]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfganal.c
basic-block.h (could_fall_through): Declare.
[thirdparty/gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "toplev.h"
33 #include "tm_p.h"
34
35 /* Store the data structures necessary for depth-first search. */
36 struct depth_first_search_dsS {
37 /* stack for backtracking during the algorithm */
38 basic_block *stack;
39
40 /* number of edges in the stack. That is, positions 0, ..., sp-1
41 have edges. */
42 unsigned int sp;
43
44 /* record of basic blocks already seen by depth-first search */
45 sbitmap visited_blocks;
46 };
47 typedef struct depth_first_search_dsS *depth_first_search_ds;
48
49 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
50 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
51 basic_block);
52 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds);
53 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
54 static void remove_fake_successors (basic_block);
55 static bool flow_active_insn_p (rtx);
56 \f
57 /* Like active_insn_p, except keep the return value clobber around
58 even after reload. */
59
60 static bool
61 flow_active_insn_p (rtx insn)
62 {
63 if (active_insn_p (insn))
64 return true;
65
66 /* A clobber of the function return value exists for buggy
67 programs that fail to return a value. Its effect is to
68 keep the return value from being live across the entire
69 function. If we allow it to be skipped, we introduce the
70 possibility for register livetime aborts. */
71 if (GET_CODE (PATTERN (insn)) == CLOBBER
72 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG
73 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
74 return true;
75
76 return false;
77 }
78
79 /* Return true if the block has no effect and only forwards control flow to
80 its single destination. */
81
82 bool
83 forwarder_block_p (basic_block bb)
84 {
85 rtx insn;
86
87 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
88 || !bb->succ || bb->succ->succ_next)
89 return false;
90
91 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
92 if (INSN_P (insn) && flow_active_insn_p (insn))
93 return false;
94
95 return (!INSN_P (insn)
96 || (GET_CODE (insn) == JUMP_INSN && simplejump_p (insn))
97 || !flow_active_insn_p (insn));
98 }
99
100 /* Return nonzero if we can reach target from src by falling through. */
101
102 bool
103 can_fallthru (basic_block src, basic_block target)
104 {
105 rtx insn = BB_END (src);
106 rtx insn2;
107 edge e;
108
109 if (target == EXIT_BLOCK_PTR)
110 return true;
111 if (src->next_bb != target)
112 return 0;
113 for (e = src->succ; e; e = e->succ_next)
114 if (e->dest == EXIT_BLOCK_PTR
115 && e->flags & EDGE_FALLTHRU)
116 return 0;
117
118 insn2 = BB_HEAD (target);
119 if (insn2 && !active_insn_p (insn2))
120 insn2 = next_active_insn (insn2);
121
122 /* ??? Later we may add code to move jump tables offline. */
123 return next_active_insn (insn) == insn2;
124 }
125
126 /* Return nonzero if we could reach target from src by falling through,
127 if the target was made adjacent. If we already have a fall-through
128 edge to the exit block, we can't do that. */
129 bool
130 could_fall_through (basic_block src, basic_block target)
131 {
132 edge e;
133
134 if (target == EXIT_BLOCK_PTR)
135 return true;
136 for (e = src->succ; e; e = e->succ_next)
137 if (e->dest == EXIT_BLOCK_PTR
138 && e->flags & EDGE_FALLTHRU)
139 return 0;
140 return true;
141 }
142 \f
143 /* Mark the back edges in DFS traversal.
144 Return nonzero if a loop (natural or otherwise) is present.
145 Inspired by Depth_First_Search_PP described in:
146
147 Advanced Compiler Design and Implementation
148 Steven Muchnick
149 Morgan Kaufmann, 1997
150
151 and heavily borrowed from flow_depth_first_order_compute. */
152
153 bool
154 mark_dfs_back_edges (void)
155 {
156 edge *stack;
157 int *pre;
158 int *post;
159 int sp;
160 int prenum = 1;
161 int postnum = 1;
162 sbitmap visited;
163 bool found = false;
164
165 /* Allocate the preorder and postorder number arrays. */
166 pre = xcalloc (last_basic_block, sizeof (int));
167 post = xcalloc (last_basic_block, sizeof (int));
168
169 /* Allocate stack for back-tracking up CFG. */
170 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
171 sp = 0;
172
173 /* Allocate bitmap to track nodes that have been visited. */
174 visited = sbitmap_alloc (last_basic_block);
175
176 /* None of the nodes in the CFG have been visited yet. */
177 sbitmap_zero (visited);
178
179 /* Push the first edge on to the stack. */
180 stack[sp++] = ENTRY_BLOCK_PTR->succ;
181
182 while (sp)
183 {
184 edge e;
185 basic_block src;
186 basic_block dest;
187
188 /* Look at the edge on the top of the stack. */
189 e = stack[sp - 1];
190 src = e->src;
191 dest = e->dest;
192 e->flags &= ~EDGE_DFS_BACK;
193
194 /* Check if the edge destination has been visited yet. */
195 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
196 {
197 /* Mark that we have visited the destination. */
198 SET_BIT (visited, dest->index);
199
200 pre[dest->index] = prenum++;
201 if (dest->succ)
202 {
203 /* Since the DEST node has been visited for the first
204 time, check its successors. */
205 stack[sp++] = dest->succ;
206 }
207 else
208 post[dest->index] = postnum++;
209 }
210 else
211 {
212 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
213 && pre[src->index] >= pre[dest->index]
214 && post[dest->index] == 0)
215 e->flags |= EDGE_DFS_BACK, found = true;
216
217 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
218 post[src->index] = postnum++;
219
220 if (e->succ_next)
221 stack[sp - 1] = e->succ_next;
222 else
223 sp--;
224 }
225 }
226
227 free (pre);
228 free (post);
229 free (stack);
230 sbitmap_free (visited);
231
232 return found;
233 }
234
235 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
236
237 void
238 set_edge_can_fallthru_flag (void)
239 {
240 basic_block bb;
241
242 FOR_EACH_BB (bb)
243 {
244 edge e;
245
246 for (e = bb->succ; e; e = e->succ_next)
247 {
248 e->flags &= ~EDGE_CAN_FALLTHRU;
249
250 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
251 if (e->flags & EDGE_FALLTHRU)
252 e->flags |= EDGE_CAN_FALLTHRU;
253 }
254
255 /* If the BB ends with an invertible condjump all (2) edges are
256 CAN_FALLTHRU edges. */
257 if (!bb->succ || !bb->succ->succ_next || bb->succ->succ_next->succ_next)
258 continue;
259 if (!any_condjump_p (BB_END (bb)))
260 continue;
261 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
262 continue;
263 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
264 bb->succ->flags |= EDGE_CAN_FALLTHRU;
265 bb->succ->succ_next->flags |= EDGE_CAN_FALLTHRU;
266 }
267 }
268
269 /* Find unreachable blocks. An unreachable block will have 0 in
270 the reachable bit in block->flags. A nonzero value indicates the
271 block is reachable. */
272
273 void
274 find_unreachable_blocks (void)
275 {
276 edge e;
277 basic_block *tos, *worklist, bb;
278
279 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
280
281 /* Clear all the reachability flags. */
282
283 FOR_EACH_BB (bb)
284 bb->flags &= ~BB_REACHABLE;
285
286 /* Add our starting points to the worklist. Almost always there will
287 be only one. It isn't inconceivable that we might one day directly
288 support Fortran alternate entry points. */
289
290 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
291 {
292 *tos++ = e->dest;
293
294 /* Mark the block reachable. */
295 e->dest->flags |= BB_REACHABLE;
296 }
297
298 /* Iterate: find everything reachable from what we've already seen. */
299
300 while (tos != worklist)
301 {
302 basic_block b = *--tos;
303
304 for (e = b->succ; e; e = e->succ_next)
305 if (!(e->dest->flags & BB_REACHABLE))
306 {
307 *tos++ = e->dest;
308 e->dest->flags |= BB_REACHABLE;
309 }
310 }
311
312 free (worklist);
313 }
314 \f
315 /* Functions to access an edge list with a vector representation.
316 Enough data is kept such that given an index number, the
317 pred and succ that edge represents can be determined, or
318 given a pred and a succ, its index number can be returned.
319 This allows algorithms which consume a lot of memory to
320 represent the normally full matrix of edge (pred,succ) with a
321 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
322 wasted space in the client code due to sparse flow graphs. */
323
324 /* This functions initializes the edge list. Basically the entire
325 flowgraph is processed, and all edges are assigned a number,
326 and the data structure is filled in. */
327
328 struct edge_list *
329 create_edge_list (void)
330 {
331 struct edge_list *elist;
332 edge e;
333 int num_edges;
334 int block_count;
335 basic_block bb;
336
337 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
338
339 num_edges = 0;
340
341 /* Determine the number of edges in the flow graph by counting successor
342 edges on each basic block. */
343 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
344 {
345 for (e = bb->succ; e; e = e->succ_next)
346 num_edges++;
347 }
348
349 elist = xmalloc (sizeof (struct edge_list));
350 elist->num_blocks = block_count;
351 elist->num_edges = num_edges;
352 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
353
354 num_edges = 0;
355
356 /* Follow successors of blocks, and register these edges. */
357 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
358 for (e = bb->succ; e; e = e->succ_next)
359 elist->index_to_edge[num_edges++] = e;
360
361 return elist;
362 }
363
364 /* This function free's memory associated with an edge list. */
365
366 void
367 free_edge_list (struct edge_list *elist)
368 {
369 if (elist)
370 {
371 free (elist->index_to_edge);
372 free (elist);
373 }
374 }
375
376 /* This function provides debug output showing an edge list. */
377
378 void
379 print_edge_list (FILE *f, struct edge_list *elist)
380 {
381 int x;
382
383 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
384 elist->num_blocks - 2, elist->num_edges);
385
386 for (x = 0; x < elist->num_edges; x++)
387 {
388 fprintf (f, " %-4d - edge(", x);
389 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
390 fprintf (f, "entry,");
391 else
392 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
393
394 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
395 fprintf (f, "exit)\n");
396 else
397 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
398 }
399 }
400
401 /* This function provides an internal consistency check of an edge list,
402 verifying that all edges are present, and that there are no
403 extra edges. */
404
405 void
406 verify_edge_list (FILE *f, struct edge_list *elist)
407 {
408 int pred, succ, index;
409 edge e;
410 basic_block bb, p, s;
411
412 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
413 {
414 for (e = bb->succ; e; e = e->succ_next)
415 {
416 pred = e->src->index;
417 succ = e->dest->index;
418 index = EDGE_INDEX (elist, e->src, e->dest);
419 if (index == EDGE_INDEX_NO_EDGE)
420 {
421 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
422 continue;
423 }
424
425 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
426 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
427 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
428 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
429 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
430 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
431 }
432 }
433
434 /* We've verified that all the edges are in the list, now lets make sure
435 there are no spurious edges in the list. */
436
437 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
438 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
439 {
440 int found_edge = 0;
441
442 for (e = p->succ; e; e = e->succ_next)
443 if (e->dest == s)
444 {
445 found_edge = 1;
446 break;
447 }
448
449 for (e = s->pred; e; e = e->pred_next)
450 if (e->src == p)
451 {
452 found_edge = 1;
453 break;
454 }
455
456 if (EDGE_INDEX (elist, p, s)
457 == EDGE_INDEX_NO_EDGE && found_edge != 0)
458 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
459 p->index, s->index);
460 if (EDGE_INDEX (elist, p, s)
461 != EDGE_INDEX_NO_EDGE && found_edge == 0)
462 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
463 p->index, s->index, EDGE_INDEX (elist, p, s));
464 }
465 }
466
467 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
468 If no such edge exists, return NULL. */
469
470 edge
471 find_edge (basic_block pred, basic_block succ)
472 {
473 edge e;
474
475 for (e = pred->succ; e; e = e->succ_next)
476 if (e->dest == succ)
477 return e;
478
479 return NULL;
480 }
481
482 /* This routine will determine what, if any, edge there is between
483 a specified predecessor and successor. */
484
485 int
486 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
487 {
488 int x;
489
490 for (x = 0; x < NUM_EDGES (edge_list); x++)
491 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
492 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
493 return x;
494
495 return (EDGE_INDEX_NO_EDGE);
496 }
497
498 /* Dump the list of basic blocks in the bitmap NODES. */
499
500 void
501 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
502 {
503 int node;
504
505 if (! nodes)
506 return;
507
508 fprintf (file, "%s { ", str);
509 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
510 fputs ("}\n", file);
511 }
512
513 /* Dump the list of edges in the array EDGE_LIST. */
514
515 void
516 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
517 {
518 int i;
519
520 if (! edge_list)
521 return;
522
523 fprintf (file, "%s { ", str);
524 for (i = 0; i < num_edges; i++)
525 fprintf (file, "%d->%d ", edge_list[i]->src->index,
526 edge_list[i]->dest->index);
527
528 fputs ("}\n", file);
529 }
530
531 \f
532 /* This routine will remove any fake successor edges for a basic block.
533 When the edge is removed, it is also removed from whatever predecessor
534 list it is in. */
535
536 static void
537 remove_fake_successors (basic_block bb)
538 {
539 edge e;
540
541 for (e = bb->succ; e;)
542 {
543 edge tmp = e;
544
545 e = e->succ_next;
546 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
547 remove_edge (tmp);
548 }
549 }
550
551 /* This routine will remove all fake edges from the flow graph. If
552 we remove all fake successors, it will automatically remove all
553 fake predecessors. */
554
555 void
556 remove_fake_edges (void)
557 {
558 basic_block bb;
559
560 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
561 remove_fake_successors (bb);
562 }
563
564 /* This function will add a fake edge between any block which has no
565 successors, and the exit block. Some data flow equations require these
566 edges to exist. */
567
568 void
569 add_noreturn_fake_exit_edges (void)
570 {
571 basic_block bb;
572
573 FOR_EACH_BB (bb)
574 if (bb->succ == NULL)
575 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
576 }
577
578 /* This function adds a fake edge between any infinite loops to the
579 exit block. Some optimizations require a path from each node to
580 the exit node.
581
582 See also Morgan, Figure 3.10, pp. 82-83.
583
584 The current implementation is ugly, not attempting to minimize the
585 number of inserted fake edges. To reduce the number of fake edges
586 to insert, add fake edges from _innermost_ loops containing only
587 nodes not reachable from the exit block. */
588
589 void
590 connect_infinite_loops_to_exit (void)
591 {
592 basic_block unvisited_block;
593 struct depth_first_search_dsS dfs_ds;
594
595 /* Perform depth-first search in the reverse graph to find nodes
596 reachable from the exit block. */
597 flow_dfs_compute_reverse_init (&dfs_ds);
598 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
599
600 /* Repeatedly add fake edges, updating the unreachable nodes. */
601 while (1)
602 {
603 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
604 if (!unvisited_block)
605 break;
606
607 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
608 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
609 }
610
611 flow_dfs_compute_reverse_finish (&dfs_ds);
612 return;
613 }
614 \f
615 /* Compute reverse top sort order. */
616
617 void
618 flow_reverse_top_sort_order_compute (int *rts_order)
619 {
620 edge *stack;
621 int sp;
622 int postnum = 0;
623 sbitmap visited;
624
625 /* Allocate stack for back-tracking up CFG. */
626 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
627 sp = 0;
628
629 /* Allocate bitmap to track nodes that have been visited. */
630 visited = sbitmap_alloc (last_basic_block);
631
632 /* None of the nodes in the CFG have been visited yet. */
633 sbitmap_zero (visited);
634
635 /* Push the first edge on to the stack. */
636 stack[sp++] = ENTRY_BLOCK_PTR->succ;
637
638 while (sp)
639 {
640 edge e;
641 basic_block src;
642 basic_block dest;
643
644 /* Look at the edge on the top of the stack. */
645 e = stack[sp - 1];
646 src = e->src;
647 dest = e->dest;
648
649 /* Check if the edge destination has been visited yet. */
650 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
651 {
652 /* Mark that we have visited the destination. */
653 SET_BIT (visited, dest->index);
654
655 if (dest->succ)
656 /* Since the DEST node has been visited for the first
657 time, check its successors. */
658 stack[sp++] = dest->succ;
659 else
660 rts_order[postnum++] = dest->index;
661 }
662 else
663 {
664 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
665 rts_order[postnum++] = src->index;
666
667 if (e->succ_next)
668 stack[sp - 1] = e->succ_next;
669 else
670 sp--;
671 }
672 }
673
674 free (stack);
675 sbitmap_free (visited);
676 }
677
678 /* Compute the depth first search order and store in the array
679 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
680 RC_ORDER is nonzero, return the reverse completion number for each
681 node. Returns the number of nodes visited. A depth first search
682 tries to get as far away from the starting point as quickly as
683 possible. */
684
685 int
686 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
687 {
688 edge *stack;
689 int sp;
690 int dfsnum = 0;
691 int rcnum = n_basic_blocks - 1;
692 sbitmap visited;
693
694 /* Allocate stack for back-tracking up CFG. */
695 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
696 sp = 0;
697
698 /* Allocate bitmap to track nodes that have been visited. */
699 visited = sbitmap_alloc (last_basic_block);
700
701 /* None of the nodes in the CFG have been visited yet. */
702 sbitmap_zero (visited);
703
704 /* Push the first edge on to the stack. */
705 stack[sp++] = ENTRY_BLOCK_PTR->succ;
706
707 while (sp)
708 {
709 edge e;
710 basic_block src;
711 basic_block dest;
712
713 /* Look at the edge on the top of the stack. */
714 e = stack[sp - 1];
715 src = e->src;
716 dest = e->dest;
717
718 /* Check if the edge destination has been visited yet. */
719 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
720 {
721 /* Mark that we have visited the destination. */
722 SET_BIT (visited, dest->index);
723
724 if (dfs_order)
725 dfs_order[dfsnum] = dest->index;
726
727 dfsnum++;
728
729 if (dest->succ)
730 /* Since the DEST node has been visited for the first
731 time, check its successors. */
732 stack[sp++] = dest->succ;
733 else if (rc_order)
734 /* There are no successors for the DEST node so assign
735 its reverse completion number. */
736 rc_order[rcnum--] = dest->index;
737 }
738 else
739 {
740 if (! e->succ_next && src != ENTRY_BLOCK_PTR
741 && rc_order)
742 /* There are no more successors for the SRC node
743 so assign its reverse completion number. */
744 rc_order[rcnum--] = src->index;
745
746 if (e->succ_next)
747 stack[sp - 1] = e->succ_next;
748 else
749 sp--;
750 }
751 }
752
753 free (stack);
754 sbitmap_free (visited);
755
756 /* The number of nodes visited should not be greater than
757 n_basic_blocks. */
758 if (dfsnum > n_basic_blocks)
759 abort ();
760
761 /* There are some nodes left in the CFG that are unreachable. */
762 if (dfsnum < n_basic_blocks)
763 abort ();
764
765 return dfsnum;
766 }
767
768 struct dfst_node
769 {
770 unsigned nnodes;
771 struct dfst_node **node;
772 struct dfst_node *up;
773 };
774
775 /* Compute a preorder transversal ordering such that a sub-tree which
776 is the source of a cross edge appears before the sub-tree which is
777 the destination of the cross edge. This allows for easy detection
778 of all the entry blocks for a loop.
779
780 The ordering is compute by:
781
782 1) Generating a depth first spanning tree.
783
784 2) Walking the resulting tree from right to left. */
785
786 void
787 flow_preorder_transversal_compute (int *pot_order)
788 {
789 edge e;
790 edge *stack;
791 int i;
792 int max_successors;
793 int sp;
794 sbitmap visited;
795 struct dfst_node *node;
796 struct dfst_node *dfst;
797 basic_block bb;
798
799 /* Allocate stack for back-tracking up CFG. */
800 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
801 sp = 0;
802
803 /* Allocate the tree. */
804 dfst = xcalloc (last_basic_block, sizeof (struct dfst_node));
805
806 FOR_EACH_BB (bb)
807 {
808 max_successors = 0;
809 for (e = bb->succ; e; e = e->succ_next)
810 max_successors++;
811
812 dfst[bb->index].node
813 = (max_successors
814 ? xcalloc (max_successors, sizeof (struct dfst_node *)) : NULL);
815 }
816
817 /* Allocate bitmap to track nodes that have been visited. */
818 visited = sbitmap_alloc (last_basic_block);
819
820 /* None of the nodes in the CFG have been visited yet. */
821 sbitmap_zero (visited);
822
823 /* Push the first edge on to the stack. */
824 stack[sp++] = ENTRY_BLOCK_PTR->succ;
825
826 while (sp)
827 {
828 basic_block src;
829 basic_block dest;
830
831 /* Look at the edge on the top of the stack. */
832 e = stack[sp - 1];
833 src = e->src;
834 dest = e->dest;
835
836 /* Check if the edge destination has been visited yet. */
837 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
838 {
839 /* Mark that we have visited the destination. */
840 SET_BIT (visited, dest->index);
841
842 /* Add the destination to the preorder tree. */
843 if (src != ENTRY_BLOCK_PTR)
844 {
845 dfst[src->index].node[dfst[src->index].nnodes++]
846 = &dfst[dest->index];
847 dfst[dest->index].up = &dfst[src->index];
848 }
849
850 if (dest->succ)
851 /* Since the DEST node has been visited for the first
852 time, check its successors. */
853 stack[sp++] = dest->succ;
854 }
855
856 else if (e->succ_next)
857 stack[sp - 1] = e->succ_next;
858 else
859 sp--;
860 }
861
862 free (stack);
863 sbitmap_free (visited);
864
865 /* Record the preorder transversal order by
866 walking the tree from right to left. */
867
868 i = 0;
869 node = &dfst[ENTRY_BLOCK_PTR->next_bb->index];
870 pot_order[i++] = 0;
871
872 while (node)
873 {
874 if (node->nnodes)
875 {
876 node = node->node[--node->nnodes];
877 pot_order[i++] = node - dfst;
878 }
879 else
880 node = node->up;
881 }
882
883 /* Free the tree. */
884
885 for (i = 0; i < last_basic_block; i++)
886 if (dfst[i].node)
887 free (dfst[i].node);
888
889 free (dfst);
890 }
891
892 /* Compute the depth first search order on the _reverse_ graph and
893 store in the array DFS_ORDER, marking the nodes visited in VISITED.
894 Returns the number of nodes visited.
895
896 The computation is split into three pieces:
897
898 flow_dfs_compute_reverse_init () creates the necessary data
899 structures.
900
901 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
902 structures. The block will start the search.
903
904 flow_dfs_compute_reverse_execute () continues (or starts) the
905 search using the block on the top of the stack, stopping when the
906 stack is empty.
907
908 flow_dfs_compute_reverse_finish () destroys the necessary data
909 structures.
910
911 Thus, the user will probably call ..._init(), call ..._add_bb() to
912 add a beginning basic block to the stack, call ..._execute(),
913 possibly add another bb to the stack and again call ..._execute(),
914 ..., and finally call _finish(). */
915
916 /* Initialize the data structures used for depth-first search on the
917 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
918 added to the basic block stack. DATA is the current depth-first
919 search context. If INITIALIZE_STACK is nonzero, there is an
920 element on the stack. */
921
922 static void
923 flow_dfs_compute_reverse_init (depth_first_search_ds data)
924 {
925 /* Allocate stack for back-tracking up CFG. */
926 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
927 * sizeof (basic_block));
928 data->sp = 0;
929
930 /* Allocate bitmap to track nodes that have been visited. */
931 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
932
933 /* None of the nodes in the CFG have been visited yet. */
934 sbitmap_zero (data->visited_blocks);
935
936 return;
937 }
938
939 /* Add the specified basic block to the top of the dfs data
940 structures. When the search continues, it will start at the
941 block. */
942
943 static void
944 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
945 {
946 data->stack[data->sp++] = bb;
947 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
948 }
949
950 /* Continue the depth-first search through the reverse graph starting with the
951 block at the stack's top and ending when the stack is empty. Visited nodes
952 are marked. Returns an unvisited basic block, or NULL if there is none
953 available. */
954
955 static basic_block
956 flow_dfs_compute_reverse_execute (depth_first_search_ds data)
957 {
958 basic_block bb;
959 edge e;
960
961 while (data->sp > 0)
962 {
963 bb = data->stack[--data->sp];
964
965 /* Perform depth-first search on adjacent vertices. */
966 for (e = bb->pred; e; e = e->pred_next)
967 if (!TEST_BIT (data->visited_blocks,
968 e->src->index - (INVALID_BLOCK + 1)))
969 flow_dfs_compute_reverse_add_bb (data, e->src);
970 }
971
972 /* Determine if there are unvisited basic blocks. */
973 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
974 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
975 return bb;
976
977 return NULL;
978 }
979
980 /* Destroy the data structures needed for depth-first search on the
981 reverse graph. */
982
983 static void
984 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
985 {
986 free (data->stack);
987 sbitmap_free (data->visited_blocks);
988 }
989
990 /* Performs dfs search from BB over vertices satisfying PREDICATE;
991 if REVERSE, go against direction of edges. Returns number of blocks
992 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
993 int
994 dfs_enumerate_from (basic_block bb, int reverse,
995 bool (*predicate) (basic_block, void *),
996 basic_block *rslt, int rslt_max, void *data)
997 {
998 basic_block *st, lbb;
999 int sp = 0, tv = 0;
1000
1001 st = xcalloc (rslt_max, sizeof (basic_block));
1002 rslt[tv++] = st[sp++] = bb;
1003 bb->flags |= BB_VISITED;
1004 while (sp)
1005 {
1006 edge e;
1007 lbb = st[--sp];
1008 if (reverse)
1009 {
1010 for (e = lbb->pred; e; e = e->pred_next)
1011 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
1012 {
1013 if (tv == rslt_max)
1014 abort ();
1015 rslt[tv++] = st[sp++] = e->src;
1016 e->src->flags |= BB_VISITED;
1017 }
1018 }
1019 else
1020 {
1021 for (e = lbb->succ; e; e = e->succ_next)
1022 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
1023 {
1024 if (tv == rslt_max)
1025 abort ();
1026 rslt[tv++] = st[sp++] = e->dest;
1027 e->dest->flags |= BB_VISITED;
1028 }
1029 }
1030 }
1031 free (st);
1032 for (sp = 0; sp < tv; sp++)
1033 rslt[sp]->flags &= ~BB_VISITED;
1034 return tv;
1035 }