]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfganal.c
Update copyright years.
[thirdparty/gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains various simple utilities to analyze the CFG. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "cfghooks.h"
27 #include "timevar.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30
31 namespace {
32 /* Store the data structures necessary for depth-first search. */
33 class depth_first_search
34 {
35 public:
36 depth_first_search ();
37
38 basic_block execute (basic_block);
39 void add_bb (basic_block);
40
41 private:
42 /* stack for backtracking during the algorithm */
43 auto_vec<basic_block, 20> m_stack;
44
45 /* record of basic blocks already seen by depth-first search */
46 auto_sbitmap m_visited_blocks;
47 };
48 }
49 \f
50 /* Mark the back edges in DFS traversal.
51 Return nonzero if a loop (natural or otherwise) is present.
52 Inspired by Depth_First_Search_PP described in:
53
54 Advanced Compiler Design and Implementation
55 Steven Muchnick
56 Morgan Kaufmann, 1997
57
58 and heavily borrowed from pre_and_rev_post_order_compute. */
59
60 bool
61 mark_dfs_back_edges (void)
62 {
63 int *pre;
64 int *post;
65 int prenum = 1;
66 int postnum = 1;
67 bool found = false;
68
69 /* Allocate the preorder and postorder number arrays. */
70 pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
71 post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
72
73 /* Allocate stack for back-tracking up CFG. */
74 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
75
76 /* Allocate bitmap to track nodes that have been visited. */
77 auto_sbitmap visited (last_basic_block_for_fn (cfun));
78
79 /* None of the nodes in the CFG have been visited yet. */
80 bitmap_clear (visited);
81
82 /* Push the first edge on to the stack. */
83 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
84
85 while (!stack.is_empty ())
86 {
87 basic_block src;
88 basic_block dest;
89
90 /* Look at the edge on the top of the stack. */
91 edge_iterator ei = stack.last ();
92 src = ei_edge (ei)->src;
93 dest = ei_edge (ei)->dest;
94 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
95
96 /* Check if the edge destination has been visited yet. */
97 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
98 dest->index))
99 {
100 /* Mark that we have visited the destination. */
101 bitmap_set_bit (visited, dest->index);
102
103 pre[dest->index] = prenum++;
104 if (EDGE_COUNT (dest->succs) > 0)
105 {
106 /* Since the DEST node has been visited for the first
107 time, check its successors. */
108 stack.quick_push (ei_start (dest->succs));
109 }
110 else
111 post[dest->index] = postnum++;
112 }
113 else
114 {
115 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
116 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
117 && pre[src->index] >= pre[dest->index]
118 && post[dest->index] == 0)
119 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
120
121 if (ei_one_before_end_p (ei)
122 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
123 post[src->index] = postnum++;
124
125 if (!ei_one_before_end_p (ei))
126 ei_next (&stack.last ());
127 else
128 stack.pop ();
129 }
130 }
131
132 free (pre);
133 free (post);
134
135 return found;
136 }
137
138 /* Find unreachable blocks. An unreachable block will have 0 in
139 the reachable bit in block->flags. A nonzero value indicates the
140 block is reachable. */
141
142 void
143 find_unreachable_blocks (void)
144 {
145 edge e;
146 edge_iterator ei;
147 basic_block *tos, *worklist, bb;
148
149 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
150
151 /* Clear all the reachability flags. */
152
153 FOR_EACH_BB_FN (bb, cfun)
154 bb->flags &= ~BB_REACHABLE;
155
156 /* Add our starting points to the worklist. Almost always there will
157 be only one. It isn't inconceivable that we might one day directly
158 support Fortran alternate entry points. */
159
160 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
161 {
162 *tos++ = e->dest;
163
164 /* Mark the block reachable. */
165 e->dest->flags |= BB_REACHABLE;
166 }
167
168 /* Iterate: find everything reachable from what we've already seen. */
169
170 while (tos != worklist)
171 {
172 basic_block b = *--tos;
173
174 FOR_EACH_EDGE (e, ei, b->succs)
175 {
176 basic_block dest = e->dest;
177
178 if (!(dest->flags & BB_REACHABLE))
179 {
180 *tos++ = dest;
181 dest->flags |= BB_REACHABLE;
182 }
183 }
184 }
185
186 free (worklist);
187 }
188
189 /* Verify that there are no unreachable blocks in the current function. */
190
191 void
192 verify_no_unreachable_blocks (void)
193 {
194 find_unreachable_blocks ();
195
196 basic_block bb;
197 FOR_EACH_BB_FN (bb, cfun)
198 gcc_assert ((bb->flags & BB_REACHABLE) != 0);
199 }
200
201 \f
202 /* Functions to access an edge list with a vector representation.
203 Enough data is kept such that given an index number, the
204 pred and succ that edge represents can be determined, or
205 given a pred and a succ, its index number can be returned.
206 This allows algorithms which consume a lot of memory to
207 represent the normally full matrix of edge (pred,succ) with a
208 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
209 wasted space in the client code due to sparse flow graphs. */
210
211 /* This functions initializes the edge list. Basically the entire
212 flowgraph is processed, and all edges are assigned a number,
213 and the data structure is filled in. */
214
215 struct edge_list *
216 create_edge_list (void)
217 {
218 struct edge_list *elist;
219 edge e;
220 int num_edges;
221 basic_block bb;
222 edge_iterator ei;
223
224 /* Determine the number of edges in the flow graph by counting successor
225 edges on each basic block. */
226 num_edges = 0;
227 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
228 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
229 {
230 num_edges += EDGE_COUNT (bb->succs);
231 }
232
233 elist = XNEW (struct edge_list);
234 elist->num_edges = num_edges;
235 elist->index_to_edge = XNEWVEC (edge, num_edges);
236
237 num_edges = 0;
238
239 /* Follow successors of blocks, and register these edges. */
240 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
241 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
242 FOR_EACH_EDGE (e, ei, bb->succs)
243 elist->index_to_edge[num_edges++] = e;
244
245 return elist;
246 }
247
248 /* This function free's memory associated with an edge list. */
249
250 void
251 free_edge_list (struct edge_list *elist)
252 {
253 if (elist)
254 {
255 free (elist->index_to_edge);
256 free (elist);
257 }
258 }
259
260 /* This function provides debug output showing an edge list. */
261
262 DEBUG_FUNCTION void
263 print_edge_list (FILE *f, struct edge_list *elist)
264 {
265 int x;
266
267 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
268 n_basic_blocks_for_fn (cfun), elist->num_edges);
269
270 for (x = 0; x < elist->num_edges; x++)
271 {
272 fprintf (f, " %-4d - edge(", x);
273 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
274 fprintf (f, "entry,");
275 else
276 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
277
278 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
279 fprintf (f, "exit)\n");
280 else
281 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
282 }
283 }
284
285 /* This function provides an internal consistency check of an edge list,
286 verifying that all edges are present, and that there are no
287 extra edges. */
288
289 DEBUG_FUNCTION void
290 verify_edge_list (FILE *f, struct edge_list *elist)
291 {
292 int pred, succ, index;
293 edge e;
294 basic_block bb, p, s;
295 edge_iterator ei;
296
297 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
298 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
299 {
300 FOR_EACH_EDGE (e, ei, bb->succs)
301 {
302 pred = e->src->index;
303 succ = e->dest->index;
304 index = EDGE_INDEX (elist, e->src, e->dest);
305 if (index == EDGE_INDEX_NO_EDGE)
306 {
307 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
308 continue;
309 }
310
311 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
312 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
313 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
314 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
315 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
316 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
317 }
318 }
319
320 /* We've verified that all the edges are in the list, now lets make sure
321 there are no spurious edges in the list. This is an expensive check! */
322
323 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
324 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
325 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
326 {
327 int found_edge = 0;
328
329 FOR_EACH_EDGE (e, ei, p->succs)
330 if (e->dest == s)
331 {
332 found_edge = 1;
333 break;
334 }
335
336 FOR_EACH_EDGE (e, ei, s->preds)
337 if (e->src == p)
338 {
339 found_edge = 1;
340 break;
341 }
342
343 if (EDGE_INDEX (elist, p, s)
344 == EDGE_INDEX_NO_EDGE && found_edge != 0)
345 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
346 p->index, s->index);
347 if (EDGE_INDEX (elist, p, s)
348 != EDGE_INDEX_NO_EDGE && found_edge == 0)
349 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
350 p->index, s->index, EDGE_INDEX (elist, p, s));
351 }
352 }
353
354
355 /* Functions to compute control dependences. */
356
357 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
358 void
359 control_dependences::set_control_dependence_map_bit (basic_block bb,
360 int edge_index)
361 {
362 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
363 return;
364 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
365 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
366 }
367
368 /* Clear all control dependences for block BB. */
369 void
370 control_dependences::clear_control_dependence_bitmap (basic_block bb)
371 {
372 bitmap_clear (control_dependence_map[bb->index]);
373 }
374
375 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
376 This function is necessary because some blocks have negative numbers. */
377
378 static inline basic_block
379 find_pdom (basic_block block)
380 {
381 gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
382
383 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
384 return EXIT_BLOCK_PTR_FOR_FN (cfun);
385 else
386 {
387 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
388 if (! bb)
389 return EXIT_BLOCK_PTR_FOR_FN (cfun);
390 return bb;
391 }
392 }
393
394 /* Determine all blocks' control dependences on the given edge with edge_list
395 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
396
397 void
398 control_dependences::find_control_dependence (int edge_index)
399 {
400 basic_block current_block;
401 basic_block ending_block;
402
403 gcc_assert (get_edge_src (edge_index) != EXIT_BLOCK_PTR_FOR_FN (cfun));
404
405 /* For abnormal edges, we don't make current_block control
406 dependent because instructions that throw are always necessary
407 anyway. */
408 edge e = find_edge (get_edge_src (edge_index), get_edge_dest (edge_index));
409 if (e->flags & EDGE_ABNORMAL)
410 return;
411
412 if (get_edge_src (edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
413 ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
414 else
415 ending_block = find_pdom (get_edge_src (edge_index));
416
417 for (current_block = get_edge_dest (edge_index);
418 current_block != ending_block
419 && current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
420 current_block = find_pdom (current_block))
421 set_control_dependence_map_bit (current_block, edge_index);
422 }
423
424 /* Record all blocks' control dependences on all edges in the edge
425 list EL, ala Morgan, Section 3.6. */
426
427 control_dependences::control_dependences ()
428 {
429 timevar_push (TV_CONTROL_DEPENDENCES);
430
431 /* Initialize the edge list. */
432 int num_edges = 0;
433 basic_block bb;
434 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
435 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
436 num_edges += EDGE_COUNT (bb->succs);
437 m_el.create (num_edges);
438 edge e;
439 edge_iterator ei;
440 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
441 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 m_el.quick_push (std::make_pair (e->src->index, e->dest->index));
444
445 control_dependence_map.create (last_basic_block_for_fn (cfun));
446 for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
447 control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
448 for (int i = 0; i < num_edges; ++i)
449 find_control_dependence (i);
450
451 timevar_pop (TV_CONTROL_DEPENDENCES);
452 }
453
454 /* Free control dependences and the associated edge list. */
455
456 control_dependences::~control_dependences ()
457 {
458 for (unsigned i = 0; i < control_dependence_map.length (); ++i)
459 BITMAP_FREE (control_dependence_map[i]);
460 control_dependence_map.release ();
461 m_el.release ();
462 }
463
464 /* Returns the bitmap of edges the basic-block I is dependent on. */
465
466 bitmap
467 control_dependences::get_edges_dependent_on (int i)
468 {
469 return control_dependence_map[i];
470 }
471
472 /* Returns the edge source with index I from the edge list. */
473
474 basic_block
475 control_dependences::get_edge_src (int i)
476 {
477 return BASIC_BLOCK_FOR_FN (cfun, m_el[i].first);
478 }
479
480 /* Returns the edge destination with index I from the edge list. */
481
482 basic_block
483 control_dependences::get_edge_dest (int i)
484 {
485 return BASIC_BLOCK_FOR_FN (cfun, m_el[i].second);
486 }
487
488
489 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
490 If no such edge exists, return NULL. */
491
492 edge
493 find_edge (basic_block pred, basic_block succ)
494 {
495 edge e;
496 edge_iterator ei;
497
498 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
499 {
500 FOR_EACH_EDGE (e, ei, pred->succs)
501 if (e->dest == succ)
502 return e;
503 }
504 else
505 {
506 FOR_EACH_EDGE (e, ei, succ->preds)
507 if (e->src == pred)
508 return e;
509 }
510
511 return NULL;
512 }
513
514 /* This routine will determine what, if any, edge there is between
515 a specified predecessor and successor. */
516
517 int
518 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
519 {
520 int x;
521
522 for (x = 0; x < NUM_EDGES (edge_list); x++)
523 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
524 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
525 return x;
526
527 return (EDGE_INDEX_NO_EDGE);
528 }
529 \f
530 /* This routine will remove any fake predecessor edges for a basic block.
531 When the edge is removed, it is also removed from whatever successor
532 list it is in. */
533
534 static void
535 remove_fake_predecessors (basic_block bb)
536 {
537 edge e;
538 edge_iterator ei;
539
540 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
541 {
542 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
543 remove_edge (e);
544 else
545 ei_next (&ei);
546 }
547 }
548
549 /* This routine will remove all fake edges from the flow graph. If
550 we remove all fake successors, it will automatically remove all
551 fake predecessors. */
552
553 void
554 remove_fake_edges (void)
555 {
556 basic_block bb;
557
558 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
559 remove_fake_predecessors (bb);
560 }
561
562 /* This routine will remove all fake edges to the EXIT_BLOCK. */
563
564 void
565 remove_fake_exit_edges (void)
566 {
567 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
568 }
569
570
571 /* This function will add a fake edge between any block which has no
572 successors, and the exit block. Some data flow equations require these
573 edges to exist. */
574
575 void
576 add_noreturn_fake_exit_edges (void)
577 {
578 basic_block bb;
579
580 FOR_EACH_BB_FN (bb, cfun)
581 if (EDGE_COUNT (bb->succs) == 0)
582 make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
583 }
584
585 /* This function adds a fake edge between any infinite loops to the
586 exit block. Some optimizations require a path from each node to
587 the exit node.
588
589 See also Morgan, Figure 3.10, pp. 82-83.
590
591 The current implementation is ugly, not attempting to minimize the
592 number of inserted fake edges. To reduce the number of fake edges
593 to insert, add fake edges from _innermost_ loops containing only
594 nodes not reachable from the exit block. */
595
596 void
597 connect_infinite_loops_to_exit (void)
598 {
599 /* Perform depth-first search in the reverse graph to find nodes
600 reachable from the exit block. */
601 depth_first_search dfs;
602 dfs.add_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
603
604 /* Repeatedly add fake edges, updating the unreachable nodes. */
605 basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
606 while (1)
607 {
608 unvisited_block = dfs.execute (unvisited_block);
609 if (!unvisited_block)
610 break;
611
612 basic_block deadend_block = dfs_find_deadend (unvisited_block);
613 edge e = make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun),
614 EDGE_FAKE);
615 e->probability = profile_probability::never ();
616 dfs.add_bb (deadend_block);
617 }
618 }
619 \f
620 /* Compute reverse top sort order. This is computing a post order
621 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
622 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
623 true, unreachable blocks are deleted. */
624
625 int
626 post_order_compute (int *post_order, bool include_entry_exit,
627 bool delete_unreachable)
628 {
629 int post_order_num = 0;
630 int count;
631
632 if (include_entry_exit)
633 post_order[post_order_num++] = EXIT_BLOCK;
634
635 /* Allocate stack for back-tracking up CFG. */
636 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
637
638 /* Allocate bitmap to track nodes that have been visited. */
639 auto_sbitmap visited (last_basic_block_for_fn (cfun));
640
641 /* None of the nodes in the CFG have been visited yet. */
642 bitmap_clear (visited);
643
644 /* Push the first edge on to the stack. */
645 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
646
647 while (!stack.is_empty ())
648 {
649 basic_block src;
650 basic_block dest;
651
652 /* Look at the edge on the top of the stack. */
653 edge_iterator ei = stack.last ();
654 src = ei_edge (ei)->src;
655 dest = ei_edge (ei)->dest;
656
657 /* Check if the edge destination has been visited yet. */
658 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
659 && ! bitmap_bit_p (visited, dest->index))
660 {
661 /* Mark that we have visited the destination. */
662 bitmap_set_bit (visited, dest->index);
663
664 if (EDGE_COUNT (dest->succs) > 0)
665 /* Since the DEST node has been visited for the first
666 time, check its successors. */
667 stack.quick_push (ei_start (dest->succs));
668 else
669 post_order[post_order_num++] = dest->index;
670 }
671 else
672 {
673 if (ei_one_before_end_p (ei)
674 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
675 post_order[post_order_num++] = src->index;
676
677 if (!ei_one_before_end_p (ei))
678 ei_next (&stack.last ());
679 else
680 stack.pop ();
681 }
682 }
683
684 if (include_entry_exit)
685 {
686 post_order[post_order_num++] = ENTRY_BLOCK;
687 count = post_order_num;
688 }
689 else
690 count = post_order_num + 2;
691
692 /* Delete the unreachable blocks if some were found and we are
693 supposed to do it. */
694 if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
695 {
696 basic_block b;
697 basic_block next_bb;
698 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
699 != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
700 {
701 next_bb = b->next_bb;
702
703 if (!(bitmap_bit_p (visited, b->index)))
704 delete_basic_block (b);
705 }
706
707 tidy_fallthru_edges ();
708 }
709
710 return post_order_num;
711 }
712
713
714 /* Helper routine for inverted_post_order_compute
715 flow_dfs_compute_reverse_execute, and the reverse-CFG
716 deapth first search in dominance.c.
717 BB has to belong to a region of CFG
718 unreachable by inverted traversal from the exit.
719 i.e. there's no control flow path from ENTRY to EXIT
720 that contains this BB.
721 This can happen in two cases - if there's an infinite loop
722 or if there's a block that has no successor
723 (call to a function with no return).
724 Some RTL passes deal with this condition by
725 calling connect_infinite_loops_to_exit () and/or
726 add_noreturn_fake_exit_edges ().
727 However, those methods involve modifying the CFG itself
728 which may not be desirable.
729 Hence, we deal with the infinite loop/no return cases
730 by identifying a unique basic block that can reach all blocks
731 in such a region by inverted traversal.
732 This function returns a basic block that guarantees
733 that all blocks in the region are reachable
734 by starting an inverted traversal from the returned block. */
735
736 basic_block
737 dfs_find_deadend (basic_block bb)
738 {
739 auto_bitmap visited;
740 basic_block next = bb;
741
742 for (;;)
743 {
744 if (EDGE_COUNT (next->succs) == 0)
745 return next;
746
747 if (! bitmap_set_bit (visited, next->index))
748 return bb;
749
750 bb = next;
751 /* If we are in an analyzed cycle make sure to try exiting it.
752 Note this is a heuristic only and expected to work when loop
753 fixup is needed as well. */
754 if (! bb->loop_father
755 || ! loop_outer (bb->loop_father))
756 next = EDGE_SUCC (bb, 0)->dest;
757 else
758 {
759 edge_iterator ei;
760 edge e;
761 FOR_EACH_EDGE (e, ei, bb->succs)
762 if (loop_exit_edge_p (bb->loop_father, e))
763 break;
764 next = e ? e->dest : EDGE_SUCC (bb, 0)->dest;
765 }
766 }
767
768 gcc_unreachable ();
769 }
770
771
772 /* Compute the reverse top sort order of the inverted CFG
773 i.e. starting from the exit block and following the edges backward
774 (from successors to predecessors).
775 This ordering can be used for forward dataflow problems among others.
776
777 Optionally if START_POINTS is specified, start from exit block and all
778 basic blocks in START_POINTS. This is used by CD-DCE.
779
780 This function assumes that all blocks in the CFG are reachable
781 from the ENTRY (but not necessarily from EXIT).
782
783 If there's an infinite loop,
784 a simple inverted traversal starting from the blocks
785 with no successors can't visit all blocks.
786 To solve this problem, we first do inverted traversal
787 starting from the blocks with no successor.
788 And if there's any block left that's not visited by the regular
789 inverted traversal from EXIT,
790 those blocks are in such problematic region.
791 Among those, we find one block that has
792 any visited predecessor (which is an entry into such a region),
793 and start looking for a "dead end" from that block
794 and do another inverted traversal from that block. */
795
796 void
797 inverted_post_order_compute (vec<int> *post_order,
798 sbitmap *start_points)
799 {
800 basic_block bb;
801 post_order->reserve_exact (n_basic_blocks_for_fn (cfun));
802
803 if (flag_checking)
804 verify_no_unreachable_blocks ();
805
806 /* Allocate stack for back-tracking up CFG. */
807 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
808
809 /* Allocate bitmap to track nodes that have been visited. */
810 auto_sbitmap visited (last_basic_block_for_fn (cfun));
811
812 /* None of the nodes in the CFG have been visited yet. */
813 bitmap_clear (visited);
814
815 if (start_points)
816 {
817 FOR_ALL_BB_FN (bb, cfun)
818 if (bitmap_bit_p (*start_points, bb->index)
819 && EDGE_COUNT (bb->preds) > 0)
820 {
821 stack.quick_push (ei_start (bb->preds));
822 bitmap_set_bit (visited, bb->index);
823 }
824 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds))
825 {
826 stack.quick_push (ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds));
827 bitmap_set_bit (visited, EXIT_BLOCK_PTR_FOR_FN (cfun)->index);
828 }
829 }
830 else
831 /* Put all blocks that have no successor into the initial work list. */
832 FOR_ALL_BB_FN (bb, cfun)
833 if (EDGE_COUNT (bb->succs) == 0)
834 {
835 /* Push the initial edge on to the stack. */
836 if (EDGE_COUNT (bb->preds) > 0)
837 {
838 stack.quick_push (ei_start (bb->preds));
839 bitmap_set_bit (visited, bb->index);
840 }
841 }
842
843 do
844 {
845 bool has_unvisited_bb = false;
846
847 /* The inverted traversal loop. */
848 while (!stack.is_empty ())
849 {
850 edge_iterator ei;
851 basic_block pred;
852
853 /* Look at the edge on the top of the stack. */
854 ei = stack.last ();
855 bb = ei_edge (ei)->dest;
856 pred = ei_edge (ei)->src;
857
858 /* Check if the predecessor has been visited yet. */
859 if (! bitmap_bit_p (visited, pred->index))
860 {
861 /* Mark that we have visited the destination. */
862 bitmap_set_bit (visited, pred->index);
863
864 if (EDGE_COUNT (pred->preds) > 0)
865 /* Since the predecessor node has been visited for the first
866 time, check its predecessors. */
867 stack.quick_push (ei_start (pred->preds));
868 else
869 post_order->quick_push (pred->index);
870 }
871 else
872 {
873 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
874 && ei_one_before_end_p (ei))
875 post_order->quick_push (bb->index);
876
877 if (!ei_one_before_end_p (ei))
878 ei_next (&stack.last ());
879 else
880 stack.pop ();
881 }
882 }
883
884 /* Detect any infinite loop and activate the kludge.
885 Note that this doesn't check EXIT_BLOCK itself
886 since EXIT_BLOCK is always added after the outer do-while loop. */
887 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
888 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
889 if (!bitmap_bit_p (visited, bb->index))
890 {
891 has_unvisited_bb = true;
892
893 if (EDGE_COUNT (bb->preds) > 0)
894 {
895 edge_iterator ei;
896 edge e;
897 basic_block visited_pred = NULL;
898
899 /* Find an already visited predecessor. */
900 FOR_EACH_EDGE (e, ei, bb->preds)
901 {
902 if (bitmap_bit_p (visited, e->src->index))
903 visited_pred = e->src;
904 }
905
906 if (visited_pred)
907 {
908 basic_block be = dfs_find_deadend (bb);
909 gcc_assert (be != NULL);
910 bitmap_set_bit (visited, be->index);
911 stack.quick_push (ei_start (be->preds));
912 break;
913 }
914 }
915 }
916
917 if (has_unvisited_bb && stack.is_empty ())
918 {
919 /* No blocks are reachable from EXIT at all.
920 Find a dead-end from the ENTRY, and restart the iteration. */
921 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
922 gcc_assert (be != NULL);
923 bitmap_set_bit (visited, be->index);
924 stack.quick_push (ei_start (be->preds));
925 }
926
927 /* The only case the below while fires is
928 when there's an infinite loop. */
929 }
930 while (!stack.is_empty ());
931
932 /* EXIT_BLOCK is always included. */
933 post_order->quick_push (EXIT_BLOCK);
934 }
935
936 /* Compute the depth first search order of FN and store in the array
937 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
938 reverse completion number for each node. Returns the number of nodes
939 visited. A depth first search tries to get as far away from the starting
940 point as quickly as possible.
941
942 In case the function has unreachable blocks the number of nodes
943 visited does not include them.
944
945 pre_order is a really a preorder numbering of the graph.
946 rev_post_order is really a reverse postorder numbering of the graph. */
947
948 int
949 pre_and_rev_post_order_compute_fn (struct function *fn,
950 int *pre_order, int *rev_post_order,
951 bool include_entry_exit)
952 {
953 int pre_order_num = 0;
954 int rev_post_order_num = n_basic_blocks_for_fn (fn) - 1;
955
956 /* Allocate stack for back-tracking up CFG. */
957 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (fn) + 1);
958
959 if (include_entry_exit)
960 {
961 if (pre_order)
962 pre_order[pre_order_num] = ENTRY_BLOCK;
963 pre_order_num++;
964 if (rev_post_order)
965 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
966 }
967 else
968 rev_post_order_num -= NUM_FIXED_BLOCKS;
969
970 /* BB flag to track nodes that have been visited. */
971 auto_bb_flag visited (fn);
972
973 /* Push the first edge on to the stack. */
974 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs));
975
976 while (!stack.is_empty ())
977 {
978 basic_block src;
979 basic_block dest;
980
981 /* Look at the edge on the top of the stack. */
982 edge_iterator ei = stack.last ();
983 src = ei_edge (ei)->src;
984 dest = ei_edge (ei)->dest;
985
986 /* Check if the edge destination has been visited yet. */
987 if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
988 && ! (dest->flags & visited))
989 {
990 /* Mark that we have visited the destination. */
991 dest->flags |= visited;
992
993 if (pre_order)
994 pre_order[pre_order_num] = dest->index;
995
996 pre_order_num++;
997
998 if (EDGE_COUNT (dest->succs) > 0)
999 /* Since the DEST node has been visited for the first
1000 time, check its successors. */
1001 stack.quick_push (ei_start (dest->succs));
1002 else if (rev_post_order)
1003 /* There are no successors for the DEST node so assign
1004 its reverse completion number. */
1005 rev_post_order[rev_post_order_num--] = dest->index;
1006 }
1007 else
1008 {
1009 if (ei_one_before_end_p (ei)
1010 && src != ENTRY_BLOCK_PTR_FOR_FN (fn)
1011 && rev_post_order)
1012 /* There are no more successors for the SRC node
1013 so assign its reverse completion number. */
1014 rev_post_order[rev_post_order_num--] = src->index;
1015
1016 if (!ei_one_before_end_p (ei))
1017 ei_next (&stack.last ());
1018 else
1019 stack.pop ();
1020 }
1021 }
1022
1023 if (include_entry_exit)
1024 {
1025 if (pre_order)
1026 pre_order[pre_order_num] = EXIT_BLOCK;
1027 pre_order_num++;
1028 if (rev_post_order)
1029 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
1030 }
1031
1032 /* Clear the temporarily allocated flag. */
1033 if (!rev_post_order)
1034 rev_post_order = pre_order;
1035 for (int i = 0; i < pre_order_num; ++i)
1036 BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags &= ~visited;
1037
1038 return pre_order_num;
1039 }
1040
1041 /* Like pre_and_rev_post_order_compute_fn but operating on the
1042 current function and asserting that all nodes were visited. */
1043
1044 int
1045 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
1046 bool include_entry_exit)
1047 {
1048 int pre_order_num
1049 = pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
1050 include_entry_exit);
1051 if (include_entry_exit)
1052 /* The number of nodes visited should be the number of blocks. */
1053 gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
1054 else
1055 /* The number of nodes visited should be the number of blocks minus
1056 the entry and exit blocks which are not visited here. */
1057 gcc_assert (pre_order_num
1058 == (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
1059
1060 return pre_order_num;
1061 }
1062
1063 /* Unlike pre_and_rev_post_order_compute we fill rev_post_order backwards
1064 so iterating in RPO order needs to start with rev_post_order[n - 1]
1065 going to rev_post_order[0]. If FOR_ITERATION is true then try to
1066 make CFG cycles fit into small contiguous regions of the RPO order.
1067 When FOR_ITERATION is true this requires up-to-date loop structures. */
1068
1069 int
1070 rev_post_order_and_mark_dfs_back_seme (struct function *fn, edge entry,
1071 bitmap exit_bbs, bool for_iteration,
1072 int *rev_post_order)
1073 {
1074 int pre_order_num = 0;
1075 int rev_post_order_num = 0;
1076
1077 /* Allocate stack for back-tracking up CFG. Worst case we need
1078 O(n^2) edges but the following should suffice in practice without
1079 a need to re-allocate. */
1080 auto_vec<edge, 20> stack (2 * n_basic_blocks_for_fn (fn));
1081
1082 int *pre = XNEWVEC (int, 2 * last_basic_block_for_fn (fn));
1083 int *post = pre + last_basic_block_for_fn (fn);
1084
1085 /* BB flag to track nodes that have been visited. */
1086 auto_bb_flag visited (fn);
1087 /* BB flag to track which nodes have post[] assigned to avoid
1088 zeroing post. */
1089 auto_bb_flag post_assigned (fn);
1090
1091 /* Push the first edge on to the stack. */
1092 stack.quick_push (entry);
1093
1094 while (!stack.is_empty ())
1095 {
1096 basic_block src;
1097 basic_block dest;
1098
1099 /* Look at the edge on the top of the stack. */
1100 int idx = stack.length () - 1;
1101 edge e = stack[idx];
1102 src = e->src;
1103 dest = e->dest;
1104 e->flags &= ~EDGE_DFS_BACK;
1105
1106 /* Check if the edge destination has been visited yet. */
1107 if (! bitmap_bit_p (exit_bbs, dest->index)
1108 && ! (dest->flags & visited))
1109 {
1110 /* Mark that we have visited the destination. */
1111 dest->flags |= visited;
1112
1113 pre[dest->index] = pre_order_num++;
1114
1115 if (EDGE_COUNT (dest->succs) > 0)
1116 {
1117 /* Since the DEST node has been visited for the first
1118 time, check its successors. */
1119 /* Push the edge vector in reverse to match previous behavior. */
1120 stack.reserve (EDGE_COUNT (dest->succs));
1121 for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
1122 stack.quick_push (EDGE_SUCC (dest, i));
1123 /* Generalize to handle more successors? */
1124 if (for_iteration
1125 && EDGE_COUNT (dest->succs) == 2)
1126 {
1127 edge &e1 = stack[stack.length () - 2];
1128 if (loop_exit_edge_p (e1->src->loop_father, e1))
1129 std::swap (e1, stack.last ());
1130 }
1131 }
1132 else
1133 {
1134 /* There are no successors for the DEST node so assign
1135 its reverse completion number. */
1136 post[dest->index] = rev_post_order_num;
1137 dest->flags |= post_assigned;
1138 rev_post_order[rev_post_order_num] = dest->index;
1139 rev_post_order_num++;
1140 }
1141 }
1142 else
1143 {
1144 if (dest->flags & visited
1145 && src != entry->src
1146 && pre[src->index] >= pre[dest->index]
1147 && !(dest->flags & post_assigned))
1148 e->flags |= EDGE_DFS_BACK;
1149
1150 if (idx != 0 && stack[idx - 1]->src != src)
1151 {
1152 /* There are no more successors for the SRC node
1153 so assign its reverse completion number. */
1154 post[src->index] = rev_post_order_num;
1155 src->flags |= post_assigned;
1156 rev_post_order[rev_post_order_num] = src->index;
1157 rev_post_order_num++;
1158 }
1159
1160 stack.pop ();
1161 }
1162 }
1163
1164 XDELETEVEC (pre);
1165
1166 /* Clear the temporarily allocated flags. */
1167 for (int i = 0; i < rev_post_order_num; ++i)
1168 BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags
1169 &= ~(post_assigned|visited);
1170
1171 return rev_post_order_num;
1172 }
1173
1174
1175
1176 /* Compute the depth first search order on the _reverse_ graph and
1177 store it in the array DFS_ORDER, marking the nodes visited in VISITED.
1178 Returns the number of nodes visited.
1179
1180 The computation is split into three pieces:
1181
1182 flow_dfs_compute_reverse_init () creates the necessary data
1183 structures.
1184
1185 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1186 structures. The block will start the search.
1187
1188 flow_dfs_compute_reverse_execute () continues (or starts) the
1189 search using the block on the top of the stack, stopping when the
1190 stack is empty.
1191
1192 flow_dfs_compute_reverse_finish () destroys the necessary data
1193 structures.
1194
1195 Thus, the user will probably call ..._init(), call ..._add_bb() to
1196 add a beginning basic block to the stack, call ..._execute(),
1197 possibly add another bb to the stack and again call ..._execute(),
1198 ..., and finally call _finish(). */
1199
1200 /* Initialize the data structures used for depth-first search on the
1201 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1202 added to the basic block stack. DATA is the current depth-first
1203 search context. If INITIALIZE_STACK is nonzero, there is an
1204 element on the stack. */
1205
1206 depth_first_search::depth_first_search () :
1207 m_stack (n_basic_blocks_for_fn (cfun)),
1208 m_visited_blocks (last_basic_block_for_fn (cfun))
1209 {
1210 bitmap_clear (m_visited_blocks);
1211 }
1212
1213 /* Add the specified basic block to the top of the dfs data
1214 structures. When the search continues, it will start at the
1215 block. */
1216
1217 void
1218 depth_first_search::add_bb (basic_block bb)
1219 {
1220 m_stack.quick_push (bb);
1221 bitmap_set_bit (m_visited_blocks, bb->index);
1222 }
1223
1224 /* Continue the depth-first search through the reverse graph starting with the
1225 block at the stack's top and ending when the stack is empty. Visited nodes
1226 are marked. Returns an unvisited basic block, or NULL if there is none
1227 available. */
1228
1229 basic_block
1230 depth_first_search::execute (basic_block last_unvisited)
1231 {
1232 basic_block bb;
1233 edge e;
1234 edge_iterator ei;
1235
1236 while (!m_stack.is_empty ())
1237 {
1238 bb = m_stack.pop ();
1239
1240 /* Perform depth-first search on adjacent vertices. */
1241 FOR_EACH_EDGE (e, ei, bb->preds)
1242 if (!bitmap_bit_p (m_visited_blocks, e->src->index))
1243 add_bb (e->src);
1244 }
1245
1246 /* Determine if there are unvisited basic blocks. */
1247 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
1248 if (!bitmap_bit_p (m_visited_blocks, bb->index))
1249 return bb;
1250
1251 return NULL;
1252 }
1253
1254 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1255 if REVERSE, go against direction of edges. Returns number of blocks
1256 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1257 int
1258 dfs_enumerate_from (basic_block bb, int reverse,
1259 bool (*predicate) (const_basic_block, const void *),
1260 basic_block *rslt, int rslt_max, const void *data)
1261 {
1262 basic_block *st, lbb;
1263 int sp = 0, tv = 0;
1264
1265 auto_bb_flag visited (cfun);
1266
1267 #define MARK_VISITED(BB) ((BB)->flags |= visited)
1268 #define UNMARK_VISITED(BB) ((BB)->flags &= ~visited)
1269 #define VISITED_P(BB) (((BB)->flags & visited) != 0)
1270
1271 st = XNEWVEC (basic_block, rslt_max);
1272 rslt[tv++] = st[sp++] = bb;
1273 MARK_VISITED (bb);
1274 while (sp)
1275 {
1276 edge e;
1277 edge_iterator ei;
1278 lbb = st[--sp];
1279 if (reverse)
1280 {
1281 FOR_EACH_EDGE (e, ei, lbb->preds)
1282 if (!VISITED_P (e->src) && predicate (e->src, data))
1283 {
1284 gcc_assert (tv != rslt_max);
1285 rslt[tv++] = st[sp++] = e->src;
1286 MARK_VISITED (e->src);
1287 }
1288 }
1289 else
1290 {
1291 FOR_EACH_EDGE (e, ei, lbb->succs)
1292 if (!VISITED_P (e->dest) && predicate (e->dest, data))
1293 {
1294 gcc_assert (tv != rslt_max);
1295 rslt[tv++] = st[sp++] = e->dest;
1296 MARK_VISITED (e->dest);
1297 }
1298 }
1299 }
1300 free (st);
1301 for (sp = 0; sp < tv; sp++)
1302 UNMARK_VISITED (rslt[sp]);
1303 return tv;
1304 #undef MARK_VISITED
1305 #undef UNMARK_VISITED
1306 #undef VISITED_P
1307 }
1308
1309
1310 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1311
1312 This algorithm can be found in Timothy Harvey's PhD thesis, at
1313 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1314 dominance algorithms.
1315
1316 First, we identify each join point, j (any node with more than one
1317 incoming edge is a join point).
1318
1319 We then examine each predecessor, p, of j and walk up the dominator tree
1320 starting at p.
1321
1322 We stop the walk when we reach j's immediate dominator - j is in the
1323 dominance frontier of each of the nodes in the walk, except for j's
1324 immediate dominator. Intuitively, all of the rest of j's dominators are
1325 shared by j's predecessors as well.
1326 Since they dominate j, they will not have j in their dominance frontiers.
1327
1328 The number of nodes touched by this algorithm is equal to the size
1329 of the dominance frontiers, no more, no less.
1330 */
1331
1332 void
1333 compute_dominance_frontiers (bitmap_head *frontiers)
1334 {
1335 timevar_push (TV_DOM_FRONTIERS);
1336
1337 edge p;
1338 edge_iterator ei;
1339 basic_block b;
1340 FOR_EACH_BB_FN (b, cfun)
1341 {
1342 if (EDGE_COUNT (b->preds) >= 2)
1343 {
1344 basic_block domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1345 FOR_EACH_EDGE (p, ei, b->preds)
1346 {
1347 basic_block runner = p->src;
1348 if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1349 continue;
1350
1351 while (runner != domsb)
1352 {
1353 if (!bitmap_set_bit (&frontiers[runner->index], b->index))
1354 break;
1355 runner = get_immediate_dominator (CDI_DOMINATORS, runner);
1356 }
1357 }
1358 }
1359 }
1360
1361 timevar_pop (TV_DOM_FRONTIERS);
1362 }
1363
1364 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1365 return a bitmap with all the blocks in the iterated dominance
1366 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1367 frontier information as returned by compute_dominance_frontiers.
1368
1369 The resulting set of blocks are the potential sites where PHI nodes
1370 are needed. The caller is responsible for freeing the memory
1371 allocated for the return value. */
1372
1373 bitmap
1374 compute_idf (bitmap def_blocks, bitmap_head *dfs)
1375 {
1376 bitmap_iterator bi;
1377 unsigned bb_index, i;
1378 bitmap phi_insertion_points;
1379
1380 phi_insertion_points = BITMAP_ALLOC (NULL);
1381
1382 /* Seed the work set with all the blocks in DEF_BLOCKS. */
1383 auto_bitmap work_set;
1384 bitmap_copy (work_set, def_blocks);
1385 bitmap_tree_view (work_set);
1386
1387 /* Pop a block off the workset, add every block that appears in
1388 the original block's DF that we have not already processed to
1389 the workset. Iterate until the workset is empty. Blocks
1390 which are added to the workset are potential sites for
1391 PHI nodes. */
1392 while (!bitmap_empty_p (work_set))
1393 {
1394 /* The dominance frontier of a block is blocks after it so iterating
1395 on earlier blocks first is better.
1396 ??? Basic blocks are by no means guaranteed to be ordered in
1397 optimal order for this iteration. */
1398 bb_index = bitmap_first_set_bit (work_set);
1399 bitmap_clear_bit (work_set, bb_index);
1400
1401 /* Since the registration of NEW -> OLD name mappings is done
1402 separately from the call to update_ssa, when updating the SSA
1403 form, the basic blocks where new and/or old names are defined
1404 may have disappeared by CFG cleanup calls. In this case,
1405 we may pull a non-existing block from the work stack. */
1406 gcc_checking_assert (bb_index
1407 < (unsigned) last_basic_block_for_fn (cfun));
1408
1409 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
1410 0, i, bi)
1411 {
1412 bitmap_set_bit (work_set, i);
1413 bitmap_set_bit (phi_insertion_points, i);
1414 }
1415 }
1416
1417 return phi_insertion_points;
1418 }
1419
1420 /* Intersection and union of preds/succs for sbitmap based data flow
1421 solvers. All four functions defined below take the same arguments:
1422 B is the basic block to perform the operation for. DST is the
1423 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1424 last_basic_block so that it can be indexed with basic block indices.
1425 DST may be (but does not have to be) SRC[B->index]. */
1426
1427 /* Set the bitmap DST to the intersection of SRC of successors of
1428 basic block B. */
1429
1430 void
1431 bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1432 {
1433 unsigned int set_size = dst->size;
1434 edge e;
1435 unsigned ix;
1436
1437 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1438 {
1439 e = EDGE_SUCC (b, ix);
1440 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1441 continue;
1442
1443 bitmap_copy (dst, src[e->dest->index]);
1444 break;
1445 }
1446
1447 if (e == 0)
1448 bitmap_ones (dst);
1449 else
1450 for (++ix; ix < EDGE_COUNT (b->succs); ix++)
1451 {
1452 unsigned int i;
1453 SBITMAP_ELT_TYPE *p, *r;
1454
1455 e = EDGE_SUCC (b, ix);
1456 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1457 continue;
1458
1459 p = src[e->dest->index]->elms;
1460 r = dst->elms;
1461 for (i = 0; i < set_size; i++)
1462 *r++ &= *p++;
1463 }
1464 }
1465
1466 /* Set the bitmap DST to the intersection of SRC of predecessors of
1467 basic block B. */
1468
1469 void
1470 bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1471 {
1472 unsigned int set_size = dst->size;
1473 edge e;
1474 unsigned ix;
1475
1476 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1477 {
1478 e = EDGE_PRED (b, ix);
1479 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1480 continue;
1481
1482 bitmap_copy (dst, src[e->src->index]);
1483 break;
1484 }
1485
1486 if (e == 0)
1487 bitmap_ones (dst);
1488 else
1489 for (++ix; ix < EDGE_COUNT (b->preds); ix++)
1490 {
1491 unsigned int i;
1492 SBITMAP_ELT_TYPE *p, *r;
1493
1494 e = EDGE_PRED (b, ix);
1495 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1496 continue;
1497
1498 p = src[e->src->index]->elms;
1499 r = dst->elms;
1500 for (i = 0; i < set_size; i++)
1501 *r++ &= *p++;
1502 }
1503 }
1504
1505 /* Set the bitmap DST to the union of SRC of successors of
1506 basic block B. */
1507
1508 void
1509 bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1510 {
1511 unsigned int set_size = dst->size;
1512 edge e;
1513 unsigned ix;
1514
1515 for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1516 {
1517 e = EDGE_SUCC (b, ix);
1518 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1519 continue;
1520
1521 bitmap_copy (dst, src[e->dest->index]);
1522 break;
1523 }
1524
1525 if (ix == EDGE_COUNT (b->succs))
1526 bitmap_clear (dst);
1527 else
1528 for (ix++; ix < EDGE_COUNT (b->succs); ix++)
1529 {
1530 unsigned int i;
1531 SBITMAP_ELT_TYPE *p, *r;
1532
1533 e = EDGE_SUCC (b, ix);
1534 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1535 continue;
1536
1537 p = src[e->dest->index]->elms;
1538 r = dst->elms;
1539 for (i = 0; i < set_size; i++)
1540 *r++ |= *p++;
1541 }
1542 }
1543
1544 /* Set the bitmap DST to the union of SRC of predecessors of
1545 basic block B. */
1546
1547 void
1548 bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1549 {
1550 unsigned int set_size = dst->size;
1551 edge e;
1552 unsigned ix;
1553
1554 for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1555 {
1556 e = EDGE_PRED (b, ix);
1557 if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
1558 continue;
1559
1560 bitmap_copy (dst, src[e->src->index]);
1561 break;
1562 }
1563
1564 if (ix == EDGE_COUNT (b->preds))
1565 bitmap_clear (dst);
1566 else
1567 for (ix++; ix < EDGE_COUNT (b->preds); ix++)
1568 {
1569 unsigned int i;
1570 SBITMAP_ELT_TYPE *p, *r;
1571
1572 e = EDGE_PRED (b, ix);
1573 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1574 continue;
1575
1576 p = src[e->src->index]->elms;
1577 r = dst->elms;
1578 for (i = 0; i < set_size; i++)
1579 *r++ |= *p++;
1580 }
1581 }
1582
1583 /* Returns the list of basic blocks in the function in an order that guarantees
1584 that if a block X has just a single predecessor Y, then Y is after X in the
1585 ordering. */
1586
1587 basic_block *
1588 single_pred_before_succ_order (void)
1589 {
1590 basic_block x, y;
1591 basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1592 unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1593 unsigned np, i;
1594 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1595
1596 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1597 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1598
1599 bitmap_clear (visited);
1600
1601 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1602 FOR_EACH_BB_FN (x, cfun)
1603 {
1604 if (VISITED_P (x))
1605 continue;
1606
1607 /* Walk the predecessors of x as long as they have precisely one
1608 predecessor and add them to the list, so that they get stored
1609 after x. */
1610 for (y = x, np = 1;
1611 single_pred_p (y) && !VISITED_P (single_pred (y));
1612 y = single_pred (y))
1613 np++;
1614 for (y = x, i = n - np;
1615 single_pred_p (y) && !VISITED_P (single_pred (y));
1616 y = single_pred (y), i++)
1617 {
1618 order[i] = y;
1619 MARK_VISITED (y);
1620 }
1621 order[i] = y;
1622 MARK_VISITED (y);
1623
1624 gcc_assert (i == n - 1);
1625 n -= np;
1626 }
1627
1628 gcc_assert (n == 0);
1629 return order;
1630
1631 #undef MARK_VISITED
1632 #undef VISITED_P
1633 }
1634
1635 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1636 return that edge. Otherwise return NULL.
1637
1638 When IGNORE_NOT_EXECUTABLE is true, also ignore edges that are not marked
1639 as executable. */
1640
1641 edge
1642 single_pred_edge_ignoring_loop_edges (basic_block bb,
1643 bool ignore_not_executable)
1644 {
1645 edge retval = NULL;
1646 edge e;
1647 edge_iterator ei;
1648
1649 FOR_EACH_EDGE (e, ei, bb->preds)
1650 {
1651 /* A loop back edge can be identified by the destination of
1652 the edge dominating the source of the edge. */
1653 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1654 continue;
1655
1656 /* We can safely ignore edges that are not executable. */
1657 if (ignore_not_executable
1658 && (e->flags & EDGE_EXECUTABLE) == 0)
1659 continue;
1660
1661 /* If we have already seen a non-loop edge, then we must have
1662 multiple incoming non-loop edges and thus we return NULL. */
1663 if (retval)
1664 return NULL;
1665
1666 /* This is the first non-loop incoming edge we have found. Record
1667 it. */
1668 retval = e;
1669 }
1670
1671 return retval;
1672 }