]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfganal.c
backport: basic-block.h: Include vec.h, errors.h.
[thirdparty/gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "toplev.h"
33 #include "tm_p.h"
34 #include "timevar.h"
35
36 /* Store the data structures necessary for depth-first search. */
37 struct depth_first_search_dsS {
38 /* stack for backtracking during the algorithm */
39 basic_block *stack;
40
41 /* number of edges in the stack. That is, positions 0, ..., sp-1
42 have edges. */
43 unsigned int sp;
44
45 /* record of basic blocks already seen by depth-first search */
46 sbitmap visited_blocks;
47 };
48 typedef struct depth_first_search_dsS *depth_first_search_ds;
49
50 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
51 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
52 basic_block);
53 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds);
54 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
55 static bool flow_active_insn_p (rtx);
56 \f
57 /* Like active_insn_p, except keep the return value clobber around
58 even after reload. */
59
60 static bool
61 flow_active_insn_p (rtx insn)
62 {
63 if (active_insn_p (insn))
64 return true;
65
66 /* A clobber of the function return value exists for buggy
67 programs that fail to return a value. Its effect is to
68 keep the return value from being live across the entire
69 function. If we allow it to be skipped, we introduce the
70 possibility for register livetime aborts. */
71 if (GET_CODE (PATTERN (insn)) == CLOBBER
72 && REG_P (XEXP (PATTERN (insn), 0))
73 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
74 return true;
75
76 return false;
77 }
78
79 /* Return true if the block has no effect and only forwards control flow to
80 its single destination. */
81
82 bool
83 forwarder_block_p (basic_block bb)
84 {
85 rtx insn;
86
87 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
88 || EDGE_COUNT (bb->succs) != 1)
89 return false;
90
91 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
92 if (INSN_P (insn) && flow_active_insn_p (insn))
93 return false;
94
95 return (!INSN_P (insn)
96 || (JUMP_P (insn) && simplejump_p (insn))
97 || !flow_active_insn_p (insn));
98 }
99
100 /* Return nonzero if we can reach target from src by falling through. */
101
102 bool
103 can_fallthru (basic_block src, basic_block target)
104 {
105 rtx insn = BB_END (src);
106 rtx insn2;
107 edge e;
108 edge_iterator ei;
109
110 if (target == EXIT_BLOCK_PTR)
111 return true;
112 if (src->next_bb != target)
113 return 0;
114 FOR_EACH_EDGE (e, ei, src->succs)
115 if (e->dest == EXIT_BLOCK_PTR
116 && e->flags & EDGE_FALLTHRU)
117 return 0;
118
119 insn2 = BB_HEAD (target);
120 if (insn2 && !active_insn_p (insn2))
121 insn2 = next_active_insn (insn2);
122
123 /* ??? Later we may add code to move jump tables offline. */
124 return next_active_insn (insn) == insn2;
125 }
126
127 /* Return nonzero if we could reach target from src by falling through,
128 if the target was made adjacent. If we already have a fall-through
129 edge to the exit block, we can't do that. */
130 bool
131 could_fall_through (basic_block src, basic_block target)
132 {
133 edge e;
134 edge_iterator ei;
135
136 if (target == EXIT_BLOCK_PTR)
137 return true;
138 FOR_EACH_EDGE (e, ei, src->succs)
139 if (e->dest == EXIT_BLOCK_PTR
140 && e->flags & EDGE_FALLTHRU)
141 return 0;
142 return true;
143 }
144 \f
145 /* Mark the back edges in DFS traversal.
146 Return nonzero if a loop (natural or otherwise) is present.
147 Inspired by Depth_First_Search_PP described in:
148
149 Advanced Compiler Design and Implementation
150 Steven Muchnick
151 Morgan Kaufmann, 1997
152
153 and heavily borrowed from flow_depth_first_order_compute. */
154
155 bool
156 mark_dfs_back_edges (void)
157 {
158 edge_iterator *stack;
159 int *pre;
160 int *post;
161 int sp;
162 int prenum = 1;
163 int postnum = 1;
164 sbitmap visited;
165 bool found = false;
166
167 /* Allocate the preorder and postorder number arrays. */
168 pre = xcalloc (last_basic_block, sizeof (int));
169 post = xcalloc (last_basic_block, sizeof (int));
170
171 /* Allocate stack for back-tracking up CFG. */
172 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
173 sp = 0;
174
175 /* Allocate bitmap to track nodes that have been visited. */
176 visited = sbitmap_alloc (last_basic_block);
177
178 /* None of the nodes in the CFG have been visited yet. */
179 sbitmap_zero (visited);
180
181 /* Push the first edge on to the stack. */
182 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
183
184 while (sp)
185 {
186 edge_iterator ei;
187 basic_block src;
188 basic_block dest;
189
190 /* Look at the edge on the top of the stack. */
191 ei = stack[sp - 1];
192 src = ei_edge (ei)->src;
193 dest = ei_edge (ei)->dest;
194 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
195
196 /* Check if the edge destination has been visited yet. */
197 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
198 {
199 /* Mark that we have visited the destination. */
200 SET_BIT (visited, dest->index);
201
202 pre[dest->index] = prenum++;
203 if (EDGE_COUNT (dest->succs) > 0)
204 {
205 /* Since the DEST node has been visited for the first
206 time, check its successors. */
207 stack[sp++] = ei_start (dest->succs);
208 }
209 else
210 post[dest->index] = postnum++;
211 }
212 else
213 {
214 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
215 && pre[src->index] >= pre[dest->index]
216 && post[dest->index] == 0)
217 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
218
219 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
220 post[src->index] = postnum++;
221
222 if (!ei_one_before_end_p (ei))
223 ei_next (&stack[sp - 1]);
224 else
225 sp--;
226 }
227 }
228
229 free (pre);
230 free (post);
231 free (stack);
232 sbitmap_free (visited);
233
234 return found;
235 }
236
237 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
238
239 void
240 set_edge_can_fallthru_flag (void)
241 {
242 basic_block bb;
243
244 FOR_EACH_BB (bb)
245 {
246 edge e;
247 edge_iterator ei;
248
249 FOR_EACH_EDGE (e, ei, bb->succs)
250 {
251 e->flags &= ~EDGE_CAN_FALLTHRU;
252
253 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
254 if (e->flags & EDGE_FALLTHRU)
255 e->flags |= EDGE_CAN_FALLTHRU;
256 }
257
258 /* If the BB ends with an invertible condjump all (2) edges are
259 CAN_FALLTHRU edges. */
260 if (EDGE_COUNT (bb->succs) != 2)
261 continue;
262 if (!any_condjump_p (BB_END (bb)))
263 continue;
264 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
265 continue;
266 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
267 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
268 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
269 }
270 }
271
272 /* Find unreachable blocks. An unreachable block will have 0 in
273 the reachable bit in block->flags. A nonzero value indicates the
274 block is reachable. */
275
276 void
277 find_unreachable_blocks (void)
278 {
279 edge e;
280 edge_iterator ei;
281 basic_block *tos, *worklist, bb;
282
283 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
284
285 /* Clear all the reachability flags. */
286
287 FOR_EACH_BB (bb)
288 bb->flags &= ~BB_REACHABLE;
289
290 /* Add our starting points to the worklist. Almost always there will
291 be only one. It isn't inconceivable that we might one day directly
292 support Fortran alternate entry points. */
293
294 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
295 {
296 *tos++ = e->dest;
297
298 /* Mark the block reachable. */
299 e->dest->flags |= BB_REACHABLE;
300 }
301
302 /* Iterate: find everything reachable from what we've already seen. */
303
304 while (tos != worklist)
305 {
306 basic_block b = *--tos;
307
308 FOR_EACH_EDGE (e, ei, b->succs)
309 if (!(e->dest->flags & BB_REACHABLE))
310 {
311 *tos++ = e->dest;
312 e->dest->flags |= BB_REACHABLE;
313 }
314 }
315
316 free (worklist);
317 }
318 \f
319 /* Functions to access an edge list with a vector representation.
320 Enough data is kept such that given an index number, the
321 pred and succ that edge represents can be determined, or
322 given a pred and a succ, its index number can be returned.
323 This allows algorithms which consume a lot of memory to
324 represent the normally full matrix of edge (pred,succ) with a
325 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
326 wasted space in the client code due to sparse flow graphs. */
327
328 /* This functions initializes the edge list. Basically the entire
329 flowgraph is processed, and all edges are assigned a number,
330 and the data structure is filled in. */
331
332 struct edge_list *
333 create_edge_list (void)
334 {
335 struct edge_list *elist;
336 edge e;
337 int num_edges;
338 int block_count;
339 basic_block bb;
340 edge_iterator ei;
341
342 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
343
344 num_edges = 0;
345
346 /* Determine the number of edges in the flow graph by counting successor
347 edges on each basic block. */
348 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
349 {
350 num_edges += EDGE_COUNT (bb->succs);
351 }
352
353 elist = xmalloc (sizeof (struct edge_list));
354 elist->num_blocks = block_count;
355 elist->num_edges = num_edges;
356 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
357
358 num_edges = 0;
359
360 /* Follow successors of blocks, and register these edges. */
361 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
362 FOR_EACH_EDGE (e, ei, bb->succs)
363 elist->index_to_edge[num_edges++] = e;
364
365 return elist;
366 }
367
368 /* This function free's memory associated with an edge list. */
369
370 void
371 free_edge_list (struct edge_list *elist)
372 {
373 if (elist)
374 {
375 free (elist->index_to_edge);
376 free (elist);
377 }
378 }
379
380 /* This function provides debug output showing an edge list. */
381
382 void
383 print_edge_list (FILE *f, struct edge_list *elist)
384 {
385 int x;
386
387 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
388 elist->num_blocks - 2, elist->num_edges);
389
390 for (x = 0; x < elist->num_edges; x++)
391 {
392 fprintf (f, " %-4d - edge(", x);
393 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
394 fprintf (f, "entry,");
395 else
396 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
397
398 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
399 fprintf (f, "exit)\n");
400 else
401 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
402 }
403 }
404
405 /* This function provides an internal consistency check of an edge list,
406 verifying that all edges are present, and that there are no
407 extra edges. */
408
409 void
410 verify_edge_list (FILE *f, struct edge_list *elist)
411 {
412 int pred, succ, index;
413 edge e;
414 basic_block bb, p, s;
415 edge_iterator ei;
416
417 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
418 {
419 FOR_EACH_EDGE (e, ei, bb->succs)
420 {
421 pred = e->src->index;
422 succ = e->dest->index;
423 index = EDGE_INDEX (elist, e->src, e->dest);
424 if (index == EDGE_INDEX_NO_EDGE)
425 {
426 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
427 continue;
428 }
429
430 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
431 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
432 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
433 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
434 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
435 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
436 }
437 }
438
439 /* We've verified that all the edges are in the list, now lets make sure
440 there are no spurious edges in the list. */
441
442 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
443 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
444 {
445 int found_edge = 0;
446
447 FOR_EACH_EDGE (e, ei, p->succs)
448 if (e->dest == s)
449 {
450 found_edge = 1;
451 break;
452 }
453
454 FOR_EACH_EDGE (e, ei, s->preds)
455 if (e->src == p)
456 {
457 found_edge = 1;
458 break;
459 }
460
461 if (EDGE_INDEX (elist, p, s)
462 == EDGE_INDEX_NO_EDGE && found_edge != 0)
463 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
464 p->index, s->index);
465 if (EDGE_INDEX (elist, p, s)
466 != EDGE_INDEX_NO_EDGE && found_edge == 0)
467 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
468 p->index, s->index, EDGE_INDEX (elist, p, s));
469 }
470 }
471
472 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
473 If no such edge exists, return NULL. */
474
475 edge
476 find_edge (basic_block pred, basic_block succ)
477 {
478 edge e;
479 edge_iterator ei;
480
481 FOR_EACH_EDGE (e, ei, pred->succs)
482 if (e->dest == succ)
483 return e;
484
485 return NULL;
486 }
487
488 /* This routine will determine what, if any, edge there is between
489 a specified predecessor and successor. */
490
491 int
492 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
493 {
494 int x;
495
496 for (x = 0; x < NUM_EDGES (edge_list); x++)
497 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
498 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
499 return x;
500
501 return (EDGE_INDEX_NO_EDGE);
502 }
503
504 /* Dump the list of basic blocks in the bitmap NODES. */
505
506 void
507 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
508 {
509 int node;
510
511 if (! nodes)
512 return;
513
514 fprintf (file, "%s { ", str);
515 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
516 fputs ("}\n", file);
517 }
518
519 /* Dump the list of edges in the array EDGE_LIST. */
520
521 void
522 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
523 {
524 int i;
525
526 if (! edge_list)
527 return;
528
529 fprintf (file, "%s { ", str);
530 for (i = 0; i < num_edges; i++)
531 fprintf (file, "%d->%d ", edge_list[i]->src->index,
532 edge_list[i]->dest->index);
533
534 fputs ("}\n", file);
535 }
536
537 \f
538 /* This routine will remove any fake predecessor edges for a basic block.
539 When the edge is removed, it is also removed from whatever successor
540 list it is in. */
541
542 static void
543 remove_fake_predecessors (basic_block bb)
544 {
545 edge e;
546 edge_iterator ei;
547
548 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
549 {
550 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
551 remove_edge (e);
552 else
553 ei_next (&ei);
554 }
555 }
556
557 /* This routine will remove all fake edges from the flow graph. If
558 we remove all fake successors, it will automatically remove all
559 fake predecessors. */
560
561 void
562 remove_fake_edges (void)
563 {
564 basic_block bb;
565
566 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
567 remove_fake_predecessors (bb);
568 }
569
570 /* This routine will remove all fake edges to the EXIT_BLOCK. */
571
572 void
573 remove_fake_exit_edges (void)
574 {
575 remove_fake_predecessors (EXIT_BLOCK_PTR);
576 }
577
578
579 /* This function will add a fake edge between any block which has no
580 successors, and the exit block. Some data flow equations require these
581 edges to exist. */
582
583 void
584 add_noreturn_fake_exit_edges (void)
585 {
586 basic_block bb;
587
588 FOR_EACH_BB (bb)
589 if (EDGE_COUNT (bb->succs) == 0)
590 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
591 }
592
593 /* This function adds a fake edge between any infinite loops to the
594 exit block. Some optimizations require a path from each node to
595 the exit node.
596
597 See also Morgan, Figure 3.10, pp. 82-83.
598
599 The current implementation is ugly, not attempting to minimize the
600 number of inserted fake edges. To reduce the number of fake edges
601 to insert, add fake edges from _innermost_ loops containing only
602 nodes not reachable from the exit block. */
603
604 void
605 connect_infinite_loops_to_exit (void)
606 {
607 basic_block unvisited_block;
608 struct depth_first_search_dsS dfs_ds;
609
610 /* Perform depth-first search in the reverse graph to find nodes
611 reachable from the exit block. */
612 flow_dfs_compute_reverse_init (&dfs_ds);
613 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
614
615 /* Repeatedly add fake edges, updating the unreachable nodes. */
616 while (1)
617 {
618 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
619 if (!unvisited_block)
620 break;
621
622 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
623 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
624 }
625
626 flow_dfs_compute_reverse_finish (&dfs_ds);
627 return;
628 }
629 \f
630 /* Compute reverse top sort order. */
631
632 void
633 flow_reverse_top_sort_order_compute (int *rts_order)
634 {
635 edge_iterator *stack;
636 int sp;
637 int postnum = 0;
638 sbitmap visited;
639
640 /* Allocate stack for back-tracking up CFG. */
641 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
642 sp = 0;
643
644 /* Allocate bitmap to track nodes that have been visited. */
645 visited = sbitmap_alloc (last_basic_block);
646
647 /* None of the nodes in the CFG have been visited yet. */
648 sbitmap_zero (visited);
649
650 /* Push the first edge on to the stack. */
651 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
652
653 while (sp)
654 {
655 edge_iterator ei;
656 basic_block src;
657 basic_block dest;
658
659 /* Look at the edge on the top of the stack. */
660 ei = stack[sp - 1];
661 src = ei_edge (ei)->src;
662 dest = ei_edge (ei)->dest;
663
664 /* Check if the edge destination has been visited yet. */
665 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
666 {
667 /* Mark that we have visited the destination. */
668 SET_BIT (visited, dest->index);
669
670 if (EDGE_COUNT (dest->succs) > 0)
671 /* Since the DEST node has been visited for the first
672 time, check its successors. */
673 stack[sp++] = ei_start (dest->succs);
674 else
675 rts_order[postnum++] = dest->index;
676 }
677 else
678 {
679 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
680 rts_order[postnum++] = src->index;
681
682 if (!ei_one_before_end_p (ei))
683 ei_next (&stack[sp - 1]);
684 else
685 sp--;
686 }
687 }
688
689 free (stack);
690 sbitmap_free (visited);
691 }
692
693 /* Compute the depth first search order and store in the array
694 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
695 RC_ORDER is nonzero, return the reverse completion number for each
696 node. Returns the number of nodes visited. A depth first search
697 tries to get as far away from the starting point as quickly as
698 possible. */
699
700 int
701 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
702 {
703 edge_iterator *stack;
704 int sp;
705 int dfsnum = 0;
706 int rcnum = n_basic_blocks - 1;
707 sbitmap visited;
708
709 /* Allocate stack for back-tracking up CFG. */
710 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
711 sp = 0;
712
713 /* Allocate bitmap to track nodes that have been visited. */
714 visited = sbitmap_alloc (last_basic_block);
715
716 /* None of the nodes in the CFG have been visited yet. */
717 sbitmap_zero (visited);
718
719 /* Push the first edge on to the stack. */
720 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
721
722 while (sp)
723 {
724 edge_iterator ei;
725 basic_block src;
726 basic_block dest;
727
728 /* Look at the edge on the top of the stack. */
729 ei = stack[sp - 1];
730 src = ei_edge (ei)->src;
731 dest = ei_edge (ei)->dest;
732
733 /* Check if the edge destination has been visited yet. */
734 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
735 {
736 /* Mark that we have visited the destination. */
737 SET_BIT (visited, dest->index);
738
739 if (dfs_order)
740 dfs_order[dfsnum] = dest->index;
741
742 dfsnum++;
743
744 if (EDGE_COUNT (dest->succs) > 0)
745 /* Since the DEST node has been visited for the first
746 time, check its successors. */
747 stack[sp++] = ei_start (dest->succs);
748 else if (rc_order)
749 /* There are no successors for the DEST node so assign
750 its reverse completion number. */
751 rc_order[rcnum--] = dest->index;
752 }
753 else
754 {
755 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
756 && rc_order)
757 /* There are no more successors for the SRC node
758 so assign its reverse completion number. */
759 rc_order[rcnum--] = src->index;
760
761 if (!ei_one_before_end_p (ei))
762 ei_next (&stack[sp - 1]);
763 else
764 sp--;
765 }
766 }
767
768 free (stack);
769 sbitmap_free (visited);
770
771 /* The number of nodes visited should be the number of blocks. */
772 gcc_assert (dfsnum == n_basic_blocks);
773
774 return dfsnum;
775 }
776
777 struct dfst_node
778 {
779 unsigned nnodes;
780 struct dfst_node **node;
781 struct dfst_node *up;
782 };
783
784 /* Compute a preorder transversal ordering such that a sub-tree which
785 is the source of a cross edge appears before the sub-tree which is
786 the destination of the cross edge. This allows for easy detection
787 of all the entry blocks for a loop.
788
789 The ordering is compute by:
790
791 1) Generating a depth first spanning tree.
792
793 2) Walking the resulting tree from right to left. */
794
795 void
796 flow_preorder_transversal_compute (int *pot_order)
797 {
798 edge_iterator *stack, ei;
799 int i;
800 int max_successors;
801 int sp;
802 sbitmap visited;
803 struct dfst_node *node;
804 struct dfst_node *dfst;
805 basic_block bb;
806
807 /* Allocate stack for back-tracking up CFG. */
808 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
809 sp = 0;
810
811 /* Allocate the tree. */
812 dfst = xcalloc (last_basic_block, sizeof (struct dfst_node));
813
814 FOR_EACH_BB (bb)
815 {
816 max_successors = EDGE_COUNT (bb->succs);
817 dfst[bb->index].node
818 = (max_successors
819 ? xcalloc (max_successors, sizeof (struct dfst_node *)) : NULL);
820 }
821
822 /* Allocate bitmap to track nodes that have been visited. */
823 visited = sbitmap_alloc (last_basic_block);
824
825 /* None of the nodes in the CFG have been visited yet. */
826 sbitmap_zero (visited);
827
828 /* Push the first edge on to the stack. */
829 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
830
831 while (sp)
832 {
833 basic_block src;
834 basic_block dest;
835
836 /* Look at the edge on the top of the stack. */
837 ei = stack[sp - 1];
838 src = ei_edge (ei)->src;
839 dest = ei_edge (ei)->dest;
840
841 /* Check if the edge destination has been visited yet. */
842 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
843 {
844 /* Mark that we have visited the destination. */
845 SET_BIT (visited, dest->index);
846
847 /* Add the destination to the preorder tree. */
848 if (src != ENTRY_BLOCK_PTR)
849 {
850 dfst[src->index].node[dfst[src->index].nnodes++]
851 = &dfst[dest->index];
852 dfst[dest->index].up = &dfst[src->index];
853 }
854
855 if (EDGE_COUNT (dest->succs) > 0)
856 /* Since the DEST node has been visited for the first
857 time, check its successors. */
858 stack[sp++] = ei_start (dest->succs);
859 }
860
861 else if (! ei_one_before_end_p (ei))
862 ei_next (&stack[sp - 1]);
863 else
864 sp--;
865 }
866
867 free (stack);
868 sbitmap_free (visited);
869
870 /* Record the preorder transversal order by
871 walking the tree from right to left. */
872
873 i = 0;
874 node = &dfst[ENTRY_BLOCK_PTR->next_bb->index];
875 pot_order[i++] = 0;
876
877 while (node)
878 {
879 if (node->nnodes)
880 {
881 node = node->node[--node->nnodes];
882 pot_order[i++] = node - dfst;
883 }
884 else
885 node = node->up;
886 }
887
888 /* Free the tree. */
889
890 for (i = 0; i < last_basic_block; i++)
891 if (dfst[i].node)
892 free (dfst[i].node);
893
894 free (dfst);
895 }
896
897 /* Compute the depth first search order on the _reverse_ graph and
898 store in the array DFS_ORDER, marking the nodes visited in VISITED.
899 Returns the number of nodes visited.
900
901 The computation is split into three pieces:
902
903 flow_dfs_compute_reverse_init () creates the necessary data
904 structures.
905
906 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
907 structures. The block will start the search.
908
909 flow_dfs_compute_reverse_execute () continues (or starts) the
910 search using the block on the top of the stack, stopping when the
911 stack is empty.
912
913 flow_dfs_compute_reverse_finish () destroys the necessary data
914 structures.
915
916 Thus, the user will probably call ..._init(), call ..._add_bb() to
917 add a beginning basic block to the stack, call ..._execute(),
918 possibly add another bb to the stack and again call ..._execute(),
919 ..., and finally call _finish(). */
920
921 /* Initialize the data structures used for depth-first search on the
922 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
923 added to the basic block stack. DATA is the current depth-first
924 search context. If INITIALIZE_STACK is nonzero, there is an
925 element on the stack. */
926
927 static void
928 flow_dfs_compute_reverse_init (depth_first_search_ds data)
929 {
930 /* Allocate stack for back-tracking up CFG. */
931 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
932 * sizeof (basic_block));
933 data->sp = 0;
934
935 /* Allocate bitmap to track nodes that have been visited. */
936 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
937
938 /* None of the nodes in the CFG have been visited yet. */
939 sbitmap_zero (data->visited_blocks);
940
941 return;
942 }
943
944 /* Add the specified basic block to the top of the dfs data
945 structures. When the search continues, it will start at the
946 block. */
947
948 static void
949 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
950 {
951 data->stack[data->sp++] = bb;
952 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
953 }
954
955 /* Continue the depth-first search through the reverse graph starting with the
956 block at the stack's top and ending when the stack is empty. Visited nodes
957 are marked. Returns an unvisited basic block, or NULL if there is none
958 available. */
959
960 static basic_block
961 flow_dfs_compute_reverse_execute (depth_first_search_ds data)
962 {
963 basic_block bb;
964 edge e;
965 edge_iterator ei;
966
967 while (data->sp > 0)
968 {
969 bb = data->stack[--data->sp];
970
971 /* Perform depth-first search on adjacent vertices. */
972 FOR_EACH_EDGE (e, ei, bb->preds)
973 if (!TEST_BIT (data->visited_blocks,
974 e->src->index - (INVALID_BLOCK + 1)))
975 flow_dfs_compute_reverse_add_bb (data, e->src);
976 }
977
978 /* Determine if there are unvisited basic blocks. */
979 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
980 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
981 return bb;
982
983 return NULL;
984 }
985
986 /* Destroy the data structures needed for depth-first search on the
987 reverse graph. */
988
989 static void
990 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
991 {
992 free (data->stack);
993 sbitmap_free (data->visited_blocks);
994 }
995
996 /* Performs dfs search from BB over vertices satisfying PREDICATE;
997 if REVERSE, go against direction of edges. Returns number of blocks
998 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
999 int
1000 dfs_enumerate_from (basic_block bb, int reverse,
1001 bool (*predicate) (basic_block, void *),
1002 basic_block *rslt, int rslt_max, void *data)
1003 {
1004 basic_block *st, lbb;
1005 int sp = 0, tv = 0;
1006
1007 st = xcalloc (rslt_max, sizeof (basic_block));
1008 rslt[tv++] = st[sp++] = bb;
1009 bb->flags |= BB_VISITED;
1010 while (sp)
1011 {
1012 edge e;
1013 edge_iterator ei;
1014 lbb = st[--sp];
1015 if (reverse)
1016 {
1017 FOR_EACH_EDGE (e, ei, lbb->preds)
1018 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
1019 {
1020 gcc_assert (tv != rslt_max);
1021 rslt[tv++] = st[sp++] = e->src;
1022 e->src->flags |= BB_VISITED;
1023 }
1024 }
1025 else
1026 {
1027 FOR_EACH_EDGE (e, ei, lbb->succs)
1028 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
1029 {
1030 gcc_assert (tv != rslt_max);
1031 rslt[tv++] = st[sp++] = e->dest;
1032 e->dest->flags |= BB_VISITED;
1033 }
1034 }
1035 }
1036 free (st);
1037 for (sp = 0; sp < tv; sp++)
1038 rslt[sp]->flags &= ~BB_VISITED;
1039 return tv;
1040 }
1041
1042
1043 /* Computing the Dominance Frontier:
1044
1045 As described in Morgan, section 3.5, this may be done simply by
1046 walking the dominator tree bottom-up, computing the frontier for
1047 the children before the parent. When considering a block B,
1048 there are two cases:
1049
1050 (1) A flow graph edge leaving B that does not lead to a child
1051 of B in the dominator tree must be a block that is either equal
1052 to B or not dominated by B. Such blocks belong in the frontier
1053 of B.
1054
1055 (2) Consider a block X in the frontier of one of the children C
1056 of B. If X is not equal to B and is not dominated by B, it
1057 is in the frontier of B. */
1058
1059 static void
1060 compute_dominance_frontiers_1 (bitmap *frontiers, basic_block bb, sbitmap done)
1061 {
1062 edge e;
1063 edge_iterator ei;
1064 basic_block c;
1065
1066 SET_BIT (done, bb->index);
1067
1068 /* Do the frontier of the children first. Not all children in the
1069 dominator tree (blocks dominated by this one) are children in the
1070 CFG, so check all blocks. */
1071 for (c = first_dom_son (CDI_DOMINATORS, bb);
1072 c;
1073 c = next_dom_son (CDI_DOMINATORS, c))
1074 {
1075 if (! TEST_BIT (done, c->index))
1076 compute_dominance_frontiers_1 (frontiers, c, done);
1077 }
1078
1079 /* Find blocks conforming to rule (1) above. */
1080 FOR_EACH_EDGE (e, ei, bb->succs)
1081 {
1082 if (e->dest == EXIT_BLOCK_PTR)
1083 continue;
1084 if (get_immediate_dominator (CDI_DOMINATORS, e->dest) != bb)
1085 bitmap_set_bit (frontiers[bb->index], e->dest->index);
1086 }
1087
1088 /* Find blocks conforming to rule (2). */
1089 for (c = first_dom_son (CDI_DOMINATORS, bb);
1090 c;
1091 c = next_dom_son (CDI_DOMINATORS, c))
1092 {
1093 int x;
1094 bitmap_iterator bi;
1095
1096 EXECUTE_IF_SET_IN_BITMAP (frontiers[c->index], 0, x, bi)
1097 {
1098 if (get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (x)) != bb)
1099 bitmap_set_bit (frontiers[bb->index], x);
1100 }
1101 }
1102 }
1103
1104
1105 void
1106 compute_dominance_frontiers (bitmap *frontiers)
1107 {
1108 sbitmap done = sbitmap_alloc (last_basic_block);
1109
1110 timevar_push (TV_DOM_FRONTIERS);
1111
1112 sbitmap_zero (done);
1113
1114 compute_dominance_frontiers_1 (frontiers, EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest, done);
1115
1116 sbitmap_free (done);
1117
1118 timevar_pop (TV_DOM_FRONTIERS);
1119 }
1120