]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfganal.c
cfg.c (redirect_edge_succ_nodup): Use find_edge rather than implementing it inline.
[thirdparty/gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "toplev.h"
33 #include "tm_p.h"
34 #include "timevar.h"
35
36 /* Store the data structures necessary for depth-first search. */
37 struct depth_first_search_dsS {
38 /* stack for backtracking during the algorithm */
39 basic_block *stack;
40
41 /* number of edges in the stack. That is, positions 0, ..., sp-1
42 have edges. */
43 unsigned int sp;
44
45 /* record of basic blocks already seen by depth-first search */
46 sbitmap visited_blocks;
47 };
48 typedef struct depth_first_search_dsS *depth_first_search_ds;
49
50 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
51 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
52 basic_block);
53 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds);
54 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
55 static bool flow_active_insn_p (rtx);
56 \f
57 /* Like active_insn_p, except keep the return value clobber around
58 even after reload. */
59
60 static bool
61 flow_active_insn_p (rtx insn)
62 {
63 if (active_insn_p (insn))
64 return true;
65
66 /* A clobber of the function return value exists for buggy
67 programs that fail to return a value. Its effect is to
68 keep the return value from being live across the entire
69 function. If we allow it to be skipped, we introduce the
70 possibility for register livetime aborts. */
71 if (GET_CODE (PATTERN (insn)) == CLOBBER
72 && REG_P (XEXP (PATTERN (insn), 0))
73 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
74 return true;
75
76 return false;
77 }
78
79 /* Return true if the block has no effect and only forwards control flow to
80 its single destination. */
81
82 bool
83 forwarder_block_p (basic_block bb)
84 {
85 rtx insn;
86
87 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
88 || EDGE_COUNT (bb->succs) != 1)
89 return false;
90
91 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
92 if (INSN_P (insn) && flow_active_insn_p (insn))
93 return false;
94
95 return (!INSN_P (insn)
96 || (JUMP_P (insn) && simplejump_p (insn))
97 || !flow_active_insn_p (insn));
98 }
99
100 /* Return nonzero if we can reach target from src by falling through. */
101
102 bool
103 can_fallthru (basic_block src, basic_block target)
104 {
105 rtx insn = BB_END (src);
106 rtx insn2;
107 edge e;
108 edge_iterator ei;
109
110 if (target == EXIT_BLOCK_PTR)
111 return true;
112 if (src->next_bb != target)
113 return 0;
114 FOR_EACH_EDGE (e, ei, src->succs)
115 if (e->dest == EXIT_BLOCK_PTR
116 && e->flags & EDGE_FALLTHRU)
117 return 0;
118
119 insn2 = BB_HEAD (target);
120 if (insn2 && !active_insn_p (insn2))
121 insn2 = next_active_insn (insn2);
122
123 /* ??? Later we may add code to move jump tables offline. */
124 return next_active_insn (insn) == insn2;
125 }
126
127 /* Return nonzero if we could reach target from src by falling through,
128 if the target was made adjacent. If we already have a fall-through
129 edge to the exit block, we can't do that. */
130 bool
131 could_fall_through (basic_block src, basic_block target)
132 {
133 edge e;
134 edge_iterator ei;
135
136 if (target == EXIT_BLOCK_PTR)
137 return true;
138 FOR_EACH_EDGE (e, ei, src->succs)
139 if (e->dest == EXIT_BLOCK_PTR
140 && e->flags & EDGE_FALLTHRU)
141 return 0;
142 return true;
143 }
144 \f
145 /* Mark the back edges in DFS traversal.
146 Return nonzero if a loop (natural or otherwise) is present.
147 Inspired by Depth_First_Search_PP described in:
148
149 Advanced Compiler Design and Implementation
150 Steven Muchnick
151 Morgan Kaufmann, 1997
152
153 and heavily borrowed from flow_depth_first_order_compute. */
154
155 bool
156 mark_dfs_back_edges (void)
157 {
158 edge_iterator *stack;
159 int *pre;
160 int *post;
161 int sp;
162 int prenum = 1;
163 int postnum = 1;
164 sbitmap visited;
165 bool found = false;
166
167 /* Allocate the preorder and postorder number arrays. */
168 pre = xcalloc (last_basic_block, sizeof (int));
169 post = xcalloc (last_basic_block, sizeof (int));
170
171 /* Allocate stack for back-tracking up CFG. */
172 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
173 sp = 0;
174
175 /* Allocate bitmap to track nodes that have been visited. */
176 visited = sbitmap_alloc (last_basic_block);
177
178 /* None of the nodes in the CFG have been visited yet. */
179 sbitmap_zero (visited);
180
181 /* Push the first edge on to the stack. */
182 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
183
184 while (sp)
185 {
186 edge_iterator ei;
187 basic_block src;
188 basic_block dest;
189
190 /* Look at the edge on the top of the stack. */
191 ei = stack[sp - 1];
192 src = ei_edge (ei)->src;
193 dest = ei_edge (ei)->dest;
194 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
195
196 /* Check if the edge destination has been visited yet. */
197 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
198 {
199 /* Mark that we have visited the destination. */
200 SET_BIT (visited, dest->index);
201
202 pre[dest->index] = prenum++;
203 if (EDGE_COUNT (dest->succs) > 0)
204 {
205 /* Since the DEST node has been visited for the first
206 time, check its successors. */
207 stack[sp++] = ei_start (dest->succs);
208 }
209 else
210 post[dest->index] = postnum++;
211 }
212 else
213 {
214 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
215 && pre[src->index] >= pre[dest->index]
216 && post[dest->index] == 0)
217 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
218
219 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
220 post[src->index] = postnum++;
221
222 if (!ei_one_before_end_p (ei))
223 ei_next (&stack[sp - 1]);
224 else
225 sp--;
226 }
227 }
228
229 free (pre);
230 free (post);
231 free (stack);
232 sbitmap_free (visited);
233
234 return found;
235 }
236
237 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
238
239 void
240 set_edge_can_fallthru_flag (void)
241 {
242 basic_block bb;
243
244 FOR_EACH_BB (bb)
245 {
246 edge e;
247 edge_iterator ei;
248
249 FOR_EACH_EDGE (e, ei, bb->succs)
250 {
251 e->flags &= ~EDGE_CAN_FALLTHRU;
252
253 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
254 if (e->flags & EDGE_FALLTHRU)
255 e->flags |= EDGE_CAN_FALLTHRU;
256 }
257
258 /* If the BB ends with an invertible condjump all (2) edges are
259 CAN_FALLTHRU edges. */
260 if (EDGE_COUNT (bb->succs) != 2)
261 continue;
262 if (!any_condjump_p (BB_END (bb)))
263 continue;
264 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
265 continue;
266 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
267 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
268 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
269 }
270 }
271
272 /* Find unreachable blocks. An unreachable block will have 0 in
273 the reachable bit in block->flags. A nonzero value indicates the
274 block is reachable. */
275
276 void
277 find_unreachable_blocks (void)
278 {
279 edge e;
280 edge_iterator ei;
281 basic_block *tos, *worklist, bb;
282
283 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
284
285 /* Clear all the reachability flags. */
286
287 FOR_EACH_BB (bb)
288 bb->flags &= ~BB_REACHABLE;
289
290 /* Add our starting points to the worklist. Almost always there will
291 be only one. It isn't inconceivable that we might one day directly
292 support Fortran alternate entry points. */
293
294 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
295 {
296 *tos++ = e->dest;
297
298 /* Mark the block reachable. */
299 e->dest->flags |= BB_REACHABLE;
300 }
301
302 /* Iterate: find everything reachable from what we've already seen. */
303
304 while (tos != worklist)
305 {
306 basic_block b = *--tos;
307
308 FOR_EACH_EDGE (e, ei, b->succs)
309 if (!(e->dest->flags & BB_REACHABLE))
310 {
311 *tos++ = e->dest;
312 e->dest->flags |= BB_REACHABLE;
313 }
314 }
315
316 free (worklist);
317 }
318 \f
319 /* Functions to access an edge list with a vector representation.
320 Enough data is kept such that given an index number, the
321 pred and succ that edge represents can be determined, or
322 given a pred and a succ, its index number can be returned.
323 This allows algorithms which consume a lot of memory to
324 represent the normally full matrix of edge (pred,succ) with a
325 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
326 wasted space in the client code due to sparse flow graphs. */
327
328 /* This functions initializes the edge list. Basically the entire
329 flowgraph is processed, and all edges are assigned a number,
330 and the data structure is filled in. */
331
332 struct edge_list *
333 create_edge_list (void)
334 {
335 struct edge_list *elist;
336 edge e;
337 int num_edges;
338 int block_count;
339 basic_block bb;
340 edge_iterator ei;
341
342 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
343
344 num_edges = 0;
345
346 /* Determine the number of edges in the flow graph by counting successor
347 edges on each basic block. */
348 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
349 {
350 num_edges += EDGE_COUNT (bb->succs);
351 }
352
353 elist = xmalloc (sizeof (struct edge_list));
354 elist->num_blocks = block_count;
355 elist->num_edges = num_edges;
356 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
357
358 num_edges = 0;
359
360 /* Follow successors of blocks, and register these edges. */
361 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
362 FOR_EACH_EDGE (e, ei, bb->succs)
363 elist->index_to_edge[num_edges++] = e;
364
365 return elist;
366 }
367
368 /* This function free's memory associated with an edge list. */
369
370 void
371 free_edge_list (struct edge_list *elist)
372 {
373 if (elist)
374 {
375 free (elist->index_to_edge);
376 free (elist);
377 }
378 }
379
380 /* This function provides debug output showing an edge list. */
381
382 void
383 print_edge_list (FILE *f, struct edge_list *elist)
384 {
385 int x;
386
387 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
388 elist->num_blocks - 2, elist->num_edges);
389
390 for (x = 0; x < elist->num_edges; x++)
391 {
392 fprintf (f, " %-4d - edge(", x);
393 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
394 fprintf (f, "entry,");
395 else
396 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
397
398 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
399 fprintf (f, "exit)\n");
400 else
401 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
402 }
403 }
404
405 /* This function provides an internal consistency check of an edge list,
406 verifying that all edges are present, and that there are no
407 extra edges. */
408
409 void
410 verify_edge_list (FILE *f, struct edge_list *elist)
411 {
412 int pred, succ, index;
413 edge e;
414 basic_block bb, p, s;
415 edge_iterator ei;
416
417 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
418 {
419 FOR_EACH_EDGE (e, ei, bb->succs)
420 {
421 pred = e->src->index;
422 succ = e->dest->index;
423 index = EDGE_INDEX (elist, e->src, e->dest);
424 if (index == EDGE_INDEX_NO_EDGE)
425 {
426 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
427 continue;
428 }
429
430 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
431 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
432 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
433 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
434 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
435 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
436 }
437 }
438
439 /* We've verified that all the edges are in the list, now lets make sure
440 there are no spurious edges in the list. */
441
442 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
443 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
444 {
445 int found_edge = 0;
446
447 FOR_EACH_EDGE (e, ei, p->succs)
448 if (e->dest == s)
449 {
450 found_edge = 1;
451 break;
452 }
453
454 FOR_EACH_EDGE (e, ei, s->preds)
455 if (e->src == p)
456 {
457 found_edge = 1;
458 break;
459 }
460
461 if (EDGE_INDEX (elist, p, s)
462 == EDGE_INDEX_NO_EDGE && found_edge != 0)
463 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
464 p->index, s->index);
465 if (EDGE_INDEX (elist, p, s)
466 != EDGE_INDEX_NO_EDGE && found_edge == 0)
467 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
468 p->index, s->index, EDGE_INDEX (elist, p, s));
469 }
470 }
471
472 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
473 If no such edge exists, return NULL. */
474
475 edge
476 find_edge (basic_block pred, basic_block succ)
477 {
478 edge e;
479 edge_iterator ei;
480
481 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
482 {
483 FOR_EACH_EDGE (e, ei, pred->succs)
484 if (e->dest == succ)
485 return e;
486 }
487 else
488 {
489 FOR_EACH_EDGE (e, ei, succ->preds)
490 if (e->src == pred)
491 return e;
492 }
493
494 return NULL;
495 }
496
497 /* This routine will determine what, if any, edge there is between
498 a specified predecessor and successor. */
499
500 int
501 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
502 {
503 int x;
504
505 for (x = 0; x < NUM_EDGES (edge_list); x++)
506 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
507 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
508 return x;
509
510 return (EDGE_INDEX_NO_EDGE);
511 }
512
513 /* Dump the list of basic blocks in the bitmap NODES. */
514
515 void
516 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
517 {
518 int node;
519
520 if (! nodes)
521 return;
522
523 fprintf (file, "%s { ", str);
524 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
525 fputs ("}\n", file);
526 }
527
528 /* Dump the list of edges in the array EDGE_LIST. */
529
530 void
531 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
532 {
533 int i;
534
535 if (! edge_list)
536 return;
537
538 fprintf (file, "%s { ", str);
539 for (i = 0; i < num_edges; i++)
540 fprintf (file, "%d->%d ", edge_list[i]->src->index,
541 edge_list[i]->dest->index);
542
543 fputs ("}\n", file);
544 }
545
546 \f
547 /* This routine will remove any fake predecessor edges for a basic block.
548 When the edge is removed, it is also removed from whatever successor
549 list it is in. */
550
551 static void
552 remove_fake_predecessors (basic_block bb)
553 {
554 edge e;
555 edge_iterator ei;
556
557 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
558 {
559 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
560 remove_edge (e);
561 else
562 ei_next (&ei);
563 }
564 }
565
566 /* This routine will remove all fake edges from the flow graph. If
567 we remove all fake successors, it will automatically remove all
568 fake predecessors. */
569
570 void
571 remove_fake_edges (void)
572 {
573 basic_block bb;
574
575 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
576 remove_fake_predecessors (bb);
577 }
578
579 /* This routine will remove all fake edges to the EXIT_BLOCK. */
580
581 void
582 remove_fake_exit_edges (void)
583 {
584 remove_fake_predecessors (EXIT_BLOCK_PTR);
585 }
586
587
588 /* This function will add a fake edge between any block which has no
589 successors, and the exit block. Some data flow equations require these
590 edges to exist. */
591
592 void
593 add_noreturn_fake_exit_edges (void)
594 {
595 basic_block bb;
596
597 FOR_EACH_BB (bb)
598 if (EDGE_COUNT (bb->succs) == 0)
599 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
600 }
601
602 /* This function adds a fake edge between any infinite loops to the
603 exit block. Some optimizations require a path from each node to
604 the exit node.
605
606 See also Morgan, Figure 3.10, pp. 82-83.
607
608 The current implementation is ugly, not attempting to minimize the
609 number of inserted fake edges. To reduce the number of fake edges
610 to insert, add fake edges from _innermost_ loops containing only
611 nodes not reachable from the exit block. */
612
613 void
614 connect_infinite_loops_to_exit (void)
615 {
616 basic_block unvisited_block;
617 struct depth_first_search_dsS dfs_ds;
618
619 /* Perform depth-first search in the reverse graph to find nodes
620 reachable from the exit block. */
621 flow_dfs_compute_reverse_init (&dfs_ds);
622 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
623
624 /* Repeatedly add fake edges, updating the unreachable nodes. */
625 while (1)
626 {
627 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
628 if (!unvisited_block)
629 break;
630
631 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
632 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
633 }
634
635 flow_dfs_compute_reverse_finish (&dfs_ds);
636 return;
637 }
638 \f
639 /* Compute reverse top sort order. */
640
641 void
642 flow_reverse_top_sort_order_compute (int *rts_order)
643 {
644 edge_iterator *stack;
645 int sp;
646 int postnum = 0;
647 sbitmap visited;
648
649 /* Allocate stack for back-tracking up CFG. */
650 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
651 sp = 0;
652
653 /* Allocate bitmap to track nodes that have been visited. */
654 visited = sbitmap_alloc (last_basic_block);
655
656 /* None of the nodes in the CFG have been visited yet. */
657 sbitmap_zero (visited);
658
659 /* Push the first edge on to the stack. */
660 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
661
662 while (sp)
663 {
664 edge_iterator ei;
665 basic_block src;
666 basic_block dest;
667
668 /* Look at the edge on the top of the stack. */
669 ei = stack[sp - 1];
670 src = ei_edge (ei)->src;
671 dest = ei_edge (ei)->dest;
672
673 /* Check if the edge destination has been visited yet. */
674 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
675 {
676 /* Mark that we have visited the destination. */
677 SET_BIT (visited, dest->index);
678
679 if (EDGE_COUNT (dest->succs) > 0)
680 /* Since the DEST node has been visited for the first
681 time, check its successors. */
682 stack[sp++] = ei_start (dest->succs);
683 else
684 rts_order[postnum++] = dest->index;
685 }
686 else
687 {
688 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
689 rts_order[postnum++] = src->index;
690
691 if (!ei_one_before_end_p (ei))
692 ei_next (&stack[sp - 1]);
693 else
694 sp--;
695 }
696 }
697
698 free (stack);
699 sbitmap_free (visited);
700 }
701
702 /* Compute the depth first search order and store in the array
703 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
704 RC_ORDER is nonzero, return the reverse completion number for each
705 node. Returns the number of nodes visited. A depth first search
706 tries to get as far away from the starting point as quickly as
707 possible. */
708
709 int
710 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
711 {
712 edge_iterator *stack;
713 int sp;
714 int dfsnum = 0;
715 int rcnum = n_basic_blocks - 1;
716 sbitmap visited;
717
718 /* Allocate stack for back-tracking up CFG. */
719 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
720 sp = 0;
721
722 /* Allocate bitmap to track nodes that have been visited. */
723 visited = sbitmap_alloc (last_basic_block);
724
725 /* None of the nodes in the CFG have been visited yet. */
726 sbitmap_zero (visited);
727
728 /* Push the first edge on to the stack. */
729 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
730
731 while (sp)
732 {
733 edge_iterator ei;
734 basic_block src;
735 basic_block dest;
736
737 /* Look at the edge on the top of the stack. */
738 ei = stack[sp - 1];
739 src = ei_edge (ei)->src;
740 dest = ei_edge (ei)->dest;
741
742 /* Check if the edge destination has been visited yet. */
743 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
744 {
745 /* Mark that we have visited the destination. */
746 SET_BIT (visited, dest->index);
747
748 if (dfs_order)
749 dfs_order[dfsnum] = dest->index;
750
751 dfsnum++;
752
753 if (EDGE_COUNT (dest->succs) > 0)
754 /* Since the DEST node has been visited for the first
755 time, check its successors. */
756 stack[sp++] = ei_start (dest->succs);
757 else if (rc_order)
758 /* There are no successors for the DEST node so assign
759 its reverse completion number. */
760 rc_order[rcnum--] = dest->index;
761 }
762 else
763 {
764 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
765 && rc_order)
766 /* There are no more successors for the SRC node
767 so assign its reverse completion number. */
768 rc_order[rcnum--] = src->index;
769
770 if (!ei_one_before_end_p (ei))
771 ei_next (&stack[sp - 1]);
772 else
773 sp--;
774 }
775 }
776
777 free (stack);
778 sbitmap_free (visited);
779
780 /* The number of nodes visited should be the number of blocks. */
781 gcc_assert (dfsnum == n_basic_blocks);
782
783 return dfsnum;
784 }
785
786 /* Compute the depth first search order on the _reverse_ graph and
787 store in the array DFS_ORDER, marking the nodes visited in VISITED.
788 Returns the number of nodes visited.
789
790 The computation is split into three pieces:
791
792 flow_dfs_compute_reverse_init () creates the necessary data
793 structures.
794
795 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
796 structures. The block will start the search.
797
798 flow_dfs_compute_reverse_execute () continues (or starts) the
799 search using the block on the top of the stack, stopping when the
800 stack is empty.
801
802 flow_dfs_compute_reverse_finish () destroys the necessary data
803 structures.
804
805 Thus, the user will probably call ..._init(), call ..._add_bb() to
806 add a beginning basic block to the stack, call ..._execute(),
807 possibly add another bb to the stack and again call ..._execute(),
808 ..., and finally call _finish(). */
809
810 /* Initialize the data structures used for depth-first search on the
811 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
812 added to the basic block stack. DATA is the current depth-first
813 search context. If INITIALIZE_STACK is nonzero, there is an
814 element on the stack. */
815
816 static void
817 flow_dfs_compute_reverse_init (depth_first_search_ds data)
818 {
819 /* Allocate stack for back-tracking up CFG. */
820 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
821 * sizeof (basic_block));
822 data->sp = 0;
823
824 /* Allocate bitmap to track nodes that have been visited. */
825 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
826
827 /* None of the nodes in the CFG have been visited yet. */
828 sbitmap_zero (data->visited_blocks);
829
830 return;
831 }
832
833 /* Add the specified basic block to the top of the dfs data
834 structures. When the search continues, it will start at the
835 block. */
836
837 static void
838 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
839 {
840 data->stack[data->sp++] = bb;
841 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
842 }
843
844 /* Continue the depth-first search through the reverse graph starting with the
845 block at the stack's top and ending when the stack is empty. Visited nodes
846 are marked. Returns an unvisited basic block, or NULL if there is none
847 available. */
848
849 static basic_block
850 flow_dfs_compute_reverse_execute (depth_first_search_ds data)
851 {
852 basic_block bb;
853 edge e;
854 edge_iterator ei;
855
856 while (data->sp > 0)
857 {
858 bb = data->stack[--data->sp];
859
860 /* Perform depth-first search on adjacent vertices. */
861 FOR_EACH_EDGE (e, ei, bb->preds)
862 if (!TEST_BIT (data->visited_blocks,
863 e->src->index - (INVALID_BLOCK + 1)))
864 flow_dfs_compute_reverse_add_bb (data, e->src);
865 }
866
867 /* Determine if there are unvisited basic blocks. */
868 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
869 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
870 return bb;
871
872 return NULL;
873 }
874
875 /* Destroy the data structures needed for depth-first search on the
876 reverse graph. */
877
878 static void
879 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
880 {
881 free (data->stack);
882 sbitmap_free (data->visited_blocks);
883 }
884
885 /* Performs dfs search from BB over vertices satisfying PREDICATE;
886 if REVERSE, go against direction of edges. Returns number of blocks
887 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
888 int
889 dfs_enumerate_from (basic_block bb, int reverse,
890 bool (*predicate) (basic_block, void *),
891 basic_block *rslt, int rslt_max, void *data)
892 {
893 basic_block *st, lbb;
894 int sp = 0, tv = 0;
895
896 st = xcalloc (rslt_max, sizeof (basic_block));
897 rslt[tv++] = st[sp++] = bb;
898 bb->flags |= BB_VISITED;
899 while (sp)
900 {
901 edge e;
902 edge_iterator ei;
903 lbb = st[--sp];
904 if (reverse)
905 {
906 FOR_EACH_EDGE (e, ei, lbb->preds)
907 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
908 {
909 gcc_assert (tv != rslt_max);
910 rslt[tv++] = st[sp++] = e->src;
911 e->src->flags |= BB_VISITED;
912 }
913 }
914 else
915 {
916 FOR_EACH_EDGE (e, ei, lbb->succs)
917 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
918 {
919 gcc_assert (tv != rslt_max);
920 rslt[tv++] = st[sp++] = e->dest;
921 e->dest->flags |= BB_VISITED;
922 }
923 }
924 }
925 free (st);
926 for (sp = 0; sp < tv; sp++)
927 rslt[sp]->flags &= ~BB_VISITED;
928 return tv;
929 }
930
931
932 /* Computing the Dominance Frontier:
933
934 As described in Morgan, section 3.5, this may be done simply by
935 walking the dominator tree bottom-up, computing the frontier for
936 the children before the parent. When considering a block B,
937 there are two cases:
938
939 (1) A flow graph edge leaving B that does not lead to a child
940 of B in the dominator tree must be a block that is either equal
941 to B or not dominated by B. Such blocks belong in the frontier
942 of B.
943
944 (2) Consider a block X in the frontier of one of the children C
945 of B. If X is not equal to B and is not dominated by B, it
946 is in the frontier of B. */
947
948 static void
949 compute_dominance_frontiers_1 (bitmap *frontiers, basic_block bb, sbitmap done)
950 {
951 edge e;
952 edge_iterator ei;
953 basic_block c;
954
955 SET_BIT (done, bb->index);
956
957 /* Do the frontier of the children first. Not all children in the
958 dominator tree (blocks dominated by this one) are children in the
959 CFG, so check all blocks. */
960 for (c = first_dom_son (CDI_DOMINATORS, bb);
961 c;
962 c = next_dom_son (CDI_DOMINATORS, c))
963 {
964 if (! TEST_BIT (done, c->index))
965 compute_dominance_frontiers_1 (frontiers, c, done);
966 }
967
968 /* Find blocks conforming to rule (1) above. */
969 FOR_EACH_EDGE (e, ei, bb->succs)
970 {
971 if (e->dest == EXIT_BLOCK_PTR)
972 continue;
973 if (get_immediate_dominator (CDI_DOMINATORS, e->dest) != bb)
974 bitmap_set_bit (frontiers[bb->index], e->dest->index);
975 }
976
977 /* Find blocks conforming to rule (2). */
978 for (c = first_dom_son (CDI_DOMINATORS, bb);
979 c;
980 c = next_dom_son (CDI_DOMINATORS, c))
981 {
982 unsigned x;
983 bitmap_iterator bi;
984
985 EXECUTE_IF_SET_IN_BITMAP (frontiers[c->index], 0, x, bi)
986 {
987 if (get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (x)) != bb)
988 bitmap_set_bit (frontiers[bb->index], x);
989 }
990 }
991 }
992
993
994 void
995 compute_dominance_frontiers (bitmap *frontiers)
996 {
997 sbitmap done = sbitmap_alloc (last_basic_block);
998
999 timevar_push (TV_DOM_FRONTIERS);
1000
1001 sbitmap_zero (done);
1002
1003 compute_dominance_frontiers_1 (frontiers, EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest, done);
1004
1005 sbitmap_free (done);
1006
1007 timevar_pop (TV_DOM_FRONTIERS);
1008 }
1009