]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
2015-04-23 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hashtab.h"
26 #include "hash-set.h"
27 #include "vec.h"
28 #include "symtab.h"
29 #include "inchash.h"
30 #include "machmode.h"
31 #include "hard-reg-set.h"
32 #include "input.h"
33 #include "function.h"
34 #include "predict.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfganal.h"
38 #include "basic-block.h"
39 #include "cfgloop.h"
40 #include "diagnostic-core.h"
41 #include "flags.h"
42 #include "tree.h"
43 #include "fold-const.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
47 #include "is-a.h"
48 #include "gimple.h"
49 #include "gimple-iterator.h"
50 #include "gimple-ssa.h"
51 #include "dumpfile.h"
52
53 static void flow_loops_cfg_dump (FILE *);
54 \f
55 /* Dump loop related CFG information. */
56
57 static void
58 flow_loops_cfg_dump (FILE *file)
59 {
60 basic_block bb;
61
62 if (!file)
63 return;
64
65 FOR_EACH_BB_FN (bb, cfun)
66 {
67 edge succ;
68 edge_iterator ei;
69
70 fprintf (file, ";; %d succs { ", bb->index);
71 FOR_EACH_EDGE (succ, ei, bb->succs)
72 fprintf (file, "%d ", succ->dest->index);
73 fprintf (file, "}\n");
74 }
75 }
76
77 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
78
79 bool
80 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
81 {
82 unsigned odepth = loop_depth (outer);
83
84 return (loop_depth (loop) > odepth
85 && (*loop->superloops)[odepth] == outer);
86 }
87
88 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
89 loops within LOOP. */
90
91 struct loop *
92 superloop_at_depth (struct loop *loop, unsigned depth)
93 {
94 unsigned ldepth = loop_depth (loop);
95
96 gcc_assert (depth <= ldepth);
97
98 if (depth == ldepth)
99 return loop;
100
101 return (*loop->superloops)[depth];
102 }
103
104 /* Returns the list of the latch edges of LOOP. */
105
106 static vec<edge>
107 get_loop_latch_edges (const struct loop *loop)
108 {
109 edge_iterator ei;
110 edge e;
111 vec<edge> ret = vNULL;
112
113 FOR_EACH_EDGE (e, ei, loop->header->preds)
114 {
115 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
116 ret.safe_push (e);
117 }
118
119 return ret;
120 }
121
122 /* Dump the loop information specified by LOOP to the stream FILE
123 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
124
125 void
126 flow_loop_dump (const struct loop *loop, FILE *file,
127 void (*loop_dump_aux) (const struct loop *, FILE *, int),
128 int verbose)
129 {
130 basic_block *bbs;
131 unsigned i;
132 vec<edge> latches;
133 edge e;
134
135 if (! loop || ! loop->header)
136 return;
137
138 fprintf (file, ";;\n;; Loop %d\n", loop->num);
139
140 fprintf (file, ";; header %d, ", loop->header->index);
141 if (loop->latch)
142 fprintf (file, "latch %d\n", loop->latch->index);
143 else
144 {
145 fprintf (file, "multiple latches:");
146 latches = get_loop_latch_edges (loop);
147 FOR_EACH_VEC_ELT (latches, i, e)
148 fprintf (file, " %d", e->src->index);
149 latches.release ();
150 fprintf (file, "\n");
151 }
152
153 fprintf (file, ";; depth %d, outer %ld\n",
154 loop_depth (loop), (long) (loop_outer (loop)
155 ? loop_outer (loop)->num : -1));
156
157 fprintf (file, ";; nodes:");
158 bbs = get_loop_body (loop);
159 for (i = 0; i < loop->num_nodes; i++)
160 fprintf (file, " %d", bbs[i]->index);
161 free (bbs);
162 fprintf (file, "\n");
163
164 if (loop_dump_aux)
165 loop_dump_aux (loop, file, verbose);
166 }
167
168 /* Dump the loop information about loops to the stream FILE,
169 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
170
171 void
172 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
173 {
174 struct loop *loop;
175
176 if (!current_loops || ! file)
177 return;
178
179 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
180
181 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
182 {
183 flow_loop_dump (loop, file, loop_dump_aux, verbose);
184 }
185
186 if (verbose)
187 flow_loops_cfg_dump (file);
188 }
189
190 /* Free data allocated for LOOP. */
191
192 void
193 flow_loop_free (struct loop *loop)
194 {
195 struct loop_exit *exit, *next;
196
197 vec_free (loop->superloops);
198
199 /* Break the list of the loop exit records. They will be freed when the
200 corresponding edge is rescanned or removed, and this avoids
201 accessing the (already released) head of the list stored in the
202 loop structure. */
203 for (exit = loop->exits->next; exit != loop->exits; exit = next)
204 {
205 next = exit->next;
206 exit->next = exit;
207 exit->prev = exit;
208 }
209
210 ggc_free (loop->exits);
211 ggc_free (loop);
212 }
213
214 /* Free all the memory allocated for LOOPS. */
215
216 void
217 flow_loops_free (struct loops *loops)
218 {
219 if (loops->larray)
220 {
221 unsigned i;
222 loop_p loop;
223
224 /* Free the loop descriptors. */
225 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
226 {
227 if (!loop)
228 continue;
229
230 flow_loop_free (loop);
231 }
232
233 vec_free (loops->larray);
234 }
235 }
236
237 /* Find the nodes contained within the LOOP with header HEADER.
238 Return the number of nodes within the loop. */
239
240 int
241 flow_loop_nodes_find (basic_block header, struct loop *loop)
242 {
243 vec<basic_block> stack = vNULL;
244 int num_nodes = 1;
245 edge latch;
246 edge_iterator latch_ei;
247
248 header->loop_father = loop;
249
250 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
251 {
252 if (latch->src->loop_father == loop
253 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
254 continue;
255
256 num_nodes++;
257 stack.safe_push (latch->src);
258 latch->src->loop_father = loop;
259
260 while (!stack.is_empty ())
261 {
262 basic_block node;
263 edge e;
264 edge_iterator ei;
265
266 node = stack.pop ();
267
268 FOR_EACH_EDGE (e, ei, node->preds)
269 {
270 basic_block ancestor = e->src;
271
272 if (ancestor->loop_father != loop)
273 {
274 ancestor->loop_father = loop;
275 num_nodes++;
276 stack.safe_push (ancestor);
277 }
278 }
279 }
280 }
281 stack.release ();
282
283 return num_nodes;
284 }
285
286 /* Records the vector of superloops of the loop LOOP, whose immediate
287 superloop is FATHER. */
288
289 static void
290 establish_preds (struct loop *loop, struct loop *father)
291 {
292 loop_p ploop;
293 unsigned depth = loop_depth (father) + 1;
294 unsigned i;
295
296 loop->superloops = 0;
297 vec_alloc (loop->superloops, depth);
298 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
299 loop->superloops->quick_push (ploop);
300 loop->superloops->quick_push (father);
301
302 for (ploop = loop->inner; ploop; ploop = ploop->next)
303 establish_preds (ploop, loop);
304 }
305
306 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
307 added loop. If LOOP has some children, take care of that their
308 pred field will be initialized correctly. */
309
310 void
311 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
312 {
313 loop->next = father->inner;
314 father->inner = loop;
315
316 establish_preds (loop, father);
317 }
318
319 /* Remove LOOP from the loop hierarchy tree. */
320
321 void
322 flow_loop_tree_node_remove (struct loop *loop)
323 {
324 struct loop *prev, *father;
325
326 father = loop_outer (loop);
327
328 /* Remove loop from the list of sons. */
329 if (father->inner == loop)
330 father->inner = loop->next;
331 else
332 {
333 for (prev = father->inner; prev->next != loop; prev = prev->next)
334 continue;
335 prev->next = loop->next;
336 }
337
338 loop->superloops = NULL;
339 }
340
341 /* Allocates and returns new loop structure. */
342
343 struct loop *
344 alloc_loop (void)
345 {
346 struct loop *loop = ggc_cleared_alloc<struct loop> ();
347
348 loop->exits = ggc_cleared_alloc<loop_exit> ();
349 loop->exits->next = loop->exits->prev = loop->exits;
350 loop->can_be_parallel = false;
351 loop->nb_iterations_upper_bound = 0;
352 loop->nb_iterations_estimate = 0;
353 return loop;
354 }
355
356 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
357 (including the root of the loop tree). */
358
359 void
360 init_loops_structure (struct function *fn,
361 struct loops *loops, unsigned num_loops)
362 {
363 struct loop *root;
364
365 memset (loops, 0, sizeof *loops);
366 vec_alloc (loops->larray, num_loops);
367
368 /* Dummy loop containing whole function. */
369 root = alloc_loop ();
370 root->num_nodes = n_basic_blocks_for_fn (fn);
371 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
372 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
373 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
374 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
375
376 loops->larray->quick_push (root);
377 loops->tree_root = root;
378 }
379
380 /* Returns whether HEADER is a loop header. */
381
382 bool
383 bb_loop_header_p (basic_block header)
384 {
385 edge_iterator ei;
386 edge e;
387
388 /* If we have an abnormal predecessor, do not consider the
389 loop (not worth the problems). */
390 if (bb_has_abnormal_pred (header))
391 return false;
392
393 /* Look for back edges where a predecessor is dominated
394 by this block. A natural loop has a single entry
395 node (header) that dominates all the nodes in the
396 loop. It also has single back edge to the header
397 from a latch node. */
398 FOR_EACH_EDGE (e, ei, header->preds)
399 {
400 basic_block latch = e->src;
401 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
402 && dominated_by_p (CDI_DOMINATORS, latch, header))
403 return true;
404 }
405
406 return false;
407 }
408
409 /* Find all the natural loops in the function and save in LOOPS structure and
410 recalculate loop_father information in basic block structures.
411 If LOOPS is non-NULL then the loop structures for already recorded loops
412 will be re-used and their number will not change. We assume that no
413 stale loops exist in LOOPS.
414 When LOOPS is NULL it is allocated and re-built from scratch.
415 Return the built LOOPS structure. */
416
417 struct loops *
418 flow_loops_find (struct loops *loops)
419 {
420 bool from_scratch = (loops == NULL);
421 int *rc_order;
422 int b;
423 unsigned i;
424
425 /* Ensure that the dominators are computed. */
426 calculate_dominance_info (CDI_DOMINATORS);
427
428 if (!loops)
429 {
430 loops = ggc_cleared_alloc<struct loops> ();
431 init_loops_structure (cfun, loops, 1);
432 }
433
434 /* Ensure that loop exits were released. */
435 gcc_assert (loops->exits == NULL);
436
437 /* Taking care of this degenerate case makes the rest of
438 this code simpler. */
439 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
440 return loops;
441
442 /* The root loop node contains all basic-blocks. */
443 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
444
445 /* Compute depth first search order of the CFG so that outer
446 natural loops will be found before inner natural loops. */
447 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
448 pre_and_rev_post_order_compute (NULL, rc_order, false);
449
450 /* Gather all loop headers in reverse completion order and allocate
451 loop structures for loops that are not already present. */
452 auto_vec<loop_p> larray (loops->larray->length ());
453 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
454 {
455 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
456 if (bb_loop_header_p (header))
457 {
458 struct loop *loop;
459
460 /* The current active loop tree has valid loop-fathers for
461 header blocks. */
462 if (!from_scratch
463 && header->loop_father->header == header)
464 {
465 loop = header->loop_father;
466 /* If we found an existing loop remove it from the
467 loop tree. It is going to be inserted again
468 below. */
469 flow_loop_tree_node_remove (loop);
470 }
471 else
472 {
473 /* Otherwise allocate a new loop structure for the loop. */
474 loop = alloc_loop ();
475 /* ??? We could re-use unused loop slots here. */
476 loop->num = loops->larray->length ();
477 vec_safe_push (loops->larray, loop);
478 loop->header = header;
479
480 if (!from_scratch
481 && dump_file && (dump_flags & TDF_DETAILS))
482 fprintf (dump_file, "flow_loops_find: discovered new "
483 "loop %d with header %d\n",
484 loop->num, header->index);
485 }
486 /* Reset latch, we recompute it below. */
487 loop->latch = NULL;
488 larray.safe_push (loop);
489 }
490
491 /* Make blocks part of the loop root node at start. */
492 header->loop_father = loops->tree_root;
493 }
494
495 free (rc_order);
496
497 /* Now iterate over the loops found, insert them into the loop tree
498 and assign basic-block ownership. */
499 for (i = 0; i < larray.length (); ++i)
500 {
501 struct loop *loop = larray[i];
502 basic_block header = loop->header;
503 edge_iterator ei;
504 edge e;
505
506 flow_loop_tree_node_add (header->loop_father, loop);
507 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
508
509 /* Look for the latch for this header block, if it has just a
510 single one. */
511 FOR_EACH_EDGE (e, ei, header->preds)
512 {
513 basic_block latch = e->src;
514
515 if (flow_bb_inside_loop_p (loop, latch))
516 {
517 if (loop->latch != NULL)
518 {
519 /* More than one latch edge. */
520 loop->latch = NULL;
521 break;
522 }
523 loop->latch = latch;
524 }
525 }
526 }
527
528 return loops;
529 }
530
531 /* Ratio of frequencies of edges so that one of more latch edges is
532 considered to belong to inner loop with same header. */
533 #define HEAVY_EDGE_RATIO 8
534
535 /* Minimum number of samples for that we apply
536 find_subloop_latch_edge_by_profile heuristics. */
537 #define HEAVY_EDGE_MIN_SAMPLES 10
538
539 /* If the profile info is available, finds an edge in LATCHES that much more
540 frequent than the remaining edges. Returns such an edge, or NULL if we do
541 not find one.
542
543 We do not use guessed profile here, only the measured one. The guessed
544 profile is usually too flat and unreliable for this (and it is mostly based
545 on the loop structure of the program, so it does not make much sense to
546 derive the loop structure from it). */
547
548 static edge
549 find_subloop_latch_edge_by_profile (vec<edge> latches)
550 {
551 unsigned i;
552 edge e, me = NULL;
553 gcov_type mcount = 0, tcount = 0;
554
555 FOR_EACH_VEC_ELT (latches, i, e)
556 {
557 if (e->count > mcount)
558 {
559 me = e;
560 mcount = e->count;
561 }
562 tcount += e->count;
563 }
564
565 if (tcount < HEAVY_EDGE_MIN_SAMPLES
566 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
567 return NULL;
568
569 if (dump_file)
570 fprintf (dump_file,
571 "Found latch edge %d -> %d using profile information.\n",
572 me->src->index, me->dest->index);
573 return me;
574 }
575
576 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
577 on the structure of induction variables. Returns this edge, or NULL if we
578 do not find any.
579
580 We are quite conservative, and look just for an obvious simple innermost
581 loop (which is the case where we would lose the most performance by not
582 disambiguating the loop). More precisely, we look for the following
583 situation: The source of the chosen latch edge dominates sources of all
584 the other latch edges. Additionally, the header does not contain a phi node
585 such that the argument from the chosen edge is equal to the argument from
586 another edge. */
587
588 static edge
589 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
590 {
591 edge e, latch = latches[0];
592 unsigned i;
593 gphi *phi;
594 gphi_iterator psi;
595 tree lop;
596 basic_block bb;
597
598 /* Find the candidate for the latch edge. */
599 for (i = 1; latches.iterate (i, &e); i++)
600 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
601 latch = e;
602
603 /* Verify that it dominates all the latch edges. */
604 FOR_EACH_VEC_ELT (latches, i, e)
605 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
606 return NULL;
607
608 /* Check for a phi node that would deny that this is a latch edge of
609 a subloop. */
610 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
611 {
612 phi = psi.phi ();
613 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
614
615 /* Ignore the values that are not changed inside the subloop. */
616 if (TREE_CODE (lop) != SSA_NAME
617 || SSA_NAME_DEF_STMT (lop) == phi)
618 continue;
619 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
620 if (!bb || !flow_bb_inside_loop_p (loop, bb))
621 continue;
622
623 FOR_EACH_VEC_ELT (latches, i, e)
624 if (e != latch
625 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
626 return NULL;
627 }
628
629 if (dump_file)
630 fprintf (dump_file,
631 "Found latch edge %d -> %d using iv structure.\n",
632 latch->src->index, latch->dest->index);
633 return latch;
634 }
635
636 /* If we can determine that one of the several latch edges of LOOP behaves
637 as a latch edge of a separate subloop, returns this edge. Otherwise
638 returns NULL. */
639
640 static edge
641 find_subloop_latch_edge (struct loop *loop)
642 {
643 vec<edge> latches = get_loop_latch_edges (loop);
644 edge latch = NULL;
645
646 if (latches.length () > 1)
647 {
648 latch = find_subloop_latch_edge_by_profile (latches);
649
650 if (!latch
651 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
652 should use cfghook for this, but it is hard to imagine it would
653 be useful elsewhere. */
654 && current_ir_type () == IR_GIMPLE)
655 latch = find_subloop_latch_edge_by_ivs (loop, latches);
656 }
657
658 latches.release ();
659 return latch;
660 }
661
662 /* Callback for make_forwarder_block. Returns true if the edge E is marked
663 in the set MFB_REIS_SET. */
664
665 static hash_set<edge> *mfb_reis_set;
666 static bool
667 mfb_redirect_edges_in_set (edge e)
668 {
669 return mfb_reis_set->contains (e);
670 }
671
672 /* Creates a subloop of LOOP with latch edge LATCH. */
673
674 static void
675 form_subloop (struct loop *loop, edge latch)
676 {
677 edge_iterator ei;
678 edge e, new_entry;
679 struct loop *new_loop;
680
681 mfb_reis_set = new hash_set<edge>;
682 FOR_EACH_EDGE (e, ei, loop->header->preds)
683 {
684 if (e != latch)
685 mfb_reis_set->add (e);
686 }
687 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
688 NULL);
689 delete mfb_reis_set;
690
691 loop->header = new_entry->src;
692
693 /* Find the blocks and subloops that belong to the new loop, and add it to
694 the appropriate place in the loop tree. */
695 new_loop = alloc_loop ();
696 new_loop->header = new_entry->dest;
697 new_loop->latch = latch->src;
698 add_loop (new_loop, loop);
699 }
700
701 /* Make all the latch edges of LOOP to go to a single forwarder block --
702 a new latch of LOOP. */
703
704 static void
705 merge_latch_edges (struct loop *loop)
706 {
707 vec<edge> latches = get_loop_latch_edges (loop);
708 edge latch, e;
709 unsigned i;
710
711 gcc_assert (latches.length () > 0);
712
713 if (latches.length () == 1)
714 loop->latch = latches[0]->src;
715 else
716 {
717 if (dump_file)
718 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
719
720 mfb_reis_set = new hash_set<edge>;
721 FOR_EACH_VEC_ELT (latches, i, e)
722 mfb_reis_set->add (e);
723 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
724 NULL);
725 delete mfb_reis_set;
726
727 loop->header = latch->dest;
728 loop->latch = latch->src;
729 }
730
731 latches.release ();
732 }
733
734 /* LOOP may have several latch edges. Transform it into (possibly several)
735 loops with single latch edge. */
736
737 static void
738 disambiguate_multiple_latches (struct loop *loop)
739 {
740 edge e;
741
742 /* We eliminate the multiple latches by splitting the header to the forwarder
743 block F and the rest R, and redirecting the edges. There are two cases:
744
745 1) If there is a latch edge E that corresponds to a subloop (we guess
746 that based on profile -- if it is taken much more often than the
747 remaining edges; and on trees, using the information about induction
748 variables of the loops), we redirect E to R, all the remaining edges to
749 F, then rescan the loops and try again for the outer loop.
750 2) If there is no such edge, we redirect all latch edges to F, and the
751 entry edges to R, thus making F the single latch of the loop. */
752
753 if (dump_file)
754 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
755 loop->num);
756
757 /* During latch merging, we may need to redirect the entry edges to a new
758 block. This would cause problems if the entry edge was the one from the
759 entry block. To avoid having to handle this case specially, split
760 such entry edge. */
761 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
762 if (e)
763 split_edge (e);
764
765 while (1)
766 {
767 e = find_subloop_latch_edge (loop);
768 if (!e)
769 break;
770
771 form_subloop (loop, e);
772 }
773
774 merge_latch_edges (loop);
775 }
776
777 /* Split loops with multiple latch edges. */
778
779 void
780 disambiguate_loops_with_multiple_latches (void)
781 {
782 struct loop *loop;
783
784 FOR_EACH_LOOP (loop, 0)
785 {
786 if (!loop->latch)
787 disambiguate_multiple_latches (loop);
788 }
789 }
790
791 /* Return nonzero if basic block BB belongs to LOOP. */
792 bool
793 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
794 {
795 struct loop *source_loop;
796
797 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
798 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
799 return 0;
800
801 source_loop = bb->loop_father;
802 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
803 }
804
805 /* Enumeration predicate for get_loop_body_with_size. */
806 static bool
807 glb_enum_p (const_basic_block bb, const void *glb_loop)
808 {
809 const struct loop *const loop = (const struct loop *) glb_loop;
810 return (bb != loop->header
811 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
812 }
813
814 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
815 order against direction of edges from latch. Specially, if
816 header != latch, latch is the 1-st block. LOOP cannot be the fake
817 loop tree root, and its size must be at most MAX_SIZE. The blocks
818 in the LOOP body are stored to BODY, and the size of the LOOP is
819 returned. */
820
821 unsigned
822 get_loop_body_with_size (const struct loop *loop, basic_block *body,
823 unsigned max_size)
824 {
825 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
826 body, max_size, loop);
827 }
828
829 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
830 order against direction of edges from latch. Specially, if
831 header != latch, latch is the 1-st block. */
832
833 basic_block *
834 get_loop_body (const struct loop *loop)
835 {
836 basic_block *body, bb;
837 unsigned tv = 0;
838
839 gcc_assert (loop->num_nodes);
840
841 body = XNEWVEC (basic_block, loop->num_nodes);
842
843 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
844 {
845 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
846 special-case the fake loop that contains the whole function. */
847 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
848 body[tv++] = loop->header;
849 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
850 FOR_EACH_BB_FN (bb, cfun)
851 body[tv++] = bb;
852 }
853 else
854 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
855
856 gcc_assert (tv == loop->num_nodes);
857 return body;
858 }
859
860 /* Fills dominance descendants inside LOOP of the basic block BB into
861 array TOVISIT from index *TV. */
862
863 static void
864 fill_sons_in_loop (const struct loop *loop, basic_block bb,
865 basic_block *tovisit, int *tv)
866 {
867 basic_block son, postpone = NULL;
868
869 tovisit[(*tv)++] = bb;
870 for (son = first_dom_son (CDI_DOMINATORS, bb);
871 son;
872 son = next_dom_son (CDI_DOMINATORS, son))
873 {
874 if (!flow_bb_inside_loop_p (loop, son))
875 continue;
876
877 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
878 {
879 postpone = son;
880 continue;
881 }
882 fill_sons_in_loop (loop, son, tovisit, tv);
883 }
884
885 if (postpone)
886 fill_sons_in_loop (loop, postpone, tovisit, tv);
887 }
888
889 /* Gets body of a LOOP (that must be different from the outermost loop)
890 sorted by dominance relation. Additionally, if a basic block s dominates
891 the latch, then only blocks dominated by s are be after it. */
892
893 basic_block *
894 get_loop_body_in_dom_order (const struct loop *loop)
895 {
896 basic_block *tovisit;
897 int tv;
898
899 gcc_assert (loop->num_nodes);
900
901 tovisit = XNEWVEC (basic_block, loop->num_nodes);
902
903 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
904
905 tv = 0;
906 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
907
908 gcc_assert (tv == (int) loop->num_nodes);
909
910 return tovisit;
911 }
912
913 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
914
915 basic_block *
916 get_loop_body_in_custom_order (const struct loop *loop,
917 int (*bb_comparator) (const void *, const void *))
918 {
919 basic_block *bbs = get_loop_body (loop);
920
921 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
922
923 return bbs;
924 }
925
926 /* Get body of a LOOP in breadth first sort order. */
927
928 basic_block *
929 get_loop_body_in_bfs_order (const struct loop *loop)
930 {
931 basic_block *blocks;
932 basic_block bb;
933 bitmap visited;
934 unsigned int i = 0;
935 unsigned int vc = 1;
936
937 gcc_assert (loop->num_nodes);
938 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
939
940 blocks = XNEWVEC (basic_block, loop->num_nodes);
941 visited = BITMAP_ALLOC (NULL);
942
943 bb = loop->header;
944 while (i < loop->num_nodes)
945 {
946 edge e;
947 edge_iterator ei;
948
949 if (bitmap_set_bit (visited, bb->index))
950 /* This basic block is now visited */
951 blocks[i++] = bb;
952
953 FOR_EACH_EDGE (e, ei, bb->succs)
954 {
955 if (flow_bb_inside_loop_p (loop, e->dest))
956 {
957 if (bitmap_set_bit (visited, e->dest->index))
958 blocks[i++] = e->dest;
959 }
960 }
961
962 gcc_assert (i >= vc);
963
964 bb = blocks[vc++];
965 }
966
967 BITMAP_FREE (visited);
968 return blocks;
969 }
970
971 /* Hash function for struct loop_exit. */
972
973 hashval_t
974 loop_exit_hasher::hash (loop_exit *exit)
975 {
976 return htab_hash_pointer (exit->e);
977 }
978
979 /* Equality function for struct loop_exit. Compares with edge. */
980
981 bool
982 loop_exit_hasher::equal (loop_exit *exit, edge e)
983 {
984 return exit->e == e;
985 }
986
987 /* Frees the list of loop exit descriptions EX. */
988
989 void
990 loop_exit_hasher::remove (loop_exit *exit)
991 {
992 loop_exit *next;
993 for (; exit; exit = next)
994 {
995 next = exit->next_e;
996
997 exit->next->prev = exit->prev;
998 exit->prev->next = exit->next;
999
1000 ggc_free (exit);
1001 }
1002 }
1003
1004 /* Returns the list of records for E as an exit of a loop. */
1005
1006 static struct loop_exit *
1007 get_exit_descriptions (edge e)
1008 {
1009 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1010 }
1011
1012 /* Updates the lists of loop exits in that E appears.
1013 If REMOVED is true, E is being removed, and we
1014 just remove it from the lists of exits.
1015 If NEW_EDGE is true and E is not a loop exit, we
1016 do not try to remove it from loop exit lists. */
1017
1018 void
1019 rescan_loop_exit (edge e, bool new_edge, bool removed)
1020 {
1021 struct loop_exit *exits = NULL, *exit;
1022 struct loop *aloop, *cloop;
1023
1024 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1025 return;
1026
1027 if (!removed
1028 && e->src->loop_father != NULL
1029 && e->dest->loop_father != NULL
1030 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1031 {
1032 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1033 for (aloop = e->src->loop_father;
1034 aloop != cloop;
1035 aloop = loop_outer (aloop))
1036 {
1037 exit = ggc_alloc<loop_exit> ();
1038 exit->e = e;
1039
1040 exit->next = aloop->exits->next;
1041 exit->prev = aloop->exits;
1042 exit->next->prev = exit;
1043 exit->prev->next = exit;
1044
1045 exit->next_e = exits;
1046 exits = exit;
1047 }
1048 }
1049
1050 if (!exits && new_edge)
1051 return;
1052
1053 loop_exit **slot
1054 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1055 exits ? INSERT : NO_INSERT);
1056 if (!slot)
1057 return;
1058
1059 if (exits)
1060 {
1061 if (*slot)
1062 loop_exit_hasher::remove (*slot);
1063 *slot = exits;
1064 }
1065 else
1066 current_loops->exits->clear_slot (slot);
1067 }
1068
1069 /* For each loop, record list of exit edges, and start maintaining these
1070 lists. */
1071
1072 void
1073 record_loop_exits (void)
1074 {
1075 basic_block bb;
1076 edge_iterator ei;
1077 edge e;
1078
1079 if (!current_loops)
1080 return;
1081
1082 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1083 return;
1084 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1085
1086 gcc_assert (current_loops->exits == NULL);
1087 current_loops->exits
1088 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1089
1090 FOR_EACH_BB_FN (bb, cfun)
1091 {
1092 FOR_EACH_EDGE (e, ei, bb->succs)
1093 {
1094 rescan_loop_exit (e, true, false);
1095 }
1096 }
1097 }
1098
1099 /* Dumps information about the exit in *SLOT to FILE.
1100 Callback for htab_traverse. */
1101
1102 int
1103 dump_recorded_exit (loop_exit **slot, FILE *file)
1104 {
1105 struct loop_exit *exit = *slot;
1106 unsigned n = 0;
1107 edge e = exit->e;
1108
1109 for (; exit != NULL; exit = exit->next_e)
1110 n++;
1111
1112 fprintf (file, "Edge %d->%d exits %u loops\n",
1113 e->src->index, e->dest->index, n);
1114
1115 return 1;
1116 }
1117
1118 /* Dumps the recorded exits of loops to FILE. */
1119
1120 extern void dump_recorded_exits (FILE *);
1121 void
1122 dump_recorded_exits (FILE *file)
1123 {
1124 if (!current_loops->exits)
1125 return;
1126 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1127 }
1128
1129 /* Releases lists of loop exits. */
1130
1131 void
1132 release_recorded_exits (void)
1133 {
1134 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1135 current_loops->exits->empty ();
1136 current_loops->exits = NULL;
1137 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1138 }
1139
1140 /* Returns the list of the exit edges of a LOOP. */
1141
1142 vec<edge>
1143 get_loop_exit_edges (const struct loop *loop)
1144 {
1145 vec<edge> edges = vNULL;
1146 edge e;
1147 unsigned i;
1148 basic_block *body;
1149 edge_iterator ei;
1150 struct loop_exit *exit;
1151
1152 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1153
1154 /* If we maintain the lists of exits, use them. Otherwise we must
1155 scan the body of the loop. */
1156 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1157 {
1158 for (exit = loop->exits->next; exit->e; exit = exit->next)
1159 edges.safe_push (exit->e);
1160 }
1161 else
1162 {
1163 body = get_loop_body (loop);
1164 for (i = 0; i < loop->num_nodes; i++)
1165 FOR_EACH_EDGE (e, ei, body[i]->succs)
1166 {
1167 if (!flow_bb_inside_loop_p (loop, e->dest))
1168 edges.safe_push (e);
1169 }
1170 free (body);
1171 }
1172
1173 return edges;
1174 }
1175
1176 /* Counts the number of conditional branches inside LOOP. */
1177
1178 unsigned
1179 num_loop_branches (const struct loop *loop)
1180 {
1181 unsigned i, n;
1182 basic_block * body;
1183
1184 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1185
1186 body = get_loop_body (loop);
1187 n = 0;
1188 for (i = 0; i < loop->num_nodes; i++)
1189 if (EDGE_COUNT (body[i]->succs) >= 2)
1190 n++;
1191 free (body);
1192
1193 return n;
1194 }
1195
1196 /* Adds basic block BB to LOOP. */
1197 void
1198 add_bb_to_loop (basic_block bb, struct loop *loop)
1199 {
1200 unsigned i;
1201 loop_p ploop;
1202 edge_iterator ei;
1203 edge e;
1204
1205 gcc_assert (bb->loop_father == NULL);
1206 bb->loop_father = loop;
1207 loop->num_nodes++;
1208 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1209 ploop->num_nodes++;
1210
1211 FOR_EACH_EDGE (e, ei, bb->succs)
1212 {
1213 rescan_loop_exit (e, true, false);
1214 }
1215 FOR_EACH_EDGE (e, ei, bb->preds)
1216 {
1217 rescan_loop_exit (e, true, false);
1218 }
1219 }
1220
1221 /* Remove basic block BB from loops. */
1222 void
1223 remove_bb_from_loops (basic_block bb)
1224 {
1225 unsigned i;
1226 struct loop *loop = bb->loop_father;
1227 loop_p ploop;
1228 edge_iterator ei;
1229 edge e;
1230
1231 gcc_assert (loop != NULL);
1232 loop->num_nodes--;
1233 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1234 ploop->num_nodes--;
1235 bb->loop_father = NULL;
1236
1237 FOR_EACH_EDGE (e, ei, bb->succs)
1238 {
1239 rescan_loop_exit (e, false, true);
1240 }
1241 FOR_EACH_EDGE (e, ei, bb->preds)
1242 {
1243 rescan_loop_exit (e, false, true);
1244 }
1245 }
1246
1247 /* Finds nearest common ancestor in loop tree for given loops. */
1248 struct loop *
1249 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1250 {
1251 unsigned sdepth, ddepth;
1252
1253 if (!loop_s) return loop_d;
1254 if (!loop_d) return loop_s;
1255
1256 sdepth = loop_depth (loop_s);
1257 ddepth = loop_depth (loop_d);
1258
1259 if (sdepth < ddepth)
1260 loop_d = (*loop_d->superloops)[sdepth];
1261 else if (sdepth > ddepth)
1262 loop_s = (*loop_s->superloops)[ddepth];
1263
1264 while (loop_s != loop_d)
1265 {
1266 loop_s = loop_outer (loop_s);
1267 loop_d = loop_outer (loop_d);
1268 }
1269 return loop_s;
1270 }
1271
1272 /* Removes LOOP from structures and frees its data. */
1273
1274 void
1275 delete_loop (struct loop *loop)
1276 {
1277 /* Remove the loop from structure. */
1278 flow_loop_tree_node_remove (loop);
1279
1280 /* Remove loop from loops array. */
1281 (*current_loops->larray)[loop->num] = NULL;
1282
1283 /* Free loop data. */
1284 flow_loop_free (loop);
1285 }
1286
1287 /* Cancels the LOOP; it must be innermost one. */
1288
1289 static void
1290 cancel_loop (struct loop *loop)
1291 {
1292 basic_block *bbs;
1293 unsigned i;
1294 struct loop *outer = loop_outer (loop);
1295
1296 gcc_assert (!loop->inner);
1297
1298 /* Move blocks up one level (they should be removed as soon as possible). */
1299 bbs = get_loop_body (loop);
1300 for (i = 0; i < loop->num_nodes; i++)
1301 bbs[i]->loop_father = outer;
1302
1303 free (bbs);
1304 delete_loop (loop);
1305 }
1306
1307 /* Cancels LOOP and all its subloops. */
1308 void
1309 cancel_loop_tree (struct loop *loop)
1310 {
1311 while (loop->inner)
1312 cancel_loop_tree (loop->inner);
1313 cancel_loop (loop);
1314 }
1315
1316 /* Checks that information about loops is correct
1317 -- sizes of loops are all right
1318 -- results of get_loop_body really belong to the loop
1319 -- loop header have just single entry edge and single latch edge
1320 -- loop latches have only single successor that is header of their loop
1321 -- irreducible loops are correctly marked
1322 -- the cached loop depth and loop father of each bb is correct
1323 */
1324 DEBUG_FUNCTION void
1325 verify_loop_structure (void)
1326 {
1327 unsigned *sizes, i, j;
1328 sbitmap irreds;
1329 basic_block bb, *bbs;
1330 struct loop *loop;
1331 int err = 0;
1332 edge e;
1333 unsigned num = number_of_loops (cfun);
1334 struct loop_exit *exit, *mexit;
1335 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1336 sbitmap visited;
1337
1338 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1339 {
1340 error ("loop verification on loop tree that needs fixup");
1341 err = 1;
1342 }
1343
1344 /* We need up-to-date dominators, compute or verify them. */
1345 if (!dom_available)
1346 calculate_dominance_info (CDI_DOMINATORS);
1347 else
1348 verify_dominators (CDI_DOMINATORS);
1349
1350 /* Check the loop tree root. */
1351 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1352 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1353 || (current_loops->tree_root->num_nodes
1354 != (unsigned) n_basic_blocks_for_fn (cfun)))
1355 {
1356 error ("corrupt loop tree root");
1357 err = 1;
1358 }
1359
1360 /* Check the headers. */
1361 FOR_EACH_BB_FN (bb, cfun)
1362 if (bb_loop_header_p (bb))
1363 {
1364 if (bb->loop_father->header == NULL)
1365 {
1366 error ("loop with header %d marked for removal", bb->index);
1367 err = 1;
1368 }
1369 else if (bb->loop_father->header != bb)
1370 {
1371 error ("loop with header %d not in loop tree", bb->index);
1372 err = 1;
1373 }
1374 }
1375 else if (bb->loop_father->header == bb)
1376 {
1377 error ("non-loop with header %d not marked for removal", bb->index);
1378 err = 1;
1379 }
1380
1381 /* Check the recorded loop father and sizes of loops. */
1382 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1383 bitmap_clear (visited);
1384 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1385 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1386 {
1387 unsigned n;
1388
1389 if (loop->header == NULL)
1390 {
1391 error ("removed loop %d in loop tree", loop->num);
1392 err = 1;
1393 continue;
1394 }
1395
1396 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1397 if (loop->num_nodes != n)
1398 {
1399 error ("size of loop %d should be %d, not %d",
1400 loop->num, n, loop->num_nodes);
1401 err = 1;
1402 }
1403
1404 for (j = 0; j < n; j++)
1405 {
1406 bb = bbs[j];
1407
1408 if (!flow_bb_inside_loop_p (loop, bb))
1409 {
1410 error ("bb %d does not belong to loop %d",
1411 bb->index, loop->num);
1412 err = 1;
1413 }
1414
1415 /* Ignore this block if it is in an inner loop. */
1416 if (bitmap_bit_p (visited, bb->index))
1417 continue;
1418 bitmap_set_bit (visited, bb->index);
1419
1420 if (bb->loop_father != loop)
1421 {
1422 error ("bb %d has father loop %d, should be loop %d",
1423 bb->index, bb->loop_father->num, loop->num);
1424 err = 1;
1425 }
1426 }
1427 }
1428 free (bbs);
1429 sbitmap_free (visited);
1430
1431 /* Check headers and latches. */
1432 FOR_EACH_LOOP (loop, 0)
1433 {
1434 i = loop->num;
1435 if (loop->header == NULL)
1436 continue;
1437 if (!bb_loop_header_p (loop->header))
1438 {
1439 error ("loop %d%'s header is not a loop header", i);
1440 err = 1;
1441 }
1442 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1443 && EDGE_COUNT (loop->header->preds) != 2)
1444 {
1445 error ("loop %d%'s header does not have exactly 2 entries", i);
1446 err = 1;
1447 }
1448 if (loop->latch)
1449 {
1450 if (!find_edge (loop->latch, loop->header))
1451 {
1452 error ("loop %d%'s latch does not have an edge to its header", i);
1453 err = 1;
1454 }
1455 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1456 {
1457 error ("loop %d%'s latch is not dominated by its header", i);
1458 err = 1;
1459 }
1460 }
1461 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1462 {
1463 if (!single_succ_p (loop->latch))
1464 {
1465 error ("loop %d%'s latch does not have exactly 1 successor", i);
1466 err = 1;
1467 }
1468 if (single_succ (loop->latch) != loop->header)
1469 {
1470 error ("loop %d%'s latch does not have header as successor", i);
1471 err = 1;
1472 }
1473 if (loop->latch->loop_father != loop)
1474 {
1475 error ("loop %d%'s latch does not belong directly to it", i);
1476 err = 1;
1477 }
1478 }
1479 if (loop->header->loop_father != loop)
1480 {
1481 error ("loop %d%'s header does not belong directly to it", i);
1482 err = 1;
1483 }
1484 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1485 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1486 {
1487 error ("loop %d%'s latch is marked as part of irreducible region", i);
1488 err = 1;
1489 }
1490 }
1491
1492 /* Check irreducible loops. */
1493 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1494 {
1495 /* Record old info. */
1496 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1497 FOR_EACH_BB_FN (bb, cfun)
1498 {
1499 edge_iterator ei;
1500 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1501 bitmap_set_bit (irreds, bb->index);
1502 else
1503 bitmap_clear_bit (irreds, bb->index);
1504 FOR_EACH_EDGE (e, ei, bb->succs)
1505 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1506 e->flags |= EDGE_ALL_FLAGS + 1;
1507 }
1508
1509 /* Recount it. */
1510 mark_irreducible_loops ();
1511
1512 /* Compare. */
1513 FOR_EACH_BB_FN (bb, cfun)
1514 {
1515 edge_iterator ei;
1516
1517 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1518 && !bitmap_bit_p (irreds, bb->index))
1519 {
1520 error ("basic block %d should be marked irreducible", bb->index);
1521 err = 1;
1522 }
1523 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1524 && bitmap_bit_p (irreds, bb->index))
1525 {
1526 error ("basic block %d should not be marked irreducible", bb->index);
1527 err = 1;
1528 }
1529 FOR_EACH_EDGE (e, ei, bb->succs)
1530 {
1531 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1532 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1533 {
1534 error ("edge from %d to %d should be marked irreducible",
1535 e->src->index, e->dest->index);
1536 err = 1;
1537 }
1538 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1539 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1540 {
1541 error ("edge from %d to %d should not be marked irreducible",
1542 e->src->index, e->dest->index);
1543 err = 1;
1544 }
1545 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1546 }
1547 }
1548 free (irreds);
1549 }
1550
1551 /* Check the recorded loop exits. */
1552 FOR_EACH_LOOP (loop, 0)
1553 {
1554 if (!loop->exits || loop->exits->e != NULL)
1555 {
1556 error ("corrupted head of the exits list of loop %d",
1557 loop->num);
1558 err = 1;
1559 }
1560 else
1561 {
1562 /* Check that the list forms a cycle, and all elements except
1563 for the head are nonnull. */
1564 for (mexit = loop->exits, exit = mexit->next, i = 0;
1565 exit->e && exit != mexit;
1566 exit = exit->next)
1567 {
1568 if (i++ & 1)
1569 mexit = mexit->next;
1570 }
1571
1572 if (exit != loop->exits)
1573 {
1574 error ("corrupted exits list of loop %d", loop->num);
1575 err = 1;
1576 }
1577 }
1578
1579 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1580 {
1581 if (loop->exits->next != loop->exits)
1582 {
1583 error ("nonempty exits list of loop %d, but exits are not recorded",
1584 loop->num);
1585 err = 1;
1586 }
1587 }
1588 }
1589
1590 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1591 {
1592 unsigned n_exits = 0, eloops;
1593
1594 sizes = XCNEWVEC (unsigned, num);
1595 memset (sizes, 0, sizeof (unsigned) * num);
1596 FOR_EACH_BB_FN (bb, cfun)
1597 {
1598 edge_iterator ei;
1599 if (bb->loop_father == current_loops->tree_root)
1600 continue;
1601 FOR_EACH_EDGE (e, ei, bb->succs)
1602 {
1603 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1604 continue;
1605
1606 n_exits++;
1607 exit = get_exit_descriptions (e);
1608 if (!exit)
1609 {
1610 error ("exit %d->%d not recorded",
1611 e->src->index, e->dest->index);
1612 err = 1;
1613 }
1614 eloops = 0;
1615 for (; exit; exit = exit->next_e)
1616 eloops++;
1617
1618 for (loop = bb->loop_father;
1619 loop != e->dest->loop_father
1620 /* When a loop exit is also an entry edge which
1621 can happen when avoiding CFG manipulations
1622 then the last loop exited is the outer loop
1623 of the loop entered. */
1624 && loop != loop_outer (e->dest->loop_father);
1625 loop = loop_outer (loop))
1626 {
1627 eloops--;
1628 sizes[loop->num]++;
1629 }
1630
1631 if (eloops != 0)
1632 {
1633 error ("wrong list of exited loops for edge %d->%d",
1634 e->src->index, e->dest->index);
1635 err = 1;
1636 }
1637 }
1638 }
1639
1640 if (n_exits != current_loops->exits->elements ())
1641 {
1642 error ("too many loop exits recorded");
1643 err = 1;
1644 }
1645
1646 FOR_EACH_LOOP (loop, 0)
1647 {
1648 eloops = 0;
1649 for (exit = loop->exits->next; exit->e; exit = exit->next)
1650 eloops++;
1651 if (eloops != sizes[loop->num])
1652 {
1653 error ("%d exits recorded for loop %d (having %d exits)",
1654 eloops, loop->num, sizes[loop->num]);
1655 err = 1;
1656 }
1657 }
1658
1659 free (sizes);
1660 }
1661
1662 gcc_assert (!err);
1663
1664 if (!dom_available)
1665 free_dominance_info (CDI_DOMINATORS);
1666 }
1667
1668 /* Returns latch edge of LOOP. */
1669 edge
1670 loop_latch_edge (const struct loop *loop)
1671 {
1672 return find_edge (loop->latch, loop->header);
1673 }
1674
1675 /* Returns preheader edge of LOOP. */
1676 edge
1677 loop_preheader_edge (const struct loop *loop)
1678 {
1679 edge e;
1680 edge_iterator ei;
1681
1682 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1683
1684 FOR_EACH_EDGE (e, ei, loop->header->preds)
1685 if (e->src != loop->latch)
1686 break;
1687
1688 return e;
1689 }
1690
1691 /* Returns true if E is an exit of LOOP. */
1692
1693 bool
1694 loop_exit_edge_p (const struct loop *loop, const_edge e)
1695 {
1696 return (flow_bb_inside_loop_p (loop, e->src)
1697 && !flow_bb_inside_loop_p (loop, e->dest));
1698 }
1699
1700 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1701 or more than one exit. If loops do not have the exits recorded, NULL
1702 is returned always. */
1703
1704 edge
1705 single_exit (const struct loop *loop)
1706 {
1707 struct loop_exit *exit = loop->exits->next;
1708
1709 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1710 return NULL;
1711
1712 if (exit->e && exit->next == loop->exits)
1713 return exit->e;
1714 else
1715 return NULL;
1716 }
1717
1718 /* Returns true when BB has an incoming edge exiting LOOP. */
1719
1720 bool
1721 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1722 {
1723 edge e;
1724 edge_iterator ei;
1725
1726 FOR_EACH_EDGE (e, ei, bb->preds)
1727 if (loop_exit_edge_p (loop, e))
1728 return true;
1729
1730 return false;
1731 }
1732
1733 /* Returns true when BB has an outgoing edge exiting LOOP. */
1734
1735 bool
1736 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1737 {
1738 edge e;
1739 edge_iterator ei;
1740
1741 FOR_EACH_EDGE (e, ei, bb->succs)
1742 if (loop_exit_edge_p (loop, e))
1743 return true;
1744
1745 return false;
1746 }
1747
1748 /* Return location corresponding to the loop control condition if possible. */
1749
1750 location_t
1751 get_loop_location (struct loop *loop)
1752 {
1753 rtx_insn *insn = NULL;
1754 struct niter_desc *desc = NULL;
1755 edge exit;
1756
1757 /* For a for or while loop, we would like to return the location
1758 of the for or while statement, if possible. To do this, look
1759 for the branch guarding the loop back-edge. */
1760
1761 /* If this is a simple loop with an in_edge, then the loop control
1762 branch is typically at the end of its source. */
1763 desc = get_simple_loop_desc (loop);
1764 if (desc->in_edge)
1765 {
1766 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1767 {
1768 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1769 return INSN_LOCATION (insn);
1770 }
1771 }
1772 /* If loop has a single exit, then the loop control branch
1773 must be at the end of its source. */
1774 if ((exit = single_exit (loop)))
1775 {
1776 FOR_BB_INSNS_REVERSE (exit->src, insn)
1777 {
1778 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1779 return INSN_LOCATION (insn);
1780 }
1781 }
1782 /* Next check the latch, to see if it is non-empty. */
1783 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1784 {
1785 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1786 return INSN_LOCATION (insn);
1787 }
1788 /* Finally, if none of the above identifies the loop control branch,
1789 return the first location in the loop header. */
1790 FOR_BB_INSNS (loop->header, insn)
1791 {
1792 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1793 return INSN_LOCATION (insn);
1794 }
1795 /* If all else fails, simply return the current function location. */
1796 return DECL_SOURCE_LOCATION (current_function_decl);
1797 }
1798
1799 /* Records that every statement in LOOP is executed I_BOUND times.
1800 REALISTIC is true if I_BOUND is expected to be close to the real number
1801 of iterations. UPPER is true if we are sure the loop iterates at most
1802 I_BOUND times. */
1803
1804 void
1805 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1806 bool realistic, bool upper)
1807 {
1808 /* Update the bounds only when there is no previous estimation, or when the
1809 current estimation is smaller. */
1810 if (upper
1811 && (!loop->any_upper_bound
1812 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1813 {
1814 loop->any_upper_bound = true;
1815 loop->nb_iterations_upper_bound = i_bound;
1816 }
1817 if (realistic
1818 && (!loop->any_estimate
1819 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1820 {
1821 loop->any_estimate = true;
1822 loop->nb_iterations_estimate = i_bound;
1823 }
1824
1825 /* If an upper bound is smaller than the realistic estimate of the
1826 number of iterations, use the upper bound instead. */
1827 if (loop->any_upper_bound
1828 && loop->any_estimate
1829 && wi::ltu_p (loop->nb_iterations_upper_bound,
1830 loop->nb_iterations_estimate))
1831 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1832 }
1833
1834 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1835 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1836 on the number of iterations of LOOP could not be derived, returns -1. */
1837
1838 HOST_WIDE_INT
1839 get_estimated_loop_iterations_int (struct loop *loop)
1840 {
1841 widest_int nit;
1842 HOST_WIDE_INT hwi_nit;
1843
1844 if (!get_estimated_loop_iterations (loop, &nit))
1845 return -1;
1846
1847 if (!wi::fits_shwi_p (nit))
1848 return -1;
1849 hwi_nit = nit.to_shwi ();
1850
1851 return hwi_nit < 0 ? -1 : hwi_nit;
1852 }
1853
1854 /* Returns an upper bound on the number of executions of statements
1855 in the LOOP. For statements before the loop exit, this exceeds
1856 the number of execution of the latch by one. */
1857
1858 HOST_WIDE_INT
1859 max_stmt_executions_int (struct loop *loop)
1860 {
1861 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1862 HOST_WIDE_INT snit;
1863
1864 if (nit == -1)
1865 return -1;
1866
1867 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1868
1869 /* If the computation overflows, return -1. */
1870 return snit < 0 ? -1 : snit;
1871 }
1872
1873 /* Sets NIT to the estimated number of executions of the latch of the
1874 LOOP. If we have no reliable estimate, the function returns false, otherwise
1875 returns true. */
1876
1877 bool
1878 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1879 {
1880 /* Even if the bound is not recorded, possibly we can derrive one from
1881 profile. */
1882 if (!loop->any_estimate)
1883 {
1884 if (loop->header->count)
1885 {
1886 *nit = gcov_type_to_wide_int
1887 (expected_loop_iterations_unbounded (loop) + 1);
1888 return true;
1889 }
1890 return false;
1891 }
1892
1893 *nit = loop->nb_iterations_estimate;
1894 return true;
1895 }
1896
1897 /* Sets NIT to an upper bound for the maximum number of executions of the
1898 latch of the LOOP. If we have no reliable estimate, the function returns
1899 false, otherwise returns true. */
1900
1901 bool
1902 get_max_loop_iterations (struct loop *loop, widest_int *nit)
1903 {
1904 if (!loop->any_upper_bound)
1905 return false;
1906
1907 *nit = loop->nb_iterations_upper_bound;
1908 return true;
1909 }
1910
1911 /* Similar to get_max_loop_iterations, but returns the estimate only
1912 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1913 on the number of iterations of LOOP could not be derived, returns -1. */
1914
1915 HOST_WIDE_INT
1916 get_max_loop_iterations_int (struct loop *loop)
1917 {
1918 widest_int nit;
1919 HOST_WIDE_INT hwi_nit;
1920
1921 if (!get_max_loop_iterations (loop, &nit))
1922 return -1;
1923
1924 if (!wi::fits_shwi_p (nit))
1925 return -1;
1926 hwi_nit = nit.to_shwi ();
1927
1928 return hwi_nit < 0 ? -1 : hwi_nit;
1929 }
1930
1931 /* Returns the loop depth of the loop BB belongs to. */
1932
1933 int
1934 bb_loop_depth (const_basic_block bb)
1935 {
1936 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1937 }
1938
1939 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1940
1941 void
1942 mark_loop_for_removal (loop_p loop)
1943 {
1944 if (loop->header == NULL)
1945 return;
1946 loop->former_header = loop->header;
1947 loop->header = NULL;
1948 loop->latch = NULL;
1949 loops_state_set (LOOPS_NEED_FIXUP);
1950 }