]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfg.c
c-lex.c (c_lex_with_flags, lex_string): Constify.
[thirdparty/gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
28
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
47 */
48 \f
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "tree-pass.h"
66 #include "ggc.h"
67 #include "hashtab.h"
68 #include "alloc-pool.h"
69 #include "df.h"
70 #include "cfgloop.h"
71
72 /* The obstack on which the flow graph components are allocated. */
73
74 struct bitmap_obstack reg_obstack;
75
76 void debug_flow_info (void);
77 static void free_edge (edge);
78 \f
79 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
80
81 /* Called once at initialization time. */
82
83 void
84 init_flow (void)
85 {
86 if (!cfun->cfg)
87 cfun->cfg = GGC_CNEW (struct control_flow_graph);
88 n_edges = 0;
89 ENTRY_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
90 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
91 EXIT_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
92 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
93 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
94 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
95 }
96 \f
97 /* Helper function for remove_edge and clear_edges. Frees edge structure
98 without actually unlinking it from the pred/succ lists. */
99
100 static void
101 free_edge (edge e ATTRIBUTE_UNUSED)
102 {
103 n_edges--;
104 ggc_free (e);
105 }
106
107 /* Free the memory associated with the edge structures. */
108
109 void
110 clear_edges (void)
111 {
112 basic_block bb;
113 edge e;
114 edge_iterator ei;
115
116 FOR_EACH_BB (bb)
117 {
118 FOR_EACH_EDGE (e, ei, bb->succs)
119 free_edge (e);
120 VEC_truncate (edge, bb->succs, 0);
121 VEC_truncate (edge, bb->preds, 0);
122 }
123
124 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
125 free_edge (e);
126 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
127 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
128
129 gcc_assert (!n_edges);
130 }
131 \f
132 /* Allocate memory for basic_block. */
133
134 basic_block
135 alloc_block (void)
136 {
137 basic_block bb;
138 bb = GGC_CNEW (struct basic_block_def);
139 return bb;
140 }
141
142 /* Link block B to chain after AFTER. */
143 void
144 link_block (basic_block b, basic_block after)
145 {
146 b->next_bb = after->next_bb;
147 b->prev_bb = after;
148 after->next_bb = b;
149 b->next_bb->prev_bb = b;
150 }
151
152 /* Unlink block B from chain. */
153 void
154 unlink_block (basic_block b)
155 {
156 b->next_bb->prev_bb = b->prev_bb;
157 b->prev_bb->next_bb = b->next_bb;
158 b->prev_bb = NULL;
159 b->next_bb = NULL;
160 }
161
162 /* Sequentially order blocks and compact the arrays. */
163 void
164 compact_blocks (void)
165 {
166 int i;
167
168 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
169 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
170
171 if (df)
172 df_compact_blocks ();
173 else
174 {
175 basic_block bb;
176
177 i = NUM_FIXED_BLOCKS;
178 FOR_EACH_BB (bb)
179 {
180 SET_BASIC_BLOCK (i, bb);
181 bb->index = i;
182 i++;
183 }
184 gcc_assert (i == n_basic_blocks);
185
186 for (; i < last_basic_block; i++)
187 SET_BASIC_BLOCK (i, NULL);
188 }
189 last_basic_block = n_basic_blocks;
190 }
191
192 /* Remove block B from the basic block array. */
193
194 void
195 expunge_block (basic_block b)
196 {
197 unlink_block (b);
198 SET_BASIC_BLOCK (b->index, NULL);
199 n_basic_blocks--;
200 /* We should be able to ggc_free here, but we are not.
201 The dead SSA_NAMES are left pointing to dead statements that are pointing
202 to dead basic blocks making garbage collector to die.
203 We should be able to release all dead SSA_NAMES and at the same time we should
204 clear out BB pointer of dead statements consistently. */
205 }
206 \f
207 /* Connect E to E->src. */
208
209 static inline void
210 connect_src (edge e)
211 {
212 VEC_safe_push (edge, gc, e->src->succs, e);
213 df_mark_solutions_dirty ();
214 }
215
216 /* Connect E to E->dest. */
217
218 static inline void
219 connect_dest (edge e)
220 {
221 basic_block dest = e->dest;
222 VEC_safe_push (edge, gc, dest->preds, e);
223 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
224 df_mark_solutions_dirty ();
225 }
226
227 /* Disconnect edge E from E->src. */
228
229 static inline void
230 disconnect_src (edge e)
231 {
232 basic_block src = e->src;
233 edge_iterator ei;
234 edge tmp;
235
236 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
237 {
238 if (tmp == e)
239 {
240 VEC_unordered_remove (edge, src->succs, ei.index);
241 return;
242 }
243 else
244 ei_next (&ei);
245 }
246
247 df_mark_solutions_dirty ();
248 gcc_unreachable ();
249 }
250
251 /* Disconnect edge E from E->dest. */
252
253 static inline void
254 disconnect_dest (edge e)
255 {
256 basic_block dest = e->dest;
257 unsigned int dest_idx = e->dest_idx;
258
259 VEC_unordered_remove (edge, dest->preds, dest_idx);
260
261 /* If we removed an edge in the middle of the edge vector, we need
262 to update dest_idx of the edge that moved into the "hole". */
263 if (dest_idx < EDGE_COUNT (dest->preds))
264 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
265 df_mark_solutions_dirty ();
266 }
267
268 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
269 created edge. Use this only if you are sure that this edge can't
270 possibly already exist. */
271
272 edge
273 unchecked_make_edge (basic_block src, basic_block dst, int flags)
274 {
275 edge e;
276 e = GGC_CNEW (struct edge_def);
277 n_edges++;
278
279 e->src = src;
280 e->dest = dst;
281 e->flags = flags;
282
283 connect_src (e);
284 connect_dest (e);
285
286 execute_on_growing_pred (e);
287 return e;
288 }
289
290 /* Create an edge connecting SRC and DST with FLAGS optionally using
291 edge cache CACHE. Return the new edge, NULL if already exist. */
292
293 edge
294 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
295 {
296 if (edge_cache == NULL
297 || src == ENTRY_BLOCK_PTR
298 || dst == EXIT_BLOCK_PTR)
299 return make_edge (src, dst, flags);
300
301 /* Does the requested edge already exist? */
302 if (! TEST_BIT (edge_cache, dst->index))
303 {
304 /* The edge does not exist. Create one and update the
305 cache. */
306 SET_BIT (edge_cache, dst->index);
307 return unchecked_make_edge (src, dst, flags);
308 }
309
310 /* At this point, we know that the requested edge exists. Adjust
311 flags if necessary. */
312 if (flags)
313 {
314 edge e = find_edge (src, dst);
315 e->flags |= flags;
316 }
317
318 return NULL;
319 }
320
321 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
322 created edge or NULL if already exist. */
323
324 edge
325 make_edge (basic_block src, basic_block dest, int flags)
326 {
327 edge e = find_edge (src, dest);
328
329 /* Make sure we don't add duplicate edges. */
330 if (e)
331 {
332 e->flags |= flags;
333 return NULL;
334 }
335
336 return unchecked_make_edge (src, dest, flags);
337 }
338
339 /* Create an edge connecting SRC to DEST and set probability by knowing
340 that it is the single edge leaving SRC. */
341
342 edge
343 make_single_succ_edge (basic_block src, basic_block dest, int flags)
344 {
345 edge e = make_edge (src, dest, flags);
346
347 e->probability = REG_BR_PROB_BASE;
348 e->count = src->count;
349 return e;
350 }
351
352 /* This function will remove an edge from the flow graph. */
353
354 void
355 remove_edge_raw (edge e)
356 {
357 remove_predictions_associated_with_edge (e);
358 execute_on_shrinking_pred (e);
359
360 disconnect_src (e);
361 disconnect_dest (e);
362
363 free_edge (e);
364 }
365
366 /* Redirect an edge's successor from one block to another. */
367
368 void
369 redirect_edge_succ (edge e, basic_block new_succ)
370 {
371 execute_on_shrinking_pred (e);
372
373 disconnect_dest (e);
374
375 e->dest = new_succ;
376
377 /* Reconnect the edge to the new successor block. */
378 connect_dest (e);
379
380 execute_on_growing_pred (e);
381 }
382
383 /* Like previous but avoid possible duplicate edge. */
384
385 edge
386 redirect_edge_succ_nodup (edge e, basic_block new_succ)
387 {
388 edge s;
389
390 s = find_edge (e->src, new_succ);
391 if (s && s != e)
392 {
393 s->flags |= e->flags;
394 s->probability += e->probability;
395 if (s->probability > REG_BR_PROB_BASE)
396 s->probability = REG_BR_PROB_BASE;
397 s->count += e->count;
398 remove_edge (e);
399 e = s;
400 }
401 else
402 redirect_edge_succ (e, new_succ);
403
404 return e;
405 }
406
407 /* Redirect an edge's predecessor from one block to another. */
408
409 void
410 redirect_edge_pred (edge e, basic_block new_pred)
411 {
412 disconnect_src (e);
413
414 e->src = new_pred;
415
416 /* Reconnect the edge to the new predecessor block. */
417 connect_src (e);
418 }
419
420 /* Clear all basic block flags, with the exception of partitioning and
421 setjmp_target. */
422 void
423 clear_bb_flags (void)
424 {
425 basic_block bb;
426
427 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
428 bb->flags = (BB_PARTITION (bb)
429 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
430 }
431 \f
432 /* Check the consistency of profile information. We can't do that
433 in verify_flow_info, as the counts may get invalid for incompletely
434 solved graphs, later eliminating of conditionals or roundoff errors.
435 It is still practical to have them reported for debugging of simple
436 testcases. */
437 void
438 check_bb_profile (basic_block bb, FILE * file)
439 {
440 edge e;
441 int sum = 0;
442 gcov_type lsum;
443 edge_iterator ei;
444
445 if (profile_status == PROFILE_ABSENT)
446 return;
447
448 if (bb != EXIT_BLOCK_PTR)
449 {
450 FOR_EACH_EDGE (e, ei, bb->succs)
451 sum += e->probability;
452 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
453 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
454 sum * 100.0 / REG_BR_PROB_BASE);
455 lsum = 0;
456 FOR_EACH_EDGE (e, ei, bb->succs)
457 lsum += e->count;
458 if (EDGE_COUNT (bb->succs)
459 && (lsum - bb->count > 100 || lsum - bb->count < -100))
460 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
461 (int) lsum, (int) bb->count);
462 }
463 if (bb != ENTRY_BLOCK_PTR)
464 {
465 sum = 0;
466 FOR_EACH_EDGE (e, ei, bb->preds)
467 sum += EDGE_FREQUENCY (e);
468 if (abs (sum - bb->frequency) > 100)
469 fprintf (file,
470 "Invalid sum of incoming frequencies %i, should be %i\n",
471 sum, bb->frequency);
472 lsum = 0;
473 FOR_EACH_EDGE (e, ei, bb->preds)
474 lsum += e->count;
475 if (lsum - bb->count > 100 || lsum - bb->count < -100)
476 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
477 (int) lsum, (int) bb->count);
478 }
479 }
480 \f
481 /* Write information about registers and basic blocks into FILE.
482 This is part of making a debugging dump. */
483
484 void
485 dump_regset (regset r, FILE *outf)
486 {
487 unsigned i;
488 reg_set_iterator rsi;
489
490 if (r == NULL)
491 {
492 fputs (" (nil)", outf);
493 return;
494 }
495
496 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
497 {
498 fprintf (outf, " %d", i);
499 if (i < FIRST_PSEUDO_REGISTER)
500 fprintf (outf, " [%s]",
501 reg_names[i]);
502 }
503 }
504
505 /* Print a human-readable representation of R on the standard error
506 stream. This function is designed to be used from within the
507 debugger. */
508
509 void
510 debug_regset (regset r)
511 {
512 dump_regset (r, stderr);
513 putc ('\n', stderr);
514 }
515
516 /* Emit basic block information for BB. HEADER is true if the user wants
517 the generic information and the predecessors, FOOTER is true if they want
518 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
519 global register liveness information. PREFIX is put in front of every
520 line. The output is emitted to FILE. */
521 void
522 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
523 const char *prefix, FILE *file)
524 {
525 edge e;
526 edge_iterator ei;
527
528 if (header)
529 {
530 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
531 if (bb->prev_bb)
532 fprintf (file, ", prev %d", bb->prev_bb->index);
533 if (bb->next_bb)
534 fprintf (file, ", next %d", bb->next_bb->index);
535 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
536 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
537 fprintf (file, ", freq %i", bb->frequency);
538 if (maybe_hot_bb_p (bb))
539 fprintf (file, ", maybe hot");
540 if (probably_never_executed_bb_p (bb))
541 fprintf (file, ", probably never executed");
542 fprintf (file, ".\n");
543
544 fprintf (file, "%sPredecessors: ", prefix);
545 FOR_EACH_EDGE (e, ei, bb->preds)
546 dump_edge_info (file, e, 0);
547
548 if ((flags & TDF_DETAILS)
549 && (bb->flags & BB_RTL)
550 && df)
551 {
552 fprintf (file, "\n");
553 df_dump_top (bb, file);
554 }
555 }
556
557 if (footer)
558 {
559 fprintf (file, "\n%sSuccessors: ", prefix);
560 FOR_EACH_EDGE (e, ei, bb->succs)
561 dump_edge_info (file, e, 1);
562
563 if ((flags & TDF_DETAILS)
564 && (bb->flags & BB_RTL)
565 && df)
566 {
567 fprintf (file, "\n");
568 df_dump_bottom (bb, file);
569 }
570 }
571
572 putc ('\n', file);
573 }
574
575 /* Dump the register info to FILE. */
576
577 void
578 dump_reg_info (FILE *file)
579 {
580 unsigned int i, max = max_reg_num ();
581 if (reload_completed)
582 return;
583
584 if (reg_info_p_size < max)
585 max = reg_info_p_size;
586
587 fprintf (file, "%d registers.\n", max);
588 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
589 {
590 enum reg_class class, altclass;
591
592 if (regstat_n_sets_and_refs)
593 fprintf (file, "\nRegister %d used %d times across %d insns",
594 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
595 else if (df)
596 fprintf (file, "\nRegister %d used %d times across %d insns",
597 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
598
599 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
600 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
601 if (regstat_n_sets_and_refs)
602 fprintf (file, "; set %d time%s", REG_N_SETS (i),
603 (REG_N_SETS (i) == 1) ? "" : "s");
604 else if (df)
605 fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
606 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
607 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
608 fprintf (file, "; user var");
609 if (REG_N_DEATHS (i) != 1)
610 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
611 if (REG_N_CALLS_CROSSED (i) == 1)
612 fprintf (file, "; crosses 1 call");
613 else if (REG_N_CALLS_CROSSED (i))
614 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
615 if (regno_reg_rtx[i] != NULL
616 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
617 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
618
619 class = reg_preferred_class (i);
620 altclass = reg_alternate_class (i);
621 if (class != GENERAL_REGS || altclass != ALL_REGS)
622 {
623 if (altclass == ALL_REGS || class == ALL_REGS)
624 fprintf (file, "; pref %s", reg_class_names[(int) class]);
625 else if (altclass == NO_REGS)
626 fprintf (file, "; %s or none", reg_class_names[(int) class]);
627 else
628 fprintf (file, "; pref %s, else %s",
629 reg_class_names[(int) class],
630 reg_class_names[(int) altclass]);
631 }
632
633 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
634 fprintf (file, "; pointer");
635 fprintf (file, ".\n");
636 }
637 }
638
639
640 void
641 dump_flow_info (FILE *file, int flags)
642 {
643 basic_block bb;
644
645 /* There are no pseudo registers after reload. Don't dump them. */
646 if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
647 dump_reg_info (file);
648
649 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
650 FOR_EACH_BB (bb)
651 {
652 dump_bb_info (bb, true, true, flags, "", file);
653 check_bb_profile (bb, file);
654 }
655
656 putc ('\n', file);
657 }
658
659 void
660 debug_flow_info (void)
661 {
662 dump_flow_info (stderr, TDF_DETAILS);
663 }
664
665 void
666 dump_edge_info (FILE *file, edge e, int do_succ)
667 {
668 basic_block side = (do_succ ? e->dest : e->src);
669
670 if (side == ENTRY_BLOCK_PTR)
671 fputs (" ENTRY", file);
672 else if (side == EXIT_BLOCK_PTR)
673 fputs (" EXIT", file);
674 else
675 fprintf (file, " %d", side->index);
676
677 if (e->probability)
678 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
679
680 if (e->count)
681 {
682 fprintf (file, " count:");
683 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
684 }
685
686 if (e->flags)
687 {
688 static const char * const bitnames[] = {
689 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
690 "can_fallthru", "irreducible", "sibcall", "loop_exit",
691 "true", "false", "exec"
692 };
693 int comma = 0;
694 int i, flags = e->flags;
695
696 fputs (" (", file);
697 for (i = 0; flags; i++)
698 if (flags & (1 << i))
699 {
700 flags &= ~(1 << i);
701
702 if (comma)
703 fputc (',', file);
704 if (i < (int) ARRAY_SIZE (bitnames))
705 fputs (bitnames[i], file);
706 else
707 fprintf (file, "%d", i);
708 comma = 1;
709 }
710
711 fputc (')', file);
712 }
713 }
714 \f
715 /* Simple routines to easily allocate AUX fields of basic blocks. */
716
717 static struct obstack block_aux_obstack;
718 static void *first_block_aux_obj = 0;
719 static struct obstack edge_aux_obstack;
720 static void *first_edge_aux_obj = 0;
721
722 /* Allocate a memory block of SIZE as BB->aux. The obstack must
723 be first initialized by alloc_aux_for_blocks. */
724
725 inline void
726 alloc_aux_for_block (basic_block bb, int size)
727 {
728 /* Verify that aux field is clear. */
729 gcc_assert (!bb->aux && first_block_aux_obj);
730 bb->aux = obstack_alloc (&block_aux_obstack, size);
731 memset (bb->aux, 0, size);
732 }
733
734 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
735 alloc_aux_for_block for each basic block. */
736
737 void
738 alloc_aux_for_blocks (int size)
739 {
740 static int initialized;
741
742 if (!initialized)
743 {
744 gcc_obstack_init (&block_aux_obstack);
745 initialized = 1;
746 }
747 else
748 /* Check whether AUX data are still allocated. */
749 gcc_assert (!first_block_aux_obj);
750
751 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
752 if (size)
753 {
754 basic_block bb;
755
756 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
757 alloc_aux_for_block (bb, size);
758 }
759 }
760
761 /* Clear AUX pointers of all blocks. */
762
763 void
764 clear_aux_for_blocks (void)
765 {
766 basic_block bb;
767
768 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
769 bb->aux = NULL;
770 }
771
772 /* Free data allocated in block_aux_obstack and clear AUX pointers
773 of all blocks. */
774
775 void
776 free_aux_for_blocks (void)
777 {
778 gcc_assert (first_block_aux_obj);
779 obstack_free (&block_aux_obstack, first_block_aux_obj);
780 first_block_aux_obj = NULL;
781
782 clear_aux_for_blocks ();
783 }
784
785 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
786 be first initialized by alloc_aux_for_edges. */
787
788 inline void
789 alloc_aux_for_edge (edge e, int size)
790 {
791 /* Verify that aux field is clear. */
792 gcc_assert (!e->aux && first_edge_aux_obj);
793 e->aux = obstack_alloc (&edge_aux_obstack, size);
794 memset (e->aux, 0, size);
795 }
796
797 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
798 alloc_aux_for_edge for each basic edge. */
799
800 void
801 alloc_aux_for_edges (int size)
802 {
803 static int initialized;
804
805 if (!initialized)
806 {
807 gcc_obstack_init (&edge_aux_obstack);
808 initialized = 1;
809 }
810 else
811 /* Check whether AUX data are still allocated. */
812 gcc_assert (!first_edge_aux_obj);
813
814 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
815 if (size)
816 {
817 basic_block bb;
818
819 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
820 {
821 edge e;
822 edge_iterator ei;
823
824 FOR_EACH_EDGE (e, ei, bb->succs)
825 alloc_aux_for_edge (e, size);
826 }
827 }
828 }
829
830 /* Clear AUX pointers of all edges. */
831
832 void
833 clear_aux_for_edges (void)
834 {
835 basic_block bb;
836 edge e;
837
838 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
839 {
840 edge_iterator ei;
841 FOR_EACH_EDGE (e, ei, bb->succs)
842 e->aux = NULL;
843 }
844 }
845
846 /* Free data allocated in edge_aux_obstack and clear AUX pointers
847 of all edges. */
848
849 void
850 free_aux_for_edges (void)
851 {
852 gcc_assert (first_edge_aux_obj);
853 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
854 first_edge_aux_obj = NULL;
855
856 clear_aux_for_edges ();
857 }
858
859 void
860 debug_bb (basic_block bb)
861 {
862 dump_bb (bb, stderr, 0);
863 }
864
865 basic_block
866 debug_bb_n (int n)
867 {
868 basic_block bb = BASIC_BLOCK (n);
869 dump_bb (bb, stderr, 0);
870 return bb;
871 }
872
873 /* Dumps cfg related information about basic block BB to FILE. */
874
875 static void
876 dump_cfg_bb_info (FILE *file, basic_block bb)
877 {
878 unsigned i;
879 edge_iterator ei;
880 bool first = true;
881 static const char * const bb_bitnames[] =
882 {
883 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
884 };
885 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
886 edge e;
887
888 fprintf (file, "Basic block %d", bb->index);
889 for (i = 0; i < n_bitnames; i++)
890 if (bb->flags & (1 << i))
891 {
892 if (first)
893 fprintf (file, " (");
894 else
895 fprintf (file, ", ");
896 first = false;
897 fprintf (file, bb_bitnames[i]);
898 }
899 if (!first)
900 fprintf (file, ")");
901 fprintf (file, "\n");
902
903 fprintf (file, "Predecessors: ");
904 FOR_EACH_EDGE (e, ei, bb->preds)
905 dump_edge_info (file, e, 0);
906
907 fprintf (file, "\nSuccessors: ");
908 FOR_EACH_EDGE (e, ei, bb->succs)
909 dump_edge_info (file, e, 1);
910 fprintf (file, "\n\n");
911 }
912
913 /* Dumps a brief description of cfg to FILE. */
914
915 void
916 brief_dump_cfg (FILE *file)
917 {
918 basic_block bb;
919
920 FOR_EACH_BB (bb)
921 {
922 dump_cfg_bb_info (file, bb);
923 }
924 }
925
926 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
927 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
928 redirected to destination of TAKEN_EDGE.
929
930 This function may leave the profile inconsistent in the case TAKEN_EDGE
931 frequency or count is believed to be lower than FREQUENCY or COUNT
932 respectively. */
933 void
934 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
935 gcov_type count, edge taken_edge)
936 {
937 edge c;
938 int prob;
939 edge_iterator ei;
940
941 bb->count -= count;
942 if (bb->count < 0)
943 {
944 if (dump_file)
945 fprintf (dump_file, "bb %i count became negative after threading",
946 bb->index);
947 bb->count = 0;
948 }
949
950 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
951 Watch for overflows. */
952 if (bb->frequency)
953 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
954 else
955 prob = 0;
956 if (prob > taken_edge->probability)
957 {
958 if (dump_file)
959 fprintf (dump_file, "Jump threading proved probability of edge "
960 "%i->%i too small (it is %i, should be %i).\n",
961 taken_edge->src->index, taken_edge->dest->index,
962 taken_edge->probability, prob);
963 prob = taken_edge->probability;
964 }
965
966 /* Now rescale the probabilities. */
967 taken_edge->probability -= prob;
968 prob = REG_BR_PROB_BASE - prob;
969 bb->frequency -= edge_frequency;
970 if (bb->frequency < 0)
971 bb->frequency = 0;
972 if (prob <= 0)
973 {
974 if (dump_file)
975 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
976 "frequency of block should end up being 0, it is %i\n",
977 bb->index, bb->frequency);
978 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
979 ei = ei_start (bb->succs);
980 ei_next (&ei);
981 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
982 c->probability = 0;
983 }
984 else if (prob != REG_BR_PROB_BASE)
985 {
986 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
987
988 FOR_EACH_EDGE (c, ei, bb->succs)
989 {
990 c->probability = RDIV (c->probability * scale, 65536);
991 if (c->probability > REG_BR_PROB_BASE)
992 c->probability = REG_BR_PROB_BASE;
993 }
994 }
995
996 gcc_assert (bb == taken_edge->src);
997 taken_edge->count -= count;
998 if (taken_edge->count < 0)
999 {
1000 if (dump_file)
1001 fprintf (dump_file, "edge %i->%i count became negative after threading",
1002 taken_edge->src->index, taken_edge->dest->index);
1003 taken_edge->count = 0;
1004 }
1005 }
1006
1007 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1008 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1009 void
1010 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
1011 {
1012 int i;
1013 edge e;
1014 if (num < 0)
1015 num = 0;
1016
1017 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1018 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1019 and still safely fit in int during calculations. */
1020 if (den > 1000)
1021 {
1022 if (num > 1000000)
1023 return;
1024
1025 num = RDIV (1000 * num, den);
1026 den = 1000;
1027 }
1028 if (num > 100 * den)
1029 return;
1030
1031 for (i = 0; i < nbbs; i++)
1032 {
1033 edge_iterator ei;
1034 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1035 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1036 if (bbs[i]->frequency > BB_FREQ_MAX)
1037 bbs[i]->frequency = BB_FREQ_MAX;
1038 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1039 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1040 e->count = RDIV (e->count * num, den);
1041 }
1042 }
1043
1044 /* numbers smaller than this value are safe to multiply without getting
1045 64bit overflow. */
1046 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1047
1048 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1049 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1050 function but considerably slower. */
1051 void
1052 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
1053 gcov_type den)
1054 {
1055 int i;
1056 edge e;
1057 gcov_type fraction = RDIV (num * 65536, den);
1058
1059 gcc_assert (fraction >= 0);
1060
1061 if (num < MAX_SAFE_MULTIPLIER)
1062 for (i = 0; i < nbbs; i++)
1063 {
1064 edge_iterator ei;
1065 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1066 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1067 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1068 else
1069 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1070 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1071 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1072 e->count = RDIV (e->count * num, den);
1073 else
1074 e->count = RDIV (e->count * fraction, 65536);
1075 }
1076 else
1077 for (i = 0; i < nbbs; i++)
1078 {
1079 edge_iterator ei;
1080 if (sizeof (gcov_type) > sizeof (int))
1081 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1082 else
1083 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1084 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1085 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1086 e->count = RDIV (e->count * fraction, 65536);
1087 }
1088 }
1089
1090 /* Data structures used to maintain mapping between basic blocks and
1091 copies. */
1092 static htab_t bb_original;
1093 static htab_t bb_copy;
1094
1095 /* And between loops and copies. */
1096 static htab_t loop_copy;
1097 static alloc_pool original_copy_bb_pool;
1098
1099 struct htab_bb_copy_original_entry
1100 {
1101 /* Block we are attaching info to. */
1102 int index1;
1103 /* Index of original or copy (depending on the hashtable) */
1104 int index2;
1105 };
1106
1107 static hashval_t
1108 bb_copy_original_hash (const void *p)
1109 {
1110 const struct htab_bb_copy_original_entry *data
1111 = ((const struct htab_bb_copy_original_entry *)p);
1112
1113 return data->index1;
1114 }
1115 static int
1116 bb_copy_original_eq (const void *p, const void *q)
1117 {
1118 const struct htab_bb_copy_original_entry *data
1119 = ((const struct htab_bb_copy_original_entry *)p);
1120 const struct htab_bb_copy_original_entry *data2
1121 = ((const struct htab_bb_copy_original_entry *)q);
1122
1123 return data->index1 == data2->index1;
1124 }
1125
1126 /* Initialize the data structures to maintain mapping between blocks
1127 and its copies. */
1128 void
1129 initialize_original_copy_tables (void)
1130 {
1131 gcc_assert (!original_copy_bb_pool);
1132 original_copy_bb_pool
1133 = create_alloc_pool ("original_copy",
1134 sizeof (struct htab_bb_copy_original_entry), 10);
1135 bb_original = htab_create (10, bb_copy_original_hash,
1136 bb_copy_original_eq, NULL);
1137 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1138 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1139 }
1140
1141 /* Free the data structures to maintain mapping between blocks and
1142 its copies. */
1143 void
1144 free_original_copy_tables (void)
1145 {
1146 gcc_assert (original_copy_bb_pool);
1147 htab_delete (bb_copy);
1148 htab_delete (bb_original);
1149 htab_delete (loop_copy);
1150 free_alloc_pool (original_copy_bb_pool);
1151 bb_copy = NULL;
1152 bb_original = NULL;
1153 loop_copy = NULL;
1154 original_copy_bb_pool = NULL;
1155 }
1156
1157 /* Removes the value associated with OBJ from table TAB. */
1158
1159 static void
1160 copy_original_table_clear (htab_t tab, unsigned obj)
1161 {
1162 void **slot;
1163 struct htab_bb_copy_original_entry key, *elt;
1164
1165 if (!original_copy_bb_pool)
1166 return;
1167
1168 key.index1 = obj;
1169 slot = htab_find_slot (tab, &key, NO_INSERT);
1170 if (!slot)
1171 return;
1172
1173 elt = (struct htab_bb_copy_original_entry *) *slot;
1174 htab_clear_slot (tab, slot);
1175 pool_free (original_copy_bb_pool, elt);
1176 }
1177
1178 /* Sets the value associated with OBJ in table TAB to VAL.
1179 Do nothing when data structures are not initialized. */
1180
1181 static void
1182 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
1183 {
1184 struct htab_bb_copy_original_entry **slot;
1185 struct htab_bb_copy_original_entry key;
1186
1187 if (!original_copy_bb_pool)
1188 return;
1189
1190 key.index1 = obj;
1191 slot = (struct htab_bb_copy_original_entry **)
1192 htab_find_slot (tab, &key, INSERT);
1193 if (!*slot)
1194 {
1195 *slot = (struct htab_bb_copy_original_entry *)
1196 pool_alloc (original_copy_bb_pool);
1197 (*slot)->index1 = obj;
1198 }
1199 (*slot)->index2 = val;
1200 }
1201
1202 /* Set original for basic block. Do nothing when data structures are not
1203 initialized so passes not needing this don't need to care. */
1204 void
1205 set_bb_original (basic_block bb, basic_block original)
1206 {
1207 copy_original_table_set (bb_original, bb->index, original->index);
1208 }
1209
1210 /* Get the original basic block. */
1211 basic_block
1212 get_bb_original (basic_block bb)
1213 {
1214 struct htab_bb_copy_original_entry *entry;
1215 struct htab_bb_copy_original_entry key;
1216
1217 gcc_assert (original_copy_bb_pool);
1218
1219 key.index1 = bb->index;
1220 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1221 if (entry)
1222 return BASIC_BLOCK (entry->index2);
1223 else
1224 return NULL;
1225 }
1226
1227 /* Set copy for basic block. Do nothing when data structures are not
1228 initialized so passes not needing this don't need to care. */
1229 void
1230 set_bb_copy (basic_block bb, basic_block copy)
1231 {
1232 copy_original_table_set (bb_copy, bb->index, copy->index);
1233 }
1234
1235 /* Get the copy of basic block. */
1236 basic_block
1237 get_bb_copy (basic_block bb)
1238 {
1239 struct htab_bb_copy_original_entry *entry;
1240 struct htab_bb_copy_original_entry key;
1241
1242 gcc_assert (original_copy_bb_pool);
1243
1244 key.index1 = bb->index;
1245 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1246 if (entry)
1247 return BASIC_BLOCK (entry->index2);
1248 else
1249 return NULL;
1250 }
1251
1252 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1253 initialized so passes not needing this don't need to care. */
1254
1255 void
1256 set_loop_copy (struct loop *loop, struct loop *copy)
1257 {
1258 if (!copy)
1259 copy_original_table_clear (loop_copy, loop->num);
1260 else
1261 copy_original_table_set (loop_copy, loop->num, copy->num);
1262 }
1263
1264 /* Get the copy of LOOP. */
1265
1266 struct loop *
1267 get_loop_copy (struct loop *loop)
1268 {
1269 struct htab_bb_copy_original_entry *entry;
1270 struct htab_bb_copy_original_entry key;
1271
1272 gcc_assert (original_copy_bb_pool);
1273
1274 key.index1 = loop->num;
1275 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1276 if (entry)
1277 return get_loop (entry->index2);
1278 else
1279 return NULL;
1280 }