]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
Remove uses of loop->single_iv.
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "function.h"
29 #include "basic-block.h"
30 #include "cfgloop.h"
31 #include "diagnostic-core.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "tree-flow.h"
35 #include "pointer-set.h"
36 #include "output.h"
37 #include "ggc.h"
38
39 static void flow_loops_cfg_dump (FILE *);
40 \f
41 /* Dump loop related CFG information. */
42
43 static void
44 flow_loops_cfg_dump (FILE *file)
45 {
46 basic_block bb;
47
48 if (!file)
49 return;
50
51 FOR_EACH_BB (bb)
52 {
53 edge succ;
54 edge_iterator ei;
55
56 fprintf (file, ";; %d succs { ", bb->index);
57 FOR_EACH_EDGE (succ, ei, bb->succs)
58 fprintf (file, "%d ", succ->dest->index);
59 fprintf (file, "}\n");
60 }
61 }
62
63 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
64
65 bool
66 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
67 {
68 unsigned odepth = loop_depth (outer);
69
70 return (loop_depth (loop) > odepth
71 && VEC_index (loop_p, loop->superloops, odepth) == outer);
72 }
73
74 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
75 loops within LOOP. */
76
77 struct loop *
78 superloop_at_depth (struct loop *loop, unsigned depth)
79 {
80 unsigned ldepth = loop_depth (loop);
81
82 gcc_assert (depth <= ldepth);
83
84 if (depth == ldepth)
85 return loop;
86
87 return VEC_index (loop_p, loop->superloops, depth);
88 }
89
90 /* Returns the list of the latch edges of LOOP. */
91
92 static VEC (edge, heap) *
93 get_loop_latch_edges (const struct loop *loop)
94 {
95 edge_iterator ei;
96 edge e;
97 VEC (edge, heap) *ret = NULL;
98
99 FOR_EACH_EDGE (e, ei, loop->header->preds)
100 {
101 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
102 VEC_safe_push (edge, heap, ret, e);
103 }
104
105 return ret;
106 }
107
108 /* Dump the loop information specified by LOOP to the stream FILE
109 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
110
111 void
112 flow_loop_dump (const struct loop *loop, FILE *file,
113 void (*loop_dump_aux) (const struct loop *, FILE *, int),
114 int verbose)
115 {
116 basic_block *bbs;
117 unsigned i;
118 VEC (edge, heap) *latches;
119 edge e;
120
121 if (! loop || ! loop->header)
122 return;
123
124 fprintf (file, ";;\n;; Loop %d\n", loop->num);
125
126 fprintf (file, ";; header %d, ", loop->header->index);
127 if (loop->latch)
128 fprintf (file, "latch %d\n", loop->latch->index);
129 else
130 {
131 fprintf (file, "multiple latches:");
132 latches = get_loop_latch_edges (loop);
133 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
134 fprintf (file, " %d", e->src->index);
135 VEC_free (edge, heap, latches);
136 fprintf (file, "\n");
137 }
138
139 fprintf (file, ";; depth %d, outer %ld\n",
140 loop_depth (loop), (long) (loop_outer (loop)
141 ? loop_outer (loop)->num : -1));
142
143 fprintf (file, ";; nodes:");
144 bbs = get_loop_body (loop);
145 for (i = 0; i < loop->num_nodes; i++)
146 fprintf (file, " %d", bbs[i]->index);
147 free (bbs);
148 fprintf (file, "\n");
149
150 if (loop_dump_aux)
151 loop_dump_aux (loop, file, verbose);
152 }
153
154 /* Dump the loop information about loops to the stream FILE,
155 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
156
157 void
158 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
159 {
160 loop_iterator li;
161 struct loop *loop;
162
163 if (!current_loops || ! file)
164 return;
165
166 fprintf (file, ";; %d loops found\n", number_of_loops ());
167
168 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
169 {
170 flow_loop_dump (loop, file, loop_dump_aux, verbose);
171 }
172
173 if (verbose)
174 flow_loops_cfg_dump (file);
175 }
176
177 /* Free data allocated for LOOP. */
178
179 void
180 flow_loop_free (struct loop *loop)
181 {
182 struct loop_exit *exit, *next;
183
184 VEC_free (loop_p, gc, loop->superloops);
185
186 /* Break the list of the loop exit records. They will be freed when the
187 corresponding edge is rescanned or removed, and this avoids
188 accessing the (already released) head of the list stored in the
189 loop structure. */
190 for (exit = loop->exits->next; exit != loop->exits; exit = next)
191 {
192 next = exit->next;
193 exit->next = exit;
194 exit->prev = exit;
195 }
196
197 ggc_free (loop->exits);
198 ggc_free (loop);
199 }
200
201 /* Free all the memory allocated for LOOPS. */
202
203 void
204 flow_loops_free (struct loops *loops)
205 {
206 if (loops->larray)
207 {
208 unsigned i;
209 loop_p loop;
210
211 /* Free the loop descriptors. */
212 for (i = 0; VEC_iterate (loop_p, loops->larray, i, loop); i++)
213 {
214 if (!loop)
215 continue;
216
217 flow_loop_free (loop);
218 }
219
220 VEC_free (loop_p, gc, loops->larray);
221 }
222 }
223
224 /* Find the nodes contained within the LOOP with header HEADER.
225 Return the number of nodes within the loop. */
226
227 int
228 flow_loop_nodes_find (basic_block header, struct loop *loop)
229 {
230 VEC (basic_block, heap) *stack = NULL;
231 int num_nodes = 1;
232 edge latch;
233 edge_iterator latch_ei;
234 unsigned depth = loop_depth (loop);
235
236 header->loop_father = loop;
237 header->loop_depth = depth;
238
239 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
240 {
241 if (latch->src->loop_father == loop
242 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
243 continue;
244
245 num_nodes++;
246 VEC_safe_push (basic_block, heap, stack, latch->src);
247 latch->src->loop_father = loop;
248 latch->src->loop_depth = depth;
249
250 while (!VEC_empty (basic_block, stack))
251 {
252 basic_block node;
253 edge e;
254 edge_iterator ei;
255
256 node = VEC_pop (basic_block, stack);
257
258 FOR_EACH_EDGE (e, ei, node->preds)
259 {
260 basic_block ancestor = e->src;
261
262 if (ancestor->loop_father != loop)
263 {
264 ancestor->loop_father = loop;
265 ancestor->loop_depth = depth;
266 num_nodes++;
267 VEC_safe_push (basic_block, heap, stack, ancestor);
268 }
269 }
270 }
271 }
272 VEC_free (basic_block, heap, stack);
273
274 return num_nodes;
275 }
276
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
282 {
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 VEC_truncate (loop_p, loop->superloops, 0);
288 VEC_reserve (loop_p, gc, loop->superloops, depth);
289 for (i = 0; VEC_iterate (loop_p, father->superloops, i, ploop); i++)
290 VEC_quick_push (loop_p, loop->superloops, ploop);
291 VEC_quick_push (loop_p, loop->superloops, father);
292
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
295 }
296
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
300
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
303 {
304 loop->next = father->inner;
305 father->inner = loop;
306
307 establish_preds (loop, father);
308 }
309
310 /* Remove LOOP from the loop hierarchy tree. */
311
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
314 {
315 struct loop *prev, *father;
316
317 father = loop_outer (loop);
318
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
323 {
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
327 }
328
329 VEC_truncate (loop_p, loop->superloops, 0);
330 }
331
332 /* Allocates and returns new loop structure. */
333
334 struct loop *
335 alloc_loop (void)
336 {
337 struct loop *loop = ggc_alloc_cleared_loop ();
338
339 loop->exits = ggc_alloc_cleared_loop_exit ();
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
342
343 return loop;
344 }
345
346 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
347 (including the root of the loop tree). */
348
349 static void
350 init_loops_structure (struct loops *loops, unsigned num_loops)
351 {
352 struct loop *root;
353
354 memset (loops, 0, sizeof *loops);
355 loops->larray = VEC_alloc (loop_p, gc, num_loops);
356
357 /* Dummy loop containing whole function. */
358 root = alloc_loop ();
359 root->num_nodes = n_basic_blocks;
360 root->latch = EXIT_BLOCK_PTR;
361 root->header = ENTRY_BLOCK_PTR;
362 ENTRY_BLOCK_PTR->loop_father = root;
363 EXIT_BLOCK_PTR->loop_father = root;
364
365 VEC_quick_push (loop_p, loops->larray, root);
366 loops->tree_root = root;
367 }
368
369 /* Find all the natural loops in the function and save in LOOPS structure and
370 recalculate loop_depth information in basic block structures.
371 Return the number of natural loops found. */
372
373 int
374 flow_loops_find (struct loops *loops)
375 {
376 int b;
377 int num_loops;
378 edge e;
379 sbitmap headers;
380 int *dfs_order;
381 int *rc_order;
382 basic_block header;
383 basic_block bb;
384
385 /* Ensure that the dominators are computed. */
386 calculate_dominance_info (CDI_DOMINATORS);
387
388 /* Taking care of this degenerate case makes the rest of
389 this code simpler. */
390 if (n_basic_blocks == NUM_FIXED_BLOCKS)
391 {
392 init_loops_structure (loops, 1);
393 return 1;
394 }
395
396 dfs_order = NULL;
397 rc_order = NULL;
398
399 /* Count the number of loop headers. This should be the
400 same as the number of natural loops. */
401 headers = sbitmap_alloc (last_basic_block);
402 sbitmap_zero (headers);
403
404 num_loops = 0;
405 FOR_EACH_BB (header)
406 {
407 edge_iterator ei;
408
409 header->loop_depth = 0;
410
411 /* If we have an abnormal predecessor, do not consider the
412 loop (not worth the problems). */
413 FOR_EACH_EDGE (e, ei, header->preds)
414 if (e->flags & EDGE_ABNORMAL)
415 break;
416 if (e)
417 continue;
418
419 FOR_EACH_EDGE (e, ei, header->preds)
420 {
421 basic_block latch = e->src;
422
423 gcc_assert (!(e->flags & EDGE_ABNORMAL));
424
425 /* Look for back edges where a predecessor is dominated
426 by this block. A natural loop has a single entry
427 node (header) that dominates all the nodes in the
428 loop. It also has single back edge to the header
429 from a latch node. */
430 if (latch != ENTRY_BLOCK_PTR
431 && dominated_by_p (CDI_DOMINATORS, latch, header))
432 {
433 /* Shared headers should be eliminated by now. */
434 SET_BIT (headers, header->index);
435 num_loops++;
436 }
437 }
438 }
439
440 /* Allocate loop structures. */
441 init_loops_structure (loops, num_loops + 1);
442
443 /* Find and record information about all the natural loops
444 in the CFG. */
445 FOR_EACH_BB (bb)
446 bb->loop_father = loops->tree_root;
447
448 if (num_loops)
449 {
450 /* Compute depth first search order of the CFG so that outer
451 natural loops will be found before inner natural loops. */
452 dfs_order = XNEWVEC (int, n_basic_blocks);
453 rc_order = XNEWVEC (int, n_basic_blocks);
454 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
455
456 num_loops = 1;
457
458 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
459 {
460 struct loop *loop;
461 edge_iterator ei;
462
463 /* Search the nodes of the CFG in reverse completion order
464 so that we can find outer loops first. */
465 if (!TEST_BIT (headers, rc_order[b]))
466 continue;
467
468 header = BASIC_BLOCK (rc_order[b]);
469
470 loop = alloc_loop ();
471 VEC_quick_push (loop_p, loops->larray, loop);
472
473 loop->header = header;
474 loop->num = num_loops;
475 num_loops++;
476
477 flow_loop_tree_node_add (header->loop_father, loop);
478 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
479
480 /* Look for the latch for this header block, if it has just a
481 single one. */
482 FOR_EACH_EDGE (e, ei, header->preds)
483 {
484 basic_block latch = e->src;
485
486 if (flow_bb_inside_loop_p (loop, latch))
487 {
488 if (loop->latch != NULL)
489 {
490 /* More than one latch edge. */
491 loop->latch = NULL;
492 break;
493 }
494 loop->latch = latch;
495 }
496 }
497 }
498
499 free (dfs_order);
500 free (rc_order);
501 }
502
503 sbitmap_free (headers);
504
505 loops->exits = NULL;
506 return VEC_length (loop_p, loops->larray);
507 }
508
509 /* Ratio of frequencies of edges so that one of more latch edges is
510 considered to belong to inner loop with same header. */
511 #define HEAVY_EDGE_RATIO 8
512
513 /* Minimum number of samples for that we apply
514 find_subloop_latch_edge_by_profile heuristics. */
515 #define HEAVY_EDGE_MIN_SAMPLES 10
516
517 /* If the profile info is available, finds an edge in LATCHES that much more
518 frequent than the remaining edges. Returns such an edge, or NULL if we do
519 not find one.
520
521 We do not use guessed profile here, only the measured one. The guessed
522 profile is usually too flat and unreliable for this (and it is mostly based
523 on the loop structure of the program, so it does not make much sense to
524 derive the loop structure from it). */
525
526 static edge
527 find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
528 {
529 unsigned i;
530 edge e, me = NULL;
531 gcov_type mcount = 0, tcount = 0;
532
533 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
534 {
535 if (e->count > mcount)
536 {
537 me = e;
538 mcount = e->count;
539 }
540 tcount += e->count;
541 }
542
543 if (tcount < HEAVY_EDGE_MIN_SAMPLES
544 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
545 return NULL;
546
547 if (dump_file)
548 fprintf (dump_file,
549 "Found latch edge %d -> %d using profile information.\n",
550 me->src->index, me->dest->index);
551 return me;
552 }
553
554 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
555 on the structure of induction variables. Returns this edge, or NULL if we
556 do not find any.
557
558 We are quite conservative, and look just for an obvious simple innermost
559 loop (which is the case where we would lose the most performance by not
560 disambiguating the loop). More precisely, we look for the following
561 situation: The source of the chosen latch edge dominates sources of all
562 the other latch edges. Additionally, the header does not contain a phi node
563 such that the argument from the chosen edge is equal to the argument from
564 another edge. */
565
566 static edge
567 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
568 {
569 edge e, latch = VEC_index (edge, latches, 0);
570 unsigned i;
571 gimple phi;
572 gimple_stmt_iterator psi;
573 tree lop;
574 basic_block bb;
575
576 /* Find the candidate for the latch edge. */
577 for (i = 1; VEC_iterate (edge, latches, i, e); i++)
578 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
579 latch = e;
580
581 /* Verify that it dominates all the latch edges. */
582 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
583 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
584 return NULL;
585
586 /* Check for a phi node that would deny that this is a latch edge of
587 a subloop. */
588 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
589 {
590 phi = gsi_stmt (psi);
591 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
592
593 /* Ignore the values that are not changed inside the subloop. */
594 if (TREE_CODE (lop) != SSA_NAME
595 || SSA_NAME_DEF_STMT (lop) == phi)
596 continue;
597 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
598 if (!bb || !flow_bb_inside_loop_p (loop, bb))
599 continue;
600
601 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
602 if (e != latch
603 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
604 return NULL;
605 }
606
607 if (dump_file)
608 fprintf (dump_file,
609 "Found latch edge %d -> %d using iv structure.\n",
610 latch->src->index, latch->dest->index);
611 return latch;
612 }
613
614 /* If we can determine that one of the several latch edges of LOOP behaves
615 as a latch edge of a separate subloop, returns this edge. Otherwise
616 returns NULL. */
617
618 static edge
619 find_subloop_latch_edge (struct loop *loop)
620 {
621 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
622 edge latch = NULL;
623
624 if (VEC_length (edge, latches) > 1)
625 {
626 latch = find_subloop_latch_edge_by_profile (latches);
627
628 if (!latch
629 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
630 should use cfghook for this, but it is hard to imagine it would
631 be useful elsewhere. */
632 && current_ir_type () == IR_GIMPLE)
633 latch = find_subloop_latch_edge_by_ivs (loop, latches);
634 }
635
636 VEC_free (edge, heap, latches);
637 return latch;
638 }
639
640 /* Callback for make_forwarder_block. Returns true if the edge E is marked
641 in the set MFB_REIS_SET. */
642
643 static struct pointer_set_t *mfb_reis_set;
644 static bool
645 mfb_redirect_edges_in_set (edge e)
646 {
647 return pointer_set_contains (mfb_reis_set, e);
648 }
649
650 /* Creates a subloop of LOOP with latch edge LATCH. */
651
652 static void
653 form_subloop (struct loop *loop, edge latch)
654 {
655 edge_iterator ei;
656 edge e, new_entry;
657 struct loop *new_loop;
658
659 mfb_reis_set = pointer_set_create ();
660 FOR_EACH_EDGE (e, ei, loop->header->preds)
661 {
662 if (e != latch)
663 pointer_set_insert (mfb_reis_set, e);
664 }
665 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
666 NULL);
667 pointer_set_destroy (mfb_reis_set);
668
669 loop->header = new_entry->src;
670
671 /* Find the blocks and subloops that belong to the new loop, and add it to
672 the appropriate place in the loop tree. */
673 new_loop = alloc_loop ();
674 new_loop->header = new_entry->dest;
675 new_loop->latch = latch->src;
676 add_loop (new_loop, loop);
677 }
678
679 /* Make all the latch edges of LOOP to go to a single forwarder block --
680 a new latch of LOOP. */
681
682 static void
683 merge_latch_edges (struct loop *loop)
684 {
685 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
686 edge latch, e;
687 unsigned i;
688
689 gcc_assert (VEC_length (edge, latches) > 0);
690
691 if (VEC_length (edge, latches) == 1)
692 loop->latch = VEC_index (edge, latches, 0)->src;
693 else
694 {
695 if (dump_file)
696 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
697
698 mfb_reis_set = pointer_set_create ();
699 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
700 pointer_set_insert (mfb_reis_set, e);
701 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
702 NULL);
703 pointer_set_destroy (mfb_reis_set);
704
705 loop->header = latch->dest;
706 loop->latch = latch->src;
707 }
708
709 VEC_free (edge, heap, latches);
710 }
711
712 /* LOOP may have several latch edges. Transform it into (possibly several)
713 loops with single latch edge. */
714
715 static void
716 disambiguate_multiple_latches (struct loop *loop)
717 {
718 edge e;
719
720 /* We eliminate the multiple latches by splitting the header to the forwarder
721 block F and the rest R, and redirecting the edges. There are two cases:
722
723 1) If there is a latch edge E that corresponds to a subloop (we guess
724 that based on profile -- if it is taken much more often than the
725 remaining edges; and on trees, using the information about induction
726 variables of the loops), we redirect E to R, all the remaining edges to
727 F, then rescan the loops and try again for the outer loop.
728 2) If there is no such edge, we redirect all latch edges to F, and the
729 entry edges to R, thus making F the single latch of the loop. */
730
731 if (dump_file)
732 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
733 loop->num);
734
735 /* During latch merging, we may need to redirect the entry edges to a new
736 block. This would cause problems if the entry edge was the one from the
737 entry block. To avoid having to handle this case specially, split
738 such entry edge. */
739 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
740 if (e)
741 split_edge (e);
742
743 while (1)
744 {
745 e = find_subloop_latch_edge (loop);
746 if (!e)
747 break;
748
749 form_subloop (loop, e);
750 }
751
752 merge_latch_edges (loop);
753 }
754
755 /* Split loops with multiple latch edges. */
756
757 void
758 disambiguate_loops_with_multiple_latches (void)
759 {
760 loop_iterator li;
761 struct loop *loop;
762
763 FOR_EACH_LOOP (li, loop, 0)
764 {
765 if (!loop->latch)
766 disambiguate_multiple_latches (loop);
767 }
768 }
769
770 /* Return nonzero if basic block BB belongs to LOOP. */
771 bool
772 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
773 {
774 struct loop *source_loop;
775
776 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
777 return 0;
778
779 source_loop = bb->loop_father;
780 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
781 }
782
783 /* Enumeration predicate for get_loop_body_with_size. */
784 static bool
785 glb_enum_p (const_basic_block bb, const void *glb_loop)
786 {
787 const struct loop *const loop = (const struct loop *) glb_loop;
788 return (bb != loop->header
789 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
790 }
791
792 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
793 order against direction of edges from latch. Specially, if
794 header != latch, latch is the 1-st block. LOOP cannot be the fake
795 loop tree root, and its size must be at most MAX_SIZE. The blocks
796 in the LOOP body are stored to BODY, and the size of the LOOP is
797 returned. */
798
799 unsigned
800 get_loop_body_with_size (const struct loop *loop, basic_block *body,
801 unsigned max_size)
802 {
803 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
804 body, max_size, loop);
805 }
806
807 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
808 order against direction of edges from latch. Specially, if
809 header != latch, latch is the 1-st block. */
810
811 basic_block *
812 get_loop_body (const struct loop *loop)
813 {
814 basic_block *body, bb;
815 unsigned tv = 0;
816
817 gcc_assert (loop->num_nodes);
818
819 body = XCNEWVEC (basic_block, loop->num_nodes);
820
821 if (loop->latch == EXIT_BLOCK_PTR)
822 {
823 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
824 special-case the fake loop that contains the whole function. */
825 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
826 body[tv++] = loop->header;
827 body[tv++] = EXIT_BLOCK_PTR;
828 FOR_EACH_BB (bb)
829 body[tv++] = bb;
830 }
831 else
832 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
833
834 gcc_assert (tv == loop->num_nodes);
835 return body;
836 }
837
838 /* Fills dominance descendants inside LOOP of the basic block BB into
839 array TOVISIT from index *TV. */
840
841 static void
842 fill_sons_in_loop (const struct loop *loop, basic_block bb,
843 basic_block *tovisit, int *tv)
844 {
845 basic_block son, postpone = NULL;
846
847 tovisit[(*tv)++] = bb;
848 for (son = first_dom_son (CDI_DOMINATORS, bb);
849 son;
850 son = next_dom_son (CDI_DOMINATORS, son))
851 {
852 if (!flow_bb_inside_loop_p (loop, son))
853 continue;
854
855 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
856 {
857 postpone = son;
858 continue;
859 }
860 fill_sons_in_loop (loop, son, tovisit, tv);
861 }
862
863 if (postpone)
864 fill_sons_in_loop (loop, postpone, tovisit, tv);
865 }
866
867 /* Gets body of a LOOP (that must be different from the outermost loop)
868 sorted by dominance relation. Additionally, if a basic block s dominates
869 the latch, then only blocks dominated by s are be after it. */
870
871 basic_block *
872 get_loop_body_in_dom_order (const struct loop *loop)
873 {
874 basic_block *tovisit;
875 int tv;
876
877 gcc_assert (loop->num_nodes);
878
879 tovisit = XCNEWVEC (basic_block, loop->num_nodes);
880
881 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
882
883 tv = 0;
884 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
885
886 gcc_assert (tv == (int) loop->num_nodes);
887
888 return tovisit;
889 }
890
891 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
892
893 basic_block *
894 get_loop_body_in_custom_order (const struct loop *loop,
895 int (*bb_comparator) (const void *, const void *))
896 {
897 basic_block *bbs = get_loop_body (loop);
898
899 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
900
901 return bbs;
902 }
903
904 /* Get body of a LOOP in breadth first sort order. */
905
906 basic_block *
907 get_loop_body_in_bfs_order (const struct loop *loop)
908 {
909 basic_block *blocks;
910 basic_block bb;
911 bitmap visited;
912 unsigned int i = 0;
913 unsigned int vc = 1;
914
915 gcc_assert (loop->num_nodes);
916 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
917
918 blocks = XCNEWVEC (basic_block, loop->num_nodes);
919 visited = BITMAP_ALLOC (NULL);
920
921 bb = loop->header;
922 while (i < loop->num_nodes)
923 {
924 edge e;
925 edge_iterator ei;
926
927 if (!bitmap_bit_p (visited, bb->index))
928 {
929 /* This basic block is now visited */
930 bitmap_set_bit (visited, bb->index);
931 blocks[i++] = bb;
932 }
933
934 FOR_EACH_EDGE (e, ei, bb->succs)
935 {
936 if (flow_bb_inside_loop_p (loop, e->dest))
937 {
938 if (!bitmap_bit_p (visited, e->dest->index))
939 {
940 bitmap_set_bit (visited, e->dest->index);
941 blocks[i++] = e->dest;
942 }
943 }
944 }
945
946 gcc_assert (i >= vc);
947
948 bb = blocks[vc++];
949 }
950
951 BITMAP_FREE (visited);
952 return blocks;
953 }
954
955 /* Hash function for struct loop_exit. */
956
957 static hashval_t
958 loop_exit_hash (const void *ex)
959 {
960 const struct loop_exit *const exit = (const struct loop_exit *) ex;
961
962 return htab_hash_pointer (exit->e);
963 }
964
965 /* Equality function for struct loop_exit. Compares with edge. */
966
967 static int
968 loop_exit_eq (const void *ex, const void *e)
969 {
970 const struct loop_exit *const exit = (const struct loop_exit *) ex;
971
972 return exit->e == e;
973 }
974
975 /* Frees the list of loop exit descriptions EX. */
976
977 static void
978 loop_exit_free (void *ex)
979 {
980 struct loop_exit *exit = (struct loop_exit *) ex, *next;
981
982 for (; exit; exit = next)
983 {
984 next = exit->next_e;
985
986 exit->next->prev = exit->prev;
987 exit->prev->next = exit->next;
988
989 ggc_free (exit);
990 }
991 }
992
993 /* Returns the list of records for E as an exit of a loop. */
994
995 static struct loop_exit *
996 get_exit_descriptions (edge e)
997 {
998 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
999 htab_hash_pointer (e));
1000 }
1001
1002 /* Updates the lists of loop exits in that E appears.
1003 If REMOVED is true, E is being removed, and we
1004 just remove it from the lists of exits.
1005 If NEW_EDGE is true and E is not a loop exit, we
1006 do not try to remove it from loop exit lists. */
1007
1008 void
1009 rescan_loop_exit (edge e, bool new_edge, bool removed)
1010 {
1011 void **slot;
1012 struct loop_exit *exits = NULL, *exit;
1013 struct loop *aloop, *cloop;
1014
1015 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1016 return;
1017
1018 if (!removed
1019 && e->src->loop_father != NULL
1020 && e->dest->loop_father != NULL
1021 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1022 {
1023 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1024 for (aloop = e->src->loop_father;
1025 aloop != cloop;
1026 aloop = loop_outer (aloop))
1027 {
1028 exit = ggc_alloc_loop_exit ();
1029 exit->e = e;
1030
1031 exit->next = aloop->exits->next;
1032 exit->prev = aloop->exits;
1033 exit->next->prev = exit;
1034 exit->prev->next = exit;
1035
1036 exit->next_e = exits;
1037 exits = exit;
1038 }
1039 }
1040
1041 if (!exits && new_edge)
1042 return;
1043
1044 slot = htab_find_slot_with_hash (current_loops->exits, e,
1045 htab_hash_pointer (e),
1046 exits ? INSERT : NO_INSERT);
1047 if (!slot)
1048 return;
1049
1050 if (exits)
1051 {
1052 if (*slot)
1053 loop_exit_free (*slot);
1054 *slot = exits;
1055 }
1056 else
1057 htab_clear_slot (current_loops->exits, slot);
1058 }
1059
1060 /* For each loop, record list of exit edges, and start maintaining these
1061 lists. */
1062
1063 void
1064 record_loop_exits (void)
1065 {
1066 basic_block bb;
1067 edge_iterator ei;
1068 edge e;
1069
1070 if (!current_loops)
1071 return;
1072
1073 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1074 return;
1075 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1076
1077 gcc_assert (current_loops->exits == NULL);
1078 current_loops->exits = htab_create_ggc (2 * number_of_loops (),
1079 loop_exit_hash, loop_exit_eq,
1080 loop_exit_free);
1081
1082 FOR_EACH_BB (bb)
1083 {
1084 FOR_EACH_EDGE (e, ei, bb->succs)
1085 {
1086 rescan_loop_exit (e, true, false);
1087 }
1088 }
1089 }
1090
1091 /* Dumps information about the exit in *SLOT to FILE.
1092 Callback for htab_traverse. */
1093
1094 static int
1095 dump_recorded_exit (void **slot, void *file)
1096 {
1097 struct loop_exit *exit = (struct loop_exit *) *slot;
1098 unsigned n = 0;
1099 edge e = exit->e;
1100
1101 for (; exit != NULL; exit = exit->next_e)
1102 n++;
1103
1104 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1105 e->src->index, e->dest->index, n);
1106
1107 return 1;
1108 }
1109
1110 /* Dumps the recorded exits of loops to FILE. */
1111
1112 extern void dump_recorded_exits (FILE *);
1113 void
1114 dump_recorded_exits (FILE *file)
1115 {
1116 if (!current_loops->exits)
1117 return;
1118 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1119 }
1120
1121 /* Releases lists of loop exits. */
1122
1123 void
1124 release_recorded_exits (void)
1125 {
1126 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1127 htab_delete (current_loops->exits);
1128 current_loops->exits = NULL;
1129 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1130 }
1131
1132 /* Returns the list of the exit edges of a LOOP. */
1133
1134 VEC (edge, heap) *
1135 get_loop_exit_edges (const struct loop *loop)
1136 {
1137 VEC (edge, heap) *edges = NULL;
1138 edge e;
1139 unsigned i;
1140 basic_block *body;
1141 edge_iterator ei;
1142 struct loop_exit *exit;
1143
1144 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1145
1146 /* If we maintain the lists of exits, use them. Otherwise we must
1147 scan the body of the loop. */
1148 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1149 {
1150 for (exit = loop->exits->next; exit->e; exit = exit->next)
1151 VEC_safe_push (edge, heap, edges, exit->e);
1152 }
1153 else
1154 {
1155 body = get_loop_body (loop);
1156 for (i = 0; i < loop->num_nodes; i++)
1157 FOR_EACH_EDGE (e, ei, body[i]->succs)
1158 {
1159 if (!flow_bb_inside_loop_p (loop, e->dest))
1160 VEC_safe_push (edge, heap, edges, e);
1161 }
1162 free (body);
1163 }
1164
1165 return edges;
1166 }
1167
1168 /* Counts the number of conditional branches inside LOOP. */
1169
1170 unsigned
1171 num_loop_branches (const struct loop *loop)
1172 {
1173 unsigned i, n;
1174 basic_block * body;
1175
1176 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1177
1178 body = get_loop_body (loop);
1179 n = 0;
1180 for (i = 0; i < loop->num_nodes; i++)
1181 if (EDGE_COUNT (body[i]->succs) >= 2)
1182 n++;
1183 free (body);
1184
1185 return n;
1186 }
1187
1188 /* Adds basic block BB to LOOP. */
1189 void
1190 add_bb_to_loop (basic_block bb, struct loop *loop)
1191 {
1192 unsigned i;
1193 loop_p ploop;
1194 edge_iterator ei;
1195 edge e;
1196
1197 gcc_assert (bb->loop_father == NULL);
1198 bb->loop_father = loop;
1199 bb->loop_depth = loop_depth (loop);
1200 loop->num_nodes++;
1201 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1202 ploop->num_nodes++;
1203
1204 FOR_EACH_EDGE (e, ei, bb->succs)
1205 {
1206 rescan_loop_exit (e, true, false);
1207 }
1208 FOR_EACH_EDGE (e, ei, bb->preds)
1209 {
1210 rescan_loop_exit (e, true, false);
1211 }
1212 }
1213
1214 /* Remove basic block BB from loops. */
1215 void
1216 remove_bb_from_loops (basic_block bb)
1217 {
1218 int i;
1219 struct loop *loop = bb->loop_father;
1220 loop_p ploop;
1221 edge_iterator ei;
1222 edge e;
1223
1224 gcc_assert (loop != NULL);
1225 loop->num_nodes--;
1226 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1227 ploop->num_nodes--;
1228 bb->loop_father = NULL;
1229 bb->loop_depth = 0;
1230
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1232 {
1233 rescan_loop_exit (e, false, true);
1234 }
1235 FOR_EACH_EDGE (e, ei, bb->preds)
1236 {
1237 rescan_loop_exit (e, false, true);
1238 }
1239 }
1240
1241 /* Finds nearest common ancestor in loop tree for given loops. */
1242 struct loop *
1243 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1244 {
1245 unsigned sdepth, ddepth;
1246
1247 if (!loop_s) return loop_d;
1248 if (!loop_d) return loop_s;
1249
1250 sdepth = loop_depth (loop_s);
1251 ddepth = loop_depth (loop_d);
1252
1253 if (sdepth < ddepth)
1254 loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
1255 else if (sdepth > ddepth)
1256 loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
1257
1258 while (loop_s != loop_d)
1259 {
1260 loop_s = loop_outer (loop_s);
1261 loop_d = loop_outer (loop_d);
1262 }
1263 return loop_s;
1264 }
1265
1266 /* Removes LOOP from structures and frees its data. */
1267
1268 void
1269 delete_loop (struct loop *loop)
1270 {
1271 /* Remove the loop from structure. */
1272 flow_loop_tree_node_remove (loop);
1273
1274 /* Remove loop from loops array. */
1275 VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
1276
1277 /* Free loop data. */
1278 flow_loop_free (loop);
1279 }
1280
1281 /* Cancels the LOOP; it must be innermost one. */
1282
1283 static void
1284 cancel_loop (struct loop *loop)
1285 {
1286 basic_block *bbs;
1287 unsigned i;
1288 struct loop *outer = loop_outer (loop);
1289
1290 gcc_assert (!loop->inner);
1291
1292 /* Move blocks up one level (they should be removed as soon as possible). */
1293 bbs = get_loop_body (loop);
1294 for (i = 0; i < loop->num_nodes; i++)
1295 bbs[i]->loop_father = outer;
1296
1297 delete_loop (loop);
1298 }
1299
1300 /* Cancels LOOP and all its subloops. */
1301 void
1302 cancel_loop_tree (struct loop *loop)
1303 {
1304 while (loop->inner)
1305 cancel_loop_tree (loop->inner);
1306 cancel_loop (loop);
1307 }
1308
1309 /* Checks that information about loops is correct
1310 -- sizes of loops are all right
1311 -- results of get_loop_body really belong to the loop
1312 -- loop header have just single entry edge and single latch edge
1313 -- loop latches have only single successor that is header of their loop
1314 -- irreducible loops are correctly marked
1315 */
1316 DEBUG_FUNCTION void
1317 verify_loop_structure (void)
1318 {
1319 unsigned *sizes, i, j;
1320 sbitmap irreds;
1321 basic_block *bbs, bb;
1322 struct loop *loop;
1323 int err = 0;
1324 edge e;
1325 unsigned num = number_of_loops ();
1326 loop_iterator li;
1327 struct loop_exit *exit, *mexit;
1328
1329 /* Check sizes. */
1330 sizes = XCNEWVEC (unsigned, num);
1331 sizes[0] = 2;
1332
1333 FOR_EACH_BB (bb)
1334 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1335 sizes[loop->num]++;
1336
1337 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1338 {
1339 i = loop->num;
1340
1341 if (loop->num_nodes != sizes[i])
1342 {
1343 error ("size of loop %d should be %d, not %d",
1344 i, sizes[i], loop->num_nodes);
1345 err = 1;
1346 }
1347 }
1348
1349 /* Check get_loop_body. */
1350 FOR_EACH_LOOP (li, loop, 0)
1351 {
1352 bbs = get_loop_body (loop);
1353
1354 for (j = 0; j < loop->num_nodes; j++)
1355 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1356 {
1357 error ("bb %d do not belong to loop %d",
1358 bbs[j]->index, loop->num);
1359 err = 1;
1360 }
1361 free (bbs);
1362 }
1363
1364 /* Check headers and latches. */
1365 FOR_EACH_LOOP (li, loop, 0)
1366 {
1367 i = loop->num;
1368
1369 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1370 && EDGE_COUNT (loop->header->preds) != 2)
1371 {
1372 error ("loop %d's header does not have exactly 2 entries", i);
1373 err = 1;
1374 }
1375 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1376 {
1377 if (!single_succ_p (loop->latch))
1378 {
1379 error ("loop %d's latch does not have exactly 1 successor", i);
1380 err = 1;
1381 }
1382 if (single_succ (loop->latch) != loop->header)
1383 {
1384 error ("loop %d's latch does not have header as successor", i);
1385 err = 1;
1386 }
1387 if (loop->latch->loop_father != loop)
1388 {
1389 error ("loop %d's latch does not belong directly to it", i);
1390 err = 1;
1391 }
1392 }
1393 if (loop->header->loop_father != loop)
1394 {
1395 error ("loop %d's header does not belong directly to it", i);
1396 err = 1;
1397 }
1398 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1399 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1400 {
1401 error ("loop %d's latch is marked as part of irreducible region", i);
1402 err = 1;
1403 }
1404 }
1405
1406 /* Check irreducible loops. */
1407 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1408 {
1409 /* Record old info. */
1410 irreds = sbitmap_alloc (last_basic_block);
1411 FOR_EACH_BB (bb)
1412 {
1413 edge_iterator ei;
1414 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1415 SET_BIT (irreds, bb->index);
1416 else
1417 RESET_BIT (irreds, bb->index);
1418 FOR_EACH_EDGE (e, ei, bb->succs)
1419 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1420 e->flags |= EDGE_ALL_FLAGS + 1;
1421 }
1422
1423 /* Recount it. */
1424 mark_irreducible_loops ();
1425
1426 /* Compare. */
1427 FOR_EACH_BB (bb)
1428 {
1429 edge_iterator ei;
1430
1431 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1432 && !TEST_BIT (irreds, bb->index))
1433 {
1434 error ("basic block %d should be marked irreducible", bb->index);
1435 err = 1;
1436 }
1437 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1438 && TEST_BIT (irreds, bb->index))
1439 {
1440 error ("basic block %d should not be marked irreducible", bb->index);
1441 err = 1;
1442 }
1443 FOR_EACH_EDGE (e, ei, bb->succs)
1444 {
1445 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1446 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1447 {
1448 error ("edge from %d to %d should be marked irreducible",
1449 e->src->index, e->dest->index);
1450 err = 1;
1451 }
1452 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1453 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1454 {
1455 error ("edge from %d to %d should not be marked irreducible",
1456 e->src->index, e->dest->index);
1457 err = 1;
1458 }
1459 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1460 }
1461 }
1462 free (irreds);
1463 }
1464
1465 /* Check the recorded loop exits. */
1466 FOR_EACH_LOOP (li, loop, 0)
1467 {
1468 if (!loop->exits || loop->exits->e != NULL)
1469 {
1470 error ("corrupted head of the exits list of loop %d",
1471 loop->num);
1472 err = 1;
1473 }
1474 else
1475 {
1476 /* Check that the list forms a cycle, and all elements except
1477 for the head are nonnull. */
1478 for (mexit = loop->exits, exit = mexit->next, i = 0;
1479 exit->e && exit != mexit;
1480 exit = exit->next)
1481 {
1482 if (i++ & 1)
1483 mexit = mexit->next;
1484 }
1485
1486 if (exit != loop->exits)
1487 {
1488 error ("corrupted exits list of loop %d", loop->num);
1489 err = 1;
1490 }
1491 }
1492
1493 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1494 {
1495 if (loop->exits->next != loop->exits)
1496 {
1497 error ("nonempty exits list of loop %d, but exits are not recorded",
1498 loop->num);
1499 err = 1;
1500 }
1501 }
1502 }
1503
1504 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1505 {
1506 unsigned n_exits = 0, eloops;
1507
1508 memset (sizes, 0, sizeof (unsigned) * num);
1509 FOR_EACH_BB (bb)
1510 {
1511 edge_iterator ei;
1512 if (bb->loop_father == current_loops->tree_root)
1513 continue;
1514 FOR_EACH_EDGE (e, ei, bb->succs)
1515 {
1516 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1517 continue;
1518
1519 n_exits++;
1520 exit = get_exit_descriptions (e);
1521 if (!exit)
1522 {
1523 error ("Exit %d->%d not recorded",
1524 e->src->index, e->dest->index);
1525 err = 1;
1526 }
1527 eloops = 0;
1528 for (; exit; exit = exit->next_e)
1529 eloops++;
1530
1531 for (loop = bb->loop_father;
1532 loop != e->dest->loop_father;
1533 loop = loop_outer (loop))
1534 {
1535 eloops--;
1536 sizes[loop->num]++;
1537 }
1538
1539 if (eloops != 0)
1540 {
1541 error ("Wrong list of exited loops for edge %d->%d",
1542 e->src->index, e->dest->index);
1543 err = 1;
1544 }
1545 }
1546 }
1547
1548 if (n_exits != htab_elements (current_loops->exits))
1549 {
1550 error ("Too many loop exits recorded");
1551 err = 1;
1552 }
1553
1554 FOR_EACH_LOOP (li, loop, 0)
1555 {
1556 eloops = 0;
1557 for (exit = loop->exits->next; exit->e; exit = exit->next)
1558 eloops++;
1559 if (eloops != sizes[loop->num])
1560 {
1561 error ("%d exits recorded for loop %d (having %d exits)",
1562 eloops, loop->num, sizes[loop->num]);
1563 err = 1;
1564 }
1565 }
1566 }
1567
1568 gcc_assert (!err);
1569
1570 free (sizes);
1571 }
1572
1573 /* Returns latch edge of LOOP. */
1574 edge
1575 loop_latch_edge (const struct loop *loop)
1576 {
1577 return find_edge (loop->latch, loop->header);
1578 }
1579
1580 /* Returns preheader edge of LOOP. */
1581 edge
1582 loop_preheader_edge (const struct loop *loop)
1583 {
1584 edge e;
1585 edge_iterator ei;
1586
1587 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1588
1589 FOR_EACH_EDGE (e, ei, loop->header->preds)
1590 if (e->src != loop->latch)
1591 break;
1592
1593 return e;
1594 }
1595
1596 /* Returns true if E is an exit of LOOP. */
1597
1598 bool
1599 loop_exit_edge_p (const struct loop *loop, const_edge e)
1600 {
1601 return (flow_bb_inside_loop_p (loop, e->src)
1602 && !flow_bb_inside_loop_p (loop, e->dest));
1603 }
1604
1605 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1606 or more than one exit. If loops do not have the exits recorded, NULL
1607 is returned always. */
1608
1609 edge
1610 single_exit (const struct loop *loop)
1611 {
1612 struct loop_exit *exit = loop->exits->next;
1613
1614 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1615 return NULL;
1616
1617 if (exit->e && exit->next == loop->exits)
1618 return exit->e;
1619 else
1620 return NULL;
1621 }
1622
1623 /* Returns true when BB has an edge exiting LOOP. */
1624
1625 bool
1626 is_loop_exit (struct loop *loop, basic_block bb)
1627 {
1628 edge e;
1629 edge_iterator ei;
1630
1631 FOR_EACH_EDGE (e, ei, bb->preds)
1632 if (loop_exit_edge_p (loop, e))
1633 return true;
1634
1635 return false;
1636 }