]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfg.c
Change copyright header to refer to version 3 of the GNU General Public License and...
[thirdparty/gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
27
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "regs.h"
56 #include "flags.h"
57 #include "output.h"
58 #include "function.h"
59 #include "except.h"
60 #include "toplev.h"
61 #include "tm_p.h"
62 #include "obstack.h"
63 #include "timevar.h"
64 #include "tree-pass.h"
65 #include "ggc.h"
66 #include "hashtab.h"
67 #include "alloc-pool.h"
68 #include "df.h"
69 #include "cfgloop.h"
70
71 /* The obstack on which the flow graph components are allocated. */
72
73 struct bitmap_obstack reg_obstack;
74
75 void debug_flow_info (void);
76 static void free_edge (edge);
77 \f
78 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
79
80 /* Called once at initialization time. */
81
82 void
83 init_flow (void)
84 {
85 if (!cfun->cfg)
86 cfun->cfg = GGC_CNEW (struct control_flow_graph);
87 n_edges = 0;
88 ENTRY_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
89 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
90 EXIT_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
91 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
92 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
93 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
94 }
95 \f
96 /* Helper function for remove_edge and clear_edges. Frees edge structure
97 without actually unlinking it from the pred/succ lists. */
98
99 static void
100 free_edge (edge e ATTRIBUTE_UNUSED)
101 {
102 n_edges--;
103 ggc_free (e);
104 }
105
106 /* Free the memory associated with the edge structures. */
107
108 void
109 clear_edges (void)
110 {
111 basic_block bb;
112 edge e;
113 edge_iterator ei;
114
115 FOR_EACH_BB (bb)
116 {
117 FOR_EACH_EDGE (e, ei, bb->succs)
118 free_edge (e);
119 VEC_truncate (edge, bb->succs, 0);
120 VEC_truncate (edge, bb->preds, 0);
121 }
122
123 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
124 free_edge (e);
125 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
126 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
127
128 gcc_assert (!n_edges);
129 }
130 \f
131 /* Allocate memory for basic_block. */
132
133 basic_block
134 alloc_block (void)
135 {
136 basic_block bb;
137 bb = GGC_CNEW (struct basic_block_def);
138 return bb;
139 }
140
141 /* Link block B to chain after AFTER. */
142 void
143 link_block (basic_block b, basic_block after)
144 {
145 b->next_bb = after->next_bb;
146 b->prev_bb = after;
147 after->next_bb = b;
148 b->next_bb->prev_bb = b;
149 }
150
151 /* Unlink block B from chain. */
152 void
153 unlink_block (basic_block b)
154 {
155 b->next_bb->prev_bb = b->prev_bb;
156 b->prev_bb->next_bb = b->next_bb;
157 b->prev_bb = NULL;
158 b->next_bb = NULL;
159 }
160
161 /* Sequentially order blocks and compact the arrays. */
162 void
163 compact_blocks (void)
164 {
165 int i;
166
167 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
168 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
169
170 if (df)
171 df_compact_blocks ();
172 else
173 {
174 basic_block bb;
175
176 i = NUM_FIXED_BLOCKS;
177 FOR_EACH_BB (bb)
178 {
179 SET_BASIC_BLOCK (i, bb);
180 bb->index = i;
181 i++;
182 }
183 gcc_assert (i == n_basic_blocks);
184
185 for (; i < last_basic_block; i++)
186 SET_BASIC_BLOCK (i, NULL);
187 }
188 last_basic_block = n_basic_blocks;
189 }
190
191 /* Remove block B from the basic block array. */
192
193 void
194 expunge_block (basic_block b)
195 {
196 unlink_block (b);
197 SET_BASIC_BLOCK (b->index, NULL);
198 n_basic_blocks--;
199 /* We should be able to ggc_free here, but we are not.
200 The dead SSA_NAMES are left pointing to dead statements that are pointing
201 to dead basic blocks making garbage collector to die.
202 We should be able to release all dead SSA_NAMES and at the same time we should
203 clear out BB pointer of dead statements consistently. */
204 }
205 \f
206 /* Connect E to E->src. */
207
208 static inline void
209 connect_src (edge e)
210 {
211 VEC_safe_push (edge, gc, e->src->succs, e);
212 df_mark_solutions_dirty ();
213 }
214
215 /* Connect E to E->dest. */
216
217 static inline void
218 connect_dest (edge e)
219 {
220 basic_block dest = e->dest;
221 VEC_safe_push (edge, gc, dest->preds, e);
222 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
223 df_mark_solutions_dirty ();
224 }
225
226 /* Disconnect edge E from E->src. */
227
228 static inline void
229 disconnect_src (edge e)
230 {
231 basic_block src = e->src;
232 edge_iterator ei;
233 edge tmp;
234
235 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
236 {
237 if (tmp == e)
238 {
239 VEC_unordered_remove (edge, src->succs, ei.index);
240 return;
241 }
242 else
243 ei_next (&ei);
244 }
245
246 df_mark_solutions_dirty ();
247 gcc_unreachable ();
248 }
249
250 /* Disconnect edge E from E->dest. */
251
252 static inline void
253 disconnect_dest (edge e)
254 {
255 basic_block dest = e->dest;
256 unsigned int dest_idx = e->dest_idx;
257
258 VEC_unordered_remove (edge, dest->preds, dest_idx);
259
260 /* If we removed an edge in the middle of the edge vector, we need
261 to update dest_idx of the edge that moved into the "hole". */
262 if (dest_idx < EDGE_COUNT (dest->preds))
263 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
264 df_mark_solutions_dirty ();
265 }
266
267 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
268 created edge. Use this only if you are sure that this edge can't
269 possibly already exist. */
270
271 edge
272 unchecked_make_edge (basic_block src, basic_block dst, int flags)
273 {
274 edge e;
275 e = GGC_CNEW (struct edge_def);
276 n_edges++;
277
278 e->src = src;
279 e->dest = dst;
280 e->flags = flags;
281
282 connect_src (e);
283 connect_dest (e);
284
285 execute_on_growing_pred (e);
286 return e;
287 }
288
289 /* Create an edge connecting SRC and DST with FLAGS optionally using
290 edge cache CACHE. Return the new edge, NULL if already exist. */
291
292 edge
293 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
294 {
295 if (edge_cache == NULL
296 || src == ENTRY_BLOCK_PTR
297 || dst == EXIT_BLOCK_PTR)
298 return make_edge (src, dst, flags);
299
300 /* Does the requested edge already exist? */
301 if (! TEST_BIT (edge_cache, dst->index))
302 {
303 /* The edge does not exist. Create one and update the
304 cache. */
305 SET_BIT (edge_cache, dst->index);
306 return unchecked_make_edge (src, dst, flags);
307 }
308
309 /* At this point, we know that the requested edge exists. Adjust
310 flags if necessary. */
311 if (flags)
312 {
313 edge e = find_edge (src, dst);
314 e->flags |= flags;
315 }
316
317 return NULL;
318 }
319
320 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
321 created edge or NULL if already exist. */
322
323 edge
324 make_edge (basic_block src, basic_block dest, int flags)
325 {
326 edge e = find_edge (src, dest);
327
328 /* Make sure we don't add duplicate edges. */
329 if (e)
330 {
331 e->flags |= flags;
332 return NULL;
333 }
334
335 return unchecked_make_edge (src, dest, flags);
336 }
337
338 /* Create an edge connecting SRC to DEST and set probability by knowing
339 that it is the single edge leaving SRC. */
340
341 edge
342 make_single_succ_edge (basic_block src, basic_block dest, int flags)
343 {
344 edge e = make_edge (src, dest, flags);
345
346 e->probability = REG_BR_PROB_BASE;
347 e->count = src->count;
348 return e;
349 }
350
351 /* This function will remove an edge from the flow graph. */
352
353 void
354 remove_edge_raw (edge e)
355 {
356 remove_predictions_associated_with_edge (e);
357 execute_on_shrinking_pred (e);
358
359 disconnect_src (e);
360 disconnect_dest (e);
361
362 free_edge (e);
363 }
364
365 /* Redirect an edge's successor from one block to another. */
366
367 void
368 redirect_edge_succ (edge e, basic_block new_succ)
369 {
370 execute_on_shrinking_pred (e);
371
372 disconnect_dest (e);
373
374 e->dest = new_succ;
375
376 /* Reconnect the edge to the new successor block. */
377 connect_dest (e);
378
379 execute_on_growing_pred (e);
380 }
381
382 /* Like previous but avoid possible duplicate edge. */
383
384 edge
385 redirect_edge_succ_nodup (edge e, basic_block new_succ)
386 {
387 edge s;
388
389 s = find_edge (e->src, new_succ);
390 if (s && s != e)
391 {
392 s->flags |= e->flags;
393 s->probability += e->probability;
394 if (s->probability > REG_BR_PROB_BASE)
395 s->probability = REG_BR_PROB_BASE;
396 s->count += e->count;
397 remove_edge (e);
398 e = s;
399 }
400 else
401 redirect_edge_succ (e, new_succ);
402
403 return e;
404 }
405
406 /* Redirect an edge's predecessor from one block to another. */
407
408 void
409 redirect_edge_pred (edge e, basic_block new_pred)
410 {
411 disconnect_src (e);
412
413 e->src = new_pred;
414
415 /* Reconnect the edge to the new predecessor block. */
416 connect_src (e);
417 }
418
419 /* Clear all basic block flags, with the exception of partitioning and
420 setjmp_target. */
421 void
422 clear_bb_flags (void)
423 {
424 basic_block bb;
425
426 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
427 bb->flags = (BB_PARTITION (bb)
428 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
429 }
430 \f
431 /* Check the consistency of profile information. We can't do that
432 in verify_flow_info, as the counts may get invalid for incompletely
433 solved graphs, later eliminating of conditionals or roundoff errors.
434 It is still practical to have them reported for debugging of simple
435 testcases. */
436 void
437 check_bb_profile (basic_block bb, FILE * file)
438 {
439 edge e;
440 int sum = 0;
441 gcov_type lsum;
442 edge_iterator ei;
443
444 if (profile_status == PROFILE_ABSENT)
445 return;
446
447 if (bb != EXIT_BLOCK_PTR)
448 {
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 sum += e->probability;
451 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
452 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
453 sum * 100.0 / REG_BR_PROB_BASE);
454 lsum = 0;
455 FOR_EACH_EDGE (e, ei, bb->succs)
456 lsum += e->count;
457 if (EDGE_COUNT (bb->succs)
458 && (lsum - bb->count > 100 || lsum - bb->count < -100))
459 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
460 (int) lsum, (int) bb->count);
461 }
462 if (bb != ENTRY_BLOCK_PTR)
463 {
464 sum = 0;
465 FOR_EACH_EDGE (e, ei, bb->preds)
466 sum += EDGE_FREQUENCY (e);
467 if (abs (sum - bb->frequency) > 100)
468 fprintf (file,
469 "Invalid sum of incoming frequencies %i, should be %i\n",
470 sum, bb->frequency);
471 lsum = 0;
472 FOR_EACH_EDGE (e, ei, bb->preds)
473 lsum += e->count;
474 if (lsum - bb->count > 100 || lsum - bb->count < -100)
475 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
476 (int) lsum, (int) bb->count);
477 }
478 }
479 \f
480 /* Write information about registers and basic blocks into FILE.
481 This is part of making a debugging dump. */
482
483 void
484 dump_regset (regset r, FILE *outf)
485 {
486 unsigned i;
487 reg_set_iterator rsi;
488
489 if (r == NULL)
490 {
491 fputs (" (nil)", outf);
492 return;
493 }
494
495 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
496 {
497 fprintf (outf, " %d", i);
498 if (i < FIRST_PSEUDO_REGISTER)
499 fprintf (outf, " [%s]",
500 reg_names[i]);
501 }
502 }
503
504 /* Print a human-readable representation of R on the standard error
505 stream. This function is designed to be used from within the
506 debugger. */
507
508 void
509 debug_regset (regset r)
510 {
511 dump_regset (r, stderr);
512 putc ('\n', stderr);
513 }
514
515 /* Emit basic block information for BB. HEADER is true if the user wants
516 the generic information and the predecessors, FOOTER is true if they want
517 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
518 global register liveness information. PREFIX is put in front of every
519 line. The output is emitted to FILE. */
520 void
521 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
522 const char *prefix, FILE *file)
523 {
524 edge e;
525 edge_iterator ei;
526
527 if (header)
528 {
529 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
530 if (bb->prev_bb)
531 fprintf (file, ", prev %d", bb->prev_bb->index);
532 if (bb->next_bb)
533 fprintf (file, ", next %d", bb->next_bb->index);
534 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
535 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
536 fprintf (file, ", freq %i", bb->frequency);
537 if (maybe_hot_bb_p (bb))
538 fprintf (file, ", maybe hot");
539 if (probably_never_executed_bb_p (bb))
540 fprintf (file, ", probably never executed");
541 fprintf (file, ".\n");
542
543 fprintf (file, "%sPredecessors: ", prefix);
544 FOR_EACH_EDGE (e, ei, bb->preds)
545 dump_edge_info (file, e, 0);
546
547 if ((flags & TDF_DETAILS)
548 && (bb->flags & BB_RTL)
549 && df)
550 {
551 fprintf (file, "\n");
552 df_dump_top (bb, file);
553 }
554 }
555
556 if (footer)
557 {
558 fprintf (file, "\n%sSuccessors: ", prefix);
559 FOR_EACH_EDGE (e, ei, bb->succs)
560 dump_edge_info (file, e, 1);
561
562 if ((flags & TDF_DETAILS)
563 && (bb->flags & BB_RTL)
564 && df)
565 {
566 fprintf (file, "\n");
567 df_dump_bottom (bb, file);
568 }
569 }
570
571 putc ('\n', file);
572 }
573
574 /* Dump the register info to FILE. */
575
576 void
577 dump_reg_info (FILE *file)
578 {
579 unsigned int i, max = max_reg_num ();
580 if (reload_completed)
581 return;
582
583 if (reg_info_p_size < max)
584 max = reg_info_p_size;
585
586 fprintf (file, "%d registers.\n", max);
587 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
588 {
589 enum reg_class class, altclass;
590
591 if (regstat_n_sets_and_refs)
592 fprintf (file, "\nRegister %d used %d times across %d insns",
593 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
594 else if (df)
595 fprintf (file, "\nRegister %d used %d times across %d insns",
596 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
597
598 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
599 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
600 if (regstat_n_sets_and_refs)
601 fprintf (file, "; set %d time%s", REG_N_SETS (i),
602 (REG_N_SETS (i) == 1) ? "" : "s");
603 else if (df)
604 fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
605 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
606 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
607 fprintf (file, "; user var");
608 if (REG_N_DEATHS (i) != 1)
609 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
610 if (REG_N_CALLS_CROSSED (i) == 1)
611 fprintf (file, "; crosses 1 call");
612 else if (REG_N_CALLS_CROSSED (i))
613 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
614 if (regno_reg_rtx[i] != NULL
615 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
616 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
617
618 class = reg_preferred_class (i);
619 altclass = reg_alternate_class (i);
620 if (class != GENERAL_REGS || altclass != ALL_REGS)
621 {
622 if (altclass == ALL_REGS || class == ALL_REGS)
623 fprintf (file, "; pref %s", reg_class_names[(int) class]);
624 else if (altclass == NO_REGS)
625 fprintf (file, "; %s or none", reg_class_names[(int) class]);
626 else
627 fprintf (file, "; pref %s, else %s",
628 reg_class_names[(int) class],
629 reg_class_names[(int) altclass]);
630 }
631
632 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
633 fprintf (file, "; pointer");
634 fprintf (file, ".\n");
635 }
636 }
637
638
639 void
640 dump_flow_info (FILE *file, int flags)
641 {
642 basic_block bb;
643
644 /* There are no pseudo registers after reload. Don't dump them. */
645 if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
646 dump_reg_info (file);
647
648 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
649 FOR_EACH_BB (bb)
650 {
651 dump_bb_info (bb, true, true, flags, "", file);
652 check_bb_profile (bb, file);
653 }
654
655 putc ('\n', file);
656 }
657
658 void
659 debug_flow_info (void)
660 {
661 dump_flow_info (stderr, TDF_DETAILS);
662 }
663
664 void
665 dump_edge_info (FILE *file, edge e, int do_succ)
666 {
667 basic_block side = (do_succ ? e->dest : e->src);
668
669 if (side == ENTRY_BLOCK_PTR)
670 fputs (" ENTRY", file);
671 else if (side == EXIT_BLOCK_PTR)
672 fputs (" EXIT", file);
673 else
674 fprintf (file, " %d", side->index);
675
676 if (e->probability)
677 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
678
679 if (e->count)
680 {
681 fprintf (file, " count:");
682 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
683 }
684
685 if (e->flags)
686 {
687 static const char * const bitnames[] = {
688 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
689 "can_fallthru", "irreducible", "sibcall", "loop_exit",
690 "true", "false", "exec"
691 };
692 int comma = 0;
693 int i, flags = e->flags;
694
695 fputs (" (", file);
696 for (i = 0; flags; i++)
697 if (flags & (1 << i))
698 {
699 flags &= ~(1 << i);
700
701 if (comma)
702 fputc (',', file);
703 if (i < (int) ARRAY_SIZE (bitnames))
704 fputs (bitnames[i], file);
705 else
706 fprintf (file, "%d", i);
707 comma = 1;
708 }
709
710 fputc (')', file);
711 }
712 }
713 \f
714 /* Simple routines to easily allocate AUX fields of basic blocks. */
715
716 static struct obstack block_aux_obstack;
717 static void *first_block_aux_obj = 0;
718 static struct obstack edge_aux_obstack;
719 static void *first_edge_aux_obj = 0;
720
721 /* Allocate a memory block of SIZE as BB->aux. The obstack must
722 be first initialized by alloc_aux_for_blocks. */
723
724 inline void
725 alloc_aux_for_block (basic_block bb, int size)
726 {
727 /* Verify that aux field is clear. */
728 gcc_assert (!bb->aux && first_block_aux_obj);
729 bb->aux = obstack_alloc (&block_aux_obstack, size);
730 memset (bb->aux, 0, size);
731 }
732
733 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
734 alloc_aux_for_block for each basic block. */
735
736 void
737 alloc_aux_for_blocks (int size)
738 {
739 static int initialized;
740
741 if (!initialized)
742 {
743 gcc_obstack_init (&block_aux_obstack);
744 initialized = 1;
745 }
746 else
747 /* Check whether AUX data are still allocated. */
748 gcc_assert (!first_block_aux_obj);
749
750 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
751 if (size)
752 {
753 basic_block bb;
754
755 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
756 alloc_aux_for_block (bb, size);
757 }
758 }
759
760 /* Clear AUX pointers of all blocks. */
761
762 void
763 clear_aux_for_blocks (void)
764 {
765 basic_block bb;
766
767 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
768 bb->aux = NULL;
769 }
770
771 /* Free data allocated in block_aux_obstack and clear AUX pointers
772 of all blocks. */
773
774 void
775 free_aux_for_blocks (void)
776 {
777 gcc_assert (first_block_aux_obj);
778 obstack_free (&block_aux_obstack, first_block_aux_obj);
779 first_block_aux_obj = NULL;
780
781 clear_aux_for_blocks ();
782 }
783
784 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
785 be first initialized by alloc_aux_for_edges. */
786
787 inline void
788 alloc_aux_for_edge (edge e, int size)
789 {
790 /* Verify that aux field is clear. */
791 gcc_assert (!e->aux && first_edge_aux_obj);
792 e->aux = obstack_alloc (&edge_aux_obstack, size);
793 memset (e->aux, 0, size);
794 }
795
796 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
797 alloc_aux_for_edge for each basic edge. */
798
799 void
800 alloc_aux_for_edges (int size)
801 {
802 static int initialized;
803
804 if (!initialized)
805 {
806 gcc_obstack_init (&edge_aux_obstack);
807 initialized = 1;
808 }
809 else
810 /* Check whether AUX data are still allocated. */
811 gcc_assert (!first_edge_aux_obj);
812
813 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
814 if (size)
815 {
816 basic_block bb;
817
818 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
819 {
820 edge e;
821 edge_iterator ei;
822
823 FOR_EACH_EDGE (e, ei, bb->succs)
824 alloc_aux_for_edge (e, size);
825 }
826 }
827 }
828
829 /* Clear AUX pointers of all edges. */
830
831 void
832 clear_aux_for_edges (void)
833 {
834 basic_block bb;
835 edge e;
836
837 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
838 {
839 edge_iterator ei;
840 FOR_EACH_EDGE (e, ei, bb->succs)
841 e->aux = NULL;
842 }
843 }
844
845 /* Free data allocated in edge_aux_obstack and clear AUX pointers
846 of all edges. */
847
848 void
849 free_aux_for_edges (void)
850 {
851 gcc_assert (first_edge_aux_obj);
852 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
853 first_edge_aux_obj = NULL;
854
855 clear_aux_for_edges ();
856 }
857
858 void
859 debug_bb (basic_block bb)
860 {
861 dump_bb (bb, stderr, 0);
862 }
863
864 basic_block
865 debug_bb_n (int n)
866 {
867 basic_block bb = BASIC_BLOCK (n);
868 dump_bb (bb, stderr, 0);
869 return bb;
870 }
871
872 /* Dumps cfg related information about basic block BB to FILE. */
873
874 static void
875 dump_cfg_bb_info (FILE *file, basic_block bb)
876 {
877 unsigned i;
878 edge_iterator ei;
879 bool first = true;
880 static const char * const bb_bitnames[] =
881 {
882 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
883 };
884 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
885 edge e;
886
887 fprintf (file, "Basic block %d", bb->index);
888 for (i = 0; i < n_bitnames; i++)
889 if (bb->flags & (1 << i))
890 {
891 if (first)
892 fprintf (file, " (");
893 else
894 fprintf (file, ", ");
895 first = false;
896 fprintf (file, bb_bitnames[i]);
897 }
898 if (!first)
899 fprintf (file, ")");
900 fprintf (file, "\n");
901
902 fprintf (file, "Predecessors: ");
903 FOR_EACH_EDGE (e, ei, bb->preds)
904 dump_edge_info (file, e, 0);
905
906 fprintf (file, "\nSuccessors: ");
907 FOR_EACH_EDGE (e, ei, bb->succs)
908 dump_edge_info (file, e, 1);
909 fprintf (file, "\n\n");
910 }
911
912 /* Dumps a brief description of cfg to FILE. */
913
914 void
915 brief_dump_cfg (FILE *file)
916 {
917 basic_block bb;
918
919 FOR_EACH_BB (bb)
920 {
921 dump_cfg_bb_info (file, bb);
922 }
923 }
924
925 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
926 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
927 redirected to destination of TAKEN_EDGE.
928
929 This function may leave the profile inconsistent in the case TAKEN_EDGE
930 frequency or count is believed to be lower than FREQUENCY or COUNT
931 respectively. */
932 void
933 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
934 gcov_type count, edge taken_edge)
935 {
936 edge c;
937 int prob;
938 edge_iterator ei;
939
940 bb->count -= count;
941 if (bb->count < 0)
942 {
943 if (dump_file)
944 fprintf (dump_file, "bb %i count became negative after threading",
945 bb->index);
946 bb->count = 0;
947 }
948
949 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
950 Watch for overflows. */
951 if (bb->frequency)
952 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
953 else
954 prob = 0;
955 if (prob > taken_edge->probability)
956 {
957 if (dump_file)
958 fprintf (dump_file, "Jump threading proved probability of edge "
959 "%i->%i too small (it is %i, should be %i).\n",
960 taken_edge->src->index, taken_edge->dest->index,
961 taken_edge->probability, prob);
962 prob = taken_edge->probability;
963 }
964
965 /* Now rescale the probabilities. */
966 taken_edge->probability -= prob;
967 prob = REG_BR_PROB_BASE - prob;
968 bb->frequency -= edge_frequency;
969 if (bb->frequency < 0)
970 bb->frequency = 0;
971 if (prob <= 0)
972 {
973 if (dump_file)
974 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
975 "frequency of block should end up being 0, it is %i\n",
976 bb->index, bb->frequency);
977 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
978 ei = ei_start (bb->succs);
979 ei_next (&ei);
980 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
981 c->probability = 0;
982 }
983 else if (prob != REG_BR_PROB_BASE)
984 {
985 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
986
987 FOR_EACH_EDGE (c, ei, bb->succs)
988 {
989 c->probability = RDIV (c->probability * scale, 65536);
990 if (c->probability > REG_BR_PROB_BASE)
991 c->probability = REG_BR_PROB_BASE;
992 }
993 }
994
995 gcc_assert (bb == taken_edge->src);
996 taken_edge->count -= count;
997 if (taken_edge->count < 0)
998 {
999 if (dump_file)
1000 fprintf (dump_file, "edge %i->%i count became negative after threading",
1001 taken_edge->src->index, taken_edge->dest->index);
1002 taken_edge->count = 0;
1003 }
1004 }
1005
1006 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1007 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1008 void
1009 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
1010 {
1011 int i;
1012 edge e;
1013 if (num < 0)
1014 num = 0;
1015
1016 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1017 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1018 and still safely fit in int during calculations. */
1019 if (den > 1000)
1020 {
1021 if (num > 1000000)
1022 return;
1023
1024 num = RDIV (1000 * num, den);
1025 den = 1000;
1026 }
1027 if (num > 100 * den)
1028 return;
1029
1030 for (i = 0; i < nbbs; i++)
1031 {
1032 edge_iterator ei;
1033 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1034 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1035 if (bbs[i]->frequency > BB_FREQ_MAX)
1036 bbs[i]->frequency = BB_FREQ_MAX;
1037 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1038 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1039 e->count = RDIV (e->count * num, den);
1040 }
1041 }
1042
1043 /* numbers smaller than this value are safe to multiply without getting
1044 64bit overflow. */
1045 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1046
1047 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1048 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1049 function but considerably slower. */
1050 void
1051 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
1052 gcov_type den)
1053 {
1054 int i;
1055 edge e;
1056 gcov_type fraction = RDIV (num * 65536, den);
1057
1058 gcc_assert (fraction >= 0);
1059
1060 if (num < MAX_SAFE_MULTIPLIER)
1061 for (i = 0; i < nbbs; i++)
1062 {
1063 edge_iterator ei;
1064 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1065 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1066 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1067 else
1068 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1069 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1070 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1071 e->count = RDIV (e->count * num, den);
1072 else
1073 e->count = RDIV (e->count * fraction, 65536);
1074 }
1075 else
1076 for (i = 0; i < nbbs; i++)
1077 {
1078 edge_iterator ei;
1079 if (sizeof (gcov_type) > sizeof (int))
1080 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1081 else
1082 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1083 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1084 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1085 e->count = RDIV (e->count * fraction, 65536);
1086 }
1087 }
1088
1089 /* Data structures used to maintain mapping between basic blocks and
1090 copies. */
1091 static htab_t bb_original;
1092 static htab_t bb_copy;
1093
1094 /* And between loops and copies. */
1095 static htab_t loop_copy;
1096 static alloc_pool original_copy_bb_pool;
1097
1098 struct htab_bb_copy_original_entry
1099 {
1100 /* Block we are attaching info to. */
1101 int index1;
1102 /* Index of original or copy (depending on the hashtable) */
1103 int index2;
1104 };
1105
1106 static hashval_t
1107 bb_copy_original_hash (const void *p)
1108 {
1109 const struct htab_bb_copy_original_entry *data
1110 = ((const struct htab_bb_copy_original_entry *)p);
1111
1112 return data->index1;
1113 }
1114 static int
1115 bb_copy_original_eq (const void *p, const void *q)
1116 {
1117 const struct htab_bb_copy_original_entry *data
1118 = ((const struct htab_bb_copy_original_entry *)p);
1119 const struct htab_bb_copy_original_entry *data2
1120 = ((const struct htab_bb_copy_original_entry *)q);
1121
1122 return data->index1 == data2->index1;
1123 }
1124
1125 /* Initialize the data structures to maintain mapping between blocks
1126 and its copies. */
1127 void
1128 initialize_original_copy_tables (void)
1129 {
1130 gcc_assert (!original_copy_bb_pool);
1131 original_copy_bb_pool
1132 = create_alloc_pool ("original_copy",
1133 sizeof (struct htab_bb_copy_original_entry), 10);
1134 bb_original = htab_create (10, bb_copy_original_hash,
1135 bb_copy_original_eq, NULL);
1136 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1137 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1138 }
1139
1140 /* Free the data structures to maintain mapping between blocks and
1141 its copies. */
1142 void
1143 free_original_copy_tables (void)
1144 {
1145 gcc_assert (original_copy_bb_pool);
1146 htab_delete (bb_copy);
1147 htab_delete (bb_original);
1148 htab_delete (loop_copy);
1149 free_alloc_pool (original_copy_bb_pool);
1150 bb_copy = NULL;
1151 bb_original = NULL;
1152 loop_copy = NULL;
1153 original_copy_bb_pool = NULL;
1154 }
1155
1156 /* Removes the value associated with OBJ from table TAB. */
1157
1158 static void
1159 copy_original_table_clear (htab_t tab, unsigned obj)
1160 {
1161 void **slot;
1162 struct htab_bb_copy_original_entry key, *elt;
1163
1164 if (!original_copy_bb_pool)
1165 return;
1166
1167 key.index1 = obj;
1168 slot = htab_find_slot (tab, &key, NO_INSERT);
1169 if (!slot)
1170 return;
1171
1172 elt = (struct htab_bb_copy_original_entry *) *slot;
1173 htab_clear_slot (tab, slot);
1174 pool_free (original_copy_bb_pool, elt);
1175 }
1176
1177 /* Sets the value associated with OBJ in table TAB to VAL.
1178 Do nothing when data structures are not initialized. */
1179
1180 static void
1181 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
1182 {
1183 struct htab_bb_copy_original_entry **slot;
1184 struct htab_bb_copy_original_entry key;
1185
1186 if (!original_copy_bb_pool)
1187 return;
1188
1189 key.index1 = obj;
1190 slot = (struct htab_bb_copy_original_entry **)
1191 htab_find_slot (tab, &key, INSERT);
1192 if (!*slot)
1193 {
1194 *slot = (struct htab_bb_copy_original_entry *)
1195 pool_alloc (original_copy_bb_pool);
1196 (*slot)->index1 = obj;
1197 }
1198 (*slot)->index2 = val;
1199 }
1200
1201 /* Set original for basic block. Do nothing when data structures are not
1202 initialized so passes not needing this don't need to care. */
1203 void
1204 set_bb_original (basic_block bb, basic_block original)
1205 {
1206 copy_original_table_set (bb_original, bb->index, original->index);
1207 }
1208
1209 /* Get the original basic block. */
1210 basic_block
1211 get_bb_original (basic_block bb)
1212 {
1213 struct htab_bb_copy_original_entry *entry;
1214 struct htab_bb_copy_original_entry key;
1215
1216 gcc_assert (original_copy_bb_pool);
1217
1218 key.index1 = bb->index;
1219 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1220 if (entry)
1221 return BASIC_BLOCK (entry->index2);
1222 else
1223 return NULL;
1224 }
1225
1226 /* Set copy for basic block. Do nothing when data structures are not
1227 initialized so passes not needing this don't need to care. */
1228 void
1229 set_bb_copy (basic_block bb, basic_block copy)
1230 {
1231 copy_original_table_set (bb_copy, bb->index, copy->index);
1232 }
1233
1234 /* Get the copy of basic block. */
1235 basic_block
1236 get_bb_copy (basic_block bb)
1237 {
1238 struct htab_bb_copy_original_entry *entry;
1239 struct htab_bb_copy_original_entry key;
1240
1241 gcc_assert (original_copy_bb_pool);
1242
1243 key.index1 = bb->index;
1244 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1245 if (entry)
1246 return BASIC_BLOCK (entry->index2);
1247 else
1248 return NULL;
1249 }
1250
1251 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1252 initialized so passes not needing this don't need to care. */
1253
1254 void
1255 set_loop_copy (struct loop *loop, struct loop *copy)
1256 {
1257 if (!copy)
1258 copy_original_table_clear (loop_copy, loop->num);
1259 else
1260 copy_original_table_set (loop_copy, loop->num, copy->num);
1261 }
1262
1263 /* Get the copy of LOOP. */
1264
1265 struct loop *
1266 get_loop_copy (struct loop *loop)
1267 {
1268 struct htab_bb_copy_original_entry *entry;
1269 struct htab_bb_copy_original_entry key;
1270
1271 gcc_assert (original_copy_bb_pool);
1272
1273 key.index1 = loop->num;
1274 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1275 if (entry)
1276 return get_loop (entry->index2);
1277 else
1278 return NULL;
1279 }