]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgcleanup.c
Split BB_HEAD et al into BB_HEAD/SET_BB_HEAD variants
[thirdparty/gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
22
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
27 eliminated).
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "rtl.h"
37 #include "tree.h"
38 #include "hard-reg-set.h"
39 #include "regs.h"
40 #include "insn-config.h"
41 #include "flags.h"
42 #include "recog.h"
43 #include "diagnostic-core.h"
44 #include "cselib.h"
45 #include "params.h"
46 #include "tm_p.h"
47 #include "target.h"
48 #include "function.h" /* For inline functions in emit-rtl.h they need crtl. */
49 #include "emit-rtl.h"
50 #include "tree-pass.h"
51 #include "cfgloop.h"
52 #include "expr.h"
53 #include "df.h"
54 #include "dce.h"
55 #include "dbgcnt.h"
56 #include "emit-rtl.h"
57
58 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59
60 /* Set to true when we are running first pass of try_optimize_cfg loop. */
61 static bool first_pass;
62
63 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
64 static bool crossjumps_occured;
65
66 /* Set to true if we couldn't run an optimization due to stale liveness
67 information; we should run df_analyze to enable more opportunities. */
68 static bool block_was_dirty;
69
70 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
71 static bool try_crossjump_bb (int, basic_block);
72 static bool outgoing_edges_match (int, basic_block, basic_block);
73 static enum replace_direction old_insns_match_p (int, rtx, rtx);
74
75 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
76 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
77 static bool try_optimize_cfg (int);
78 static bool try_simplify_condjump (basic_block);
79 static bool try_forward_edges (int, basic_block);
80 static edge thread_jump (edge, basic_block);
81 static bool mark_effect (rtx, bitmap);
82 static void notice_new_block (basic_block);
83 static void update_forwarder_flag (basic_block);
84 static int mentions_nonequal_regs (rtx *, void *);
85 static void merge_memattrs (rtx, rtx);
86 \f
87 /* Set flags for newly created block. */
88
89 static void
90 notice_new_block (basic_block bb)
91 {
92 if (!bb)
93 return;
94
95 if (forwarder_block_p (bb))
96 bb->flags |= BB_FORWARDER_BLOCK;
97 }
98
99 /* Recompute forwarder flag after block has been modified. */
100
101 static void
102 update_forwarder_flag (basic_block bb)
103 {
104 if (forwarder_block_p (bb))
105 bb->flags |= BB_FORWARDER_BLOCK;
106 else
107 bb->flags &= ~BB_FORWARDER_BLOCK;
108 }
109 \f
110 /* Simplify a conditional jump around an unconditional jump.
111 Return true if something changed. */
112
113 static bool
114 try_simplify_condjump (basic_block cbranch_block)
115 {
116 basic_block jump_block, jump_dest_block, cbranch_dest_block;
117 edge cbranch_jump_edge, cbranch_fallthru_edge;
118 rtx cbranch_insn;
119
120 /* Verify that there are exactly two successors. */
121 if (EDGE_COUNT (cbranch_block->succs) != 2)
122 return false;
123
124 /* Verify that we've got a normal conditional branch at the end
125 of the block. */
126 cbranch_insn = BB_END (cbranch_block);
127 if (!any_condjump_p (cbranch_insn))
128 return false;
129
130 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
131 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
132
133 /* The next block must not have multiple predecessors, must not
134 be the last block in the function, and must contain just the
135 unconditional jump. */
136 jump_block = cbranch_fallthru_edge->dest;
137 if (!single_pred_p (jump_block)
138 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
139 || !FORWARDER_BLOCK_P (jump_block))
140 return false;
141 jump_dest_block = single_succ (jump_block);
142
143 /* If we are partitioning hot/cold basic blocks, we don't want to
144 mess up unconditional or indirect jumps that cross between hot
145 and cold sections.
146
147 Basic block partitioning may result in some jumps that appear to
148 be optimizable (or blocks that appear to be mergeable), but which really
149 must be left untouched (they are required to make it safely across
150 partition boundaries). See the comments at the top of
151 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152
153 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
154 || (cbranch_jump_edge->flags & EDGE_CROSSING))
155 return false;
156
157 /* The conditional branch must target the block after the
158 unconditional branch. */
159 cbranch_dest_block = cbranch_jump_edge->dest;
160
161 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
162 || !can_fallthru (jump_block, cbranch_dest_block))
163 return false;
164
165 /* Invert the conditional branch. */
166 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
167 return false;
168
169 if (dump_file)
170 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
171 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
172
173 /* Success. Update the CFG to match. Note that after this point
174 the edge variable names appear backwards; the redirection is done
175 this way to preserve edge profile data. */
176 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
177 cbranch_dest_block);
178 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
179 jump_dest_block);
180 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
181 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
182 update_br_prob_note (cbranch_block);
183
184 /* Delete the block with the unconditional jump, and clean up the mess. */
185 delete_basic_block (jump_block);
186 tidy_fallthru_edge (cbranch_jump_edge);
187 update_forwarder_flag (cbranch_block);
188
189 return true;
190 }
191 \f
192 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
193 on register. Used by jump threading. */
194
195 static bool
196 mark_effect (rtx exp, regset nonequal)
197 {
198 int regno;
199 rtx dest;
200 switch (GET_CODE (exp))
201 {
202 /* In case we do clobber the register, mark it as equal, as we know the
203 value is dead so it don't have to match. */
204 case CLOBBER:
205 if (REG_P (XEXP (exp, 0)))
206 {
207 dest = XEXP (exp, 0);
208 regno = REGNO (dest);
209 if (HARD_REGISTER_NUM_P (regno))
210 bitmap_clear_range (nonequal, regno,
211 hard_regno_nregs[regno][GET_MODE (dest)]);
212 else
213 bitmap_clear_bit (nonequal, regno);
214 }
215 return false;
216
217 case SET:
218 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
219 return false;
220 dest = SET_DEST (exp);
221 if (dest == pc_rtx)
222 return false;
223 if (!REG_P (dest))
224 return true;
225 regno = REGNO (dest);
226 if (HARD_REGISTER_NUM_P (regno))
227 bitmap_set_range (nonequal, regno,
228 hard_regno_nregs[regno][GET_MODE (dest)]);
229 else
230 bitmap_set_bit (nonequal, regno);
231 return false;
232
233 default:
234 return false;
235 }
236 }
237
238 /* Return nonzero if X is a register set in regset DATA.
239 Called via for_each_rtx. */
240 static int
241 mentions_nonequal_regs (rtx *x, void *data)
242 {
243 regset nonequal = (regset) data;
244 if (REG_P (*x))
245 {
246 int regno;
247
248 regno = REGNO (*x);
249 if (REGNO_REG_SET_P (nonequal, regno))
250 return 1;
251 if (regno < FIRST_PSEUDO_REGISTER)
252 {
253 int n = hard_regno_nregs[regno][GET_MODE (*x)];
254 while (--n > 0)
255 if (REGNO_REG_SET_P (nonequal, regno + n))
256 return 1;
257 }
258 }
259 return 0;
260 }
261 /* Attempt to prove that the basic block B will have no side effects and
262 always continues in the same edge if reached via E. Return the edge
263 if exist, NULL otherwise. */
264
265 static edge
266 thread_jump (edge e, basic_block b)
267 {
268 rtx set1, set2, cond1, cond2, insn;
269 enum rtx_code code1, code2, reversed_code2;
270 bool reverse1 = false;
271 unsigned i;
272 regset nonequal;
273 bool failed = false;
274 reg_set_iterator rsi;
275
276 if (b->flags & BB_NONTHREADABLE_BLOCK)
277 return NULL;
278
279 /* At the moment, we do handle only conditional jumps, but later we may
280 want to extend this code to tablejumps and others. */
281 if (EDGE_COUNT (e->src->succs) != 2)
282 return NULL;
283 if (EDGE_COUNT (b->succs) != 2)
284 {
285 b->flags |= BB_NONTHREADABLE_BLOCK;
286 return NULL;
287 }
288
289 /* Second branch must end with onlyjump, as we will eliminate the jump. */
290 if (!any_condjump_p (BB_END (e->src)))
291 return NULL;
292
293 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
294 {
295 b->flags |= BB_NONTHREADABLE_BLOCK;
296 return NULL;
297 }
298
299 set1 = pc_set (BB_END (e->src));
300 set2 = pc_set (BB_END (b));
301 if (((e->flags & EDGE_FALLTHRU) != 0)
302 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
303 reverse1 = true;
304
305 cond1 = XEXP (SET_SRC (set1), 0);
306 cond2 = XEXP (SET_SRC (set2), 0);
307 if (reverse1)
308 code1 = reversed_comparison_code (cond1, BB_END (e->src));
309 else
310 code1 = GET_CODE (cond1);
311
312 code2 = GET_CODE (cond2);
313 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
314
315 if (!comparison_dominates_p (code1, code2)
316 && !comparison_dominates_p (code1, reversed_code2))
317 return NULL;
318
319 /* Ensure that the comparison operators are equivalent.
320 ??? This is far too pessimistic. We should allow swapped operands,
321 different CCmodes, or for example comparisons for interval, that
322 dominate even when operands are not equivalent. */
323 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
324 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
325 return NULL;
326
327 /* Short circuit cases where block B contains some side effects, as we can't
328 safely bypass it. */
329 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
330 insn = NEXT_INSN (insn))
331 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
332 {
333 b->flags |= BB_NONTHREADABLE_BLOCK;
334 return NULL;
335 }
336
337 cselib_init (0);
338
339 /* First process all values computed in the source basic block. */
340 for (insn = NEXT_INSN (BB_HEAD (e->src));
341 insn != NEXT_INSN (BB_END (e->src));
342 insn = NEXT_INSN (insn))
343 if (INSN_P (insn))
344 cselib_process_insn (insn);
345
346 nonequal = BITMAP_ALLOC (NULL);
347 CLEAR_REG_SET (nonequal);
348
349 /* Now assume that we've continued by the edge E to B and continue
350 processing as if it were same basic block.
351 Our goal is to prove that whole block is an NOOP. */
352
353 for (insn = NEXT_INSN (BB_HEAD (b));
354 insn != NEXT_INSN (BB_END (b)) && !failed;
355 insn = NEXT_INSN (insn))
356 {
357 if (INSN_P (insn))
358 {
359 rtx pat = PATTERN (insn);
360
361 if (GET_CODE (pat) == PARALLEL)
362 {
363 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
364 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
365 }
366 else
367 failed |= mark_effect (pat, nonequal);
368 }
369
370 cselib_process_insn (insn);
371 }
372
373 /* Later we should clear nonequal of dead registers. So far we don't
374 have life information in cfg_cleanup. */
375 if (failed)
376 {
377 b->flags |= BB_NONTHREADABLE_BLOCK;
378 goto failed_exit;
379 }
380
381 /* cond2 must not mention any register that is not equal to the
382 former block. */
383 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
384 goto failed_exit;
385
386 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
387 goto failed_exit;
388
389 BITMAP_FREE (nonequal);
390 cselib_finish ();
391 if ((comparison_dominates_p (code1, code2) != 0)
392 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
393 return BRANCH_EDGE (b);
394 else
395 return FALLTHRU_EDGE (b);
396
397 failed_exit:
398 BITMAP_FREE (nonequal);
399 cselib_finish ();
400 return NULL;
401 }
402 \f
403 /* Attempt to forward edges leaving basic block B.
404 Return true if successful. */
405
406 static bool
407 try_forward_edges (int mode, basic_block b)
408 {
409 bool changed = false;
410 edge_iterator ei;
411 edge e, *threaded_edges = NULL;
412
413 /* If we are partitioning hot/cold basic blocks, we don't want to
414 mess up unconditional or indirect jumps that cross between hot
415 and cold sections.
416
417 Basic block partitioning may result in some jumps that appear to
418 be optimizable (or blocks that appear to be mergeable), but which really
419 must be left untouched (they are required to make it safely across
420 partition boundaries). See the comments at the top of
421 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
422
423 if (JUMP_P (BB_END (b)) && CROSSING_JUMP_P (BB_END (b)))
424 return false;
425
426 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
427 {
428 basic_block target, first;
429 location_t goto_locus;
430 int counter;
431 bool threaded = false;
432 int nthreaded_edges = 0;
433 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
434
435 /* Skip complex edges because we don't know how to update them.
436
437 Still handle fallthru edges, as we can succeed to forward fallthru
438 edge to the same place as the branch edge of conditional branch
439 and turn conditional branch to an unconditional branch. */
440 if (e->flags & EDGE_COMPLEX)
441 {
442 ei_next (&ei);
443 continue;
444 }
445
446 target = first = e->dest;
447 counter = NUM_FIXED_BLOCKS;
448 goto_locus = e->goto_locus;
449
450 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
451 up jumps that cross between hot/cold sections.
452
453 Basic block partitioning may result in some jumps that appear
454 to be optimizable (or blocks that appear to be mergeable), but which
455 really must be left untouched (they are required to make it safely
456 across partition boundaries). See the comments at the top of
457 bb-reorder.c:partition_hot_cold_basic_blocks for complete
458 details. */
459
460 if (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
461 && JUMP_P (BB_END (first))
462 && CROSSING_JUMP_P (BB_END (first)))
463 return changed;
464
465 while (counter < n_basic_blocks_for_fn (cfun))
466 {
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= (target->flags & BB_MODIFIED) != 0;
470
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
474 {
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks_for_fn (cfun);
479 else if (!optimize)
480 {
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 location_t new_locus = single_succ_edge (target)->goto_locus;
484 location_t locus = goto_locus;
485
486 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
487 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
488 && new_locus != locus)
489 new_target = NULL;
490 else
491 {
492 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
493 locus = new_locus;
494
495 rtx last = BB_END (target);
496 if (DEBUG_INSN_P (last))
497 last = prev_nondebug_insn (last);
498 if (last && INSN_P (last))
499 new_locus = INSN_LOCATION (last);
500 else
501 new_locus = UNKNOWN_LOCATION;
502
503 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
504 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
505 && new_locus != locus)
506 new_target = NULL;
507 else
508 {
509 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
510 locus = new_locus;
511
512 goto_locus = locus;
513 }
514 }
515 }
516 }
517
518 /* Allow to thread only over one edge at time to simplify updating
519 of probabilities. */
520 else if ((mode & CLEANUP_THREADING) && may_thread)
521 {
522 edge t = thread_jump (e, target);
523 if (t)
524 {
525 if (!threaded_edges)
526 threaded_edges = XNEWVEC (edge,
527 n_basic_blocks_for_fn (cfun));
528 else
529 {
530 int i;
531
532 /* Detect an infinite loop across blocks not
533 including the start block. */
534 for (i = 0; i < nthreaded_edges; ++i)
535 if (threaded_edges[i] == t)
536 break;
537 if (i < nthreaded_edges)
538 {
539 counter = n_basic_blocks_for_fn (cfun);
540 break;
541 }
542 }
543
544 /* Detect an infinite loop across the start block. */
545 if (t->dest == b)
546 break;
547
548 gcc_assert (nthreaded_edges
549 < (n_basic_blocks_for_fn (cfun)
550 - NUM_FIXED_BLOCKS));
551 threaded_edges[nthreaded_edges++] = t;
552
553 new_target = t->dest;
554 new_target_threaded = true;
555 }
556 }
557
558 if (!new_target)
559 break;
560
561 counter++;
562 target = new_target;
563 threaded |= new_target_threaded;
564 }
565
566 if (counter >= n_basic_blocks_for_fn (cfun))
567 {
568 if (dump_file)
569 fprintf (dump_file, "Infinite loop in BB %i.\n",
570 target->index);
571 }
572 else if (target == first)
573 ; /* We didn't do anything. */
574 else
575 {
576 /* Save the values now, as the edge may get removed. */
577 gcov_type edge_count = e->count;
578 int edge_probability = e->probability;
579 int edge_frequency;
580 int n = 0;
581
582 e->goto_locus = goto_locus;
583
584 /* Don't force if target is exit block. */
585 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
586 {
587 notice_new_block (redirect_edge_and_branch_force (e, target));
588 if (dump_file)
589 fprintf (dump_file, "Conditionals threaded.\n");
590 }
591 else if (!redirect_edge_and_branch (e, target))
592 {
593 if (dump_file)
594 fprintf (dump_file,
595 "Forwarding edge %i->%i to %i failed.\n",
596 b->index, e->dest->index, target->index);
597 ei_next (&ei);
598 continue;
599 }
600
601 /* We successfully forwarded the edge. Now update profile
602 data: for each edge we traversed in the chain, remove
603 the original edge's execution count. */
604 edge_frequency = apply_probability (b->frequency, edge_probability);
605
606 do
607 {
608 edge t;
609
610 if (!single_succ_p (first))
611 {
612 gcc_assert (n < nthreaded_edges);
613 t = threaded_edges [n++];
614 gcc_assert (t->src == first);
615 update_bb_profile_for_threading (first, edge_frequency,
616 edge_count, t);
617 update_br_prob_note (first);
618 }
619 else
620 {
621 first->count -= edge_count;
622 if (first->count < 0)
623 first->count = 0;
624 first->frequency -= edge_frequency;
625 if (first->frequency < 0)
626 first->frequency = 0;
627 /* It is possible that as the result of
628 threading we've removed edge as it is
629 threaded to the fallthru edge. Avoid
630 getting out of sync. */
631 if (n < nthreaded_edges
632 && first == threaded_edges [n]->src)
633 n++;
634 t = single_succ_edge (first);
635 }
636
637 t->count -= edge_count;
638 if (t->count < 0)
639 t->count = 0;
640 first = t->dest;
641 }
642 while (first != target);
643
644 changed = true;
645 continue;
646 }
647 ei_next (&ei);
648 }
649
650 free (threaded_edges);
651 return changed;
652 }
653 \f
654
655 /* Blocks A and B are to be merged into a single block. A has no incoming
656 fallthru edge, so it can be moved before B without adding or modifying
657 any jumps (aside from the jump from A to B). */
658
659 static void
660 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
661 {
662 rtx barrier;
663
664 /* If we are partitioning hot/cold basic blocks, we don't want to
665 mess up unconditional or indirect jumps that cross between hot
666 and cold sections.
667
668 Basic block partitioning may result in some jumps that appear to
669 be optimizable (or blocks that appear to be mergeable), but which really
670 must be left untouched (they are required to make it safely across
671 partition boundaries). See the comments at the top of
672 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
673
674 if (BB_PARTITION (a) != BB_PARTITION (b))
675 return;
676
677 barrier = next_nonnote_insn (BB_END (a));
678 gcc_assert (BARRIER_P (barrier));
679 delete_insn (barrier);
680
681 /* Scramble the insn chain. */
682 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
683 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
684 df_set_bb_dirty (a);
685
686 if (dump_file)
687 fprintf (dump_file, "Moved block %d before %d and merged.\n",
688 a->index, b->index);
689
690 /* Swap the records for the two blocks around. */
691
692 unlink_block (a);
693 link_block (a, b->prev_bb);
694
695 /* Now blocks A and B are contiguous. Merge them. */
696 merge_blocks (a, b);
697 }
698
699 /* Blocks A and B are to be merged into a single block. B has no outgoing
700 fallthru edge, so it can be moved after A without adding or modifying
701 any jumps (aside from the jump from A to B). */
702
703 static void
704 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
705 {
706 rtx barrier, real_b_end;
707 rtx label, table;
708
709 /* If we are partitioning hot/cold basic blocks, we don't want to
710 mess up unconditional or indirect jumps that cross between hot
711 and cold sections.
712
713 Basic block partitioning may result in some jumps that appear to
714 be optimizable (or blocks that appear to be mergeable), but which really
715 must be left untouched (they are required to make it safely across
716 partition boundaries). See the comments at the top of
717 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
718
719 if (BB_PARTITION (a) != BB_PARTITION (b))
720 return;
721
722 real_b_end = BB_END (b);
723
724 /* If there is a jump table following block B temporarily add the jump table
725 to block B so that it will also be moved to the correct location. */
726 if (tablejump_p (BB_END (b), &label, &table)
727 && prev_active_insn (label) == BB_END (b))
728 {
729 SET_BB_END (b) = table;
730 }
731
732 /* There had better have been a barrier there. Delete it. */
733 barrier = NEXT_INSN (BB_END (b));
734 if (barrier && BARRIER_P (barrier))
735 delete_insn (barrier);
736
737
738 /* Scramble the insn chain. */
739 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
740
741 /* Restore the real end of b. */
742 SET_BB_END (b) = real_b_end;
743
744 if (dump_file)
745 fprintf (dump_file, "Moved block %d after %d and merged.\n",
746 b->index, a->index);
747
748 /* Now blocks A and B are contiguous. Merge them. */
749 merge_blocks (a, b);
750 }
751
752 /* Attempt to merge basic blocks that are potentially non-adjacent.
753 Return NULL iff the attempt failed, otherwise return basic block
754 where cleanup_cfg should continue. Because the merging commonly
755 moves basic block away or introduces another optimization
756 possibility, return basic block just before B so cleanup_cfg don't
757 need to iterate.
758
759 It may be good idea to return basic block before C in the case
760 C has been moved after B and originally appeared earlier in the
761 insn sequence, but we have no information available about the
762 relative ordering of these two. Hopefully it is not too common. */
763
764 static basic_block
765 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
766 {
767 basic_block next;
768
769 /* If we are partitioning hot/cold basic blocks, we don't want to
770 mess up unconditional or indirect jumps that cross between hot
771 and cold sections.
772
773 Basic block partitioning may result in some jumps that appear to
774 be optimizable (or blocks that appear to be mergeable), but which really
775 must be left untouched (they are required to make it safely across
776 partition boundaries). See the comments at the top of
777 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
778
779 if (BB_PARTITION (b) != BB_PARTITION (c))
780 return NULL;
781
782 /* If B has a fallthru edge to C, no need to move anything. */
783 if (e->flags & EDGE_FALLTHRU)
784 {
785 int b_index = b->index, c_index = c->index;
786
787 /* Protect the loop latches. */
788 if (current_loops && c->loop_father->latch == c)
789 return NULL;
790
791 merge_blocks (b, c);
792 update_forwarder_flag (b);
793
794 if (dump_file)
795 fprintf (dump_file, "Merged %d and %d without moving.\n",
796 b_index, c_index);
797
798 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
799 }
800
801 /* Otherwise we will need to move code around. Do that only if expensive
802 transformations are allowed. */
803 else if (mode & CLEANUP_EXPENSIVE)
804 {
805 edge tmp_edge, b_fallthru_edge;
806 bool c_has_outgoing_fallthru;
807 bool b_has_incoming_fallthru;
808
809 /* Avoid overactive code motion, as the forwarder blocks should be
810 eliminated by edge redirection instead. One exception might have
811 been if B is a forwarder block and C has no fallthru edge, but
812 that should be cleaned up by bb-reorder instead. */
813 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
814 return NULL;
815
816 /* We must make sure to not munge nesting of lexical blocks,
817 and loop notes. This is done by squeezing out all the notes
818 and leaving them there to lie. Not ideal, but functional. */
819
820 tmp_edge = find_fallthru_edge (c->succs);
821 c_has_outgoing_fallthru = (tmp_edge != NULL);
822
823 tmp_edge = find_fallthru_edge (b->preds);
824 b_has_incoming_fallthru = (tmp_edge != NULL);
825 b_fallthru_edge = tmp_edge;
826 next = b->prev_bb;
827 if (next == c)
828 next = next->prev_bb;
829
830 /* Otherwise, we're going to try to move C after B. If C does
831 not have an outgoing fallthru, then it can be moved
832 immediately after B without introducing or modifying jumps. */
833 if (! c_has_outgoing_fallthru)
834 {
835 merge_blocks_move_successor_nojumps (b, c);
836 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
837 }
838
839 /* If B does not have an incoming fallthru, then it can be moved
840 immediately before C without introducing or modifying jumps.
841 C cannot be the first block, so we do not have to worry about
842 accessing a non-existent block. */
843
844 if (b_has_incoming_fallthru)
845 {
846 basic_block bb;
847
848 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
849 return NULL;
850 bb = force_nonfallthru (b_fallthru_edge);
851 if (bb)
852 notice_new_block (bb);
853 }
854
855 merge_blocks_move_predecessor_nojumps (b, c);
856 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
857 }
858
859 return NULL;
860 }
861 \f
862
863 /* Removes the memory attributes of MEM expression
864 if they are not equal. */
865
866 void
867 merge_memattrs (rtx x, rtx y)
868 {
869 int i;
870 int j;
871 enum rtx_code code;
872 const char *fmt;
873
874 if (x == y)
875 return;
876 if (x == 0 || y == 0)
877 return;
878
879 code = GET_CODE (x);
880
881 if (code != GET_CODE (y))
882 return;
883
884 if (GET_MODE (x) != GET_MODE (y))
885 return;
886
887 if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
888 {
889 if (! MEM_ATTRS (x))
890 MEM_ATTRS (y) = 0;
891 else if (! MEM_ATTRS (y))
892 MEM_ATTRS (x) = 0;
893 else
894 {
895 HOST_WIDE_INT mem_size;
896
897 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
898 {
899 set_mem_alias_set (x, 0);
900 set_mem_alias_set (y, 0);
901 }
902
903 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
904 {
905 set_mem_expr (x, 0);
906 set_mem_expr (y, 0);
907 clear_mem_offset (x);
908 clear_mem_offset (y);
909 }
910 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
911 || (MEM_OFFSET_KNOWN_P (x)
912 && MEM_OFFSET (x) != MEM_OFFSET (y)))
913 {
914 clear_mem_offset (x);
915 clear_mem_offset (y);
916 }
917
918 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
919 {
920 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
921 set_mem_size (x, mem_size);
922 set_mem_size (y, mem_size);
923 }
924 else
925 {
926 clear_mem_size (x);
927 clear_mem_size (y);
928 }
929
930 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
931 set_mem_align (y, MEM_ALIGN (x));
932 }
933 }
934 if (code == MEM)
935 {
936 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
937 {
938 MEM_READONLY_P (x) = 0;
939 MEM_READONLY_P (y) = 0;
940 }
941 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
942 {
943 MEM_NOTRAP_P (x) = 0;
944 MEM_NOTRAP_P (y) = 0;
945 }
946 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
947 {
948 MEM_VOLATILE_P (x) = 1;
949 MEM_VOLATILE_P (y) = 1;
950 }
951 }
952
953 fmt = GET_RTX_FORMAT (code);
954 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
955 {
956 switch (fmt[i])
957 {
958 case 'E':
959 /* Two vectors must have the same length. */
960 if (XVECLEN (x, i) != XVECLEN (y, i))
961 return;
962
963 for (j = 0; j < XVECLEN (x, i); j++)
964 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
965
966 break;
967
968 case 'e':
969 merge_memattrs (XEXP (x, i), XEXP (y, i));
970 }
971 }
972 return;
973 }
974
975
976 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
977 different single sets S1 and S2. */
978
979 static bool
980 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
981 {
982 int i;
983 rtx e1, e2;
984
985 if (p1 == s1 && p2 == s2)
986 return true;
987
988 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
989 return false;
990
991 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
992 return false;
993
994 for (i = 0; i < XVECLEN (p1, 0); i++)
995 {
996 e1 = XVECEXP (p1, 0, i);
997 e2 = XVECEXP (p2, 0, i);
998 if (e1 == s1 && e2 == s2)
999 continue;
1000 if (reload_completed
1001 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
1002 continue;
1003
1004 return false;
1005 }
1006
1007 return true;
1008 }
1009
1010 /* Examine register notes on I1 and I2 and return:
1011 - dir_forward if I1 can be replaced by I2, or
1012 - dir_backward if I2 can be replaced by I1, or
1013 - dir_both if both are the case. */
1014
1015 static enum replace_direction
1016 can_replace_by (rtx i1, rtx i2)
1017 {
1018 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1019 bool c1, c2;
1020
1021 /* Check for 2 sets. */
1022 s1 = single_set (i1);
1023 s2 = single_set (i2);
1024 if (s1 == NULL_RTX || s2 == NULL_RTX)
1025 return dir_none;
1026
1027 /* Check that the 2 sets set the same dest. */
1028 d1 = SET_DEST (s1);
1029 d2 = SET_DEST (s2);
1030 if (!(reload_completed
1031 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1032 return dir_none;
1033
1034 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1035 set dest to the same value. */
1036 note1 = find_reg_equal_equiv_note (i1);
1037 note2 = find_reg_equal_equiv_note (i2);
1038 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1039 || !CONST_INT_P (XEXP (note1, 0)))
1040 return dir_none;
1041
1042 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1043 return dir_none;
1044
1045 /* Although the 2 sets set dest to the same value, we cannot replace
1046 (set (dest) (const_int))
1047 by
1048 (set (dest) (reg))
1049 because we don't know if the reg is live and has the same value at the
1050 location of replacement. */
1051 src1 = SET_SRC (s1);
1052 src2 = SET_SRC (s2);
1053 c1 = CONST_INT_P (src1);
1054 c2 = CONST_INT_P (src2);
1055 if (c1 && c2)
1056 return dir_both;
1057 else if (c2)
1058 return dir_forward;
1059 else if (c1)
1060 return dir_backward;
1061
1062 return dir_none;
1063 }
1064
1065 /* Merges directions A and B. */
1066
1067 static enum replace_direction
1068 merge_dir (enum replace_direction a, enum replace_direction b)
1069 {
1070 /* Implements the following table:
1071 |bo fw bw no
1072 ---+-----------
1073 bo |bo fw bw no
1074 fw |-- fw no no
1075 bw |-- -- bw no
1076 no |-- -- -- no. */
1077
1078 if (a == b)
1079 return a;
1080
1081 if (a == dir_both)
1082 return b;
1083 if (b == dir_both)
1084 return a;
1085
1086 return dir_none;
1087 }
1088
1089 /* Examine I1 and I2 and return:
1090 - dir_forward if I1 can be replaced by I2, or
1091 - dir_backward if I2 can be replaced by I1, or
1092 - dir_both if both are the case. */
1093
1094 static enum replace_direction
1095 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1096 {
1097 rtx p1, p2;
1098
1099 /* Verify that I1 and I2 are equivalent. */
1100 if (GET_CODE (i1) != GET_CODE (i2))
1101 return dir_none;
1102
1103 /* __builtin_unreachable() may lead to empty blocks (ending with
1104 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1105 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1106 return dir_both;
1107
1108 /* ??? Do not allow cross-jumping between different stack levels. */
1109 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1110 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1111 if (p1 && p2)
1112 {
1113 p1 = XEXP (p1, 0);
1114 p2 = XEXP (p2, 0);
1115 if (!rtx_equal_p (p1, p2))
1116 return dir_none;
1117
1118 /* ??? Worse, this adjustment had better be constant lest we
1119 have differing incoming stack levels. */
1120 if (!frame_pointer_needed
1121 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1122 return dir_none;
1123 }
1124 else if (p1 || p2)
1125 return dir_none;
1126
1127 p1 = PATTERN (i1);
1128 p2 = PATTERN (i2);
1129
1130 if (GET_CODE (p1) != GET_CODE (p2))
1131 return dir_none;
1132
1133 /* If this is a CALL_INSN, compare register usage information.
1134 If we don't check this on stack register machines, the two
1135 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1136 numbers of stack registers in the same basic block.
1137 If we don't check this on machines with delay slots, a delay slot may
1138 be filled that clobbers a parameter expected by the subroutine.
1139
1140 ??? We take the simple route for now and assume that if they're
1141 equal, they were constructed identically.
1142
1143 Also check for identical exception regions. */
1144
1145 if (CALL_P (i1))
1146 {
1147 /* Ensure the same EH region. */
1148 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1149 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1150
1151 if (!n1 && n2)
1152 return dir_none;
1153
1154 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1155 return dir_none;
1156
1157 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1158 CALL_INSN_FUNCTION_USAGE (i2))
1159 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1160 return dir_none;
1161
1162 /* For address sanitizer, never crossjump __asan_report_* builtins,
1163 otherwise errors might be reported on incorrect lines. */
1164 if (flag_sanitize & SANITIZE_ADDRESS)
1165 {
1166 rtx call = get_call_rtx_from (i1);
1167 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1168 {
1169 rtx symbol = XEXP (XEXP (call, 0), 0);
1170 if (SYMBOL_REF_DECL (symbol)
1171 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1172 {
1173 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1174 == BUILT_IN_NORMAL)
1175 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1176 >= BUILT_IN_ASAN_REPORT_LOAD1
1177 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1178 <= BUILT_IN_ASAN_STOREN)
1179 return dir_none;
1180 }
1181 }
1182 }
1183 }
1184
1185 #ifdef STACK_REGS
1186 /* If cross_jump_death_matters is not 0, the insn's mode
1187 indicates whether or not the insn contains any stack-like
1188 regs. */
1189
1190 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1191 {
1192 /* If register stack conversion has already been done, then
1193 death notes must also be compared before it is certain that
1194 the two instruction streams match. */
1195
1196 rtx note;
1197 HARD_REG_SET i1_regset, i2_regset;
1198
1199 CLEAR_HARD_REG_SET (i1_regset);
1200 CLEAR_HARD_REG_SET (i2_regset);
1201
1202 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1203 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1204 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1205
1206 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1207 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1208 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1209
1210 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1211 return dir_none;
1212 }
1213 #endif
1214
1215 if (reload_completed
1216 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1217 return dir_both;
1218
1219 return can_replace_by (i1, i2);
1220 }
1221 \f
1222 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1223 flow_find_head_matching_sequence, ensure the notes match. */
1224
1225 static void
1226 merge_notes (rtx i1, rtx i2)
1227 {
1228 /* If the merged insns have different REG_EQUAL notes, then
1229 remove them. */
1230 rtx equiv1 = find_reg_equal_equiv_note (i1);
1231 rtx equiv2 = find_reg_equal_equiv_note (i2);
1232
1233 if (equiv1 && !equiv2)
1234 remove_note (i1, equiv1);
1235 else if (!equiv1 && equiv2)
1236 remove_note (i2, equiv2);
1237 else if (equiv1 && equiv2
1238 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1239 {
1240 remove_note (i1, equiv1);
1241 remove_note (i2, equiv2);
1242 }
1243 }
1244
1245 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1246 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1247 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1248 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1249 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1250
1251 static void
1252 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1253 bool *did_fallthru)
1254 {
1255 edge fallthru;
1256
1257 *did_fallthru = false;
1258
1259 /* Ignore notes. */
1260 while (!NONDEBUG_INSN_P (*i1))
1261 {
1262 if (*i1 != BB_HEAD (*bb1))
1263 {
1264 *i1 = PREV_INSN (*i1);
1265 continue;
1266 }
1267
1268 if (!follow_fallthru)
1269 return;
1270
1271 fallthru = find_fallthru_edge ((*bb1)->preds);
1272 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1273 || !single_succ_p (fallthru->src))
1274 return;
1275
1276 *bb1 = fallthru->src;
1277 *i1 = BB_END (*bb1);
1278 *did_fallthru = true;
1279 }
1280 }
1281
1282 /* Look through the insns at the end of BB1 and BB2 and find the longest
1283 sequence that are either equivalent, or allow forward or backward
1284 replacement. Store the first insns for that sequence in *F1 and *F2 and
1285 return the sequence length.
1286
1287 DIR_P indicates the allowed replacement direction on function entry, and
1288 the actual replacement direction on function exit. If NULL, only equivalent
1289 sequences are allowed.
1290
1291 To simplify callers of this function, if the blocks match exactly,
1292 store the head of the blocks in *F1 and *F2. */
1293
1294 int
1295 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1296 enum replace_direction *dir_p)
1297 {
1298 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1299 int ninsns = 0;
1300 enum replace_direction dir, last_dir, afterlast_dir;
1301 bool follow_fallthru, did_fallthru;
1302
1303 if (dir_p)
1304 dir = *dir_p;
1305 else
1306 dir = dir_both;
1307 afterlast_dir = dir;
1308 last_dir = afterlast_dir;
1309
1310 /* Skip simple jumps at the end of the blocks. Complex jumps still
1311 need to be compared for equivalence, which we'll do below. */
1312
1313 i1 = BB_END (bb1);
1314 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1315 if (onlyjump_p (i1)
1316 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1317 {
1318 last1 = i1;
1319 i1 = PREV_INSN (i1);
1320 }
1321
1322 i2 = BB_END (bb2);
1323 if (onlyjump_p (i2)
1324 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1325 {
1326 last2 = i2;
1327 /* Count everything except for unconditional jump as insn.
1328 Don't count any jumps if dir_p is NULL. */
1329 if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
1330 ninsns++;
1331 i2 = PREV_INSN (i2);
1332 }
1333
1334 while (true)
1335 {
1336 /* In the following example, we can replace all jumps to C by jumps to A.
1337
1338 This removes 4 duplicate insns.
1339 [bb A] insn1 [bb C] insn1
1340 insn2 insn2
1341 [bb B] insn3 insn3
1342 insn4 insn4
1343 jump_insn jump_insn
1344
1345 We could also replace all jumps to A by jumps to C, but that leaves B
1346 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1347 step, all jumps to B would be replaced with jumps to the middle of C,
1348 achieving the same result with more effort.
1349 So we allow only the first possibility, which means that we don't allow
1350 fallthru in the block that's being replaced. */
1351
1352 follow_fallthru = dir_p && dir != dir_forward;
1353 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1354 if (did_fallthru)
1355 dir = dir_backward;
1356
1357 follow_fallthru = dir_p && dir != dir_backward;
1358 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1359 if (did_fallthru)
1360 dir = dir_forward;
1361
1362 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1363 break;
1364
1365 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1366 if (dir == dir_none || (!dir_p && dir != dir_both))
1367 break;
1368
1369 merge_memattrs (i1, i2);
1370
1371 /* Don't begin a cross-jump with a NOTE insn. */
1372 if (INSN_P (i1))
1373 {
1374 merge_notes (i1, i2);
1375
1376 afterlast1 = last1, afterlast2 = last2;
1377 last1 = i1, last2 = i2;
1378 afterlast_dir = last_dir;
1379 last_dir = dir;
1380 if (active_insn_p (i1))
1381 ninsns++;
1382 }
1383
1384 i1 = PREV_INSN (i1);
1385 i2 = PREV_INSN (i2);
1386 }
1387
1388 #ifdef HAVE_cc0
1389 /* Don't allow the insn after a compare to be shared by
1390 cross-jumping unless the compare is also shared. */
1391 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1392 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1393 #endif
1394
1395 /* Include preceding notes and labels in the cross-jump. One,
1396 this may bring us to the head of the blocks as requested above.
1397 Two, it keeps line number notes as matched as may be. */
1398 if (ninsns)
1399 {
1400 bb1 = BLOCK_FOR_INSN (last1);
1401 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1402 last1 = PREV_INSN (last1);
1403
1404 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1405 last1 = PREV_INSN (last1);
1406
1407 bb2 = BLOCK_FOR_INSN (last2);
1408 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1409 last2 = PREV_INSN (last2);
1410
1411 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1412 last2 = PREV_INSN (last2);
1413
1414 *f1 = last1;
1415 *f2 = last2;
1416 }
1417
1418 if (dir_p)
1419 *dir_p = last_dir;
1420 return ninsns;
1421 }
1422
1423 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1424 the head of the two blocks. Do not include jumps at the end.
1425 If STOP_AFTER is nonzero, stop after finding that many matching
1426 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1427 non-zero, only count active insns. */
1428
1429 int
1430 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1431 rtx *f2, int stop_after)
1432 {
1433 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1434 int ninsns = 0;
1435 edge e;
1436 edge_iterator ei;
1437 int nehedges1 = 0, nehedges2 = 0;
1438
1439 FOR_EACH_EDGE (e, ei, bb1->succs)
1440 if (e->flags & EDGE_EH)
1441 nehedges1++;
1442 FOR_EACH_EDGE (e, ei, bb2->succs)
1443 if (e->flags & EDGE_EH)
1444 nehedges2++;
1445
1446 i1 = BB_HEAD (bb1);
1447 i2 = BB_HEAD (bb2);
1448 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1449
1450 while (true)
1451 {
1452 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1453 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1454 {
1455 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1456 break;
1457 i1 = NEXT_INSN (i1);
1458 }
1459
1460 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1461 {
1462 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1463 break;
1464 i2 = NEXT_INSN (i2);
1465 }
1466
1467 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1468 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1469 break;
1470
1471 if (NOTE_P (i1) || NOTE_P (i2)
1472 || JUMP_P (i1) || JUMP_P (i2))
1473 break;
1474
1475 /* A sanity check to make sure we're not merging insns with different
1476 effects on EH. If only one of them ends a basic block, it shouldn't
1477 have an EH edge; if both end a basic block, there should be the same
1478 number of EH edges. */
1479 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1480 && nehedges1 > 0)
1481 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1482 && nehedges2 > 0)
1483 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1484 && nehedges1 != nehedges2))
1485 break;
1486
1487 if (old_insns_match_p (0, i1, i2) != dir_both)
1488 break;
1489
1490 merge_memattrs (i1, i2);
1491
1492 /* Don't begin a cross-jump with a NOTE insn. */
1493 if (INSN_P (i1))
1494 {
1495 merge_notes (i1, i2);
1496
1497 beforelast1 = last1, beforelast2 = last2;
1498 last1 = i1, last2 = i2;
1499 if (!stop_after || active_insn_p (i1))
1500 ninsns++;
1501 }
1502
1503 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1504 || (stop_after > 0 && ninsns == stop_after))
1505 break;
1506
1507 i1 = NEXT_INSN (i1);
1508 i2 = NEXT_INSN (i2);
1509 }
1510
1511 #ifdef HAVE_cc0
1512 /* Don't allow a compare to be shared by cross-jumping unless the insn
1513 after the compare is also shared. */
1514 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1515 last1 = beforelast1, last2 = beforelast2, ninsns--;
1516 #endif
1517
1518 if (ninsns)
1519 {
1520 *f1 = last1;
1521 *f2 = last2;
1522 }
1523
1524 return ninsns;
1525 }
1526
1527 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1528 the branch instruction. This means that if we commonize the control
1529 flow before end of the basic block, the semantic remains unchanged.
1530
1531 We may assume that there exists one edge with a common destination. */
1532
1533 static bool
1534 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1535 {
1536 int nehedges1 = 0, nehedges2 = 0;
1537 edge fallthru1 = 0, fallthru2 = 0;
1538 edge e1, e2;
1539 edge_iterator ei;
1540
1541 /* If we performed shrink-wrapping, edges to the exit block can
1542 only be distinguished for JUMP_INSNs. The two paths may differ in
1543 whether they went through the prologue. Sibcalls are fine, we know
1544 that we either didn't need or inserted an epilogue before them. */
1545 if (crtl->shrink_wrapped
1546 && single_succ_p (bb1)
1547 && single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
1548 && !JUMP_P (BB_END (bb1))
1549 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1550 return false;
1551
1552 /* If BB1 has only one successor, we may be looking at either an
1553 unconditional jump, or a fake edge to exit. */
1554 if (single_succ_p (bb1)
1555 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1556 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1557 return (single_succ_p (bb2)
1558 && (single_succ_edge (bb2)->flags
1559 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1560 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1561
1562 /* Match conditional jumps - this may get tricky when fallthru and branch
1563 edges are crossed. */
1564 if (EDGE_COUNT (bb1->succs) == 2
1565 && any_condjump_p (BB_END (bb1))
1566 && onlyjump_p (BB_END (bb1)))
1567 {
1568 edge b1, f1, b2, f2;
1569 bool reverse, match;
1570 rtx set1, set2, cond1, cond2;
1571 enum rtx_code code1, code2;
1572
1573 if (EDGE_COUNT (bb2->succs) != 2
1574 || !any_condjump_p (BB_END (bb2))
1575 || !onlyjump_p (BB_END (bb2)))
1576 return false;
1577
1578 b1 = BRANCH_EDGE (bb1);
1579 b2 = BRANCH_EDGE (bb2);
1580 f1 = FALLTHRU_EDGE (bb1);
1581 f2 = FALLTHRU_EDGE (bb2);
1582
1583 /* Get around possible forwarders on fallthru edges. Other cases
1584 should be optimized out already. */
1585 if (FORWARDER_BLOCK_P (f1->dest))
1586 f1 = single_succ_edge (f1->dest);
1587
1588 if (FORWARDER_BLOCK_P (f2->dest))
1589 f2 = single_succ_edge (f2->dest);
1590
1591 /* To simplify use of this function, return false if there are
1592 unneeded forwarder blocks. These will get eliminated later
1593 during cleanup_cfg. */
1594 if (FORWARDER_BLOCK_P (f1->dest)
1595 || FORWARDER_BLOCK_P (f2->dest)
1596 || FORWARDER_BLOCK_P (b1->dest)
1597 || FORWARDER_BLOCK_P (b2->dest))
1598 return false;
1599
1600 if (f1->dest == f2->dest && b1->dest == b2->dest)
1601 reverse = false;
1602 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1603 reverse = true;
1604 else
1605 return false;
1606
1607 set1 = pc_set (BB_END (bb1));
1608 set2 = pc_set (BB_END (bb2));
1609 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1610 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1611 reverse = !reverse;
1612
1613 cond1 = XEXP (SET_SRC (set1), 0);
1614 cond2 = XEXP (SET_SRC (set2), 0);
1615 code1 = GET_CODE (cond1);
1616 if (reverse)
1617 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1618 else
1619 code2 = GET_CODE (cond2);
1620
1621 if (code2 == UNKNOWN)
1622 return false;
1623
1624 /* Verify codes and operands match. */
1625 match = ((code1 == code2
1626 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1627 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1628 || (code1 == swap_condition (code2)
1629 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1630 XEXP (cond2, 0))
1631 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1632 XEXP (cond2, 1))));
1633
1634 /* If we return true, we will join the blocks. Which means that
1635 we will only have one branch prediction bit to work with. Thus
1636 we require the existing branches to have probabilities that are
1637 roughly similar. */
1638 if (match
1639 && optimize_bb_for_speed_p (bb1)
1640 && optimize_bb_for_speed_p (bb2))
1641 {
1642 int prob2;
1643
1644 if (b1->dest == b2->dest)
1645 prob2 = b2->probability;
1646 else
1647 /* Do not use f2 probability as f2 may be forwarded. */
1648 prob2 = REG_BR_PROB_BASE - b2->probability;
1649
1650 /* Fail if the difference in probabilities is greater than 50%.
1651 This rules out two well-predicted branches with opposite
1652 outcomes. */
1653 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1654 {
1655 if (dump_file)
1656 fprintf (dump_file,
1657 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1658 bb1->index, bb2->index, b1->probability, prob2);
1659
1660 return false;
1661 }
1662 }
1663
1664 if (dump_file && match)
1665 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1666 bb1->index, bb2->index);
1667
1668 return match;
1669 }
1670
1671 /* Generic case - we are seeing a computed jump, table jump or trapping
1672 instruction. */
1673
1674 /* Check whether there are tablejumps in the end of BB1 and BB2.
1675 Return true if they are identical. */
1676 {
1677 rtx label1, label2;
1678 rtx table1, table2;
1679
1680 if (tablejump_p (BB_END (bb1), &label1, &table1)
1681 && tablejump_p (BB_END (bb2), &label2, &table2)
1682 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1683 {
1684 /* The labels should never be the same rtx. If they really are same
1685 the jump tables are same too. So disable crossjumping of blocks BB1
1686 and BB2 because when deleting the common insns in the end of BB1
1687 by delete_basic_block () the jump table would be deleted too. */
1688 /* If LABEL2 is referenced in BB1->END do not do anything
1689 because we would loose information when replacing
1690 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1691 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1692 {
1693 /* Set IDENTICAL to true when the tables are identical. */
1694 bool identical = false;
1695 rtx p1, p2;
1696
1697 p1 = PATTERN (table1);
1698 p2 = PATTERN (table2);
1699 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1700 {
1701 identical = true;
1702 }
1703 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1704 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1705 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1706 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1707 {
1708 int i;
1709
1710 identical = true;
1711 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1712 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1713 identical = false;
1714 }
1715
1716 if (identical)
1717 {
1718 replace_label_data rr;
1719 bool match;
1720
1721 /* Temporarily replace references to LABEL1 with LABEL2
1722 in BB1->END so that we could compare the instructions. */
1723 rr.r1 = label1;
1724 rr.r2 = label2;
1725 rr.update_label_nuses = false;
1726 for_each_rtx (&SET_BB_END (bb1), replace_label, &rr);
1727
1728 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1729 == dir_both);
1730 if (dump_file && match)
1731 fprintf (dump_file,
1732 "Tablejumps in bb %i and %i match.\n",
1733 bb1->index, bb2->index);
1734
1735 /* Set the original label in BB1->END because when deleting
1736 a block whose end is a tablejump, the tablejump referenced
1737 from the instruction is deleted too. */
1738 rr.r1 = label2;
1739 rr.r2 = label1;
1740 for_each_rtx (&SET_BB_END (bb1), replace_label, &rr);
1741
1742 return match;
1743 }
1744 }
1745 return false;
1746 }
1747 }
1748
1749 /* Find the last non-debug non-note instruction in each bb, except
1750 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1751 handles that case specially. old_insns_match_p does not handle
1752 other types of instruction notes. */
1753 rtx last1 = BB_END (bb1);
1754 rtx last2 = BB_END (bb2);
1755 while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
1756 (DEBUG_INSN_P (last1) || NOTE_P (last1)))
1757 last1 = PREV_INSN (last1);
1758 while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
1759 (DEBUG_INSN_P (last2) || NOTE_P (last2)))
1760 last2 = PREV_INSN (last2);
1761 gcc_assert (last1 && last2);
1762
1763 /* First ensure that the instructions match. There may be many outgoing
1764 edges so this test is generally cheaper. */
1765 if (old_insns_match_p (mode, last1, last2) != dir_both)
1766 return false;
1767
1768 /* Search the outgoing edges, ensure that the counts do match, find possible
1769 fallthru and exception handling edges since these needs more
1770 validation. */
1771 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1772 return false;
1773
1774 bool nonfakeedges = false;
1775 FOR_EACH_EDGE (e1, ei, bb1->succs)
1776 {
1777 e2 = EDGE_SUCC (bb2, ei.index);
1778
1779 if ((e1->flags & EDGE_FAKE) == 0)
1780 nonfakeedges = true;
1781
1782 if (e1->flags & EDGE_EH)
1783 nehedges1++;
1784
1785 if (e2->flags & EDGE_EH)
1786 nehedges2++;
1787
1788 if (e1->flags & EDGE_FALLTHRU)
1789 fallthru1 = e1;
1790 if (e2->flags & EDGE_FALLTHRU)
1791 fallthru2 = e2;
1792 }
1793
1794 /* If number of edges of various types does not match, fail. */
1795 if (nehedges1 != nehedges2
1796 || (fallthru1 != 0) != (fallthru2 != 0))
1797 return false;
1798
1799 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1800 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1801 attempt to optimize, as the two basic blocks might have different
1802 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1803 traps there should be REG_ARG_SIZE notes, they could be missing
1804 for __builtin_unreachable () uses though. */
1805 if (!nonfakeedges
1806 && !ACCUMULATE_OUTGOING_ARGS
1807 && (!INSN_P (last1)
1808 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1809 return false;
1810
1811 /* fallthru edges must be forwarded to the same destination. */
1812 if (fallthru1)
1813 {
1814 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1815 ? single_succ (fallthru1->dest): fallthru1->dest);
1816 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1817 ? single_succ (fallthru2->dest): fallthru2->dest);
1818
1819 if (d1 != d2)
1820 return false;
1821 }
1822
1823 /* Ensure the same EH region. */
1824 {
1825 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1826 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1827
1828 if (!n1 && n2)
1829 return false;
1830
1831 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1832 return false;
1833 }
1834
1835 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1836 version of sequence abstraction. */
1837 FOR_EACH_EDGE (e1, ei, bb2->succs)
1838 {
1839 edge e2;
1840 edge_iterator ei;
1841 basic_block d1 = e1->dest;
1842
1843 if (FORWARDER_BLOCK_P (d1))
1844 d1 = EDGE_SUCC (d1, 0)->dest;
1845
1846 FOR_EACH_EDGE (e2, ei, bb1->succs)
1847 {
1848 basic_block d2 = e2->dest;
1849 if (FORWARDER_BLOCK_P (d2))
1850 d2 = EDGE_SUCC (d2, 0)->dest;
1851 if (d1 == d2)
1852 break;
1853 }
1854
1855 if (!e2)
1856 return false;
1857 }
1858
1859 return true;
1860 }
1861
1862 /* Returns true if BB basic block has a preserve label. */
1863
1864 static bool
1865 block_has_preserve_label (basic_block bb)
1866 {
1867 return (bb
1868 && block_label (bb)
1869 && LABEL_PRESERVE_P (block_label (bb)));
1870 }
1871
1872 /* E1 and E2 are edges with the same destination block. Search their
1873 predecessors for common code. If found, redirect control flow from
1874 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1875 or the other way around (dir_backward). DIR specifies the allowed
1876 replacement direction. */
1877
1878 static bool
1879 try_crossjump_to_edge (int mode, edge e1, edge e2,
1880 enum replace_direction dir)
1881 {
1882 int nmatch;
1883 basic_block src1 = e1->src, src2 = e2->src;
1884 basic_block redirect_to, redirect_from, to_remove;
1885 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1886 rtx newpos1, newpos2;
1887 edge s;
1888 edge_iterator ei;
1889
1890 newpos1 = newpos2 = NULL_RTX;
1891
1892 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1893 to try this optimization.
1894
1895 Basic block partitioning may result in some jumps that appear to
1896 be optimizable (or blocks that appear to be mergeable), but which really
1897 must be left untouched (they are required to make it safely across
1898 partition boundaries). See the comments at the top of
1899 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1900
1901 if (crtl->has_bb_partition && reload_completed)
1902 return false;
1903
1904 /* Search backward through forwarder blocks. We don't need to worry
1905 about multiple entry or chained forwarders, as they will be optimized
1906 away. We do this to look past the unconditional jump following a
1907 conditional jump that is required due to the current CFG shape. */
1908 if (single_pred_p (src1)
1909 && FORWARDER_BLOCK_P (src1))
1910 e1 = single_pred_edge (src1), src1 = e1->src;
1911
1912 if (single_pred_p (src2)
1913 && FORWARDER_BLOCK_P (src2))
1914 e2 = single_pred_edge (src2), src2 = e2->src;
1915
1916 /* Nothing to do if we reach ENTRY, or a common source block. */
1917 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1918 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1919 return false;
1920 if (src1 == src2)
1921 return false;
1922
1923 /* Seeing more than 1 forwarder blocks would confuse us later... */
1924 if (FORWARDER_BLOCK_P (e1->dest)
1925 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1926 return false;
1927
1928 if (FORWARDER_BLOCK_P (e2->dest)
1929 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1930 return false;
1931
1932 /* Likewise with dead code (possibly newly created by the other optimizations
1933 of cfg_cleanup). */
1934 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1935 return false;
1936
1937 /* Look for the common insn sequence, part the first ... */
1938 if (!outgoing_edges_match (mode, src1, src2))
1939 return false;
1940
1941 /* ... and part the second. */
1942 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1943
1944 osrc1 = src1;
1945 osrc2 = src2;
1946 if (newpos1 != NULL_RTX)
1947 src1 = BLOCK_FOR_INSN (newpos1);
1948 if (newpos2 != NULL_RTX)
1949 src2 = BLOCK_FOR_INSN (newpos2);
1950
1951 if (dir == dir_backward)
1952 {
1953 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1954 SWAP (basic_block, osrc1, osrc2);
1955 SWAP (basic_block, src1, src2);
1956 SWAP (edge, e1, e2);
1957 SWAP (rtx, newpos1, newpos2);
1958 #undef SWAP
1959 }
1960
1961 /* Don't proceed with the crossjump unless we found a sufficient number
1962 of matching instructions or the 'from' block was totally matched
1963 (such that its predecessors will hopefully be redirected and the
1964 block removed). */
1965 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1966 && (newpos1 != BB_HEAD (src1)))
1967 return false;
1968
1969 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1970 if (block_has_preserve_label (e1->dest)
1971 && (e1->flags & EDGE_ABNORMAL))
1972 return false;
1973
1974 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1975 will be deleted.
1976 If we have tablejumps in the end of SRC1 and SRC2
1977 they have been already compared for equivalence in outgoing_edges_match ()
1978 so replace the references to TABLE1 by references to TABLE2. */
1979 {
1980 rtx label1, label2;
1981 rtx table1, table2;
1982
1983 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1984 && tablejump_p (BB_END (osrc2), &label2, &table2)
1985 && label1 != label2)
1986 {
1987 replace_label_data rr;
1988 rtx insn;
1989
1990 /* Replace references to LABEL1 with LABEL2. */
1991 rr.r1 = label1;
1992 rr.r2 = label2;
1993 rr.update_label_nuses = true;
1994 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1995 {
1996 /* Do not replace the label in SRC1->END because when deleting
1997 a block whose end is a tablejump, the tablejump referenced
1998 from the instruction is deleted too. */
1999 if (insn != BB_END (osrc1))
2000 for_each_rtx (&insn, replace_label, &rr);
2001 }
2002 }
2003 }
2004
2005 /* Avoid splitting if possible. We must always split when SRC2 has
2006 EH predecessor edges, or we may end up with basic blocks with both
2007 normal and EH predecessor edges. */
2008 if (newpos2 == BB_HEAD (src2)
2009 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
2010 redirect_to = src2;
2011 else
2012 {
2013 if (newpos2 == BB_HEAD (src2))
2014 {
2015 /* Skip possible basic block header. */
2016 if (LABEL_P (newpos2))
2017 newpos2 = NEXT_INSN (newpos2);
2018 while (DEBUG_INSN_P (newpos2))
2019 newpos2 = NEXT_INSN (newpos2);
2020 if (NOTE_P (newpos2))
2021 newpos2 = NEXT_INSN (newpos2);
2022 while (DEBUG_INSN_P (newpos2))
2023 newpos2 = NEXT_INSN (newpos2);
2024 }
2025
2026 if (dump_file)
2027 fprintf (dump_file, "Splitting bb %i before %i insns\n",
2028 src2->index, nmatch);
2029 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
2030 }
2031
2032 if (dump_file)
2033 fprintf (dump_file,
2034 "Cross jumping from bb %i to bb %i; %i common insns\n",
2035 src1->index, src2->index, nmatch);
2036
2037 /* We may have some registers visible through the block. */
2038 df_set_bb_dirty (redirect_to);
2039
2040 if (osrc2 == src2)
2041 redirect_edges_to = redirect_to;
2042 else
2043 redirect_edges_to = osrc2;
2044
2045 /* Recompute the frequencies and counts of outgoing edges. */
2046 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
2047 {
2048 edge s2;
2049 edge_iterator ei;
2050 basic_block d = s->dest;
2051
2052 if (FORWARDER_BLOCK_P (d))
2053 d = single_succ (d);
2054
2055 FOR_EACH_EDGE (s2, ei, src1->succs)
2056 {
2057 basic_block d2 = s2->dest;
2058 if (FORWARDER_BLOCK_P (d2))
2059 d2 = single_succ (d2);
2060 if (d == d2)
2061 break;
2062 }
2063
2064 s->count += s2->count;
2065
2066 /* Take care to update possible forwarder blocks. We verified
2067 that there is no more than one in the chain, so we can't run
2068 into infinite loop. */
2069 if (FORWARDER_BLOCK_P (s->dest))
2070 {
2071 single_succ_edge (s->dest)->count += s2->count;
2072 s->dest->count += s2->count;
2073 s->dest->frequency += EDGE_FREQUENCY (s);
2074 }
2075
2076 if (FORWARDER_BLOCK_P (s2->dest))
2077 {
2078 single_succ_edge (s2->dest)->count -= s2->count;
2079 if (single_succ_edge (s2->dest)->count < 0)
2080 single_succ_edge (s2->dest)->count = 0;
2081 s2->dest->count -= s2->count;
2082 s2->dest->frequency -= EDGE_FREQUENCY (s);
2083 if (s2->dest->frequency < 0)
2084 s2->dest->frequency = 0;
2085 if (s2->dest->count < 0)
2086 s2->dest->count = 0;
2087 }
2088
2089 if (!redirect_edges_to->frequency && !src1->frequency)
2090 s->probability = (s->probability + s2->probability) / 2;
2091 else
2092 s->probability
2093 = ((s->probability * redirect_edges_to->frequency +
2094 s2->probability * src1->frequency)
2095 / (redirect_edges_to->frequency + src1->frequency));
2096 }
2097
2098 /* Adjust count and frequency for the block. An earlier jump
2099 threading pass may have left the profile in an inconsistent
2100 state (see update_bb_profile_for_threading) so we must be
2101 prepared for overflows. */
2102 tmp = redirect_to;
2103 do
2104 {
2105 tmp->count += src1->count;
2106 tmp->frequency += src1->frequency;
2107 if (tmp->frequency > BB_FREQ_MAX)
2108 tmp->frequency = BB_FREQ_MAX;
2109 if (tmp == redirect_edges_to)
2110 break;
2111 tmp = find_fallthru_edge (tmp->succs)->dest;
2112 }
2113 while (true);
2114 update_br_prob_note (redirect_edges_to);
2115
2116 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2117
2118 /* Skip possible basic block header. */
2119 if (LABEL_P (newpos1))
2120 newpos1 = NEXT_INSN (newpos1);
2121
2122 while (DEBUG_INSN_P (newpos1))
2123 newpos1 = NEXT_INSN (newpos1);
2124
2125 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2126 newpos1 = NEXT_INSN (newpos1);
2127
2128 while (DEBUG_INSN_P (newpos1))
2129 newpos1 = NEXT_INSN (newpos1);
2130
2131 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2132 to_remove = single_succ (redirect_from);
2133
2134 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2135 delete_basic_block (to_remove);
2136
2137 update_forwarder_flag (redirect_from);
2138 if (redirect_to != src2)
2139 update_forwarder_flag (src2);
2140
2141 return true;
2142 }
2143
2144 /* Search the predecessors of BB for common insn sequences. When found,
2145 share code between them by redirecting control flow. Return true if
2146 any changes made. */
2147
2148 static bool
2149 try_crossjump_bb (int mode, basic_block bb)
2150 {
2151 edge e, e2, fallthru;
2152 bool changed;
2153 unsigned max, ix, ix2;
2154
2155 /* Nothing to do if there is not at least two incoming edges. */
2156 if (EDGE_COUNT (bb->preds) < 2)
2157 return false;
2158
2159 /* Don't crossjump if this block ends in a computed jump,
2160 unless we are optimizing for size. */
2161 if (optimize_bb_for_size_p (bb)
2162 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2163 && computed_jump_p (BB_END (bb)))
2164 return false;
2165
2166 /* If we are partitioning hot/cold basic blocks, we don't want to
2167 mess up unconditional or indirect jumps that cross between hot
2168 and cold sections.
2169
2170 Basic block partitioning may result in some jumps that appear to
2171 be optimizable (or blocks that appear to be mergeable), but which really
2172 must be left untouched (they are required to make it safely across
2173 partition boundaries). See the comments at the top of
2174 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2175
2176 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2177 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2178 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2179 return false;
2180
2181 /* It is always cheapest to redirect a block that ends in a branch to
2182 a block that falls through into BB, as that adds no branches to the
2183 program. We'll try that combination first. */
2184 fallthru = NULL;
2185 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2186
2187 if (EDGE_COUNT (bb->preds) > max)
2188 return false;
2189
2190 fallthru = find_fallthru_edge (bb->preds);
2191
2192 changed = false;
2193 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2194 {
2195 e = EDGE_PRED (bb, ix);
2196 ix++;
2197
2198 /* As noted above, first try with the fallthru predecessor (or, a
2199 fallthru predecessor if we are in cfglayout mode). */
2200 if (fallthru)
2201 {
2202 /* Don't combine the fallthru edge into anything else.
2203 If there is a match, we'll do it the other way around. */
2204 if (e == fallthru)
2205 continue;
2206 /* If nothing changed since the last attempt, there is nothing
2207 we can do. */
2208 if (!first_pass
2209 && !((e->src->flags & BB_MODIFIED)
2210 || (fallthru->src->flags & BB_MODIFIED)))
2211 continue;
2212
2213 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2214 {
2215 changed = true;
2216 ix = 0;
2217 continue;
2218 }
2219 }
2220
2221 /* Non-obvious work limiting check: Recognize that we're going
2222 to call try_crossjump_bb on every basic block. So if we have
2223 two blocks with lots of outgoing edges (a switch) and they
2224 share lots of common destinations, then we would do the
2225 cross-jump check once for each common destination.
2226
2227 Now, if the blocks actually are cross-jump candidates, then
2228 all of their destinations will be shared. Which means that
2229 we only need check them for cross-jump candidacy once. We
2230 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2231 choosing to do the check from the block for which the edge
2232 in question is the first successor of A. */
2233 if (EDGE_SUCC (e->src, 0) != e)
2234 continue;
2235
2236 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2237 {
2238 e2 = EDGE_PRED (bb, ix2);
2239
2240 if (e2 == e)
2241 continue;
2242
2243 /* We've already checked the fallthru edge above. */
2244 if (e2 == fallthru)
2245 continue;
2246
2247 /* The "first successor" check above only prevents multiple
2248 checks of crossjump(A,B). In order to prevent redundant
2249 checks of crossjump(B,A), require that A be the block
2250 with the lowest index. */
2251 if (e->src->index > e2->src->index)
2252 continue;
2253
2254 /* If nothing changed since the last attempt, there is nothing
2255 we can do. */
2256 if (!first_pass
2257 && !((e->src->flags & BB_MODIFIED)
2258 || (e2->src->flags & BB_MODIFIED)))
2259 continue;
2260
2261 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2262 direction. */
2263 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2264 {
2265 changed = true;
2266 ix = 0;
2267 break;
2268 }
2269 }
2270 }
2271
2272 if (changed)
2273 crossjumps_occured = true;
2274
2275 return changed;
2276 }
2277
2278 /* Search the successors of BB for common insn sequences. When found,
2279 share code between them by moving it across the basic block
2280 boundary. Return true if any changes made. */
2281
2282 static bool
2283 try_head_merge_bb (basic_block bb)
2284 {
2285 basic_block final_dest_bb = NULL;
2286 int max_match = INT_MAX;
2287 edge e0;
2288 rtx *headptr, *currptr, *nextptr;
2289 bool changed, moveall;
2290 unsigned ix;
2291 rtx e0_last_head, cond, move_before;
2292 unsigned nedges = EDGE_COUNT (bb->succs);
2293 rtx jump = BB_END (bb);
2294 regset live, live_union;
2295
2296 /* Nothing to do if there is not at least two outgoing edges. */
2297 if (nedges < 2)
2298 return false;
2299
2300 /* Don't crossjump if this block ends in a computed jump,
2301 unless we are optimizing for size. */
2302 if (optimize_bb_for_size_p (bb)
2303 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2304 && computed_jump_p (BB_END (bb)))
2305 return false;
2306
2307 cond = get_condition (jump, &move_before, true, false);
2308 if (cond == NULL_RTX)
2309 {
2310 #ifdef HAVE_cc0
2311 if (reg_mentioned_p (cc0_rtx, jump))
2312 move_before = prev_nonnote_nondebug_insn (jump);
2313 else
2314 #endif
2315 move_before = jump;
2316 }
2317
2318 for (ix = 0; ix < nedges; ix++)
2319 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
2320 return false;
2321
2322 for (ix = 0; ix < nedges; ix++)
2323 {
2324 edge e = EDGE_SUCC (bb, ix);
2325 basic_block other_bb = e->dest;
2326
2327 if (df_get_bb_dirty (other_bb))
2328 {
2329 block_was_dirty = true;
2330 return false;
2331 }
2332
2333 if (e->flags & EDGE_ABNORMAL)
2334 return false;
2335
2336 /* Normally, all destination blocks must only be reachable from this
2337 block, i.e. they must have one incoming edge.
2338
2339 There is one special case we can handle, that of multiple consecutive
2340 jumps where the first jumps to one of the targets of the second jump.
2341 This happens frequently in switch statements for default labels.
2342 The structure is as follows:
2343 FINAL_DEST_BB
2344 ....
2345 if (cond) jump A;
2346 fall through
2347 BB
2348 jump with targets A, B, C, D...
2349 A
2350 has two incoming edges, from FINAL_DEST_BB and BB
2351
2352 In this case, we can try to move the insns through BB and into
2353 FINAL_DEST_BB. */
2354 if (EDGE_COUNT (other_bb->preds) != 1)
2355 {
2356 edge incoming_edge, incoming_bb_other_edge;
2357 edge_iterator ei;
2358
2359 if (final_dest_bb != NULL
2360 || EDGE_COUNT (other_bb->preds) != 2)
2361 return false;
2362
2363 /* We must be able to move the insns across the whole block. */
2364 move_before = BB_HEAD (bb);
2365 while (!NONDEBUG_INSN_P (move_before))
2366 move_before = NEXT_INSN (move_before);
2367
2368 if (EDGE_COUNT (bb->preds) != 1)
2369 return false;
2370 incoming_edge = EDGE_PRED (bb, 0);
2371 final_dest_bb = incoming_edge->src;
2372 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2373 return false;
2374 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2375 if (incoming_bb_other_edge != incoming_edge)
2376 break;
2377 if (incoming_bb_other_edge->dest != other_bb)
2378 return false;
2379 }
2380 }
2381
2382 e0 = EDGE_SUCC (bb, 0);
2383 e0_last_head = NULL_RTX;
2384 changed = false;
2385
2386 for (ix = 1; ix < nedges; ix++)
2387 {
2388 edge e = EDGE_SUCC (bb, ix);
2389 rtx e0_last, e_last;
2390 int nmatch;
2391
2392 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2393 &e0_last, &e_last, 0);
2394 if (nmatch == 0)
2395 return false;
2396
2397 if (nmatch < max_match)
2398 {
2399 max_match = nmatch;
2400 e0_last_head = e0_last;
2401 }
2402 }
2403
2404 /* If we matched an entire block, we probably have to avoid moving the
2405 last insn. */
2406 if (max_match > 0
2407 && e0_last_head == BB_END (e0->dest)
2408 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2409 || control_flow_insn_p (e0_last_head)))
2410 {
2411 max_match--;
2412 if (max_match == 0)
2413 return false;
2414 do
2415 e0_last_head = prev_real_insn (e0_last_head);
2416 while (DEBUG_INSN_P (e0_last_head));
2417 }
2418
2419 if (max_match == 0)
2420 return false;
2421
2422 /* We must find a union of the live registers at each of the end points. */
2423 live = BITMAP_ALLOC (NULL);
2424 live_union = BITMAP_ALLOC (NULL);
2425
2426 currptr = XNEWVEC (rtx, nedges);
2427 headptr = XNEWVEC (rtx, nedges);
2428 nextptr = XNEWVEC (rtx, nedges);
2429
2430 for (ix = 0; ix < nedges; ix++)
2431 {
2432 int j;
2433 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2434 rtx head = BB_HEAD (merge_bb);
2435
2436 while (!NONDEBUG_INSN_P (head))
2437 head = NEXT_INSN (head);
2438 headptr[ix] = head;
2439 currptr[ix] = head;
2440
2441 /* Compute the end point and live information */
2442 for (j = 1; j < max_match; j++)
2443 do
2444 head = NEXT_INSN (head);
2445 while (!NONDEBUG_INSN_P (head));
2446 simulate_backwards_to_point (merge_bb, live, head);
2447 IOR_REG_SET (live_union, live);
2448 }
2449
2450 /* If we're moving across two blocks, verify the validity of the
2451 first move, then adjust the target and let the loop below deal
2452 with the final move. */
2453 if (final_dest_bb != NULL)
2454 {
2455 rtx move_upto;
2456
2457 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2458 jump, e0->dest, live_union,
2459 NULL, &move_upto);
2460 if (!moveall)
2461 {
2462 if (move_upto == NULL_RTX)
2463 goto out;
2464
2465 while (e0_last_head != move_upto)
2466 {
2467 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2468 live_union);
2469 e0_last_head = PREV_INSN (e0_last_head);
2470 }
2471 }
2472 if (e0_last_head == NULL_RTX)
2473 goto out;
2474
2475 jump = BB_END (final_dest_bb);
2476 cond = get_condition (jump, &move_before, true, false);
2477 if (cond == NULL_RTX)
2478 {
2479 #ifdef HAVE_cc0
2480 if (reg_mentioned_p (cc0_rtx, jump))
2481 move_before = prev_nonnote_nondebug_insn (jump);
2482 else
2483 #endif
2484 move_before = jump;
2485 }
2486 }
2487
2488 do
2489 {
2490 rtx move_upto;
2491 moveall = can_move_insns_across (currptr[0], e0_last_head,
2492 move_before, jump, e0->dest, live_union,
2493 NULL, &move_upto);
2494 if (!moveall && move_upto == NULL_RTX)
2495 {
2496 if (jump == move_before)
2497 break;
2498
2499 /* Try again, using a different insertion point. */
2500 move_before = jump;
2501
2502 #ifdef HAVE_cc0
2503 /* Don't try moving before a cc0 user, as that may invalidate
2504 the cc0. */
2505 if (reg_mentioned_p (cc0_rtx, jump))
2506 break;
2507 #endif
2508
2509 continue;
2510 }
2511
2512 if (final_dest_bb && !moveall)
2513 /* We haven't checked whether a partial move would be OK for the first
2514 move, so we have to fail this case. */
2515 break;
2516
2517 changed = true;
2518 for (;;)
2519 {
2520 if (currptr[0] == move_upto)
2521 break;
2522 for (ix = 0; ix < nedges; ix++)
2523 {
2524 rtx curr = currptr[ix];
2525 do
2526 curr = NEXT_INSN (curr);
2527 while (!NONDEBUG_INSN_P (curr));
2528 currptr[ix] = curr;
2529 }
2530 }
2531
2532 /* If we can't currently move all of the identical insns, remember
2533 each insn after the range that we'll merge. */
2534 if (!moveall)
2535 for (ix = 0; ix < nedges; ix++)
2536 {
2537 rtx curr = currptr[ix];
2538 do
2539 curr = NEXT_INSN (curr);
2540 while (!NONDEBUG_INSN_P (curr));
2541 nextptr[ix] = curr;
2542 }
2543
2544 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2545 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2546 if (final_dest_bb != NULL)
2547 df_set_bb_dirty (final_dest_bb);
2548 df_set_bb_dirty (bb);
2549 for (ix = 1; ix < nedges; ix++)
2550 {
2551 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2552 delete_insn_chain (headptr[ix], currptr[ix], false);
2553 }
2554 if (!moveall)
2555 {
2556 if (jump == move_before)
2557 break;
2558
2559 /* For the unmerged insns, try a different insertion point. */
2560 move_before = jump;
2561
2562 #ifdef HAVE_cc0
2563 /* Don't try moving before a cc0 user, as that may invalidate
2564 the cc0. */
2565 if (reg_mentioned_p (cc0_rtx, jump))
2566 break;
2567 #endif
2568
2569 for (ix = 0; ix < nedges; ix++)
2570 currptr[ix] = headptr[ix] = nextptr[ix];
2571 }
2572 }
2573 while (!moveall);
2574
2575 out:
2576 free (currptr);
2577 free (headptr);
2578 free (nextptr);
2579
2580 crossjumps_occured |= changed;
2581
2582 return changed;
2583 }
2584
2585 /* Return true if BB contains just bb note, or bb note followed
2586 by only DEBUG_INSNs. */
2587
2588 static bool
2589 trivially_empty_bb_p (basic_block bb)
2590 {
2591 rtx insn = BB_END (bb);
2592
2593 while (1)
2594 {
2595 if (insn == BB_HEAD (bb))
2596 return true;
2597 if (!DEBUG_INSN_P (insn))
2598 return false;
2599 insn = PREV_INSN (insn);
2600 }
2601 }
2602
2603 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2604 instructions etc. Return nonzero if changes were made. */
2605
2606 static bool
2607 try_optimize_cfg (int mode)
2608 {
2609 bool changed_overall = false;
2610 bool changed;
2611 int iterations = 0;
2612 basic_block bb, b, next;
2613
2614 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2615 clear_bb_flags ();
2616
2617 crossjumps_occured = false;
2618
2619 FOR_EACH_BB_FN (bb, cfun)
2620 update_forwarder_flag (bb);
2621
2622 if (! targetm.cannot_modify_jumps_p ())
2623 {
2624 first_pass = true;
2625 /* Attempt to merge blocks as made possible by edge removal. If
2626 a block has only one successor, and the successor has only
2627 one predecessor, they may be combined. */
2628 do
2629 {
2630 block_was_dirty = false;
2631 changed = false;
2632 iterations++;
2633
2634 if (dump_file)
2635 fprintf (dump_file,
2636 "\n\ntry_optimize_cfg iteration %i\n\n",
2637 iterations);
2638
2639 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2640 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
2641 {
2642 basic_block c;
2643 edge s;
2644 bool changed_here = false;
2645
2646 /* Delete trivially dead basic blocks. This is either
2647 blocks with no predecessors, or empty blocks with no
2648 successors. However if the empty block with no
2649 successors is the successor of the ENTRY_BLOCK, it is
2650 kept. This ensures that the ENTRY_BLOCK will have a
2651 successor which is a precondition for many RTL
2652 passes. Empty blocks may result from expanding
2653 __builtin_unreachable (). */
2654 if (EDGE_COUNT (b->preds) == 0
2655 || (EDGE_COUNT (b->succs) == 0
2656 && trivially_empty_bb_p (b)
2657 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2658 != b))
2659 {
2660 c = b->prev_bb;
2661 if (EDGE_COUNT (b->preds) > 0)
2662 {
2663 edge e;
2664 edge_iterator ei;
2665
2666 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2667 {
2668 if (BB_FOOTER (b)
2669 && BARRIER_P (BB_FOOTER (b)))
2670 FOR_EACH_EDGE (e, ei, b->preds)
2671 if ((e->flags & EDGE_FALLTHRU)
2672 && BB_FOOTER (e->src) == NULL)
2673 {
2674 if (BB_FOOTER (b))
2675 {
2676 SET_BB_FOOTER (e->src) = BB_FOOTER (b);
2677 SET_BB_FOOTER (b) = NULL;
2678 }
2679 else
2680 {
2681 start_sequence ();
2682 SET_BB_FOOTER (e->src) = emit_barrier ();
2683 end_sequence ();
2684 }
2685 }
2686 }
2687 else
2688 {
2689 rtx last = get_last_bb_insn (b);
2690 if (last && BARRIER_P (last))
2691 FOR_EACH_EDGE (e, ei, b->preds)
2692 if ((e->flags & EDGE_FALLTHRU))
2693 emit_barrier_after (BB_END (e->src));
2694 }
2695 }
2696 delete_basic_block (b);
2697 changed = true;
2698 /* Avoid trying to remove the exit block. */
2699 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
2700 continue;
2701 }
2702
2703 /* Remove code labels no longer used. */
2704 if (single_pred_p (b)
2705 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2706 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2707 && LABEL_P (BB_HEAD (b))
2708 /* If the previous block ends with a branch to this
2709 block, we can't delete the label. Normally this
2710 is a condjump that is yet to be simplified, but
2711 if CASE_DROPS_THRU, this can be a tablejump with
2712 some element going to the same place as the
2713 default (fallthru). */
2714 && (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2715 || !JUMP_P (BB_END (single_pred (b)))
2716 || ! label_is_jump_target_p (BB_HEAD (b),
2717 BB_END (single_pred (b)))))
2718 {
2719 delete_insn (BB_HEAD (b));
2720 if (dump_file)
2721 fprintf (dump_file, "Deleted label in block %i.\n",
2722 b->index);
2723 }
2724
2725 /* If we fall through an empty block, we can remove it. */
2726 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
2727 && single_pred_p (b)
2728 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2729 && !LABEL_P (BB_HEAD (b))
2730 && FORWARDER_BLOCK_P (b)
2731 /* Note that forwarder_block_p true ensures that
2732 there is a successor for this block. */
2733 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2734 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
2735 {
2736 if (dump_file)
2737 fprintf (dump_file,
2738 "Deleting fallthru block %i.\n",
2739 b->index);
2740
2741 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2742 ? b->next_bb : b->prev_bb);
2743 redirect_edge_succ_nodup (single_pred_edge (b),
2744 single_succ (b));
2745 delete_basic_block (b);
2746 changed = true;
2747 b = c;
2748 continue;
2749 }
2750
2751 /* Merge B with its single successor, if any. */
2752 if (single_succ_p (b)
2753 && (s = single_succ_edge (b))
2754 && !(s->flags & EDGE_COMPLEX)
2755 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2756 && single_pred_p (c)
2757 && b != c)
2758 {
2759 /* When not in cfg_layout mode use code aware of reordering
2760 INSN. This code possibly creates new basic blocks so it
2761 does not fit merge_blocks interface and is kept here in
2762 hope that it will become useless once more of compiler
2763 is transformed to use cfg_layout mode. */
2764
2765 if ((mode & CLEANUP_CFGLAYOUT)
2766 && can_merge_blocks_p (b, c))
2767 {
2768 merge_blocks (b, c);
2769 update_forwarder_flag (b);
2770 changed_here = true;
2771 }
2772 else if (!(mode & CLEANUP_CFGLAYOUT)
2773 /* If the jump insn has side effects,
2774 we can't kill the edge. */
2775 && (!JUMP_P (BB_END (b))
2776 || (reload_completed
2777 ? simplejump_p (BB_END (b))
2778 : (onlyjump_p (BB_END (b))
2779 && !tablejump_p (BB_END (b),
2780 NULL, NULL))))
2781 && (next = merge_blocks_move (s, b, c, mode)))
2782 {
2783 b = next;
2784 changed_here = true;
2785 }
2786 }
2787
2788 /* Simplify branch over branch. */
2789 if ((mode & CLEANUP_EXPENSIVE)
2790 && !(mode & CLEANUP_CFGLAYOUT)
2791 && try_simplify_condjump (b))
2792 changed_here = true;
2793
2794 /* If B has a single outgoing edge, but uses a
2795 non-trivial jump instruction without side-effects, we
2796 can either delete the jump entirely, or replace it
2797 with a simple unconditional jump. */
2798 if (single_succ_p (b)
2799 && single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2800 && onlyjump_p (BB_END (b))
2801 && !CROSSING_JUMP_P (BB_END (b))
2802 && try_redirect_by_replacing_jump (single_succ_edge (b),
2803 single_succ (b),
2804 (mode & CLEANUP_CFGLAYOUT) != 0))
2805 {
2806 update_forwarder_flag (b);
2807 changed_here = true;
2808 }
2809
2810 /* Simplify branch to branch. */
2811 if (try_forward_edges (mode, b))
2812 {
2813 update_forwarder_flag (b);
2814 changed_here = true;
2815 }
2816
2817 /* Look for shared code between blocks. */
2818 if ((mode & CLEANUP_CROSSJUMP)
2819 && try_crossjump_bb (mode, b))
2820 changed_here = true;
2821
2822 if ((mode & CLEANUP_CROSSJUMP)
2823 /* This can lengthen register lifetimes. Do it only after
2824 reload. */
2825 && reload_completed
2826 && try_head_merge_bb (b))
2827 changed_here = true;
2828
2829 /* Don't get confused by the index shift caused by
2830 deleting blocks. */
2831 if (!changed_here)
2832 b = b->next_bb;
2833 else
2834 changed = true;
2835 }
2836
2837 if ((mode & CLEANUP_CROSSJUMP)
2838 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
2839 changed = true;
2840
2841 if (block_was_dirty)
2842 {
2843 /* This should only be set by head-merging. */
2844 gcc_assert (mode & CLEANUP_CROSSJUMP);
2845 df_analyze ();
2846 }
2847
2848 if (changed)
2849 {
2850 /* Edge forwarding in particular can cause hot blocks previously
2851 reached by both hot and cold blocks to become dominated only
2852 by cold blocks. This will cause the verification below to fail,
2853 and lead to now cold code in the hot section. This is not easy
2854 to detect and fix during edge forwarding, and in some cases
2855 is only visible after newly unreachable blocks are deleted,
2856 which will be done in fixup_partitions. */
2857 fixup_partitions ();
2858
2859 #ifdef ENABLE_CHECKING
2860 verify_flow_info ();
2861 #endif
2862 }
2863
2864 changed_overall |= changed;
2865 first_pass = false;
2866 }
2867 while (changed);
2868 }
2869
2870 FOR_ALL_BB_FN (b, cfun)
2871 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2872
2873 return changed_overall;
2874 }
2875 \f
2876 /* Delete all unreachable basic blocks. */
2877
2878 bool
2879 delete_unreachable_blocks (void)
2880 {
2881 bool changed = false;
2882 basic_block b, prev_bb;
2883
2884 find_unreachable_blocks ();
2885
2886 /* When we're in GIMPLE mode and there may be debug insns, we should
2887 delete blocks in reverse dominator order, so as to get a chance
2888 to substitute all released DEFs into debug stmts. If we don't
2889 have dominators information, walking blocks backward gets us a
2890 better chance of retaining most debug information than
2891 otherwise. */
2892 if (MAY_HAVE_DEBUG_INSNS && current_ir_type () == IR_GIMPLE
2893 && dom_info_available_p (CDI_DOMINATORS))
2894 {
2895 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2896 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
2897 {
2898 prev_bb = b->prev_bb;
2899
2900 if (!(b->flags & BB_REACHABLE))
2901 {
2902 /* Speed up the removal of blocks that don't dominate
2903 others. Walking backwards, this should be the common
2904 case. */
2905 if (!first_dom_son (CDI_DOMINATORS, b))
2906 delete_basic_block (b);
2907 else
2908 {
2909 vec<basic_block> h
2910 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2911
2912 while (h.length ())
2913 {
2914 b = h.pop ();
2915
2916 prev_bb = b->prev_bb;
2917
2918 gcc_assert (!(b->flags & BB_REACHABLE));
2919
2920 delete_basic_block (b);
2921 }
2922
2923 h.release ();
2924 }
2925
2926 changed = true;
2927 }
2928 }
2929 }
2930 else
2931 {
2932 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2933 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
2934 {
2935 prev_bb = b->prev_bb;
2936
2937 if (!(b->flags & BB_REACHABLE))
2938 {
2939 delete_basic_block (b);
2940 changed = true;
2941 }
2942 }
2943 }
2944
2945 if (changed)
2946 tidy_fallthru_edges ();
2947 return changed;
2948 }
2949
2950 /* Delete any jump tables never referenced. We can't delete them at the
2951 time of removing tablejump insn as they are referenced by the preceding
2952 insns computing the destination, so we delay deleting and garbagecollect
2953 them once life information is computed. */
2954 void
2955 delete_dead_jumptables (void)
2956 {
2957 basic_block bb;
2958
2959 /* A dead jump table does not belong to any basic block. Scan insns
2960 between two adjacent basic blocks. */
2961 FOR_EACH_BB_FN (bb, cfun)
2962 {
2963 rtx insn, next;
2964
2965 for (insn = NEXT_INSN (BB_END (bb));
2966 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2967 insn = next)
2968 {
2969 next = NEXT_INSN (insn);
2970 if (LABEL_P (insn)
2971 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2972 && JUMP_TABLE_DATA_P (next))
2973 {
2974 rtx label = insn, jump = next;
2975
2976 if (dump_file)
2977 fprintf (dump_file, "Dead jumptable %i removed\n",
2978 INSN_UID (insn));
2979
2980 next = NEXT_INSN (next);
2981 delete_insn (jump);
2982 delete_insn (label);
2983 }
2984 }
2985 }
2986 }
2987
2988 \f
2989 /* Tidy the CFG by deleting unreachable code and whatnot. */
2990
2991 bool
2992 cleanup_cfg (int mode)
2993 {
2994 bool changed = false;
2995
2996 /* Set the cfglayout mode flag here. We could update all the callers
2997 but that is just inconvenient, especially given that we eventually
2998 want to have cfglayout mode as the default. */
2999 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3000 mode |= CLEANUP_CFGLAYOUT;
3001
3002 timevar_push (TV_CLEANUP_CFG);
3003 if (delete_unreachable_blocks ())
3004 {
3005 changed = true;
3006 /* We've possibly created trivially dead code. Cleanup it right
3007 now to introduce more opportunities for try_optimize_cfg. */
3008 if (!(mode & (CLEANUP_NO_INSN_DEL))
3009 && !reload_completed)
3010 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3011 }
3012
3013 compact_blocks ();
3014
3015 /* To tail-merge blocks ending in the same noreturn function (e.g.
3016 a call to abort) we have to insert fake edges to exit. Do this
3017 here once. The fake edges do not interfere with any other CFG
3018 cleanups. */
3019 if (mode & CLEANUP_CROSSJUMP)
3020 add_noreturn_fake_exit_edges ();
3021
3022 if (!dbg_cnt (cfg_cleanup))
3023 return changed;
3024
3025 while (try_optimize_cfg (mode))
3026 {
3027 delete_unreachable_blocks (), changed = true;
3028 if (!(mode & CLEANUP_NO_INSN_DEL))
3029 {
3030 /* Try to remove some trivially dead insns when doing an expensive
3031 cleanup. But delete_trivially_dead_insns doesn't work after
3032 reload (it only handles pseudos) and run_fast_dce is too costly
3033 to run in every iteration.
3034
3035 For effective cross jumping, we really want to run a fast DCE to
3036 clean up any dead conditions, or they get in the way of performing
3037 useful tail merges.
3038
3039 Other transformations in cleanup_cfg are not so sensitive to dead
3040 code, so delete_trivially_dead_insns or even doing nothing at all
3041 is good enough. */
3042 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3043 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3044 break;
3045 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
3046 run_fast_dce ();
3047 }
3048 else
3049 break;
3050 }
3051
3052 if (mode & CLEANUP_CROSSJUMP)
3053 remove_fake_exit_edges ();
3054
3055 /* Don't call delete_dead_jumptables in cfglayout mode, because
3056 that function assumes that jump tables are in the insns stream.
3057 But we also don't _have_ to delete dead jumptables in cfglayout
3058 mode because we shouldn't even be looking at things that are
3059 not in a basic block. Dead jumptables are cleaned up when
3060 going out of cfglayout mode. */
3061 if (!(mode & CLEANUP_CFGLAYOUT))
3062 delete_dead_jumptables ();
3063
3064 /* ??? We probably do this way too often. */
3065 if (current_loops
3066 && (changed
3067 || (mode & CLEANUP_CFG_CHANGED)))
3068 {
3069 timevar_push (TV_REPAIR_LOOPS);
3070 /* The above doesn't preserve dominance info if available. */
3071 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3072 calculate_dominance_info (CDI_DOMINATORS);
3073 fix_loop_structure (NULL);
3074 free_dominance_info (CDI_DOMINATORS);
3075 timevar_pop (TV_REPAIR_LOOPS);
3076 }
3077
3078 timevar_pop (TV_CLEANUP_CFG);
3079
3080 return changed;
3081 }
3082 \f
3083 namespace {
3084
3085 const pass_data pass_data_jump =
3086 {
3087 RTL_PASS, /* type */
3088 "jump", /* name */
3089 OPTGROUP_NONE, /* optinfo_flags */
3090 TV_JUMP, /* tv_id */
3091 0, /* properties_required */
3092 0, /* properties_provided */
3093 0, /* properties_destroyed */
3094 0, /* todo_flags_start */
3095 0, /* todo_flags_finish */
3096 };
3097
3098 class pass_jump : public rtl_opt_pass
3099 {
3100 public:
3101 pass_jump (gcc::context *ctxt)
3102 : rtl_opt_pass (pass_data_jump, ctxt)
3103 {}
3104
3105 /* opt_pass methods: */
3106 virtual unsigned int execute (function *);
3107
3108 }; // class pass_jump
3109
3110 unsigned int
3111 pass_jump::execute (function *)
3112 {
3113 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3114 if (dump_file)
3115 dump_flow_info (dump_file, dump_flags);
3116 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
3117 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
3118 return 0;
3119 }
3120
3121 } // anon namespace
3122
3123 rtl_opt_pass *
3124 make_pass_jump (gcc::context *ctxt)
3125 {
3126 return new pass_jump (ctxt);
3127 }
3128 \f
3129 namespace {
3130
3131 const pass_data pass_data_jump2 =
3132 {
3133 RTL_PASS, /* type */
3134 "jump2", /* name */
3135 OPTGROUP_NONE, /* optinfo_flags */
3136 TV_JUMP, /* tv_id */
3137 0, /* properties_required */
3138 0, /* properties_provided */
3139 0, /* properties_destroyed */
3140 0, /* todo_flags_start */
3141 0, /* todo_flags_finish */
3142 };
3143
3144 class pass_jump2 : public rtl_opt_pass
3145 {
3146 public:
3147 pass_jump2 (gcc::context *ctxt)
3148 : rtl_opt_pass (pass_data_jump2, ctxt)
3149 {}
3150
3151 /* opt_pass methods: */
3152 virtual unsigned int execute (function *)
3153 {
3154 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3155 return 0;
3156 }
3157
3158 }; // class pass_jump2
3159
3160 } // anon namespace
3161
3162 rtl_opt_pass *
3163 make_pass_jump2 (gcc::context *ctxt)
3164 {
3165 return new pass_jump2 (ctxt);
3166 }