]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfg.c
This patch rewrites the old VEC macro-based interface into a new one
[thirdparty/gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
27
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46
47 TODO: Document these "Available functionality" functions in the files
48 that implement them.
49 */
50 \f
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "obstack.h"
55 #include "ggc.h"
56 #include "hash-table.h"
57 #include "alloc-pool.h"
58 #include "tree.h"
59 #include "basic-block.h"
60 #include "df.h"
61 #include "cfgloop.h" /* FIXME: For struct loop. */
62 #include "dumpfile.h"
63
64 \f
65 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
66
67 /* Called once at initialization time. */
68
69 void
70 init_flow (struct function *the_fun)
71 {
72 if (!the_fun->cfg)
73 the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
74 n_edges_for_function (the_fun) = 0;
75 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
76 = ggc_alloc_cleared_basic_block_def ();
77 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
78 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
79 = ggc_alloc_cleared_basic_block_def ();
80 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
81 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
82 = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
83 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
84 = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
85 }
86 \f
87 /* Helper function for remove_edge and clear_edges. Frees edge structure
88 without actually removing it from the pred/succ arrays. */
89
90 static void
91 free_edge (edge e)
92 {
93 n_edges--;
94 ggc_free (e);
95 }
96
97 /* Free the memory associated with the edge structures. */
98
99 void
100 clear_edges (void)
101 {
102 basic_block bb;
103 edge e;
104 edge_iterator ei;
105
106 FOR_EACH_BB (bb)
107 {
108 FOR_EACH_EDGE (e, ei, bb->succs)
109 free_edge (e);
110 vec_safe_truncate (bb->succs, 0);
111 vec_safe_truncate (bb->preds, 0);
112 }
113
114 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
115 free_edge (e);
116 vec_safe_truncate (EXIT_BLOCK_PTR->preds, 0);
117 vec_safe_truncate (ENTRY_BLOCK_PTR->succs, 0);
118
119 gcc_assert (!n_edges);
120 }
121 \f
122 /* Allocate memory for basic_block. */
123
124 basic_block
125 alloc_block (void)
126 {
127 basic_block bb;
128 bb = ggc_alloc_cleared_basic_block_def ();
129 return bb;
130 }
131
132 /* Link block B to chain after AFTER. */
133 void
134 link_block (basic_block b, basic_block after)
135 {
136 b->next_bb = after->next_bb;
137 b->prev_bb = after;
138 after->next_bb = b;
139 b->next_bb->prev_bb = b;
140 }
141
142 /* Unlink block B from chain. */
143 void
144 unlink_block (basic_block b)
145 {
146 b->next_bb->prev_bb = b->prev_bb;
147 b->prev_bb->next_bb = b->next_bb;
148 b->prev_bb = NULL;
149 b->next_bb = NULL;
150 }
151
152 /* Sequentially order blocks and compact the arrays. */
153 void
154 compact_blocks (void)
155 {
156 int i;
157
158 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
159 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
160
161 if (df)
162 df_compact_blocks ();
163 else
164 {
165 basic_block bb;
166
167 i = NUM_FIXED_BLOCKS;
168 FOR_EACH_BB (bb)
169 {
170 SET_BASIC_BLOCK (i, bb);
171 bb->index = i;
172 i++;
173 }
174 gcc_assert (i == n_basic_blocks);
175
176 for (; i < last_basic_block; i++)
177 SET_BASIC_BLOCK (i, NULL);
178 }
179 last_basic_block = n_basic_blocks;
180 }
181
182 /* Remove block B from the basic block array. */
183
184 void
185 expunge_block (basic_block b)
186 {
187 unlink_block (b);
188 SET_BASIC_BLOCK (b->index, NULL);
189 n_basic_blocks--;
190 /* We should be able to ggc_free here, but we are not.
191 The dead SSA_NAMES are left pointing to dead statements that are pointing
192 to dead basic blocks making garbage collector to die.
193 We should be able to release all dead SSA_NAMES and at the same time we should
194 clear out BB pointer of dead statements consistently. */
195 }
196 \f
197 /* Connect E to E->src. */
198
199 static inline void
200 connect_src (edge e)
201 {
202 vec_safe_push (e->src->succs, e);
203 df_mark_solutions_dirty ();
204 }
205
206 /* Connect E to E->dest. */
207
208 static inline void
209 connect_dest (edge e)
210 {
211 basic_block dest = e->dest;
212 vec_safe_push (dest->preds, e);
213 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
214 df_mark_solutions_dirty ();
215 }
216
217 /* Disconnect edge E from E->src. */
218
219 static inline void
220 disconnect_src (edge e)
221 {
222 basic_block src = e->src;
223 edge_iterator ei;
224 edge tmp;
225
226 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
227 {
228 if (tmp == e)
229 {
230 src->succs->unordered_remove (ei.index);
231 df_mark_solutions_dirty ();
232 return;
233 }
234 else
235 ei_next (&ei);
236 }
237
238 gcc_unreachable ();
239 }
240
241 /* Disconnect edge E from E->dest. */
242
243 static inline void
244 disconnect_dest (edge e)
245 {
246 basic_block dest = e->dest;
247 unsigned int dest_idx = e->dest_idx;
248
249 dest->preds->unordered_remove (dest_idx);
250
251 /* If we removed an edge in the middle of the edge vector, we need
252 to update dest_idx of the edge that moved into the "hole". */
253 if (dest_idx < EDGE_COUNT (dest->preds))
254 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
255 df_mark_solutions_dirty ();
256 }
257
258 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
259 created edge. Use this only if you are sure that this edge can't
260 possibly already exist. */
261
262 edge
263 unchecked_make_edge (basic_block src, basic_block dst, int flags)
264 {
265 edge e;
266 e = ggc_alloc_cleared_edge_def ();
267 n_edges++;
268
269 e->src = src;
270 e->dest = dst;
271 e->flags = flags;
272
273 connect_src (e);
274 connect_dest (e);
275
276 execute_on_growing_pred (e);
277 return e;
278 }
279
280 /* Create an edge connecting SRC and DST with FLAGS optionally using
281 edge cache CACHE. Return the new edge, NULL if already exist. */
282
283 edge
284 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
285 {
286 if (edge_cache == NULL
287 || src == ENTRY_BLOCK_PTR
288 || dst == EXIT_BLOCK_PTR)
289 return make_edge (src, dst, flags);
290
291 /* Does the requested edge already exist? */
292 if (! bitmap_bit_p (edge_cache, dst->index))
293 {
294 /* The edge does not exist. Create one and update the
295 cache. */
296 bitmap_set_bit (edge_cache, dst->index);
297 return unchecked_make_edge (src, dst, flags);
298 }
299
300 /* At this point, we know that the requested edge exists. Adjust
301 flags if necessary. */
302 if (flags)
303 {
304 edge e = find_edge (src, dst);
305 e->flags |= flags;
306 }
307
308 return NULL;
309 }
310
311 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
312 created edge or NULL if already exist. */
313
314 edge
315 make_edge (basic_block src, basic_block dest, int flags)
316 {
317 edge e = find_edge (src, dest);
318
319 /* Make sure we don't add duplicate edges. */
320 if (e)
321 {
322 e->flags |= flags;
323 return NULL;
324 }
325
326 return unchecked_make_edge (src, dest, flags);
327 }
328
329 /* Create an edge connecting SRC to DEST and set probability by knowing
330 that it is the single edge leaving SRC. */
331
332 edge
333 make_single_succ_edge (basic_block src, basic_block dest, int flags)
334 {
335 edge e = make_edge (src, dest, flags);
336
337 e->probability = REG_BR_PROB_BASE;
338 e->count = src->count;
339 return e;
340 }
341
342 /* This function will remove an edge from the flow graph. */
343
344 void
345 remove_edge_raw (edge e)
346 {
347 remove_predictions_associated_with_edge (e);
348 execute_on_shrinking_pred (e);
349
350 disconnect_src (e);
351 disconnect_dest (e);
352
353 free_edge (e);
354 }
355
356 /* Redirect an edge's successor from one block to another. */
357
358 void
359 redirect_edge_succ (edge e, basic_block new_succ)
360 {
361 execute_on_shrinking_pred (e);
362
363 disconnect_dest (e);
364
365 e->dest = new_succ;
366
367 /* Reconnect the edge to the new successor block. */
368 connect_dest (e);
369
370 execute_on_growing_pred (e);
371 }
372
373 /* Redirect an edge's predecessor from one block to another. */
374
375 void
376 redirect_edge_pred (edge e, basic_block new_pred)
377 {
378 disconnect_src (e);
379
380 e->src = new_pred;
381
382 /* Reconnect the edge to the new predecessor block. */
383 connect_src (e);
384 }
385
386 /* Clear all basic block flags that do not have to be preserved. */
387 void
388 clear_bb_flags (void)
389 {
390 basic_block bb;
391
392 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
393 bb->flags &= BB_FLAGS_TO_PRESERVE;
394 }
395 \f
396 /* Check the consistency of profile information. We can't do that
397 in verify_flow_info, as the counts may get invalid for incompletely
398 solved graphs, later eliminating of conditionals or roundoff errors.
399 It is still practical to have them reported for debugging of simple
400 testcases. */
401 static void
402 check_bb_profile (basic_block bb, FILE * file, int indent, int flags)
403 {
404 edge e;
405 int sum = 0;
406 gcov_type lsum;
407 edge_iterator ei;
408 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
409 char *s_indent = (char *) alloca ((size_t) indent + 1);
410 memset ((void *) s_indent, ' ', (size_t) indent);
411 s_indent[indent] = '\0';
412
413 if (profile_status_for_function (fun) == PROFILE_ABSENT)
414 return;
415
416 if (bb != EXIT_BLOCK_PTR_FOR_FUNCTION (fun))
417 {
418 FOR_EACH_EDGE (e, ei, bb->succs)
419 sum += e->probability;
420 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
421 fprintf (file, "%s%sInvalid sum of outgoing probabilities %.1f%%\n",
422 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
423 sum * 100.0 / REG_BR_PROB_BASE);
424 lsum = 0;
425 FOR_EACH_EDGE (e, ei, bb->succs)
426 lsum += e->count;
427 if (EDGE_COUNT (bb->succs)
428 && (lsum - bb->count > 100 || lsum - bb->count < -100))
429 fprintf (file, "%s%sInvalid sum of outgoing counts %i, should be %i\n",
430 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
431 (int) lsum, (int) bb->count);
432 }
433 if (bb != ENTRY_BLOCK_PTR_FOR_FUNCTION (fun))
434 {
435 sum = 0;
436 FOR_EACH_EDGE (e, ei, bb->preds)
437 sum += EDGE_FREQUENCY (e);
438 if (abs (sum - bb->frequency) > 100)
439 fprintf (file,
440 "%s%sInvalid sum of incoming frequencies %i, should be %i\n",
441 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
442 sum, bb->frequency);
443 lsum = 0;
444 FOR_EACH_EDGE (e, ei, bb->preds)
445 lsum += e->count;
446 if (lsum - bb->count > 100 || lsum - bb->count < -100)
447 fprintf (file, "%s%sInvalid sum of incoming counts %i, should be %i\n",
448 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
449 (int) lsum, (int) bb->count);
450 }
451 }
452 \f
453 void
454 dump_edge_info (FILE *file, edge e, int flags, int do_succ)
455 {
456 basic_block side = (do_succ ? e->dest : e->src);
457 bool do_details = false;
458
459 if ((flags & TDF_DETAILS) != 0
460 && (flags & TDF_SLIM) == 0)
461 do_details = true;
462
463 /* ENTRY_BLOCK_PTR/EXIT_BLOCK_PTR depend on cfun.
464 Compare against ENTRY_BLOCK/EXIT_BLOCK to avoid that dependency. */
465 if (side->index == ENTRY_BLOCK)
466 fputs (" ENTRY", file);
467 else if (side->index == EXIT_BLOCK)
468 fputs (" EXIT", file);
469 else
470 fprintf (file, " %d", side->index);
471
472 if (e->probability && do_details)
473 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
474
475 if (e->count && do_details)
476 {
477 fputs (" count:", file);
478 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
479 }
480
481 if (e->flags && do_details)
482 {
483 static const char * const bitnames[] =
484 {
485 #define DEF_EDGE_FLAG(NAME,IDX) #NAME ,
486 #include "cfg-flags.def"
487 NULL
488 #undef DEF_EDGE_FLAG
489 };
490 bool comma = false;
491 int i, flags = e->flags;
492
493 gcc_assert (e->flags <= EDGE_ALL_FLAGS);
494 fputs (" (", file);
495 for (i = 0; flags; i++)
496 if (flags & (1 << i))
497 {
498 flags &= ~(1 << i);
499
500 if (comma)
501 fputc (',', file);
502 fputs (bitnames[i], file);
503 comma = true;
504 }
505
506 fputc (')', file);
507 }
508 }
509 \f
510 /* Simple routines to easily allocate AUX fields of basic blocks. */
511
512 static struct obstack block_aux_obstack;
513 static void *first_block_aux_obj = 0;
514 static struct obstack edge_aux_obstack;
515 static void *first_edge_aux_obj = 0;
516
517 /* Allocate a memory block of SIZE as BB->aux. The obstack must
518 be first initialized by alloc_aux_for_blocks. */
519
520 static void
521 alloc_aux_for_block (basic_block bb, int size)
522 {
523 /* Verify that aux field is clear. */
524 gcc_assert (!bb->aux && first_block_aux_obj);
525 bb->aux = obstack_alloc (&block_aux_obstack, size);
526 memset (bb->aux, 0, size);
527 }
528
529 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
530 alloc_aux_for_block for each basic block. */
531
532 void
533 alloc_aux_for_blocks (int size)
534 {
535 static int initialized;
536
537 if (!initialized)
538 {
539 gcc_obstack_init (&block_aux_obstack);
540 initialized = 1;
541 }
542 else
543 /* Check whether AUX data are still allocated. */
544 gcc_assert (!first_block_aux_obj);
545
546 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
547 if (size)
548 {
549 basic_block bb;
550
551 FOR_ALL_BB (bb)
552 alloc_aux_for_block (bb, size);
553 }
554 }
555
556 /* Clear AUX pointers of all blocks. */
557
558 void
559 clear_aux_for_blocks (void)
560 {
561 basic_block bb;
562
563 FOR_ALL_BB (bb)
564 bb->aux = NULL;
565 }
566
567 /* Free data allocated in block_aux_obstack and clear AUX pointers
568 of all blocks. */
569
570 void
571 free_aux_for_blocks (void)
572 {
573 gcc_assert (first_block_aux_obj);
574 obstack_free (&block_aux_obstack, first_block_aux_obj);
575 first_block_aux_obj = NULL;
576
577 clear_aux_for_blocks ();
578 }
579
580 /* Allocate a memory edge of SIZE as E->aux. The obstack must
581 be first initialized by alloc_aux_for_edges. */
582
583 void
584 alloc_aux_for_edge (edge e, int size)
585 {
586 /* Verify that aux field is clear. */
587 gcc_assert (!e->aux && first_edge_aux_obj);
588 e->aux = obstack_alloc (&edge_aux_obstack, size);
589 memset (e->aux, 0, size);
590 }
591
592 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
593 alloc_aux_for_edge for each basic edge. */
594
595 void
596 alloc_aux_for_edges (int size)
597 {
598 static int initialized;
599
600 if (!initialized)
601 {
602 gcc_obstack_init (&edge_aux_obstack);
603 initialized = 1;
604 }
605 else
606 /* Check whether AUX data are still allocated. */
607 gcc_assert (!first_edge_aux_obj);
608
609 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
610 if (size)
611 {
612 basic_block bb;
613
614 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
615 {
616 edge e;
617 edge_iterator ei;
618
619 FOR_EACH_EDGE (e, ei, bb->succs)
620 alloc_aux_for_edge (e, size);
621 }
622 }
623 }
624
625 /* Clear AUX pointers of all edges. */
626
627 void
628 clear_aux_for_edges (void)
629 {
630 basic_block bb;
631 edge e;
632
633 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
634 {
635 edge_iterator ei;
636 FOR_EACH_EDGE (e, ei, bb->succs)
637 e->aux = NULL;
638 }
639 }
640
641 /* Free data allocated in edge_aux_obstack and clear AUX pointers
642 of all edges. */
643
644 void
645 free_aux_for_edges (void)
646 {
647 gcc_assert (first_edge_aux_obj);
648 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
649 first_edge_aux_obj = NULL;
650
651 clear_aux_for_edges ();
652 }
653
654 DEBUG_FUNCTION void
655 debug_bb (basic_block bb)
656 {
657 dump_bb (stderr, bb, 0, dump_flags);
658 }
659
660 DEBUG_FUNCTION basic_block
661 debug_bb_n (int n)
662 {
663 basic_block bb = BASIC_BLOCK (n);
664 debug_bb (bb);
665 return bb;
666 }
667
668 /* Dumps cfg related information about basic block BB to OUTF.
669 If HEADER is true, dump things that appear before the instructions
670 contained in BB. If FOOTER is true, dump things that appear after.
671 Flags are the TDF_* masks as documented in dumpfile.h.
672 NB: With TDF_DETAILS, it is assumed that cfun is available, so
673 that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE. */
674
675 void
676 dump_bb_info (FILE *outf, basic_block bb, int indent, int flags,
677 bool do_header, bool do_footer)
678 {
679 edge_iterator ei;
680 edge e;
681 static const char * const bb_bitnames[] =
682 {
683 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME ,
684 #include "cfg-flags.def"
685 NULL
686 #undef DEF_BASIC_BLOCK_FLAG
687 };
688 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
689 bool first;
690 char *s_indent = (char *) alloca ((size_t) indent + 1);
691 memset ((void *) s_indent, ' ', (size_t) indent);
692 s_indent[indent] = '\0';
693
694 gcc_assert (bb->flags <= BB_ALL_FLAGS);
695
696 if (do_header)
697 {
698 unsigned i;
699
700 if (flags & TDF_COMMENT)
701 fputs (";; ", outf);
702 fprintf (outf, "%sbasic block %d, loop depth %d",
703 s_indent, bb->index, bb_loop_depth (bb));
704 if (flags & TDF_DETAILS)
705 {
706 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
707 fprintf (outf, ", count " HOST_WIDEST_INT_PRINT_DEC,
708 (HOST_WIDEST_INT) bb->count);
709 fprintf (outf, ", freq %i", bb->frequency);
710 if (maybe_hot_bb_p (fun, bb))
711 fputs (", maybe hot", outf);
712 if (probably_never_executed_bb_p (fun, bb))
713 fputs (", probably never executed", outf);
714 }
715 fputc ('\n', outf);
716 if (TDF_DETAILS)
717 check_bb_profile (bb, outf, indent, flags);
718
719 if (flags & TDF_DETAILS)
720 {
721 if (flags & TDF_COMMENT)
722 fputs (";; ", outf);
723 fprintf (outf, "%s prev block ", s_indent);
724 if (bb->prev_bb)
725 fprintf (outf, "%d", bb->prev_bb->index);
726 else
727 fprintf (outf, "(nil)");
728 fprintf (outf, ", next block ");
729 if (bb->next_bb)
730 fprintf (outf, "%d", bb->next_bb->index);
731 else
732 fprintf (outf, "(nil)");
733
734 fputs (", flags:", outf);
735 first = true;
736 for (i = 0; i < n_bitnames; i++)
737 if (bb->flags & (1 << i))
738 {
739 if (first)
740 fputs (" (", outf);
741 else
742 fputs (", ", outf);
743 first = false;
744 fputs (bb_bitnames[i], outf);
745 }
746 if (!first)
747 fputc (')', outf);
748 fputc ('\n', outf);
749 }
750
751 if (flags & TDF_COMMENT)
752 fputs (";; ", outf);
753 fprintf (outf, "%s pred: ", s_indent);
754 first = true;
755 FOR_EACH_EDGE (e, ei, bb->preds)
756 {
757 if (! first)
758 {
759 if (flags & TDF_COMMENT)
760 fputs (";; ", outf);
761 fprintf (outf, "%s ", s_indent);
762 }
763 first = false;
764 dump_edge_info (outf, e, flags, 0);
765 fputc ('\n', outf);
766 }
767 if (first)
768 fputc ('\n', outf);
769 }
770
771 if (do_footer)
772 {
773 if (flags & TDF_COMMENT)
774 fputs (";; ", outf);
775 fprintf (outf, "%s succ: ", s_indent);
776 first = true;
777 FOR_EACH_EDGE (e, ei, bb->succs)
778 {
779 if (! first)
780 {
781 if (flags & TDF_COMMENT)
782 fputs (";; ", outf);
783 fprintf (outf, "%s ", s_indent);
784 }
785 first = false;
786 dump_edge_info (outf, e, flags, 1);
787 fputc ('\n', outf);
788 }
789 if (first)
790 fputc ('\n', outf);
791 }
792 }
793
794 /* Dumps a brief description of cfg to FILE. */
795
796 void
797 brief_dump_cfg (FILE *file, int flags)
798 {
799 basic_block bb;
800
801 FOR_EACH_BB (bb)
802 {
803 dump_bb_info (file, bb, 0,
804 flags & (TDF_COMMENT | TDF_DETAILS),
805 true, true);
806 }
807 }
808
809 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
810 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
811 redirected to destination of TAKEN_EDGE.
812
813 This function may leave the profile inconsistent in the case TAKEN_EDGE
814 frequency or count is believed to be lower than FREQUENCY or COUNT
815 respectively. */
816 void
817 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
818 gcov_type count, edge taken_edge)
819 {
820 edge c;
821 int prob;
822 edge_iterator ei;
823
824 bb->count -= count;
825 if (bb->count < 0)
826 {
827 if (dump_file)
828 fprintf (dump_file, "bb %i count became negative after threading",
829 bb->index);
830 bb->count = 0;
831 }
832
833 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
834 Watch for overflows. */
835 if (bb->frequency)
836 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
837 else
838 prob = 0;
839 if (prob > taken_edge->probability)
840 {
841 if (dump_file)
842 fprintf (dump_file, "Jump threading proved probability of edge "
843 "%i->%i too small (it is %i, should be %i).\n",
844 taken_edge->src->index, taken_edge->dest->index,
845 taken_edge->probability, prob);
846 prob = taken_edge->probability;
847 }
848
849 /* Now rescale the probabilities. */
850 taken_edge->probability -= prob;
851 prob = REG_BR_PROB_BASE - prob;
852 bb->frequency -= edge_frequency;
853 if (bb->frequency < 0)
854 bb->frequency = 0;
855 if (prob <= 0)
856 {
857 if (dump_file)
858 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
859 "frequency of block should end up being 0, it is %i\n",
860 bb->index, bb->frequency);
861 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
862 ei = ei_start (bb->succs);
863 ei_next (&ei);
864 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
865 c->probability = 0;
866 }
867 else if (prob != REG_BR_PROB_BASE)
868 {
869 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
870
871 FOR_EACH_EDGE (c, ei, bb->succs)
872 {
873 /* Protect from overflow due to additional scaling. */
874 if (c->probability > prob)
875 c->probability = REG_BR_PROB_BASE;
876 else
877 {
878 c->probability = RDIV (c->probability * scale, 65536);
879 if (c->probability > REG_BR_PROB_BASE)
880 c->probability = REG_BR_PROB_BASE;
881 }
882 }
883 }
884
885 gcc_assert (bb == taken_edge->src);
886 taken_edge->count -= count;
887 if (taken_edge->count < 0)
888 {
889 if (dump_file)
890 fprintf (dump_file, "edge %i->%i count became negative after threading",
891 taken_edge->src->index, taken_edge->dest->index);
892 taken_edge->count = 0;
893 }
894 }
895
896 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
897 by NUM/DEN, in int arithmetic. May lose some accuracy. */
898 void
899 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
900 {
901 int i;
902 edge e;
903 if (num < 0)
904 num = 0;
905
906 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
907 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
908 and still safely fit in int during calculations. */
909 if (den > 1000)
910 {
911 if (num > 1000000)
912 return;
913
914 num = RDIV (1000 * num, den);
915 den = 1000;
916 }
917 if (num > 100 * den)
918 return;
919
920 for (i = 0; i < nbbs; i++)
921 {
922 edge_iterator ei;
923 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
924 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
925 if (bbs[i]->frequency > BB_FREQ_MAX)
926 bbs[i]->frequency = BB_FREQ_MAX;
927 bbs[i]->count = RDIV (bbs[i]->count * num, den);
928 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
929 e->count = RDIV (e->count * num, den);
930 }
931 }
932
933 /* numbers smaller than this value are safe to multiply without getting
934 64bit overflow. */
935 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
936
937 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
938 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
939 function but considerably slower. */
940 void
941 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
942 gcov_type den)
943 {
944 int i;
945 edge e;
946 gcov_type fraction = RDIV (num * 65536, den);
947
948 gcc_assert (fraction >= 0);
949
950 if (num < MAX_SAFE_MULTIPLIER)
951 for (i = 0; i < nbbs; i++)
952 {
953 edge_iterator ei;
954 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
955 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
956 bbs[i]->count = RDIV (bbs[i]->count * num, den);
957 else
958 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
959 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
960 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
961 e->count = RDIV (e->count * num, den);
962 else
963 e->count = RDIV (e->count * fraction, 65536);
964 }
965 else
966 for (i = 0; i < nbbs; i++)
967 {
968 edge_iterator ei;
969 if (sizeof (gcov_type) > sizeof (int))
970 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
971 else
972 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
973 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
974 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
975 e->count = RDIV (e->count * fraction, 65536);
976 }
977 }
978
979 /* Helper types for hash tables. */
980
981 struct htab_bb_copy_original_entry
982 {
983 /* Block we are attaching info to. */
984 int index1;
985 /* Index of original or copy (depending on the hashtable) */
986 int index2;
987 };
988
989 struct bb_copy_hasher : typed_noop_remove <htab_bb_copy_original_entry>
990 {
991 typedef htab_bb_copy_original_entry value_type;
992 typedef htab_bb_copy_original_entry compare_type;
993 static inline hashval_t hash (const value_type *);
994 static inline bool equal (const value_type *existing,
995 const compare_type * candidate);
996 };
997
998 inline hashval_t
999 bb_copy_hasher::hash (const value_type *data)
1000 {
1001 return data->index1;
1002 }
1003
1004 inline bool
1005 bb_copy_hasher::equal (const value_type *data, const compare_type *data2)
1006 {
1007 return data->index1 == data2->index1;
1008 }
1009
1010 /* Data structures used to maintain mapping between basic blocks and
1011 copies. */
1012 static hash_table <bb_copy_hasher> bb_original;
1013 static hash_table <bb_copy_hasher> bb_copy;
1014
1015 /* And between loops and copies. */
1016 static hash_table <bb_copy_hasher> loop_copy;
1017 static alloc_pool original_copy_bb_pool;
1018
1019
1020 /* Initialize the data structures to maintain mapping between blocks
1021 and its copies. */
1022 void
1023 initialize_original_copy_tables (void)
1024 {
1025 gcc_assert (!original_copy_bb_pool);
1026 original_copy_bb_pool
1027 = create_alloc_pool ("original_copy",
1028 sizeof (struct htab_bb_copy_original_entry), 10);
1029 bb_original.create (10);
1030 bb_copy.create (10);
1031 loop_copy.create (10);
1032 }
1033
1034 /* Free the data structures to maintain mapping between blocks and
1035 its copies. */
1036 void
1037 free_original_copy_tables (void)
1038 {
1039 gcc_assert (original_copy_bb_pool);
1040 bb_copy.dispose ();
1041 bb_original.dispose ();
1042 loop_copy.dispose ();
1043 free_alloc_pool (original_copy_bb_pool);
1044 original_copy_bb_pool = NULL;
1045 }
1046
1047 /* Removes the value associated with OBJ from table TAB. */
1048
1049 static void
1050 copy_original_table_clear (hash_table <bb_copy_hasher> tab, unsigned obj)
1051 {
1052 htab_bb_copy_original_entry **slot;
1053 struct htab_bb_copy_original_entry key, *elt;
1054
1055 if (!original_copy_bb_pool)
1056 return;
1057
1058 key.index1 = obj;
1059 slot = tab.find_slot (&key, NO_INSERT);
1060 if (!slot)
1061 return;
1062
1063 elt = *slot;
1064 tab.clear_slot (slot);
1065 pool_free (original_copy_bb_pool, elt);
1066 }
1067
1068 /* Sets the value associated with OBJ in table TAB to VAL.
1069 Do nothing when data structures are not initialized. */
1070
1071 static void
1072 copy_original_table_set (hash_table <bb_copy_hasher> tab,
1073 unsigned obj, unsigned val)
1074 {
1075 struct htab_bb_copy_original_entry **slot;
1076 struct htab_bb_copy_original_entry key;
1077
1078 if (!original_copy_bb_pool)
1079 return;
1080
1081 key.index1 = obj;
1082 slot = tab.find_slot (&key, INSERT);
1083 if (!*slot)
1084 {
1085 *slot = (struct htab_bb_copy_original_entry *)
1086 pool_alloc (original_copy_bb_pool);
1087 (*slot)->index1 = obj;
1088 }
1089 (*slot)->index2 = val;
1090 }
1091
1092 /* Set original for basic block. Do nothing when data structures are not
1093 initialized so passes not needing this don't need to care. */
1094 void
1095 set_bb_original (basic_block bb, basic_block original)
1096 {
1097 copy_original_table_set (bb_original, bb->index, original->index);
1098 }
1099
1100 /* Get the original basic block. */
1101 basic_block
1102 get_bb_original (basic_block bb)
1103 {
1104 struct htab_bb_copy_original_entry *entry;
1105 struct htab_bb_copy_original_entry key;
1106
1107 gcc_assert (original_copy_bb_pool);
1108
1109 key.index1 = bb->index;
1110 entry = bb_original.find (&key);
1111 if (entry)
1112 return BASIC_BLOCK (entry->index2);
1113 else
1114 return NULL;
1115 }
1116
1117 /* Set copy for basic block. Do nothing when data structures are not
1118 initialized so passes not needing this don't need to care. */
1119 void
1120 set_bb_copy (basic_block bb, basic_block copy)
1121 {
1122 copy_original_table_set (bb_copy, bb->index, copy->index);
1123 }
1124
1125 /* Get the copy of basic block. */
1126 basic_block
1127 get_bb_copy (basic_block bb)
1128 {
1129 struct htab_bb_copy_original_entry *entry;
1130 struct htab_bb_copy_original_entry key;
1131
1132 gcc_assert (original_copy_bb_pool);
1133
1134 key.index1 = bb->index;
1135 entry = bb_copy.find (&key);
1136 if (entry)
1137 return BASIC_BLOCK (entry->index2);
1138 else
1139 return NULL;
1140 }
1141
1142 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1143 initialized so passes not needing this don't need to care. */
1144
1145 void
1146 set_loop_copy (struct loop *loop, struct loop *copy)
1147 {
1148 if (!copy)
1149 copy_original_table_clear (loop_copy, loop->num);
1150 else
1151 copy_original_table_set (loop_copy, loop->num, copy->num);
1152 }
1153
1154 /* Get the copy of LOOP. */
1155
1156 struct loop *
1157 get_loop_copy (struct loop *loop)
1158 {
1159 struct htab_bb_copy_original_entry *entry;
1160 struct htab_bb_copy_original_entry key;
1161
1162 gcc_assert (original_copy_bb_pool);
1163
1164 key.index1 = loop->num;
1165 entry = loop_copy.find (&key);
1166 if (entry)
1167 return get_loop (entry->index2);
1168 else
1169 return NULL;
1170 }