3311 /* Try to reuse some or all of the pending_stack_adjust
3312 to get this space. */
3313 if (inhibit_defer_pop == 0
3314 && (combine_pending_stack_adjustment_and_call
3315 (&needed,
3316 unadjusted_args_size,
3317 &adjusted_args_size,
3318 preferred_unit_stack_boundary)))
3319 {
3320 /* combine_pending_stack_adjustment_and_call computes
3321 an adjustment before the arguments are allocated.
3322 Account for them and see whether or not the stack
3323 needs to go up or down. */
3324 needed = unadjusted_args_size - needed;
3325
3326 /* Checked by
3327 combine_pending_stack_adjustment_and_call. */
3328 gcc_checking_assert (ordered_p (needed, 0));
3329 if (maybe_lt (needed, 0))
3330 {
3331 /* We're releasing stack space. */
3332 /* ??? We can avoid any adjustment at all if we're
3333 already aligned. FIXME. */
3334 pending_stack_adjust = -needed;
3335 do_pending_stack_adjust ();
3336 needed = 0;
3337 }
3338 else
3339 /* We need to allocate space. We'll do that in
3340 push_block below. */
3341 pending_stack_adjust = 0;
3342 }
3343
3344 /* Special case this because overhead of `push_block' in
3345 this case is non-trivial. */
3346 if (known_eq (needed, 0))
3347 argblock = virtual_outgoing_args_rtx;
3348 else
3349 {
3350 rtx needed_rtx = gen_int_mode (needed, Pmode);
3351 argblock = push_block (needed_rtx, 0, 0);
3352 if (ARGS_GROW_DOWNWARD)
3353 argblock = plus_constant (Pmode, argblock, needed);
3354 }
3355
3356 /* We only really need to call `copy_to_reg' in the case
3357 where push insns are going to be used to pass ARGBLOCK
3358 to a function call in ARGS. In that case, the stack
3359 pointer changes value from the allocation point to the
3360 call point, and hence the value of
3361 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3362 as well always do it. */
3363 argblock = copy_to_reg (argblock);
3364 }
3365 }
3366 }
3367
3368 if (ACCUMULATE_OUTGOING_ARGS)
3369 {
3370 /* The save/restore code in store_one_arg handles all
3371 cases except one: a constructor call (including a C
3372 function returning a BLKmode struct) to initialize
3373 an argument. */
3374 if (stack_arg_under_construction)
3375 {
3376 rtx push_size
3377 = (gen_int_mode
3378 (adjusted_args_size.constant
3379 + (OUTGOING_REG_PARM_STACK_SPACE (!fndecl ? fntype
3380 : TREE_TYPE (fndecl))
3381 ? 0 : reg_parm_stack_space), Pmode));
3382 if (old_stack_level == 0)
3383 {
3384 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3385 old_stack_pointer_delta = stack_pointer_delta;
3386 old_pending_adj = pending_stack_adjust;
3387 pending_stack_adjust = 0;
3388 /* stack_arg_under_construction says whether a stack
3389 arg is being constructed at the old stack level.
3390 Pushing the stack gets a clean outgoing argument
3391 block. */
3392 old_stack_arg_under_construction
3393 = stack_arg_under_construction;
3394 stack_arg_under_construction = 0;
3395 /* Make a new map for the new argument list. */
3396 free (stack_usage_map_buf);
3397 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
3398 stack_usage_map = stack_usage_map_buf;
3399 highest_outgoing_arg_in_use = 0;
3400 stack_usage_watermark = HOST_WIDE_INT_M1U;
3401 }
3402 /* We can pass TRUE as the 4th argument because we just
3403 saved the stack pointer and will restore it right after
3404 the call. */
3405 allocate_dynamic_stack_space (push_size, 0, BIGGEST_ALIGNMENT,
3406 -1, true);
3407 }
3408
3409 /* If argument evaluation might modify the stack pointer,
3410 copy the address of the argument list to a register. */
3411 for (i = 0; i < num_actuals; i++)
3412 if (args[i].pass_on_stack)
3413 {
3414 argblock = copy_addr_to_reg (argblock);
3415 break;
3416 }
3417 }
3418
3419 compute_argument_addresses (args, argblock, num_actuals);
3420
3421 /* Stack is properly aligned, pops can't safely be deferred during
3422 the evaluation of the arguments. */
3423 NO_DEFER_POP;
3424
3425 /* Precompute all register parameters. It isn't safe to compute
3426 anything once we have started filling any specific hard regs.
3427 TLS symbols sometimes need a call to resolve. Precompute
3428 register parameters before any stack pointer manipulation
3429 to avoid unaligned stack in the called function. */
3430 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
3431
3432 OK_DEFER_POP;
3433
3434 /* Perform stack alignment before the first push (the last arg). */
3435 if (argblock == 0
3436 && maybe_gt (adjusted_args_size.constant, reg_parm_stack_space)
3437 && maybe_ne (adjusted_args_size.constant, unadjusted_args_size))
3438 {
3439 /* When the stack adjustment is pending, we get better code
3440 by combining the adjustments. */
3441 if (maybe_ne (pending_stack_adjust, 0)
3442 && ! inhibit_defer_pop
3443 && (combine_pending_stack_adjustment_and_call
3444 (&pending_stack_adjust,
3445 unadjusted_args_size,
3446 &adjusted_args_size,
3447 preferred_unit_stack_boundary)))
3448 do_pending_stack_adjust ();
3449 else if (argblock == 0)
3450 anti_adjust_stack (gen_int_mode (adjusted_args_size.constant
3451 - unadjusted_args_size,
3452 Pmode));
3453 }
3454 /* Now that the stack is properly aligned, pops can't safely
3455 be deferred during the evaluation of the arguments. */
3456 NO_DEFER_POP;
3457
3458 /* Record the maximum pushed stack space size. We need to delay
3459 doing it this far to take into account the optimization done
3460 by combine_pending_stack_adjustment_and_call. */
3461 if (flag_stack_usage_info
3462 && !ACCUMULATE_OUTGOING_ARGS
3463 && pass
3464 && adjusted_args_size.var == 0)
3465 {
3466 poly_int64 pushed = (adjusted_args_size.constant
3467 + pending_stack_adjust);
3468 current_function_pushed_stack_size
3469 = upper_bound (current_function_pushed_stack_size, pushed);
3470 }
3471
3472 funexp = rtx_for_function_call (fndecl, addr);
3473
3474 if (CALL_EXPR_STATIC_CHAIN (exp))
3475 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
3476 else
3477 static_chain_value = 0;
3478
3479 #ifdef REG_PARM_STACK_SPACE
3480 /* Save the fixed argument area if it's part of the caller's frame and
3481 is clobbered by argument setup for this call. */
3482 if (ACCUMULATE_OUTGOING_ARGS && pass)
3483 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3484 &low_to_save, &high_to_save);
3485 #endif
3486
3487 /* Now store (and compute if necessary) all non-register parms.
3488 These come before register parms, since they can require block-moves,
3489 which could clobber the registers used for register parms.
3490 Parms which have partial registers are not stored here,
3491 but we do preallocate space here if they want that. */
3492
3493 for (i = 0; i < num_actuals; i++)
3494 {
3495 if (args[i].reg == 0 || args[i].pass_on_stack)
3496 {
3497 rtx_insn *before_arg = get_last_insn ();
3498
3499 /* We don't allow passing huge (> 2^30 B) arguments
3500 by value. It would cause an overflow later on. */
3501 if (constant_lower_bound (adjusted_args_size.constant)
3502 >= (1 << (HOST_BITS_PER_INT - 2)))
3503 {
3504 sorry ("passing too large argument on stack");
3505 /* Don't worry about stack clean-up. */
3506 if (pass == 0)
3507 sibcall_failure = true;
3508 else
3509 normal_failure = true;
3510 continue;
3511 }
3512
3513 if (store_one_arg (&args[i], argblock, flags,
3514 adjusted_args_size.var != 0,
3515 reg_parm_stack_space)
3516 || (pass == 0
3517 && check_sibcall_argument_overlap (before_arg,
3518 &args[i], true)))
3519 sibcall_failure = true;
3520 }
3521
3522 if (args[i].stack)
3523 call_fusage
3524 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
3525 gen_rtx_USE (VOIDmode, args[i].stack),
3526 call_fusage);
3527 }
3528
3529 /* If we have a parm that is passed in registers but not in memory
3530 and whose alignment does not permit a direct copy into registers,
3531 make a group of pseudos that correspond to each register that we
3532 will later fill. */
3533 if (STRICT_ALIGNMENT)
3534 store_unaligned_arguments_into_pseudos (args, num_actuals);
3535
3536 /* Now store any partially-in-registers parm.
3537 This is the last place a block-move can happen. */
3538 if (reg_parm_seen)
3539 for (i = 0; i < num_actuals; i++)
3540 if (args[i].partial != 0 && ! args[i].pass_on_stack)
3541 {
3542 rtx_insn *before_arg = get_last_insn ();
3543
3544 /* On targets with weird calling conventions (e.g. PA) it's
3545 hard to ensure that all cases of argument overlap between
3546 stack and registers work. Play it safe and bail out. */
3547 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
3548 {
3549 sibcall_failure = true;
3550 break;
3551 }
3552
3553 if (store_one_arg (&args[i], argblock, flags,
3554 adjusted_args_size.var != 0,
3555 reg_parm_stack_space)
3556 || (pass == 0
3557 && check_sibcall_argument_overlap (before_arg,
3558 &args[i], true)))
3559 sibcall_failure = true;
3560 }
3561
3562 bool any_regs = false;
3563 for (i = 0; i < num_actuals; i++)
3564 if (args[i].reg != NULL_RTX)
3565 {
3566 any_regs = true;
3567 targetm.calls.call_args (args[i].reg, funtype);
3568 }
3569 if (!any_regs)
3570 targetm.calls.call_args (pc_rtx, funtype);
3571
3572 /* Figure out the register where the value, if any, will come back. */
3573 valreg = 0;
3574 if (TYPE_MODE (rettype) != VOIDmode
3575 && ! structure_value_addr)
3576 {
3577 if (pcc_struct_value)
3578 valreg = hard_function_value (build_pointer_type (rettype),
3579 fndecl, NULL, (pass == 0));
3580 else
3581 valreg = hard_function_value (rettype, fndecl, fntype,
3582 (pass == 0));
3583
3584 /* If VALREG is a PARALLEL whose first member has a zero
3585 offset, use that. This is for targets such as m68k that
3586 return the same value in multiple places. */
3587 if (GET_CODE (valreg) == PARALLEL)
3588 {
3589 rtx elem = XVECEXP (valreg, 0, 0);
3590 rtx where = XEXP (elem, 0);
3591 rtx offset = XEXP (elem, 1);
3592 if (offset == const0_rtx
3593 && GET_MODE (where) == GET_MODE (valreg))
3594 valreg = where;
3595 }
3596 }
3597
3598 /* If register arguments require space on the stack and stack space
3599 was not preallocated, allocate stack space here for arguments
3600 passed in registers. */
3601 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3602 && !ACCUMULATE_OUTGOING_ARGS
3603 && !must_preallocate && reg_parm_stack_space > 0)
3604 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
3605
3606 /* Pass the function the address in which to return a
3607 structure value. */
3608 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
3609 {
3610 structure_value_addr
3611 = convert_memory_address (Pmode, structure_value_addr);
3612 emit_move_insn (struct_value,
3613 force_reg (Pmode,
3614 force_operand (structure_value_addr,
3615 NULL_RTX)));
3616
3617 if (REG_P (struct_value))
3618 use_reg (&call_fusage, struct_value);
3619 }
3620
3621 after_args = get_last_insn ();
3622 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
3623 static_chain_value, &call_fusage,
3624 reg_parm_seen, flags);
3625
3626 load_register_parameters (args, num_actuals, &call_fusage, flags,
3627 pass == 0, &sibcall_failure);
3628
3629 /* Save a pointer to the last insn before the call, so that we can
3630 later safely search backwards to find the CALL_INSN. */
3631 before_call = get_last_insn ();
3632
3633 /* Set up next argument register. For sibling calls on machines
3634 with register windows this should be the incoming register. */
3635 if (pass == 0)
3636 next_arg_reg = targetm.calls.function_incoming_arg
3637 (args_so_far, function_arg_info::end_marker ());
3638 else
3639 next_arg_reg = targetm.calls.function_arg
3640 (args_so_far, function_arg_info::end_marker ());
3641
3642 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
3643 {
3644 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
3645 arg_nr = num_actuals - arg_nr - 1;
3646 if (arg_nr >= 0
3647 && arg_nr < num_actuals
3648 && args[arg_nr].reg
3649 && valreg
3650 && REG_P (valreg)
3651 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
3652 call_fusage
3653 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
3654 gen_rtx_SET (valreg, args[arg_nr].reg),
3655 call_fusage);
3656 }
3657 /* All arguments and registers used for the call must be set up by
3658 now! */
3659
3660 /* Stack must be properly aligned now. */
3661 gcc_assert (!pass
3662 || multiple_p (stack_pointer_delta,
3663 preferred_unit_stack_boundary));
3664
3665 /* Generate the actual call instruction. */
3666 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
3667 adjusted_args_size.constant, struct_value_size,
3668 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
3669 flags, args_so_far);
3670
3671 if (flag_ipa_ra)
3672 {
3673 rtx_call_insn *last;
3674 rtx datum = NULL_RTX;
3675 if (fndecl != NULL_TREE)
3676 {
3677 datum = XEXP (DECL_RTL (fndecl), 0);
3678 gcc_assert (datum != NULL_RTX
3679 && GET_CODE (datum) == SYMBOL_REF);
3680 }
3681 last = last_call_insn ();
3682 add_reg_note (last, REG_CALL_DECL, datum);
3683 }
3684
3685 /* If the call setup or the call itself overlaps with anything
3686 of the argument setup we probably clobbered our call address.
3687 In that case we can't do sibcalls. */
3688 if (pass == 0
3689 && check_sibcall_argument_overlap (after_args, 0, false))
3690 sibcall_failure = true;
3691
3692 /* If a non-BLKmode value is returned at the most significant end
3693 of a register, shift the register right by the appropriate amount
3694 and update VALREG accordingly. BLKmode values are handled by the
3695 group load/store machinery below. */
3696 if (!structure_value_addr
3697 && !pcc_struct_value
3698 && TYPE_MODE (rettype) != VOIDmode
3699 && TYPE_MODE (rettype) != BLKmode
3700 && REG_P (valreg)
3701 && targetm.calls.return_in_msb (rettype))
3702 {
3703 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
3704 sibcall_failure = true;
3705 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
3706 }
3707
3708 if (pass && (flags & ECF_MALLOC))
3709 {
3710 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3711 rtx_insn *last, *insns;
3712
3713 /* The return value from a malloc-like function is a pointer. */
3714 if (TREE_CODE (rettype) == POINTER_TYPE)
3715 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
3716
3717 emit_move_insn (temp, valreg);
3718
3719 /* The return value from a malloc-like function cannot alias
3720 anything else. */
3721 last = get_last_insn ();
3722 add_reg_note (last, REG_NOALIAS, temp);
3723
3724 /* Write out the sequence. */
3725 insns = get_insns ();
3726 end_sequence ();
3727 emit_insn (insns);
3728 valreg = temp;
3729 }
3730
3731 /* For calls to `setjmp', etc., inform
3732 function.cc:setjmp_warnings that it should complain if
3733 nonvolatile values are live. For functions that cannot
3734 return, inform flow that control does not fall through. */
3735
3736 if ((flags & ECF_NORETURN) || pass == 0)
3737 {
3738 /* The barrier must be emitted
3739 immediately after the CALL_INSN. Some ports emit more
3740 than just a CALL_INSN above, so we must search for it here. */
3741
3742 rtx_insn *last = get_last_insn ();
3743 while (!CALL_P (last))
3744 {
3745 last = PREV_INSN (last);
3746 /* There was no CALL_INSN? */
3747 gcc_assert (last != before_call);
3748 }
3749
3750 emit_barrier_after (last);
3751
3752 /* Stack adjustments after a noreturn call are dead code.
3753 However when NO_DEFER_POP is in effect, we must preserve
3754 stack_pointer_delta. */
3755 if (inhibit_defer_pop == 0)
3756 {
3757 stack_pointer_delta = old_stack_allocated;
3758 pending_stack_adjust = 0;
3759 }
3760 }
3761
3762 /* If value type not void, return an rtx for the value. */
3763
3764 if (TYPE_MODE (rettype) == VOIDmode
3765 || ignore)
3766 target = const0_rtx;
3767 else if (structure_value_addr)
3768 {
3769 if (target == 0 || !MEM_P (target))
3770 {
3771 target
3772 = gen_rtx_MEM (TYPE_MODE (rettype),
3773 memory_address (TYPE_MODE (rettype),
3774 structure_value_addr));
3775 set_mem_attributes (target, rettype, 1);
3776 }
3777 }
3778 else if (pcc_struct_value)
3779 {
3780 /* This is the special C++ case where we need to
3781 know what the true target was. We take care to
3782 never use this value more than once in one expression. */
3783 target = gen_rtx_MEM (TYPE_MODE (rettype),
3784 copy_to_reg (valreg));
3785 set_mem_attributes (target, rettype, 1);
3786 }
3787 /* Handle calls that return values in multiple non-contiguous locations.
3788 The Irix 6 ABI has examples of this. */
3789 else if (GET_CODE (valreg) == PARALLEL)
3790 {
3791 if (target == 0)
3792 target = emit_group_move_into_temps (valreg);
3793 else if (rtx_equal_p (target, valreg))
3794 ;
3795 else if (GET_CODE (target) == PARALLEL)
3796 /* Handle the result of a emit_group_move_into_temps
3797 call in the previous pass. */
3798 emit_group_move (target, valreg);
3799 else
3800 emit_group_store (target, valreg, rettype,
3801 int_size_in_bytes (rettype));
3802 }
3803 else if (target
3804 && GET_MODE (target) == TYPE_MODE (rettype)
3805 && GET_MODE (target) == GET_MODE (valreg))
3806 {
3807 bool may_overlap = false;
3808
3809 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3810 reg to a plain register. */
3811 if (!REG_P (target) || HARD_REGISTER_P (target))
3812 valreg = avoid_likely_spilled_reg (valreg);
3813
3814 /* If TARGET is a MEM in the argument area, and we have
3815 saved part of the argument area, then we can't store
3816 directly into TARGET as it may get overwritten when we
3817 restore the argument save area below. Don't work too
3818 hard though and simply force TARGET to a register if it
3819 is a MEM; the optimizer is quite likely to sort it out. */
3820 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3821 for (i = 0; i < num_actuals; i++)
3822 if (args[i].save_area)
3823 {
3824 may_overlap = true;
3825 break;
3826 }
3827
3828 if (may_overlap)
3829 target = copy_to_reg (valreg);
3830 else
3831 {
3832 /* TARGET and VALREG cannot be equal at this point
3833 because the latter would not have
3834 REG_FUNCTION_VALUE_P true, while the former would if
3835 it were referring to the same register.
3836
3837 If they refer to the same register, this move will be
3838 a no-op, except when function inlining is being
3839 done. */
3840 emit_move_insn (target, valreg);
3841
3842 /* If we are setting a MEM, this code must be executed.
3843 Since it is emitted after the call insn, sibcall
3844 optimization cannot be performed in that case. */
3845 if (MEM_P (target))
3846 sibcall_failure = true;
3847 }
3848 }
3849 else
3850 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3851
3852 /* If we promoted this return value, make the proper SUBREG.
3853 TARGET might be const0_rtx here, so be careful. */
3854 if (REG_P (target)
3855 && TYPE_MODE (rettype) != BLKmode
3856 && GET_MODE (target) != TYPE_MODE (rettype))
3857 {
3858 tree type = rettype;
3859 int unsignedp = TYPE_UNSIGNED (type);
3860 machine_mode ret_mode = TYPE_MODE (type);
3861 machine_mode pmode;
3862
3863 /* Ensure we promote as expected, and get the new unsignedness. */
3864 pmode = promote_function_mode (type, ret_mode, &unsignedp,
3865 funtype, 1);
3866 gcc_assert (GET_MODE (target) == pmode);
3867
3868 if (SCALAR_INT_MODE_P (pmode)
3869 && SCALAR_FLOAT_MODE_P (ret_mode)
3870 && known_gt (GET_MODE_SIZE (pmode), GET_MODE_SIZE (ret_mode)))
3871 target = convert_wider_int_to_float (ret_mode, pmode, target);
3872 else
3873 {
3874 target = gen_lowpart_SUBREG (ret_mode, target);
3875 SUBREG_PROMOTED_VAR_P (target) = 1;
3876 SUBREG_PROMOTED_SET (target, unsignedp);
3877 }
3878 }
3879
3880 /* If size of args is variable or this was a constructor call for a stack
3881 argument, restore saved stack-pointer value. */
3882
3883 if (old_stack_level)
3884 {
3885 rtx_insn *prev = get_last_insn ();
3886
3887 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3888 stack_pointer_delta = old_stack_pointer_delta;
3889
3890 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
3891
3892 pending_stack_adjust = old_pending_adj;
3893 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3894 stack_arg_under_construction = old_stack_arg_under_construction;
3895 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3896 stack_usage_map = initial_stack_usage_map;
3897 stack_usage_watermark = initial_stack_usage_watermark;
3898 sibcall_failure = true;
3899 }
3900 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3901 {
3902 #ifdef REG_PARM_STACK_SPACE
3903 if (save_area)
3904 restore_fixed_argument_area (save_area, argblock,
3905 high_to_save, low_to_save);
3906 #endif
3907
3908 /* If we saved any argument areas, restore them. */
3909 for (i = 0; i < num_actuals; i++)
3910 if (args[i].save_area)
3911 {
3912 machine_mode save_mode = GET_MODE (args[i].save_area);
3913 rtx stack_area
3914 = gen_rtx_MEM (save_mode,
3915 memory_address (save_mode,
3916 XEXP (args[i].stack_slot, 0)));
3917
3918 if (save_mode != BLKmode)
3919 emit_move_insn (stack_area, args[i].save_area);
3920 else
3921 emit_block_move (stack_area, args[i].save_area,
3922 (gen_int_mode
3923 (args[i].locate.size.constant, Pmode)),
3924 BLOCK_OP_CALL_PARM);
3925 }
3926
3927 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3928 stack_usage_map = initial_stack_usage_map;
3929 stack_usage_watermark = initial_stack_usage_watermark;
3930 }
3931
3932 /* If this was alloca, record the new stack level. */
3933 if (flags & ECF_MAY_BE_ALLOCA)
3934 record_new_stack_level ();
3935
3936 /* Free up storage we no longer need. */
3937 for (i = 0; i < num_actuals; ++i)
3938 free (args[i].aligned_regs);
3939
3940 targetm.calls.end_call_args ();
3941
3942 insns = get_insns ();
3943 end_sequence ();
3944
3945 if (pass == 0)
3946 {
3947 tail_call_insns = insns;
3948
3949 /* Restore the pending stack adjustment now that we have
3950 finished generating the sibling call sequence. */
3951
3952 restore_pending_stack_adjust (&save);
3953
3954 /* Prepare arg structure for next iteration. */
3955 for (i = 0; i < num_actuals; i++)
3956 {
3957 args[i].value = 0;
3958 args[i].aligned_regs = 0;
3959 args[i].stack = 0;
3960 }
3961
3962 sbitmap_free (stored_args_map);
3963 internal_arg_pointer_exp_state.scan_start = NULL;
3964 internal_arg_pointer_exp_state.cache.release ();
3965 }
3966 else
3967 {
3968 normal_call_insns = insns;
3969
3970 /* Verify that we've deallocated all the stack we used. */
3971 gcc_assert ((flags & ECF_NORETURN)
3972 || normal_failure
3973 || known_eq (old_stack_allocated,
3974 stack_pointer_delta
3975 - pending_stack_adjust));
3976 if (normal_failure)
3977 normal_call_insns = NULL;
3978 }
3979
3980 /* If something prevents making this a sibling call,
3981 zero out the sequence. */
3982 if (sibcall_failure)
3983 tail_call_insns = NULL;
3984 else
3985 break;
3986 }
3987
3988 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3989 arguments too, as argument area is now clobbered by the call. */
3990 if (tail_call_insns)
3991 {
3992 emit_insn (tail_call_insns);
3993 crtl->tail_call_emit = true;
3994 }
3995 else
3996 {
3997 emit_insn (normal_call_insns);
3998 if (try_tail_call)
3999 /* Ideally we'd emit a message for all of the ways that it could
4000 have failed. */
4001 maybe_complain_about_tail_call (exp, "tail call production failed");
4002 }
4003
4004 currently_expanding_call--;
4005
4006 free (stack_usage_map_buf);
4007 free (args);
4008 return target;
4009 }
4010
4011 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4012 this function's incoming arguments.
4013
4014 At the start of RTL generation we know the only REG_EQUIV notes
4015 in the rtl chain are those for incoming arguments, so we can look
4016 for REG_EQUIV notes between the start of the function and the
4017 NOTE_INSN_FUNCTION_BEG.
4018
4019 This is (slight) overkill. We could keep track of the highest
4020 argument we clobber and be more selective in removing notes, but it
4021 does not seem to be worth the effort. */
4022
4023 void
4024 fixup_tail_calls (void)
4025 {
4026 rtx_insn *insn;
4027
4028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4029 {
4030 rtx note;
4031
4032 /* There are never REG_EQUIV notes for the incoming arguments
4033 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4034 if (NOTE_P (insn)
4035 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4036 break;
4037
4038 note = find_reg_note (insn, REG_EQUIV, 0);
4039 if (note)
4040 remove_note (insn, note);
4041 note = find_reg_note (insn, REG_EQUIV, 0);
4042 gcc_assert (!note);
4043 }
4044 }
4045
4046 /* Traverse a list of TYPES and expand all complex types into their
4047 components. */
4048 static tree
4049 split_complex_types (tree types)
4050 {
4051 tree p;
4052
4053 /* Before allocating memory, check for the common case of no complex. */
4054 for (p = types; p; p = TREE_CHAIN (p))
4055 {
4056 tree type = TREE_VALUE (p);
4057 if (TREE_CODE (type) == COMPLEX_TYPE
4058 && targetm.calls.split_complex_arg (type))
4059 goto found;
4060 }
4061 return types;
4062
4063 found:
4064 types = copy_list (types);
4065
4066 for (p = types; p; p = TREE_CHAIN (p))
4067 {
4068 tree complex_type = TREE_VALUE (p);
4069
4070 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4071 && targetm.calls.split_complex_arg (complex_type))
4072 {
4073 tree next, imag;
4074
4075 /* Rewrite complex type with component type. */
4076 TREE_VALUE (p) = TREE_TYPE (complex_type);
4077 next = TREE_CHAIN (p);
4078
4079 /* Add another component type for the imaginary part. */
4080 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4081 TREE_CHAIN (p) = imag;
4082 TREE_CHAIN (imag) = next;
4083
4084 /* Skip the newly created node. */
4085 p = TREE_CHAIN (p);
4086 }
4087 }
4088
4089 return types;
4090 }
4091 \f
4092 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
4093 for a value of mode OUTMODE,
4094 with NARGS different arguments, passed as ARGS.
4095 Store the return value if RETVAL is nonzero: store it in VALUE if
4096 VALUE is nonnull, otherwise pick a convenient location. In either
4097 case return the location of the stored value.
4098
4099 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4100 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
4101 other types of library calls. */
4102
4103 rtx
4104 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4105 enum libcall_type fn_type,
4106 machine_mode outmode, int nargs, rtx_mode_t *args)
4107 {
4108 /* Total size in bytes of all the stack-parms scanned so far. */
4109 struct args_size args_size;
4110 /* Size of arguments before any adjustments (such as rounding). */
4111 struct args_size original_args_size;
4112 int argnum;
4113 rtx fun;
4114 /* Todo, choose the correct decl type of orgfun. Sadly this information
4115 isn't present here, so we default to native calling abi here. */
4116 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4117 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4118 int count;
4119 rtx argblock = 0;
4120 CUMULATIVE_ARGS args_so_far_v;
4121 cumulative_args_t args_so_far;
4122 struct arg
4123 {
4124 rtx value;
4125 machine_mode mode;
4126 rtx reg;
4127 int partial;
4128 struct locate_and_pad_arg_data locate;
4129 rtx save_area;
4130 };
4131 struct arg *argvec;
4132 int old_inhibit_defer_pop = inhibit_defer_pop;
4133 rtx call_fusage = 0;
4134 rtx mem_value = 0;
4135 rtx valreg;
4136 bool pcc_struct_value = false;
4137 poly_int64 struct_value_size = 0;
4138 int flags;
4139 int reg_parm_stack_space = 0;
4140 poly_int64 needed;
4141 rtx_insn *before_call;
4142 bool have_push_fusage;
4143 tree tfom; /* type_for_mode (outmode, 0) */
4144
4145 #ifdef REG_PARM_STACK_SPACE
4146 /* Define the boundary of the register parm stack space that needs to be
4147 save, if any. */
4148 int low_to_save = 0, high_to_save = 0;
4149 rtx save_area = 0; /* Place that it is saved. */
4150 #endif
4151
4152 /* Size of the stack reserved for parameter registers. */
4153 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
4154 char *initial_stack_usage_map = stack_usage_map;
4155 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
4156 char *stack_usage_map_buf = NULL;
4157
4158 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
4159
4160 #ifdef REG_PARM_STACK_SPACE
4161 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
4162 #endif
4163
4164 /* By default, library functions cannot throw. */
4165 flags = ECF_NOTHROW;
4166
4167 switch (fn_type)
4168 {
4169 case LCT_NORMAL:
4170 break;
4171 case LCT_CONST:
4172 flags |= ECF_CONST;
4173 break;
4174 case LCT_PURE:
4175 flags |= ECF_PURE;
4176 break;
4177 case LCT_NORETURN:
4178 flags |= ECF_NORETURN;
4179 break;
4180 case LCT_THROW:
4181 flags &= ~ECF_NOTHROW;
4182 break;
4183 case LCT_RETURNS_TWICE:
4184 flags = ECF_RETURNS_TWICE;
4185 break;
4186 }
4187 fun = orgfun;
4188
4189 /* Ensure current function's preferred stack boundary is at least
4190 what we need. */
4191 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
4192 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
4193
4194 /* If this kind of value comes back in memory,
4195 decide where in memory it should come back. */
4196 if (outmode != VOIDmode)
4197 {
4198 tfom = lang_hooks.types.type_for_mode (outmode, 0);
4199 if (aggregate_value_p (tfom, 0))
4200 {
4201 #ifdef PCC_STATIC_STRUCT_RETURN
4202 rtx pointer_reg
4203 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
4204 mem_value = gen_rtx_MEM (outmode, pointer_reg);
4205 pcc_struct_value = true;
4206 if (value == 0)
4207 value = gen_reg_rtx (outmode);
4208 #else /* not PCC_STATIC_STRUCT_RETURN */
4209 struct_value_size = GET_MODE_SIZE (outmode);
4210 if (value != 0 && MEM_P (value))
4211 mem_value = value;
4212 else
4213 mem_value = assign_temp (tfom, 1, 1);
4214 #endif
4215 /* This call returns a big structure. */
4216 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
4217 }
4218 }
4219 else
4220 tfom = void_type_node;
4221
4222 /* ??? Unfinished: must pass the memory address as an argument. */
4223
4224 /* Copy all the libcall-arguments out of the varargs data
4225 and into a vector ARGVEC.
4226
4227 Compute how to pass each argument. We only support a very small subset
4228 of the full argument passing conventions to limit complexity here since
4229 library functions shouldn't have many args. */
4230
4231 argvec = XALLOCAVEC (struct arg, nargs + 1);
4232 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
4233
4234 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
4235 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
4236 #else
4237 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
4238 #endif
4239 args_so_far = pack_cumulative_args (&args_so_far_v);
4240
4241 args_size.constant = 0;
4242 args_size.var = 0;
4243
4244 count = 0;
4245
4246 push_temp_slots ();
4247
4248 /* If there's a structure value address to be passed,
4249 either pass it in the special place, or pass it as an extra argument. */
4250 if (mem_value && struct_value == 0 && ! pcc_struct_value)
4251 {
4252 rtx addr = XEXP (mem_value, 0);
4253
4254 nargs++;
4255
4256 /* Make sure it is a reasonable operand for a move or push insn. */
4257 if (!REG_P (addr) && !MEM_P (addr)
4258 && !(CONSTANT_P (addr)
4259 && targetm.legitimate_constant_p (Pmode, addr)))
4260 addr = force_operand (addr, NULL_RTX);
4261
4262 argvec[count].value = addr;
4263 argvec[count].mode = Pmode;
4264 argvec[count].partial = 0;
4265
4266 function_arg_info ptr_arg (Pmode, /*named=*/true);
4267 argvec[count].reg = targetm.calls.function_arg (args_so_far, ptr_arg);
4268 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, ptr_arg) == 0);
4269
4270 locate_and_pad_parm (Pmode, NULL_TREE,
4271 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4272 1,
4273 #else
4274 argvec[count].reg != 0,
4275 #endif
4276 reg_parm_stack_space, 0,
4277 NULL_TREE, &args_size, &argvec[count].locate);
4278
4279 if (argvec[count].reg == 0 || argvec[count].partial != 0
4280 || reg_parm_stack_space > 0)
4281 args_size.constant += argvec[count].locate.size.constant;
4282
4283 targetm.calls.function_arg_advance (args_so_far, ptr_arg);
4284
4285 count++;
4286 }
4287
4288 for (unsigned int i = 0; count < nargs; i++, count++)
4289 {
4290 rtx val = args[i].first;
4291 function_arg_info arg (args[i].second, /*named=*/true);
4292 int unsigned_p = 0;
4293
4294 /* We cannot convert the arg value to the mode the library wants here;
4295 must do it earlier where we know the signedness of the arg. */
4296 gcc_assert (arg.mode != BLKmode
4297 && (GET_MODE (val) == arg.mode
4298 || GET_MODE (val) == VOIDmode));
4299
4300 /* Make sure it is a reasonable operand for a move or push insn. */
4301 if (!REG_P (val) && !MEM_P (val)
4302 && !(CONSTANT_P (val)
4303 && targetm.legitimate_constant_p (arg.mode, val)))
4304 val = force_operand (val, NULL_RTX);
4305
4306 if (pass_by_reference (&args_so_far_v, arg))
4307 {
4308 rtx slot;
4309 int must_copy = !reference_callee_copied (&args_so_far_v, arg);
4310
4311 /* If this was a CONST function, it is now PURE since it now
4312 reads memory. */
4313 if (flags & ECF_CONST)
4314 {
4315 flags &= ~ECF_CONST;
4316 flags |= ECF_PURE;
4317 }
4318
4319 if (MEM_P (val) && !must_copy)
4320 {
4321 tree val_expr = MEM_EXPR (val);
4322 if (val_expr)
4323 mark_addressable (val_expr);
4324 slot = val;
4325 }
4326 else
4327 {
4328 slot = assign_temp (lang_hooks.types.type_for_mode (arg.mode, 0),
4329 1, 1);
4330 emit_move_insn (slot, val);
4331 }
4332
4333 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4334 gen_rtx_USE (VOIDmode, slot),
4335 call_fusage);
4336 if (must_copy)
4337 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4338 gen_rtx_CLOBBER (VOIDmode,
4339 slot),
4340 call_fusage);
4341
4342 arg.mode = Pmode;
4343 arg.pass_by_reference = true;
4344 val = force_operand (XEXP (slot, 0), NULL_RTX);
4345 }
4346
4347 arg.mode = promote_function_mode (NULL_TREE, arg.mode, &unsigned_p,
4348 NULL_TREE, 0);
4349 argvec[count].mode = arg.mode;
4350 argvec[count].value = convert_modes (arg.mode, GET_MODE (val), val,
4351 unsigned_p);
4352 argvec[count].reg = targetm.calls.function_arg (args_so_far, arg);
4353
4354 argvec[count].partial
4355 = targetm.calls.arg_partial_bytes (args_so_far, arg);
4356
4357 if (argvec[count].reg == 0
4358 || argvec[count].partial != 0
4359 || reg_parm_stack_space > 0)
4360 {
4361 locate_and_pad_parm (arg.mode, NULL_TREE,
4362 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4363 1,
4364 #else
4365 argvec[count].reg != 0,
4366 #endif
4367 reg_parm_stack_space, argvec[count].partial,
4368 NULL_TREE, &args_size, &argvec[count].locate);
4369 args_size.constant += argvec[count].locate.size.constant;
4370 gcc_assert (!argvec[count].locate.size.var);
4371 }
4372 #ifdef BLOCK_REG_PADDING
4373 else
4374 /* The argument is passed entirely in registers. See at which
4375 end it should be padded. */
4376 argvec[count].locate.where_pad =
4377 BLOCK_REG_PADDING (arg.mode, NULL_TREE,
4378 known_le (GET_MODE_SIZE (arg.mode),
4379 UNITS_PER_WORD));
4380 #endif
4381
4382 targetm.calls.function_arg_advance (args_so_far, arg);
4383 }
4384
4385 for (int i = 0; i < nargs; i++)
4386 if (reg_parm_stack_space > 0
4387 || argvec[i].reg == 0
4388 || argvec[i].partial != 0)
4389 update_stack_alignment_for_call (&argvec[i].locate);
4390
4391 /* If this machine requires an external definition for library
4392 functions, write one out. */
4393 assemble_external_libcall (fun);
4394
4395 original_args_size = args_size;
4396 args_size.constant = (aligned_upper_bound (args_size.constant
4397 + stack_pointer_delta,
4398 STACK_BYTES)
4399 - stack_pointer_delta);
4400
4401 args_size.constant = upper_bound (args_size.constant,
4402 reg_parm_stack_space);
4403
4404 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4405 args_size.constant -= reg_parm_stack_space;
4406
4407 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
4408 args_size.constant);
4409
4410 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
4411 {
4412 poly_int64 pushed = args_size.constant + pending_stack_adjust;
4413 current_function_pushed_stack_size
4414 = upper_bound (current_function_pushed_stack_size, pushed);
4415 }
4416
4417 if (ACCUMULATE_OUTGOING_ARGS)
4418 {
4419 /* Since the stack pointer will never be pushed, it is possible for
4420 the evaluation of a parm to clobber something we have already
4421 written to the stack. Since most function calls on RISC machines
4422 do not use the stack, this is uncommon, but must work correctly.
4423
4424 Therefore, we save any area of the stack that was already written
4425 and that we are using. Here we set up to do this by making a new
4426 stack usage map from the old one.
4427
4428 Another approach might be to try to reorder the argument
4429 evaluations to avoid this conflicting stack usage. */
4430
4431 needed = args_size.constant;
4432
4433 /* Since we will be writing into the entire argument area, the
4434 map must be allocated for its entire size, not just the part that
4435 is the responsibility of the caller. */
4436 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4437 needed += reg_parm_stack_space;
4438
4439 poly_int64 limit = needed;
4440 if (ARGS_GROW_DOWNWARD)
4441 limit += 1;
4442
4443 /* For polynomial sizes, this is the maximum possible size needed
4444 for arguments with a constant size and offset. */
4445 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
4446 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
4447 const_limit);
4448
4449 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
4450 stack_usage_map = stack_usage_map_buf;
4451
4452 if (initial_highest_arg_in_use)
4453 memcpy (stack_usage_map, initial_stack_usage_map,
4454 initial_highest_arg_in_use);
4455
4456 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
4457 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
4458 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
4459 needed = 0;
4460
4461 /* We must be careful to use virtual regs before they're instantiated,
4462 and real regs afterwards. Loop optimization, for example, can create
4463 new libcalls after we've instantiated the virtual regs, and if we
4464 use virtuals anyway, they won't match the rtl patterns. */
4465
4466 if (virtuals_instantiated)
4467 argblock = plus_constant (Pmode, stack_pointer_rtx,
4468 STACK_POINTER_OFFSET);
4469 else
4470 argblock = virtual_outgoing_args_rtx;
4471 }
4472 else
4473 {
4474 if (!targetm.calls.push_argument (0))
4475 argblock = push_block (gen_int_mode (args_size.constant, Pmode), 0, 0);
4476 }
4477
4478 /* We push args individually in reverse order, perform stack alignment
4479 before the first push (the last arg). */
4480 if (argblock == 0)
4481 anti_adjust_stack (gen_int_mode (args_size.constant
4482 - original_args_size.constant,
4483 Pmode));
4484
4485 argnum = nargs - 1;
4486
4487 #ifdef REG_PARM_STACK_SPACE
4488 if (ACCUMULATE_OUTGOING_ARGS)
4489 {
4490 /* The argument list is the property of the called routine and it
4491 may clobber it. If the fixed area has been used for previous
4492 parameters, we must save and restore it. */
4493 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4494 &low_to_save, &high_to_save);
4495 }
4496 #endif
4497
4498 /* When expanding a normal call, args are stored in push order,
4499 which is the reverse of what we have here. */
4500 bool any_regs = false;
4501 for (int i = nargs; i-- > 0; )
4502 if (argvec[i].reg != NULL_RTX)
4503 {
4504 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
4505 any_regs = true;
4506 }
4507 if (!any_regs)
4508 targetm.calls.call_args (pc_rtx, NULL_TREE);
4509
4510 /* Push the args that need to be pushed. */
4511
4512 have_push_fusage = false;
4513
4514 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4515 are to be pushed. */
4516 for (count = 0; count < nargs; count++, argnum--)
4517 {
4518 machine_mode mode = argvec[argnum].mode;
4519 rtx val = argvec[argnum].value;
4520 rtx reg = argvec[argnum].reg;
4521 int partial = argvec[argnum].partial;
4522 unsigned int parm_align = argvec[argnum].locate.boundary;
4523 poly_int64 lower_bound = 0, upper_bound = 0;
4524
4525 if (! (reg != 0 && partial == 0))
4526 {
4527 rtx use;
4528
4529 if (ACCUMULATE_OUTGOING_ARGS)
4530 {
4531 /* If this is being stored into a pre-allocated, fixed-size,
4532 stack area, save any previous data at that location. */
4533
4534 if (ARGS_GROW_DOWNWARD)
4535 {
4536 /* stack_slot is negative, but we want to index stack_usage_map
4537 with positive values. */
4538 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
4539 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
4540 }
4541 else
4542 {
4543 lower_bound = argvec[argnum].locate.slot_offset.constant;
4544 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
4545 }
4546
4547 if (stack_region_maybe_used_p (lower_bound, upper_bound,
4548 reg_parm_stack_space))
4549 {
4550 /* We need to make a save area. */
4551 poly_uint64 size
4552 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
4553 machine_mode save_mode
4554 = int_mode_for_size (size, 1).else_blk ();
4555 rtx adr
4556 = plus_constant (Pmode, argblock,
4557 argvec[argnum].locate.offset.constant);
4558 rtx stack_area
4559 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
4560
4561 if (save_mode == BLKmode)
4562 {
4563 argvec[argnum].save_area
4564 = assign_stack_temp (BLKmode,
4565 argvec[argnum].locate.size.constant
4566 );
4567
4568 emit_block_move (validize_mem
4569 (copy_rtx (argvec[argnum].save_area)),
4570 stack_area,
4571 (gen_int_mode
4572 (argvec[argnum].locate.size.constant,
4573 Pmode)),
4574 BLOCK_OP_CALL_PARM);
4575 }
4576 else
4577 {
4578 argvec[argnum].save_area = gen_reg_rtx (save_mode);
4579
4580 emit_move_insn (argvec[argnum].save_area, stack_area);
4581 }
4582 }
4583 }
4584
4585 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
4586 partial, reg, 0, argblock,
4587 (gen_int_mode
4588 (argvec[argnum].locate.offset.constant, Pmode)),
4589 reg_parm_stack_space,
4590 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
4591
4592 /* Now mark the segment we just used. */
4593 if (ACCUMULATE_OUTGOING_ARGS)
4594 mark_stack_region_used (lower_bound, upper_bound);
4595
4596 NO_DEFER_POP;
4597
4598 /* Indicate argument access so that alias.cc knows that these
4599 values are live. */
4600 if (argblock)
4601 use = plus_constant (Pmode, argblock,
4602 argvec[argnum].locate.offset.constant);
4603 else if (have_push_fusage)
4604 continue;
4605 else
4606 {
4607 /* When arguments are pushed, trying to tell alias.cc where
4608 exactly this argument is won't work, because the
4609 auto-increment causes confusion. So we merely indicate
4610 that we access something with a known mode somewhere on
4611 the stack. */
4612 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4613 gen_rtx_SCRATCH (Pmode));
4614 have_push_fusage = true;
4615 }
4616 use = gen_rtx_MEM (argvec[argnum].mode, use);
4617 use = gen_rtx_USE (VOIDmode, use);
4618 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
4619 }
4620 }
4621
4622 argnum = nargs - 1;
4623
4624 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
4625
4626 /* Now load any reg parms into their regs. */
4627
4628 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4629 are to be pushed. */
4630 for (count = 0; count < nargs; count++, argnum--)
4631 {
4632 machine_mode mode = argvec[argnum].mode;
4633 rtx val = argvec[argnum].value;
4634 rtx reg = argvec[argnum].reg;
4635 int partial = argvec[argnum].partial;
4636
4637 /* Handle calls that pass values in multiple non-contiguous
4638 locations. The PA64 has examples of this for library calls. */
4639 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4640 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
4641 else if (reg != 0 && partial == 0)
4642 {
4643 emit_move_insn (reg, val);
4644 #ifdef BLOCK_REG_PADDING
4645 poly_int64 size = GET_MODE_SIZE (argvec[argnum].mode);
4646
4647 /* Copied from load_register_parameters. */
4648
4649 /* Handle case where we have a value that needs shifting
4650 up to the msb. eg. a QImode value and we're padding
4651 upward on a BYTES_BIG_ENDIAN machine. */
4652 if (known_lt (size, UNITS_PER_WORD)
4653 && (argvec[argnum].locate.where_pad
4654 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
4655 {
4656 rtx x;
4657 poly_int64 shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4658
4659 /* Assigning REG here rather than a temp makes CALL_FUSAGE
4660 report the whole reg as used. Strictly speaking, the
4661 call only uses SIZE bytes at the msb end, but it doesn't
4662 seem worth generating rtl to say that. */
4663 reg = gen_rtx_REG (word_mode, REGNO (reg));
4664 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
4665 if (x != reg)
4666 emit_move_insn (reg, x);
4667 }
4668 #endif
4669 }
4670
4671 NO_DEFER_POP;
4672 }
4673
4674 /* Any regs containing parms remain in use through the call. */
4675 for (count = 0; count < nargs; count++)
4676 {
4677 rtx reg = argvec[count].reg;
4678 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4679 use_group_regs (&call_fusage, reg);
4680 else if (reg != 0)
4681 {
4682 int partial = argvec[count].partial;
4683 if (partial)
4684 {
4685 int nregs;
4686 gcc_assert (partial % UNITS_PER_WORD == 0);
4687 nregs = partial / UNITS_PER_WORD;
4688 use_regs (&call_fusage, REGNO (reg), nregs);
4689 }
4690 else
4691 use_reg (&call_fusage, reg);
4692 }
4693 }
4694
4695 /* Pass the function the address in which to return a structure value. */
4696 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
4697 {
4698 emit_move_insn (struct_value,
4699 force_reg (Pmode,
4700 force_operand (XEXP (mem_value, 0),
4701 NULL_RTX)));
4702 if (REG_P (struct_value))
4703 use_reg (&call_fusage, struct_value);
4704 }
4705
4706 /* Don't allow popping to be deferred, since then
4707 cse'ing of library calls could delete a call and leave the pop. */
4708 NO_DEFER_POP;
4709 valreg = (mem_value == 0 && outmode != VOIDmode
4710 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
4711
4712 /* Stack must be properly aligned now. */
4713 gcc_assert (multiple_p (stack_pointer_delta,
4714 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
4715
4716 before_call = get_last_insn ();
4717
4718 if (flag_callgraph_info)
4719 record_final_call (SYMBOL_REF_DECL (orgfun), UNKNOWN_LOCATION);
4720
4721 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4722 will set inhibit_defer_pop to that value. */
4723 /* The return type is needed to decide how many bytes the function pops.
4724 Signedness plays no role in that, so for simplicity, we pretend it's
4725 always signed. We also assume that the list of arguments passed has
4726 no impact, so we pretend it is unknown. */
4727
4728 emit_call_1 (fun, NULL,
4729 get_identifier (XSTR (orgfun, 0)),
4730 build_function_type (tfom, NULL_TREE),
4731 original_args_size.constant, args_size.constant,
4732 struct_value_size,
4733 targetm.calls.function_arg (args_so_far,
4734 function_arg_info::end_marker ()),
4735 valreg,
4736 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
4737
4738 if (flag_ipa_ra)
4739 {
4740 rtx datum = orgfun;
4741 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
4742 rtx_call_insn *last = last_call_insn ();
4743 add_reg_note (last, REG_CALL_DECL, datum);
4744 }
4745
4746 /* Right-shift returned value if necessary. */
4747 if (!pcc_struct_value
4748 && TYPE_MODE (tfom) != BLKmode
4749 && targetm.calls.return_in_msb (tfom))
4750 {
4751 shift_return_value (TYPE_MODE (tfom), false, valreg);
4752 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
4753 }
4754
4755 targetm.calls.end_call_args ();
4756
4757 /* For calls to `setjmp', etc., inform function.cc:setjmp_warnings
4758 that it should complain if nonvolatile values are live. For
4759 functions that cannot return, inform flow that control does not
4760 fall through. */
4761 if (flags & ECF_NORETURN)
4762 {
4763 /* The barrier note must be emitted
4764 immediately after the CALL_INSN. Some ports emit more than
4765 just a CALL_INSN above, so we must search for it here. */
4766 rtx_insn *last = get_last_insn ();
4767 while (!CALL_P (last))
4768 {
4769 last = PREV_INSN (last);
4770 /* There was no CALL_INSN? */
4771 gcc_assert (last != before_call);
4772 }
4773
4774 emit_barrier_after (last);
4775 }
4776
4777 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
4778 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
4779 if (flags & ECF_NOTHROW)
4780 {
4781 rtx_insn *last = get_last_insn ();
4782 while (!CALL_P (last))
4783 {
4784 last = PREV_INSN (last);
4785 /* There was no CALL_INSN? */
4786 gcc_assert (last != before_call);
4787 }
4788
4789 make_reg_eh_region_note_nothrow_nononlocal (last);
4790 }
4791
4792 /* Now restore inhibit_defer_pop to its actual original value. */
4793 OK_DEFER_POP;
4794
4795 pop_temp_slots ();
4796
4797 /* Copy the value to the right place. */
4798 if (outmode != VOIDmode && retval)
4799 {
4800 if (mem_value)
4801 {
4802 if (value == 0)
4803 value = mem_value;
4804 if (value != mem_value)
4805 emit_move_insn (value, mem_value);
4806 }
4807 else if (GET_CODE (valreg) == PARALLEL)
4808 {
4809 if (value == 0)
4810 value = gen_reg_rtx (outmode);
4811 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
4812 }
4813 else
4814 {
4815 /* Convert to the proper mode if a promotion has been active. */
4816 if (GET_MODE (valreg) != outmode)
4817 {
4818 int unsignedp = TYPE_UNSIGNED (tfom);
4819
4820 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
4821 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
4822 == GET_MODE (valreg));
4823 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
4824 }
4825
4826 if (value != 0)
4827 emit_move_insn (value, valreg);
4828 else
4829 value = valreg;
4830 }
4831 }
4832
4833 if (ACCUMULATE_OUTGOING_ARGS)
4834 {
4835 #ifdef REG_PARM_STACK_SPACE
4836 if (save_area)
4837 restore_fixed_argument_area (save_area, argblock,
4838 high_to_save, low_to_save);
4839 #endif
4840
4841 /* If we saved any argument areas, restore them. */
4842 for (count = 0; count < nargs; count++)
4843 if (argvec[count].save_area)
4844 {
4845 machine_mode save_mode = GET_MODE (argvec[count].save_area);
4846 rtx adr = plus_constant (Pmode, argblock,
4847 argvec[count].locate.offset.constant);
4848 rtx stack_area = gen_rtx_MEM (save_mode,
4849 memory_address (save_mode, adr));
4850
4851 if (save_mode == BLKmode)
4852 emit_block_move (stack_area,
4853 validize_mem
4854 (copy_rtx (argvec[count].save_area)),
4855 (gen_int_mode
4856 (argvec[count].locate.size.constant, Pmode)),
4857 BLOCK_OP_CALL_PARM);
4858 else
4859 emit_move_insn (stack_area, argvec[count].save_area);
4860 }
4861
4862 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4863 stack_usage_map = initial_stack_usage_map;
4864 stack_usage_watermark = initial_stack_usage_watermark;
4865 }
4866
4867 free (stack_usage_map_buf);
4868
4869 return value;
4870
4871 }
4872 \f
4873
4874 /* Store a single argument for a function call
4875 into the register or memory area where it must be passed.
4876 *ARG describes the argument value and where to pass it.
4877
4878 ARGBLOCK is the address of the stack-block for all the arguments,
4879 or 0 on a machine where arguments are pushed individually.
4880
4881 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4882 so must be careful about how the stack is used.
4883
4884 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4885 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4886 that we need not worry about saving and restoring the stack.
4887
4888 FNDECL is the declaration of the function we are calling.
4889
4890 Return true if this arg should cause sibcall failure,
4891 false otherwise. */
4892
4893 static bool
4894 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4895 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4896 {
4897 tree pval = arg->tree_value;
4898 rtx reg = 0;
4899 int partial = 0;
4900 poly_int64 used = 0;
4901 poly_int64 lower_bound = 0, upper_bound = 0;
4902 bool sibcall_failure = false;
4903
4904 if (TREE_CODE (pval) == ERROR_MARK)
4905 return true;
4906
4907 /* Push a new temporary level for any temporaries we make for
4908 this argument. */
4909 push_temp_slots ();
4910
4911 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4912 {
4913 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4914 save any previous data at that location. */
4915 if (argblock && ! variable_size && arg->stack)
4916 {
4917 if (ARGS_GROW_DOWNWARD)
4918 {
4919 /* stack_slot is negative, but we want to index stack_usage_map
4920 with positive values. */
4921 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4922 {
4923 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
4924 upper_bound = -rtx_to_poly_int64 (offset) + 1;
4925 }
4926 else
4927 upper_bound = 0;
4928
4929 lower_bound = upper_bound - arg->locate.size.constant;
4930 }
4931 else
4932 {
4933 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4934 {
4935 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
4936 lower_bound = rtx_to_poly_int64 (offset);
4937 }
4938 else
4939 lower_bound = 0;
4940
4941 upper_bound = lower_bound + arg->locate.size.constant;
4942 }
4943
4944 if (stack_region_maybe_used_p (lower_bound, upper_bound,
4945 reg_parm_stack_space))
4946 {
4947 /* We need to make a save area. */
4948 poly_uint64 size = arg->locate.size.constant * BITS_PER_UNIT;
4949 machine_mode save_mode
4950 = int_mode_for_size (size, 1).else_blk ();
4951 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4952 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4953
4954 if (save_mode == BLKmode)
4955 {
4956 arg->save_area
4957 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
4958 preserve_temp_slots (arg->save_area);
4959 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
4960 stack_area,
4961 (gen_int_mode
4962 (arg->locate.size.constant, Pmode)),
4963 BLOCK_OP_CALL_PARM);
4964 }
4965 else
4966 {
4967 arg->save_area = gen_reg_rtx (save_mode);
4968 emit_move_insn (arg->save_area, stack_area);
4969 }
4970 }
4971 }
4972 }
4973
4974 /* If this isn't going to be placed on both the stack and in registers,
4975 set up the register and number of words. */
4976 if (! arg->pass_on_stack)
4977 {
4978 if (flags & ECF_SIBCALL)
4979 reg = arg->tail_call_reg;
4980 else
4981 reg = arg->reg;
4982 partial = arg->partial;
4983 }
4984
4985 /* Being passed entirely in a register. We shouldn't be called in
4986 this case. */
4987 gcc_assert (reg == 0 || partial != 0);
4988
4989 /* If this arg needs special alignment, don't load the registers
4990 here. */
4991 if (arg->n_aligned_regs != 0)
4992 reg = 0;
4993
4994 /* If this is being passed partially in a register, we can't evaluate
4995 it directly into its stack slot. Otherwise, we can. */
4996 if (arg->value == 0)
4997 {
4998 /* stack_arg_under_construction is nonzero if a function argument is
4999 being evaluated directly into the outgoing argument list and
5000 expand_call must take special action to preserve the argument list
5001 if it is called recursively.
5002
5003 For scalar function arguments stack_usage_map is sufficient to
5004 determine which stack slots must be saved and restored. Scalar
5005 arguments in general have pass_on_stack == false.
5006
5007 If this argument is initialized by a function which takes the
5008 address of the argument (a C++ constructor or a C function
5009 returning a BLKmode structure), then stack_usage_map is
5010 insufficient and expand_call must push the stack around the
5011 function call. Such arguments have pass_on_stack == true.
5012
5013 Note that it is always safe to set stack_arg_under_construction,
5014 but this generates suboptimal code if set when not needed. */
5015
5016 if (arg->pass_on_stack)
5017 stack_arg_under_construction++;
5018
5019 arg->value = expand_expr (pval,
5020 (partial
5021 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5022 ? NULL_RTX : arg->stack,
5023 VOIDmode, EXPAND_STACK_PARM);
5024
5025 /* If we are promoting object (or for any other reason) the mode
5026 doesn't agree, convert the mode. */
5027
5028 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5029 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5030 arg->value, arg->unsignedp);
5031
5032 if (arg->pass_on_stack)
5033 stack_arg_under_construction--;
5034 }
5035
5036 /* Check for overlap with already clobbered argument area. */
5037 if ((flags & ECF_SIBCALL)
5038 && MEM_P (arg->value)
5039 && mem_might_overlap_already_clobbered_arg_p (XEXP (arg->value, 0),
5040 arg->locate.size.constant))
5041 sibcall_failure = true;
5042
5043 /* Don't allow anything left on stack from computation
5044 of argument to alloca. */
5045 if (flags & ECF_MAY_BE_ALLOCA)
5046 do_pending_stack_adjust ();
5047
5048 if (arg->value == arg->stack)
5049 /* If the value is already in the stack slot, we are done. */
5050 ;
5051 else if (arg->mode != BLKmode)
5052 {
5053 unsigned int parm_align;
5054
5055 /* Argument is a scalar, not entirely passed in registers.
5056 (If part is passed in registers, arg->partial says how much
5057 and emit_push_insn will take care of putting it there.)
5058
5059 Push it, and if its size is less than the
5060 amount of space allocated to it,
5061 also bump stack pointer by the additional space.
5062 Note that in C the default argument promotions
5063 will prevent such mismatches. */
5064
5065 poly_int64 size = (TYPE_EMPTY_P (TREE_TYPE (pval))
5066 ? 0 : GET_MODE_SIZE (arg->mode));
5067
5068 /* Compute how much space the push instruction will push.
5069 On many machines, pushing a byte will advance the stack
5070 pointer by a halfword. */
5071 #ifdef PUSH_ROUNDING
5072 size = PUSH_ROUNDING (size);
5073 #endif
5074 used = size;
5075
5076 /* Compute how much space the argument should get:
5077 round up to a multiple of the alignment for arguments. */
5078 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5079 != PAD_NONE)
5080 /* At the moment we don't (need to) support ABIs for which the
5081 padding isn't known at compile time. In principle it should
5082 be easy to add though. */
5083 used = force_align_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
5084
5085 /* Compute the alignment of the pushed argument. */
5086 parm_align = arg->locate.boundary;
5087 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5088 == PAD_DOWNWARD)
5089 {
5090 poly_int64 pad = used - size;
5091 unsigned int pad_align = known_alignment (pad) * BITS_PER_UNIT;
5092 if (pad_align != 0)
5093 parm_align = MIN (parm_align, pad_align);
5094 }
5095
5096 /* This isn't already where we want it on the stack, so put it there.
5097 This can either be done with push or copy insns. */
5098 if (maybe_ne (used, 0)
5099 && !emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval),
5100 NULL_RTX, parm_align, partial, reg, used - size,
5101 argblock, ARGS_SIZE_RTX (arg->locate.offset),
5102 reg_parm_stack_space,
5103 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5104 sibcall_failure = true;
5105
5106 /* Unless this is a partially-in-register argument, the argument is now
5107 in the stack. */
5108 if (partial == 0)
5109 arg->value = arg->stack;
5110 }
5111 else
5112 {
5113 /* BLKmode, at least partly to be pushed. */
5114
5115 unsigned int parm_align;
5116 poly_int64 excess;
5117 rtx size_rtx;
5118
5119 /* Pushing a nonscalar.
5120 If part is passed in registers, PARTIAL says how much
5121 and emit_push_insn will take care of putting it there. */
5122
5123 /* Round its size up to a multiple
5124 of the allocation unit for arguments. */
5125
5126 if (arg->locate.size.var != 0)
5127 {
5128 excess = 0;
5129 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
5130 }
5131 else
5132 {
5133 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
5134 for BLKmode is careful to avoid it. */
5135 excess = (arg->locate.size.constant
5136 - arg_int_size_in_bytes (TREE_TYPE (pval))
5137 + partial);
5138 size_rtx = expand_expr (arg_size_in_bytes (TREE_TYPE (pval)),
5139 NULL_RTX, TYPE_MODE (sizetype),
5140 EXPAND_NORMAL);
5141 }
5142
5143 parm_align = arg->locate.boundary;
5144
5145 /* When an argument is padded down, the block is aligned to
5146 PARM_BOUNDARY, but the actual argument isn't. */
5147 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5148 == PAD_DOWNWARD)
5149 {
5150 if (arg->locate.size.var)
5151 parm_align = BITS_PER_UNIT;
5152 else
5153 {
5154 unsigned int excess_align
5155 = known_alignment (excess) * BITS_PER_UNIT;
5156 if (excess_align != 0)
5157 parm_align = MIN (parm_align, excess_align);
5158 }
5159 }
5160
5161 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
5162 {
5163 /* emit_push_insn might not work properly if arg->value and
5164 argblock + arg->locate.offset areas overlap. */
5165 rtx x = arg->value;
5166 poly_int64 i = 0;
5167
5168 if (strip_offset (XEXP (x, 0), &i)
5169 == crtl->args.internal_arg_pointer)
5170 {
5171 /* arg.locate doesn't contain the pretend_args_size offset,
5172 it's part of argblock. Ensure we don't count it in I. */
5173 if (STACK_GROWS_DOWNWARD)
5174 i -= crtl->args.pretend_args_size;
5175 else
5176 i += crtl->args.pretend_args_size;
5177
5178 /* expand_call should ensure this. */
5179 gcc_assert (!arg->locate.offset.var
5180 && arg->locate.size.var == 0);
5181 poly_int64 size_val = rtx_to_poly_int64 (size_rtx);
5182
5183 if (known_eq (arg->locate.offset.constant, i))
5184 {
5185 /* Even though they appear to be at the same location,
5186 if part of the outgoing argument is in registers,
5187 they aren't really at the same location. Check for
5188 this by making sure that the incoming size is the
5189 same as the outgoing size. */
5190 if (maybe_ne (arg->locate.size.constant, size_val))
5191 sibcall_failure = true;
5192 }
5193 else if (maybe_in_range_p (arg->locate.offset.constant,
5194 i, size_val))
5195 sibcall_failure = true;
5196 /* Use arg->locate.size.constant instead of size_rtx
5197 because we only care about the part of the argument
5198 on the stack. */
5199 else if (maybe_in_range_p (i, arg->locate.offset.constant,
5200 arg->locate.size.constant))
5201 sibcall_failure = true;
5202 }
5203 }
5204
5205 if (!CONST_INT_P (size_rtx) || INTVAL (size_rtx) != 0)
5206 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5207 parm_align, partial, reg, excess, argblock,
5208 ARGS_SIZE_RTX (arg->locate.offset),
5209 reg_parm_stack_space,
5210 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5211 /* If we bypass emit_push_insn because it is a zero sized argument,
5212 we still might need to adjust stack if such argument requires
5213 extra alignment. See PR104558. */
5214 else if ((arg->locate.alignment_pad.var
5215 || maybe_ne (arg->locate.alignment_pad.constant, 0))
5216 && !argblock)
5217 anti_adjust_stack (ARGS_SIZE_RTX (arg->locate.alignment_pad));
5218
5219 /* Unless this is a partially-in-register argument, the argument is now
5220 in the stack.
5221
5222 ??? Unlike the case above, in which we want the actual
5223 address of the data, so that we can load it directly into a
5224 register, here we want the address of the stack slot, so that
5225 it's properly aligned for word-by-word copying or something
5226 like that. It's not clear that this is always correct. */
5227 if (partial == 0)
5228 arg->value = arg->stack_slot;
5229 }
5230
5231 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5232 {
5233 tree type = TREE_TYPE (arg->tree_value);
5234 arg->parallel_value
5235 = emit_group_load_into_temps (arg->reg, arg->value, type,
5236 int_size_in_bytes (type));
5237 }
5238
5239 /* Mark all slots this store used. */
5240 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5241 && argblock && ! variable_size && arg->stack)
5242 mark_stack_region_used (lower_bound, upper_bound);
5243
5244 /* Once we have pushed something, pops can't safely
5245 be deferred during the rest of the arguments. */
5246 NO_DEFER_POP;
5247
5248 /* Free any temporary slots made in processing this argument. */
5249 pop_temp_slots ();
5250
5251 return sibcall_failure;
5252 }
5253
5254 /* Nonzero if we do not know how to pass ARG solely in registers. */
5255
5256 bool
5257 must_pass_in_stack_var_size (const function_arg_info &arg)
5258 {
5259 if (!arg.type)
5260 return false;
5261
5262 /* If the type has variable size... */
5263 if (!poly_int_tree_p (TYPE_SIZE (arg.type)))
5264 return true;
5265
5266 /* If the type is marked as addressable (it is required
5267 to be constructed into the stack)... */
5268 if (TREE_ADDRESSABLE (arg.type))
5269 return true;
5270
5271 return false;
5272 }
5273
5274 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5275 takes trailing padding of a structure into account. */
5276 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5277
5278 bool
5279 must_pass_in_stack_var_size_or_pad (const function_arg_info &arg)
5280 {
5281 if (!arg.type)
5282 return false;
5283
5284 /* If the type has variable size... */
5285 if (TREE_CODE (TYPE_SIZE (arg.type)) != INTEGER_CST)
5286 return true;
5287
5288 /* If the type is marked as addressable (it is required
5289 to be constructed into the stack)... */
5290 if (TREE_ADDRESSABLE (arg.type))
5291 return true;
5292
5293 if (TYPE_EMPTY_P (arg.type))
5294 return false;
5295
5296 /* If the padding and mode of the type is such that a copy into
5297 a register would put it into the wrong part of the register. */
5298 if (arg.mode == BLKmode
5299 && int_size_in_bytes (arg.type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5300 && (targetm.calls.function_arg_padding (arg.mode, arg.type)
5301 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5302 return true;
5303
5304 return false;
5305 }
5306
5307 /* Return true if TYPE must be passed on the stack when passed to
5308 the "..." arguments of a function. */
5309
5310 bool
5311 must_pass_va_arg_in_stack (tree type)
5312 {
5313 function_arg_info arg (type, /*named=*/false);
5314 return targetm.calls.must_pass_in_stack (arg);
5315 }
5316
5317 /* Return true if FIELD is the C++17 empty base field that should
5318 be ignored for ABI calling convention decisions in order to
5319 maintain ABI compatibility between C++14 and earlier, which doesn't
5320 add this FIELD to classes with empty bases, and C++17 and later
5321 which does. */
5322
5323 bool
5324 cxx17_empty_base_field_p (const_tree field)
5325 {
5326 return (DECL_FIELD_ABI_IGNORED (field)
5327 && DECL_ARTIFICIAL (field)
5328 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (field))
5329 && !lookup_attribute ("no_unique_address", DECL_ATTRIBUTES (field)));
5330 }