]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
2017-10-13 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34
35 static void flow_loops_cfg_dump (FILE *);
36 \f
37 /* Dump loop related CFG information. */
38
39 static void
40 flow_loops_cfg_dump (FILE *file)
41 {
42 basic_block bb;
43
44 if (!file)
45 return;
46
47 FOR_EACH_BB_FN (bb, cfun)
48 {
49 edge succ;
50 edge_iterator ei;
51
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
56 }
57 }
58
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
60
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
63 {
64 unsigned odepth = loop_depth (outer);
65
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
68 }
69
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
72
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
75 {
76 unsigned ldepth = loop_depth (loop);
77
78 gcc_assert (depth <= ldepth);
79
80 if (depth == ldepth)
81 return loop;
82
83 return (*loop->superloops)[depth];
84 }
85
86 /* Returns the list of the latch edges of LOOP. */
87
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
90 {
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
94
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
96 {
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
99 }
100
101 return ret;
102 }
103
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
106
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
111 {
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
116
117 if (! loop || ! loop->header)
118 return;
119
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
121
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
126 {
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
133 }
134
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
138
139 if (loop->latch)
140 {
141 bool read_profile_p;
142 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
143 if (read_profile_p && !loop->any_estimate)
144 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
145 (uint64_t) nit);
146 }
147
148 fprintf (file, ";; nodes:");
149 bbs = get_loop_body (loop);
150 for (i = 0; i < loop->num_nodes; i++)
151 fprintf (file, " %d", bbs[i]->index);
152 free (bbs);
153 fprintf (file, "\n");
154
155 if (loop_dump_aux)
156 loop_dump_aux (loop, file, verbose);
157 }
158
159 /* Dump the loop information about loops to the stream FILE,
160 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
161
162 void
163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
164 {
165 struct loop *loop;
166
167 if (!current_loops || ! file)
168 return;
169
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
171
172 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
173 {
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
175 }
176
177 if (verbose)
178 flow_loops_cfg_dump (file);
179 }
180
181 /* Free data allocated for LOOP. */
182
183 void
184 flow_loop_free (struct loop *loop)
185 {
186 struct loop_exit *exit, *next;
187
188 vec_free (loop->superloops);
189
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
195 {
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
199 }
200
201 ggc_free (loop->exits);
202 ggc_free (loop);
203 }
204
205 /* Free all the memory allocated for LOOPS. */
206
207 void
208 flow_loops_free (struct loops *loops)
209 {
210 if (loops->larray)
211 {
212 unsigned i;
213 loop_p loop;
214
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
217 {
218 if (!loop)
219 continue;
220
221 flow_loop_free (loop);
222 }
223
224 vec_free (loops->larray);
225 }
226 }
227
228 /* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
230
231 int
232 flow_loop_nodes_find (basic_block header, struct loop *loop)
233 {
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
238
239 header->loop_father = loop;
240
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
242 {
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
246
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
250
251 while (!stack.is_empty ())
252 {
253 basic_block node;
254 edge e;
255 edge_iterator ei;
256
257 node = stack.pop ();
258
259 FOR_EACH_EDGE (e, ei, node->preds)
260 {
261 basic_block ancestor = e->src;
262
263 if (ancestor->loop_father != loop)
264 {
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
268 }
269 }
270 }
271 }
272 stack.release ();
273
274 return num_nodes;
275 }
276
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
282 {
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
292
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
295 }
296
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
300
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
303 {
304 loop->next = father->inner;
305 father->inner = loop;
306
307 establish_preds (loop, father);
308 }
309
310 /* Remove LOOP from the loop hierarchy tree. */
311
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
314 {
315 struct loop *prev, *father;
316
317 father = loop_outer (loop);
318
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
323 {
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
327 }
328
329 loop->superloops = NULL;
330 }
331
332 /* Allocates and returns new loop structure. */
333
334 struct loop *
335 alloc_loop (void)
336 {
337 struct loop *loop = ggc_cleared_alloc<struct loop> ();
338
339 loop->exits = ggc_cleared_alloc<loop_exit> ();
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
342 loop->constraints = 0;
343 loop->nb_iterations_upper_bound = 0;
344 loop->nb_iterations_likely_upper_bound = 0;
345 loop->nb_iterations_estimate = 0;
346 return loop;
347 }
348
349 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
350 (including the root of the loop tree). */
351
352 void
353 init_loops_structure (struct function *fn,
354 struct loops *loops, unsigned num_loops)
355 {
356 struct loop *root;
357
358 memset (loops, 0, sizeof *loops);
359 vec_alloc (loops->larray, num_loops);
360
361 /* Dummy loop containing whole function. */
362 root = alloc_loop ();
363 root->num_nodes = n_basic_blocks_for_fn (fn);
364 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
365 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
366 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
367 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
368
369 loops->larray->quick_push (root);
370 loops->tree_root = root;
371 }
372
373 /* Returns whether HEADER is a loop header. */
374
375 bool
376 bb_loop_header_p (basic_block header)
377 {
378 edge_iterator ei;
379 edge e;
380
381 /* If we have an abnormal predecessor, do not consider the
382 loop (not worth the problems). */
383 if (bb_has_abnormal_pred (header))
384 return false;
385
386 /* Look for back edges where a predecessor is dominated
387 by this block. A natural loop has a single entry
388 node (header) that dominates all the nodes in the
389 loop. It also has single back edge to the header
390 from a latch node. */
391 FOR_EACH_EDGE (e, ei, header->preds)
392 {
393 basic_block latch = e->src;
394 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
395 && dominated_by_p (CDI_DOMINATORS, latch, header))
396 return true;
397 }
398
399 return false;
400 }
401
402 /* Find all the natural loops in the function and save in LOOPS structure and
403 recalculate loop_father information in basic block structures.
404 If LOOPS is non-NULL then the loop structures for already recorded loops
405 will be re-used and their number will not change. We assume that no
406 stale loops exist in LOOPS.
407 When LOOPS is NULL it is allocated and re-built from scratch.
408 Return the built LOOPS structure. */
409
410 struct loops *
411 flow_loops_find (struct loops *loops)
412 {
413 bool from_scratch = (loops == NULL);
414 int *rc_order;
415 int b;
416 unsigned i;
417
418 /* Ensure that the dominators are computed. */
419 calculate_dominance_info (CDI_DOMINATORS);
420
421 if (!loops)
422 {
423 loops = ggc_cleared_alloc<struct loops> ();
424 init_loops_structure (cfun, loops, 1);
425 }
426
427 /* Ensure that loop exits were released. */
428 gcc_assert (loops->exits == NULL);
429
430 /* Taking care of this degenerate case makes the rest of
431 this code simpler. */
432 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
433 return loops;
434
435 /* The root loop node contains all basic-blocks. */
436 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
437
438 /* Compute depth first search order of the CFG so that outer
439 natural loops will be found before inner natural loops. */
440 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
441 pre_and_rev_post_order_compute (NULL, rc_order, false);
442
443 /* Gather all loop headers in reverse completion order and allocate
444 loop structures for loops that are not already present. */
445 auto_vec<loop_p> larray (loops->larray->length ());
446 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
447 {
448 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
449 if (bb_loop_header_p (header))
450 {
451 struct loop *loop;
452
453 /* The current active loop tree has valid loop-fathers for
454 header blocks. */
455 if (!from_scratch
456 && header->loop_father->header == header)
457 {
458 loop = header->loop_father;
459 /* If we found an existing loop remove it from the
460 loop tree. It is going to be inserted again
461 below. */
462 flow_loop_tree_node_remove (loop);
463 }
464 else
465 {
466 /* Otherwise allocate a new loop structure for the loop. */
467 loop = alloc_loop ();
468 /* ??? We could re-use unused loop slots here. */
469 loop->num = loops->larray->length ();
470 vec_safe_push (loops->larray, loop);
471 loop->header = header;
472
473 if (!from_scratch
474 && dump_file && (dump_flags & TDF_DETAILS))
475 fprintf (dump_file, "flow_loops_find: discovered new "
476 "loop %d with header %d\n",
477 loop->num, header->index);
478 }
479 /* Reset latch, we recompute it below. */
480 loop->latch = NULL;
481 larray.safe_push (loop);
482 }
483
484 /* Make blocks part of the loop root node at start. */
485 header->loop_father = loops->tree_root;
486 }
487
488 free (rc_order);
489
490 /* Now iterate over the loops found, insert them into the loop tree
491 and assign basic-block ownership. */
492 for (i = 0; i < larray.length (); ++i)
493 {
494 struct loop *loop = larray[i];
495 basic_block header = loop->header;
496 edge_iterator ei;
497 edge e;
498
499 flow_loop_tree_node_add (header->loop_father, loop);
500 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
501
502 /* Look for the latch for this header block, if it has just a
503 single one. */
504 FOR_EACH_EDGE (e, ei, header->preds)
505 {
506 basic_block latch = e->src;
507
508 if (flow_bb_inside_loop_p (loop, latch))
509 {
510 if (loop->latch != NULL)
511 {
512 /* More than one latch edge. */
513 loop->latch = NULL;
514 break;
515 }
516 loop->latch = latch;
517 }
518 }
519 }
520
521 return loops;
522 }
523
524 /* qsort helper for sort_sibling_loops. */
525
526 static int *sort_sibling_loops_cmp_rpo;
527 static int
528 sort_sibling_loops_cmp (const void *la_, const void *lb_)
529 {
530 const struct loop *la = *(const struct loop * const *)la_;
531 const struct loop *lb = *(const struct loop * const *)lb_;
532 return (sort_sibling_loops_cmp_rpo[la->header->index]
533 - sort_sibling_loops_cmp_rpo[lb->header->index]);
534 }
535
536 /* Sort sibling loops in RPO order. */
537
538 void
539 sort_sibling_loops (function *fn)
540 {
541 /* Match flow_loops_find in the order we sort sibling loops. */
542 sort_sibling_loops_cmp_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
543 int *rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
544 pre_and_rev_post_order_compute_fn (fn, NULL, rc_order, false);
545 for (int i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; ++i)
546 sort_sibling_loops_cmp_rpo[rc_order[i]] = i;
547 free (rc_order);
548
549 auto_vec<loop_p, 3> siblings;
550 loop_p loop;
551 FOR_EACH_LOOP_FN (fn, loop, LI_INCLUDE_ROOT)
552 if (loop->inner && loop->inner->next)
553 {
554 loop_p sibling = loop->inner;
555 do
556 {
557 siblings.safe_push (sibling);
558 sibling = sibling->next;
559 }
560 while (sibling);
561 siblings.qsort (sort_sibling_loops_cmp);
562 loop_p *siblingp = &loop->inner;
563 for (unsigned i = 0; i < siblings.length (); ++i)
564 {
565 *siblingp = siblings[i];
566 siblingp = &(*siblingp)->next;
567 }
568 *siblingp = NULL;
569 siblings.truncate (0);
570 }
571
572 free (sort_sibling_loops_cmp_rpo);
573 sort_sibling_loops_cmp_rpo = NULL;
574 }
575
576 /* Ratio of frequencies of edges so that one of more latch edges is
577 considered to belong to inner loop with same header. */
578 #define HEAVY_EDGE_RATIO 8
579
580 /* Minimum number of samples for that we apply
581 find_subloop_latch_edge_by_profile heuristics. */
582 #define HEAVY_EDGE_MIN_SAMPLES 10
583
584 /* If the profile info is available, finds an edge in LATCHES that much more
585 frequent than the remaining edges. Returns such an edge, or NULL if we do
586 not find one.
587
588 We do not use guessed profile here, only the measured one. The guessed
589 profile is usually too flat and unreliable for this (and it is mostly based
590 on the loop structure of the program, so it does not make much sense to
591 derive the loop structure from it). */
592
593 static edge
594 find_subloop_latch_edge_by_profile (vec<edge> latches)
595 {
596 unsigned i;
597 edge e, me = NULL;
598 profile_count mcount = profile_count::zero (), tcount = profile_count::zero ();
599
600 FOR_EACH_VEC_ELT (latches, i, e)
601 {
602 if (e->count > mcount)
603 {
604 me = e;
605 mcount = e->count;
606 }
607 tcount += e->count;
608 }
609
610 if (!tcount.initialized_p () || tcount < HEAVY_EDGE_MIN_SAMPLES
611 || (tcount - mcount).apply_scale (HEAVY_EDGE_RATIO, 1) > tcount)
612 return NULL;
613
614 if (dump_file)
615 fprintf (dump_file,
616 "Found latch edge %d -> %d using profile information.\n",
617 me->src->index, me->dest->index);
618 return me;
619 }
620
621 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
622 on the structure of induction variables. Returns this edge, or NULL if we
623 do not find any.
624
625 We are quite conservative, and look just for an obvious simple innermost
626 loop (which is the case where we would lose the most performance by not
627 disambiguating the loop). More precisely, we look for the following
628 situation: The source of the chosen latch edge dominates sources of all
629 the other latch edges. Additionally, the header does not contain a phi node
630 such that the argument from the chosen edge is equal to the argument from
631 another edge. */
632
633 static edge
634 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
635 {
636 edge e, latch = latches[0];
637 unsigned i;
638 gphi *phi;
639 gphi_iterator psi;
640 tree lop;
641 basic_block bb;
642
643 /* Find the candidate for the latch edge. */
644 for (i = 1; latches.iterate (i, &e); i++)
645 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
646 latch = e;
647
648 /* Verify that it dominates all the latch edges. */
649 FOR_EACH_VEC_ELT (latches, i, e)
650 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
651 return NULL;
652
653 /* Check for a phi node that would deny that this is a latch edge of
654 a subloop. */
655 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
656 {
657 phi = psi.phi ();
658 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
659
660 /* Ignore the values that are not changed inside the subloop. */
661 if (TREE_CODE (lop) != SSA_NAME
662 || SSA_NAME_DEF_STMT (lop) == phi)
663 continue;
664 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
665 if (!bb || !flow_bb_inside_loop_p (loop, bb))
666 continue;
667
668 FOR_EACH_VEC_ELT (latches, i, e)
669 if (e != latch
670 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
671 return NULL;
672 }
673
674 if (dump_file)
675 fprintf (dump_file,
676 "Found latch edge %d -> %d using iv structure.\n",
677 latch->src->index, latch->dest->index);
678 return latch;
679 }
680
681 /* If we can determine that one of the several latch edges of LOOP behaves
682 as a latch edge of a separate subloop, returns this edge. Otherwise
683 returns NULL. */
684
685 static edge
686 find_subloop_latch_edge (struct loop *loop)
687 {
688 vec<edge> latches = get_loop_latch_edges (loop);
689 edge latch = NULL;
690
691 if (latches.length () > 1)
692 {
693 latch = find_subloop_latch_edge_by_profile (latches);
694
695 if (!latch
696 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
697 should use cfghook for this, but it is hard to imagine it would
698 be useful elsewhere. */
699 && current_ir_type () == IR_GIMPLE)
700 latch = find_subloop_latch_edge_by_ivs (loop, latches);
701 }
702
703 latches.release ();
704 return latch;
705 }
706
707 /* Callback for make_forwarder_block. Returns true if the edge E is marked
708 in the set MFB_REIS_SET. */
709
710 static hash_set<edge> *mfb_reis_set;
711 static bool
712 mfb_redirect_edges_in_set (edge e)
713 {
714 return mfb_reis_set->contains (e);
715 }
716
717 /* Creates a subloop of LOOP with latch edge LATCH. */
718
719 static void
720 form_subloop (struct loop *loop, edge latch)
721 {
722 edge_iterator ei;
723 edge e, new_entry;
724 struct loop *new_loop;
725
726 mfb_reis_set = new hash_set<edge>;
727 FOR_EACH_EDGE (e, ei, loop->header->preds)
728 {
729 if (e != latch)
730 mfb_reis_set->add (e);
731 }
732 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
733 NULL);
734 delete mfb_reis_set;
735
736 loop->header = new_entry->src;
737
738 /* Find the blocks and subloops that belong to the new loop, and add it to
739 the appropriate place in the loop tree. */
740 new_loop = alloc_loop ();
741 new_loop->header = new_entry->dest;
742 new_loop->latch = latch->src;
743 add_loop (new_loop, loop);
744 }
745
746 /* Make all the latch edges of LOOP to go to a single forwarder block --
747 a new latch of LOOP. */
748
749 static void
750 merge_latch_edges (struct loop *loop)
751 {
752 vec<edge> latches = get_loop_latch_edges (loop);
753 edge latch, e;
754 unsigned i;
755
756 gcc_assert (latches.length () > 0);
757
758 if (latches.length () == 1)
759 loop->latch = latches[0]->src;
760 else
761 {
762 if (dump_file)
763 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
764
765 mfb_reis_set = new hash_set<edge>;
766 FOR_EACH_VEC_ELT (latches, i, e)
767 mfb_reis_set->add (e);
768 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
769 NULL);
770 delete mfb_reis_set;
771
772 loop->header = latch->dest;
773 loop->latch = latch->src;
774 }
775
776 latches.release ();
777 }
778
779 /* LOOP may have several latch edges. Transform it into (possibly several)
780 loops with single latch edge. */
781
782 static void
783 disambiguate_multiple_latches (struct loop *loop)
784 {
785 edge e;
786
787 /* We eliminate the multiple latches by splitting the header to the forwarder
788 block F and the rest R, and redirecting the edges. There are two cases:
789
790 1) If there is a latch edge E that corresponds to a subloop (we guess
791 that based on profile -- if it is taken much more often than the
792 remaining edges; and on trees, using the information about induction
793 variables of the loops), we redirect E to R, all the remaining edges to
794 F, then rescan the loops and try again for the outer loop.
795 2) If there is no such edge, we redirect all latch edges to F, and the
796 entry edges to R, thus making F the single latch of the loop. */
797
798 if (dump_file)
799 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
800 loop->num);
801
802 /* During latch merging, we may need to redirect the entry edges to a new
803 block. This would cause problems if the entry edge was the one from the
804 entry block. To avoid having to handle this case specially, split
805 such entry edge. */
806 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
807 if (e)
808 split_edge (e);
809
810 while (1)
811 {
812 e = find_subloop_latch_edge (loop);
813 if (!e)
814 break;
815
816 form_subloop (loop, e);
817 }
818
819 merge_latch_edges (loop);
820 }
821
822 /* Split loops with multiple latch edges. */
823
824 void
825 disambiguate_loops_with_multiple_latches (void)
826 {
827 struct loop *loop;
828
829 FOR_EACH_LOOP (loop, 0)
830 {
831 if (!loop->latch)
832 disambiguate_multiple_latches (loop);
833 }
834 }
835
836 /* Return nonzero if basic block BB belongs to LOOP. */
837 bool
838 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
839 {
840 struct loop *source_loop;
841
842 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
843 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
844 return 0;
845
846 source_loop = bb->loop_father;
847 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
848 }
849
850 /* Enumeration predicate for get_loop_body_with_size. */
851 static bool
852 glb_enum_p (const_basic_block bb, const void *glb_loop)
853 {
854 const struct loop *const loop = (const struct loop *) glb_loop;
855 return (bb != loop->header
856 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
857 }
858
859 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
860 order against direction of edges from latch. Specially, if
861 header != latch, latch is the 1-st block. LOOP cannot be the fake
862 loop tree root, and its size must be at most MAX_SIZE. The blocks
863 in the LOOP body are stored to BODY, and the size of the LOOP is
864 returned. */
865
866 unsigned
867 get_loop_body_with_size (const struct loop *loop, basic_block *body,
868 unsigned max_size)
869 {
870 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
871 body, max_size, loop);
872 }
873
874 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
875 order against direction of edges from latch. Specially, if
876 header != latch, latch is the 1-st block. */
877
878 basic_block *
879 get_loop_body (const struct loop *loop)
880 {
881 basic_block *body, bb;
882 unsigned tv = 0;
883
884 gcc_assert (loop->num_nodes);
885
886 body = XNEWVEC (basic_block, loop->num_nodes);
887
888 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
889 {
890 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
891 special-case the fake loop that contains the whole function. */
892 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
893 body[tv++] = loop->header;
894 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
895 FOR_EACH_BB_FN (bb, cfun)
896 body[tv++] = bb;
897 }
898 else
899 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
900
901 gcc_assert (tv == loop->num_nodes);
902 return body;
903 }
904
905 /* Fills dominance descendants inside LOOP of the basic block BB into
906 array TOVISIT from index *TV. */
907
908 static void
909 fill_sons_in_loop (const struct loop *loop, basic_block bb,
910 basic_block *tovisit, int *tv)
911 {
912 basic_block son, postpone = NULL;
913
914 tovisit[(*tv)++] = bb;
915 for (son = first_dom_son (CDI_DOMINATORS, bb);
916 son;
917 son = next_dom_son (CDI_DOMINATORS, son))
918 {
919 if (!flow_bb_inside_loop_p (loop, son))
920 continue;
921
922 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
923 {
924 postpone = son;
925 continue;
926 }
927 fill_sons_in_loop (loop, son, tovisit, tv);
928 }
929
930 if (postpone)
931 fill_sons_in_loop (loop, postpone, tovisit, tv);
932 }
933
934 /* Gets body of a LOOP (that must be different from the outermost loop)
935 sorted by dominance relation. Additionally, if a basic block s dominates
936 the latch, then only blocks dominated by s are be after it. */
937
938 basic_block *
939 get_loop_body_in_dom_order (const struct loop *loop)
940 {
941 basic_block *tovisit;
942 int tv;
943
944 gcc_assert (loop->num_nodes);
945
946 tovisit = XNEWVEC (basic_block, loop->num_nodes);
947
948 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
949
950 tv = 0;
951 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
952
953 gcc_assert (tv == (int) loop->num_nodes);
954
955 return tovisit;
956 }
957
958 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
959
960 basic_block *
961 get_loop_body_in_custom_order (const struct loop *loop,
962 int (*bb_comparator) (const void *, const void *))
963 {
964 basic_block *bbs = get_loop_body (loop);
965
966 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
967
968 return bbs;
969 }
970
971 /* Get body of a LOOP in breadth first sort order. */
972
973 basic_block *
974 get_loop_body_in_bfs_order (const struct loop *loop)
975 {
976 basic_block *blocks;
977 basic_block bb;
978 unsigned int i = 1;
979 unsigned int vc = 0;
980
981 gcc_assert (loop->num_nodes);
982 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
983
984 blocks = XNEWVEC (basic_block, loop->num_nodes);
985 auto_bitmap visited;
986 blocks[0] = loop->header;
987 bitmap_set_bit (visited, loop->header->index);
988 while (i < loop->num_nodes)
989 {
990 edge e;
991 edge_iterator ei;
992 gcc_assert (i > vc);
993 bb = blocks[vc++];
994
995 FOR_EACH_EDGE (e, ei, bb->succs)
996 {
997 if (flow_bb_inside_loop_p (loop, e->dest))
998 {
999 /* This bb is now visited. */
1000 if (bitmap_set_bit (visited, e->dest->index))
1001 blocks[i++] = e->dest;
1002 }
1003 }
1004 }
1005
1006 return blocks;
1007 }
1008
1009 /* Hash function for struct loop_exit. */
1010
1011 hashval_t
1012 loop_exit_hasher::hash (loop_exit *exit)
1013 {
1014 return htab_hash_pointer (exit->e);
1015 }
1016
1017 /* Equality function for struct loop_exit. Compares with edge. */
1018
1019 bool
1020 loop_exit_hasher::equal (loop_exit *exit, edge e)
1021 {
1022 return exit->e == e;
1023 }
1024
1025 /* Frees the list of loop exit descriptions EX. */
1026
1027 void
1028 loop_exit_hasher::remove (loop_exit *exit)
1029 {
1030 loop_exit *next;
1031 for (; exit; exit = next)
1032 {
1033 next = exit->next_e;
1034
1035 exit->next->prev = exit->prev;
1036 exit->prev->next = exit->next;
1037
1038 ggc_free (exit);
1039 }
1040 }
1041
1042 /* Returns the list of records for E as an exit of a loop. */
1043
1044 static struct loop_exit *
1045 get_exit_descriptions (edge e)
1046 {
1047 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1048 }
1049
1050 /* Updates the lists of loop exits in that E appears.
1051 If REMOVED is true, E is being removed, and we
1052 just remove it from the lists of exits.
1053 If NEW_EDGE is true and E is not a loop exit, we
1054 do not try to remove it from loop exit lists. */
1055
1056 void
1057 rescan_loop_exit (edge e, bool new_edge, bool removed)
1058 {
1059 struct loop_exit *exits = NULL, *exit;
1060 struct loop *aloop, *cloop;
1061
1062 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1063 return;
1064
1065 if (!removed
1066 && e->src->loop_father != NULL
1067 && e->dest->loop_father != NULL
1068 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1069 {
1070 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1071 for (aloop = e->src->loop_father;
1072 aloop != cloop;
1073 aloop = loop_outer (aloop))
1074 {
1075 exit = ggc_alloc<loop_exit> ();
1076 exit->e = e;
1077
1078 exit->next = aloop->exits->next;
1079 exit->prev = aloop->exits;
1080 exit->next->prev = exit;
1081 exit->prev->next = exit;
1082
1083 exit->next_e = exits;
1084 exits = exit;
1085 }
1086 }
1087
1088 if (!exits && new_edge)
1089 return;
1090
1091 loop_exit **slot
1092 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1093 exits ? INSERT : NO_INSERT);
1094 if (!slot)
1095 return;
1096
1097 if (exits)
1098 {
1099 if (*slot)
1100 loop_exit_hasher::remove (*slot);
1101 *slot = exits;
1102 }
1103 else
1104 current_loops->exits->clear_slot (slot);
1105 }
1106
1107 /* For each loop, record list of exit edges, and start maintaining these
1108 lists. */
1109
1110 void
1111 record_loop_exits (void)
1112 {
1113 basic_block bb;
1114 edge_iterator ei;
1115 edge e;
1116
1117 if (!current_loops)
1118 return;
1119
1120 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1121 return;
1122 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1123
1124 gcc_assert (current_loops->exits == NULL);
1125 current_loops->exits
1126 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1127
1128 FOR_EACH_BB_FN (bb, cfun)
1129 {
1130 FOR_EACH_EDGE (e, ei, bb->succs)
1131 {
1132 rescan_loop_exit (e, true, false);
1133 }
1134 }
1135 }
1136
1137 /* Dumps information about the exit in *SLOT to FILE.
1138 Callback for htab_traverse. */
1139
1140 int
1141 dump_recorded_exit (loop_exit **slot, FILE *file)
1142 {
1143 struct loop_exit *exit = *slot;
1144 unsigned n = 0;
1145 edge e = exit->e;
1146
1147 for (; exit != NULL; exit = exit->next_e)
1148 n++;
1149
1150 fprintf (file, "Edge %d->%d exits %u loops\n",
1151 e->src->index, e->dest->index, n);
1152
1153 return 1;
1154 }
1155
1156 /* Dumps the recorded exits of loops to FILE. */
1157
1158 extern void dump_recorded_exits (FILE *);
1159 void
1160 dump_recorded_exits (FILE *file)
1161 {
1162 if (!current_loops->exits)
1163 return;
1164 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1165 }
1166
1167 /* Releases lists of loop exits. */
1168
1169 void
1170 release_recorded_exits (function *fn)
1171 {
1172 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1173 loops_for_fn (fn)->exits->empty ();
1174 loops_for_fn (fn)->exits = NULL;
1175 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1176 }
1177
1178 /* Returns the list of the exit edges of a LOOP. */
1179
1180 vec<edge>
1181 get_loop_exit_edges (const struct loop *loop)
1182 {
1183 vec<edge> edges = vNULL;
1184 edge e;
1185 unsigned i;
1186 basic_block *body;
1187 edge_iterator ei;
1188 struct loop_exit *exit;
1189
1190 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1191
1192 /* If we maintain the lists of exits, use them. Otherwise we must
1193 scan the body of the loop. */
1194 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1195 {
1196 for (exit = loop->exits->next; exit->e; exit = exit->next)
1197 edges.safe_push (exit->e);
1198 }
1199 else
1200 {
1201 body = get_loop_body (loop);
1202 for (i = 0; i < loop->num_nodes; i++)
1203 FOR_EACH_EDGE (e, ei, body[i]->succs)
1204 {
1205 if (!flow_bb_inside_loop_p (loop, e->dest))
1206 edges.safe_push (e);
1207 }
1208 free (body);
1209 }
1210
1211 return edges;
1212 }
1213
1214 /* Counts the number of conditional branches inside LOOP. */
1215
1216 unsigned
1217 num_loop_branches (const struct loop *loop)
1218 {
1219 unsigned i, n;
1220 basic_block * body;
1221
1222 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1223
1224 body = get_loop_body (loop);
1225 n = 0;
1226 for (i = 0; i < loop->num_nodes; i++)
1227 if (EDGE_COUNT (body[i]->succs) >= 2)
1228 n++;
1229 free (body);
1230
1231 return n;
1232 }
1233
1234 /* Adds basic block BB to LOOP. */
1235 void
1236 add_bb_to_loop (basic_block bb, struct loop *loop)
1237 {
1238 unsigned i;
1239 loop_p ploop;
1240 edge_iterator ei;
1241 edge e;
1242
1243 gcc_assert (bb->loop_father == NULL);
1244 bb->loop_father = loop;
1245 loop->num_nodes++;
1246 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1247 ploop->num_nodes++;
1248
1249 FOR_EACH_EDGE (e, ei, bb->succs)
1250 {
1251 rescan_loop_exit (e, true, false);
1252 }
1253 FOR_EACH_EDGE (e, ei, bb->preds)
1254 {
1255 rescan_loop_exit (e, true, false);
1256 }
1257 }
1258
1259 /* Remove basic block BB from loops. */
1260 void
1261 remove_bb_from_loops (basic_block bb)
1262 {
1263 unsigned i;
1264 struct loop *loop = bb->loop_father;
1265 loop_p ploop;
1266 edge_iterator ei;
1267 edge e;
1268
1269 gcc_assert (loop != NULL);
1270 loop->num_nodes--;
1271 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1272 ploop->num_nodes--;
1273 bb->loop_father = NULL;
1274
1275 FOR_EACH_EDGE (e, ei, bb->succs)
1276 {
1277 rescan_loop_exit (e, false, true);
1278 }
1279 FOR_EACH_EDGE (e, ei, bb->preds)
1280 {
1281 rescan_loop_exit (e, false, true);
1282 }
1283 }
1284
1285 /* Finds nearest common ancestor in loop tree for given loops. */
1286 struct loop *
1287 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1288 {
1289 unsigned sdepth, ddepth;
1290
1291 if (!loop_s) return loop_d;
1292 if (!loop_d) return loop_s;
1293
1294 sdepth = loop_depth (loop_s);
1295 ddepth = loop_depth (loop_d);
1296
1297 if (sdepth < ddepth)
1298 loop_d = (*loop_d->superloops)[sdepth];
1299 else if (sdepth > ddepth)
1300 loop_s = (*loop_s->superloops)[ddepth];
1301
1302 while (loop_s != loop_d)
1303 {
1304 loop_s = loop_outer (loop_s);
1305 loop_d = loop_outer (loop_d);
1306 }
1307 return loop_s;
1308 }
1309
1310 /* Removes LOOP from structures and frees its data. */
1311
1312 void
1313 delete_loop (struct loop *loop)
1314 {
1315 /* Remove the loop from structure. */
1316 flow_loop_tree_node_remove (loop);
1317
1318 /* Remove loop from loops array. */
1319 (*current_loops->larray)[loop->num] = NULL;
1320
1321 /* Free loop data. */
1322 flow_loop_free (loop);
1323 }
1324
1325 /* Cancels the LOOP; it must be innermost one. */
1326
1327 static void
1328 cancel_loop (struct loop *loop)
1329 {
1330 basic_block *bbs;
1331 unsigned i;
1332 struct loop *outer = loop_outer (loop);
1333
1334 gcc_assert (!loop->inner);
1335
1336 /* Move blocks up one level (they should be removed as soon as possible). */
1337 bbs = get_loop_body (loop);
1338 for (i = 0; i < loop->num_nodes; i++)
1339 bbs[i]->loop_father = outer;
1340
1341 free (bbs);
1342 delete_loop (loop);
1343 }
1344
1345 /* Cancels LOOP and all its subloops. */
1346 void
1347 cancel_loop_tree (struct loop *loop)
1348 {
1349 while (loop->inner)
1350 cancel_loop_tree (loop->inner);
1351 cancel_loop (loop);
1352 }
1353
1354 /* Checks that information about loops is correct
1355 -- sizes of loops are all right
1356 -- results of get_loop_body really belong to the loop
1357 -- loop header have just single entry edge and single latch edge
1358 -- loop latches have only single successor that is header of their loop
1359 -- irreducible loops are correctly marked
1360 -- the cached loop depth and loop father of each bb is correct
1361 */
1362 DEBUG_FUNCTION void
1363 verify_loop_structure (void)
1364 {
1365 unsigned *sizes, i, j;
1366 basic_block bb, *bbs;
1367 struct loop *loop;
1368 int err = 0;
1369 edge e;
1370 unsigned num = number_of_loops (cfun);
1371 struct loop_exit *exit, *mexit;
1372 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1373
1374 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1375 {
1376 error ("loop verification on loop tree that needs fixup");
1377 err = 1;
1378 }
1379
1380 /* We need up-to-date dominators, compute or verify them. */
1381 if (!dom_available)
1382 calculate_dominance_info (CDI_DOMINATORS);
1383 else
1384 verify_dominators (CDI_DOMINATORS);
1385
1386 /* Check the loop tree root. */
1387 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1388 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1389 || (current_loops->tree_root->num_nodes
1390 != (unsigned) n_basic_blocks_for_fn (cfun)))
1391 {
1392 error ("corrupt loop tree root");
1393 err = 1;
1394 }
1395
1396 /* Check the headers. */
1397 FOR_EACH_BB_FN (bb, cfun)
1398 if (bb_loop_header_p (bb))
1399 {
1400 if (bb->loop_father->header == NULL)
1401 {
1402 error ("loop with header %d marked for removal", bb->index);
1403 err = 1;
1404 }
1405 else if (bb->loop_father->header != bb)
1406 {
1407 error ("loop with header %d not in loop tree", bb->index);
1408 err = 1;
1409 }
1410 }
1411 else if (bb->loop_father->header == bb)
1412 {
1413 error ("non-loop with header %d not marked for removal", bb->index);
1414 err = 1;
1415 }
1416
1417 /* Check the recorded loop father and sizes of loops. */
1418 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1419 bitmap_clear (visited);
1420 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1421 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1422 {
1423 unsigned n;
1424
1425 if (loop->header == NULL)
1426 {
1427 error ("removed loop %d in loop tree", loop->num);
1428 err = 1;
1429 continue;
1430 }
1431
1432 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1433 if (loop->num_nodes != n)
1434 {
1435 error ("size of loop %d should be %d, not %d",
1436 loop->num, n, loop->num_nodes);
1437 err = 1;
1438 }
1439
1440 for (j = 0; j < n; j++)
1441 {
1442 bb = bbs[j];
1443
1444 if (!flow_bb_inside_loop_p (loop, bb))
1445 {
1446 error ("bb %d does not belong to loop %d",
1447 bb->index, loop->num);
1448 err = 1;
1449 }
1450
1451 /* Ignore this block if it is in an inner loop. */
1452 if (bitmap_bit_p (visited, bb->index))
1453 continue;
1454 bitmap_set_bit (visited, bb->index);
1455
1456 if (bb->loop_father != loop)
1457 {
1458 error ("bb %d has father loop %d, should be loop %d",
1459 bb->index, bb->loop_father->num, loop->num);
1460 err = 1;
1461 }
1462 }
1463 }
1464 free (bbs);
1465
1466 /* Check headers and latches. */
1467 FOR_EACH_LOOP (loop, 0)
1468 {
1469 i = loop->num;
1470 if (loop->header == NULL)
1471 continue;
1472 if (!bb_loop_header_p (loop->header))
1473 {
1474 error ("loop %d%'s header is not a loop header", i);
1475 err = 1;
1476 }
1477 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1478 && EDGE_COUNT (loop->header->preds) != 2)
1479 {
1480 error ("loop %d%'s header does not have exactly 2 entries", i);
1481 err = 1;
1482 }
1483 if (loop->latch)
1484 {
1485 if (!find_edge (loop->latch, loop->header))
1486 {
1487 error ("loop %d%'s latch does not have an edge to its header", i);
1488 err = 1;
1489 }
1490 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1491 {
1492 error ("loop %d%'s latch is not dominated by its header", i);
1493 err = 1;
1494 }
1495 }
1496 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1497 {
1498 if (!single_succ_p (loop->latch))
1499 {
1500 error ("loop %d%'s latch does not have exactly 1 successor", i);
1501 err = 1;
1502 }
1503 if (single_succ (loop->latch) != loop->header)
1504 {
1505 error ("loop %d%'s latch does not have header as successor", i);
1506 err = 1;
1507 }
1508 if (loop->latch->loop_father != loop)
1509 {
1510 error ("loop %d%'s latch does not belong directly to it", i);
1511 err = 1;
1512 }
1513 }
1514 if (loop->header->loop_father != loop)
1515 {
1516 error ("loop %d%'s header does not belong directly to it", i);
1517 err = 1;
1518 }
1519 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1520 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1521 {
1522 error ("loop %d%'s latch is marked as part of irreducible region", i);
1523 err = 1;
1524 }
1525 }
1526
1527 /* Check irreducible loops. */
1528 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1529 {
1530 /* Record old info. */
1531 auto_sbitmap irreds (last_basic_block_for_fn (cfun));
1532 FOR_EACH_BB_FN (bb, cfun)
1533 {
1534 edge_iterator ei;
1535 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1536 bitmap_set_bit (irreds, bb->index);
1537 else
1538 bitmap_clear_bit (irreds, bb->index);
1539 FOR_EACH_EDGE (e, ei, bb->succs)
1540 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1541 e->flags |= EDGE_ALL_FLAGS + 1;
1542 }
1543
1544 /* Recount it. */
1545 mark_irreducible_loops ();
1546
1547 /* Compare. */
1548 FOR_EACH_BB_FN (bb, cfun)
1549 {
1550 edge_iterator ei;
1551
1552 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1553 && !bitmap_bit_p (irreds, bb->index))
1554 {
1555 error ("basic block %d should be marked irreducible", bb->index);
1556 err = 1;
1557 }
1558 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1559 && bitmap_bit_p (irreds, bb->index))
1560 {
1561 error ("basic block %d should not be marked irreducible", bb->index);
1562 err = 1;
1563 }
1564 FOR_EACH_EDGE (e, ei, bb->succs)
1565 {
1566 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1567 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1568 {
1569 error ("edge from %d to %d should be marked irreducible",
1570 e->src->index, e->dest->index);
1571 err = 1;
1572 }
1573 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1574 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1575 {
1576 error ("edge from %d to %d should not be marked irreducible",
1577 e->src->index, e->dest->index);
1578 err = 1;
1579 }
1580 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1581 }
1582 }
1583 }
1584
1585 /* Check the recorded loop exits. */
1586 FOR_EACH_LOOP (loop, 0)
1587 {
1588 if (!loop->exits || loop->exits->e != NULL)
1589 {
1590 error ("corrupted head of the exits list of loop %d",
1591 loop->num);
1592 err = 1;
1593 }
1594 else
1595 {
1596 /* Check that the list forms a cycle, and all elements except
1597 for the head are nonnull. */
1598 for (mexit = loop->exits, exit = mexit->next, i = 0;
1599 exit->e && exit != mexit;
1600 exit = exit->next)
1601 {
1602 if (i++ & 1)
1603 mexit = mexit->next;
1604 }
1605
1606 if (exit != loop->exits)
1607 {
1608 error ("corrupted exits list of loop %d", loop->num);
1609 err = 1;
1610 }
1611 }
1612
1613 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1614 {
1615 if (loop->exits->next != loop->exits)
1616 {
1617 error ("nonempty exits list of loop %d, but exits are not recorded",
1618 loop->num);
1619 err = 1;
1620 }
1621 }
1622 }
1623
1624 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1625 {
1626 unsigned n_exits = 0, eloops;
1627
1628 sizes = XCNEWVEC (unsigned, num);
1629 memset (sizes, 0, sizeof (unsigned) * num);
1630 FOR_EACH_BB_FN (bb, cfun)
1631 {
1632 edge_iterator ei;
1633 if (bb->loop_father == current_loops->tree_root)
1634 continue;
1635 FOR_EACH_EDGE (e, ei, bb->succs)
1636 {
1637 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1638 continue;
1639
1640 n_exits++;
1641 exit = get_exit_descriptions (e);
1642 if (!exit)
1643 {
1644 error ("exit %d->%d not recorded",
1645 e->src->index, e->dest->index);
1646 err = 1;
1647 }
1648 eloops = 0;
1649 for (; exit; exit = exit->next_e)
1650 eloops++;
1651
1652 for (loop = bb->loop_father;
1653 loop != e->dest->loop_father
1654 /* When a loop exit is also an entry edge which
1655 can happen when avoiding CFG manipulations
1656 then the last loop exited is the outer loop
1657 of the loop entered. */
1658 && loop != loop_outer (e->dest->loop_father);
1659 loop = loop_outer (loop))
1660 {
1661 eloops--;
1662 sizes[loop->num]++;
1663 }
1664
1665 if (eloops != 0)
1666 {
1667 error ("wrong list of exited loops for edge %d->%d",
1668 e->src->index, e->dest->index);
1669 err = 1;
1670 }
1671 }
1672 }
1673
1674 if (n_exits != current_loops->exits->elements ())
1675 {
1676 error ("too many loop exits recorded");
1677 err = 1;
1678 }
1679
1680 FOR_EACH_LOOP (loop, 0)
1681 {
1682 eloops = 0;
1683 for (exit = loop->exits->next; exit->e; exit = exit->next)
1684 eloops++;
1685 if (eloops != sizes[loop->num])
1686 {
1687 error ("%d exits recorded for loop %d (having %d exits)",
1688 eloops, loop->num, sizes[loop->num]);
1689 err = 1;
1690 }
1691 }
1692
1693 free (sizes);
1694 }
1695
1696 gcc_assert (!err);
1697
1698 if (!dom_available)
1699 free_dominance_info (CDI_DOMINATORS);
1700 }
1701
1702 /* Returns latch edge of LOOP. */
1703 edge
1704 loop_latch_edge (const struct loop *loop)
1705 {
1706 return find_edge (loop->latch, loop->header);
1707 }
1708
1709 /* Returns preheader edge of LOOP. */
1710 edge
1711 loop_preheader_edge (const struct loop *loop)
1712 {
1713 edge e;
1714 edge_iterator ei;
1715
1716 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1717 && ! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES));
1718
1719 FOR_EACH_EDGE (e, ei, loop->header->preds)
1720 if (e->src != loop->latch)
1721 break;
1722
1723 if (! e)
1724 {
1725 gcc_assert (! loop_outer (loop));
1726 return single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1727 }
1728
1729 return e;
1730 }
1731
1732 /* Returns true if E is an exit of LOOP. */
1733
1734 bool
1735 loop_exit_edge_p (const struct loop *loop, const_edge e)
1736 {
1737 return (flow_bb_inside_loop_p (loop, e->src)
1738 && !flow_bb_inside_loop_p (loop, e->dest));
1739 }
1740
1741 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1742 or more than one exit. If loops do not have the exits recorded, NULL
1743 is returned always. */
1744
1745 edge
1746 single_exit (const struct loop *loop)
1747 {
1748 struct loop_exit *exit = loop->exits->next;
1749
1750 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1751 return NULL;
1752
1753 if (exit->e && exit->next == loop->exits)
1754 return exit->e;
1755 else
1756 return NULL;
1757 }
1758
1759 /* Returns true when BB has an incoming edge exiting LOOP. */
1760
1761 bool
1762 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1763 {
1764 edge e;
1765 edge_iterator ei;
1766
1767 FOR_EACH_EDGE (e, ei, bb->preds)
1768 if (loop_exit_edge_p (loop, e))
1769 return true;
1770
1771 return false;
1772 }
1773
1774 /* Returns true when BB has an outgoing edge exiting LOOP. */
1775
1776 bool
1777 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1778 {
1779 edge e;
1780 edge_iterator ei;
1781
1782 FOR_EACH_EDGE (e, ei, bb->succs)
1783 if (loop_exit_edge_p (loop, e))
1784 return true;
1785
1786 return false;
1787 }
1788
1789 /* Return location corresponding to the loop control condition if possible. */
1790
1791 location_t
1792 get_loop_location (struct loop *loop)
1793 {
1794 rtx_insn *insn = NULL;
1795 struct niter_desc *desc = NULL;
1796 edge exit;
1797
1798 /* For a for or while loop, we would like to return the location
1799 of the for or while statement, if possible. To do this, look
1800 for the branch guarding the loop back-edge. */
1801
1802 /* If this is a simple loop with an in_edge, then the loop control
1803 branch is typically at the end of its source. */
1804 desc = get_simple_loop_desc (loop);
1805 if (desc->in_edge)
1806 {
1807 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1808 {
1809 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1810 return INSN_LOCATION (insn);
1811 }
1812 }
1813 /* If loop has a single exit, then the loop control branch
1814 must be at the end of its source. */
1815 if ((exit = single_exit (loop)))
1816 {
1817 FOR_BB_INSNS_REVERSE (exit->src, insn)
1818 {
1819 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1820 return INSN_LOCATION (insn);
1821 }
1822 }
1823 /* Next check the latch, to see if it is non-empty. */
1824 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1825 {
1826 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1827 return INSN_LOCATION (insn);
1828 }
1829 /* Finally, if none of the above identifies the loop control branch,
1830 return the first location in the loop header. */
1831 FOR_BB_INSNS (loop->header, insn)
1832 {
1833 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1834 return INSN_LOCATION (insn);
1835 }
1836 /* If all else fails, simply return the current function location. */
1837 return DECL_SOURCE_LOCATION (current_function_decl);
1838 }
1839
1840 /* Records that every statement in LOOP is executed I_BOUND times.
1841 REALISTIC is true if I_BOUND is expected to be close to the real number
1842 of iterations. UPPER is true if we are sure the loop iterates at most
1843 I_BOUND times. */
1844
1845 void
1846 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1847 bool realistic, bool upper)
1848 {
1849 /* Update the bounds only when there is no previous estimation, or when the
1850 current estimation is smaller. */
1851 if (upper
1852 && (!loop->any_upper_bound
1853 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1854 {
1855 loop->any_upper_bound = true;
1856 loop->nb_iterations_upper_bound = i_bound;
1857 if (!loop->any_likely_upper_bound)
1858 {
1859 loop->any_likely_upper_bound = true;
1860 loop->nb_iterations_likely_upper_bound = i_bound;
1861 }
1862 }
1863 if (realistic
1864 && (!loop->any_estimate
1865 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1866 {
1867 loop->any_estimate = true;
1868 loop->nb_iterations_estimate = i_bound;
1869 }
1870 if (!realistic
1871 && (!loop->any_likely_upper_bound
1872 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1873 {
1874 loop->any_likely_upper_bound = true;
1875 loop->nb_iterations_likely_upper_bound = i_bound;
1876 }
1877
1878 /* If an upper bound is smaller than the realistic estimate of the
1879 number of iterations, use the upper bound instead. */
1880 if (loop->any_upper_bound
1881 && loop->any_estimate
1882 && wi::ltu_p (loop->nb_iterations_upper_bound,
1883 loop->nb_iterations_estimate))
1884 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1885 if (loop->any_upper_bound
1886 && loop->any_likely_upper_bound
1887 && wi::ltu_p (loop->nb_iterations_upper_bound,
1888 loop->nb_iterations_likely_upper_bound))
1889 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1890 }
1891
1892 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1893 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1894 on the number of iterations of LOOP could not be derived, returns -1. */
1895
1896 HOST_WIDE_INT
1897 get_estimated_loop_iterations_int (struct loop *loop)
1898 {
1899 widest_int nit;
1900 HOST_WIDE_INT hwi_nit;
1901
1902 if (!get_estimated_loop_iterations (loop, &nit))
1903 return -1;
1904
1905 if (!wi::fits_shwi_p (nit))
1906 return -1;
1907 hwi_nit = nit.to_shwi ();
1908
1909 return hwi_nit < 0 ? -1 : hwi_nit;
1910 }
1911
1912 /* Returns an upper bound on the number of executions of statements
1913 in the LOOP. For statements before the loop exit, this exceeds
1914 the number of execution of the latch by one. */
1915
1916 HOST_WIDE_INT
1917 max_stmt_executions_int (struct loop *loop)
1918 {
1919 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1920 HOST_WIDE_INT snit;
1921
1922 if (nit == -1)
1923 return -1;
1924
1925 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1926
1927 /* If the computation overflows, return -1. */
1928 return snit < 0 ? -1 : snit;
1929 }
1930
1931 /* Returns an likely upper bound on the number of executions of statements
1932 in the LOOP. For statements before the loop exit, this exceeds
1933 the number of execution of the latch by one. */
1934
1935 HOST_WIDE_INT
1936 likely_max_stmt_executions_int (struct loop *loop)
1937 {
1938 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1939 HOST_WIDE_INT snit;
1940
1941 if (nit == -1)
1942 return -1;
1943
1944 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1945
1946 /* If the computation overflows, return -1. */
1947 return snit < 0 ? -1 : snit;
1948 }
1949
1950 /* Sets NIT to the estimated number of executions of the latch of the
1951 LOOP. If we have no reliable estimate, the function returns false, otherwise
1952 returns true. */
1953
1954 bool
1955 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1956 {
1957 /* Even if the bound is not recorded, possibly we can derrive one from
1958 profile. */
1959 if (!loop->any_estimate)
1960 {
1961 if (loop->header->count.reliable_p ())
1962 {
1963 *nit = gcov_type_to_wide_int
1964 (expected_loop_iterations_unbounded (loop) + 1);
1965 return true;
1966 }
1967 return false;
1968 }
1969
1970 *nit = loop->nb_iterations_estimate;
1971 return true;
1972 }
1973
1974 /* Sets NIT to an upper bound for the maximum number of executions of the
1975 latch of the LOOP. If we have no reliable estimate, the function returns
1976 false, otherwise returns true. */
1977
1978 bool
1979 get_max_loop_iterations (const struct loop *loop, widest_int *nit)
1980 {
1981 if (!loop->any_upper_bound)
1982 return false;
1983
1984 *nit = loop->nb_iterations_upper_bound;
1985 return true;
1986 }
1987
1988 /* Similar to get_max_loop_iterations, but returns the estimate only
1989 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1990 on the number of iterations of LOOP could not be derived, returns -1. */
1991
1992 HOST_WIDE_INT
1993 get_max_loop_iterations_int (const struct loop *loop)
1994 {
1995 widest_int nit;
1996 HOST_WIDE_INT hwi_nit;
1997
1998 if (!get_max_loop_iterations (loop, &nit))
1999 return -1;
2000
2001 if (!wi::fits_shwi_p (nit))
2002 return -1;
2003 hwi_nit = nit.to_shwi ();
2004
2005 return hwi_nit < 0 ? -1 : hwi_nit;
2006 }
2007
2008 /* Sets NIT to an upper bound for the maximum number of executions of the
2009 latch of the LOOP. If we have no reliable estimate, the function returns
2010 false, otherwise returns true. */
2011
2012 bool
2013 get_likely_max_loop_iterations (struct loop *loop, widest_int *nit)
2014 {
2015 if (!loop->any_likely_upper_bound)
2016 return false;
2017
2018 *nit = loop->nb_iterations_likely_upper_bound;
2019 return true;
2020 }
2021
2022 /* Similar to get_max_loop_iterations, but returns the estimate only
2023 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2024 on the number of iterations of LOOP could not be derived, returns -1. */
2025
2026 HOST_WIDE_INT
2027 get_likely_max_loop_iterations_int (struct loop *loop)
2028 {
2029 widest_int nit;
2030 HOST_WIDE_INT hwi_nit;
2031
2032 if (!get_likely_max_loop_iterations (loop, &nit))
2033 return -1;
2034
2035 if (!wi::fits_shwi_p (nit))
2036 return -1;
2037 hwi_nit = nit.to_shwi ();
2038
2039 return hwi_nit < 0 ? -1 : hwi_nit;
2040 }
2041
2042 /* Returns the loop depth of the loop BB belongs to. */
2043
2044 int
2045 bb_loop_depth (const_basic_block bb)
2046 {
2047 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
2048 }
2049
2050 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
2051
2052 void
2053 mark_loop_for_removal (loop_p loop)
2054 {
2055 if (loop->header == NULL)
2056 return;
2057 loop->former_header = loop->header;
2058 loop->header = NULL;
2059 loop->latch = NULL;
2060 loops_state_set (LOOPS_NEED_FIXUP);
2061 }