]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
Merge in trunk.
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "gimple.h"
32 #include "gimple-ssa.h"
33 #include "pointer-set.h"
34 #include "ggc.h"
35 #include "dumpfile.h"
36
37 static void flow_loops_cfg_dump (FILE *);
38 \f
39 /* Dump loop related CFG information. */
40
41 static void
42 flow_loops_cfg_dump (FILE *file)
43 {
44 basic_block bb;
45
46 if (!file)
47 return;
48
49 FOR_EACH_BB (bb)
50 {
51 edge succ;
52 edge_iterator ei;
53
54 fprintf (file, ";; %d succs { ", bb->index);
55 FOR_EACH_EDGE (succ, ei, bb->succs)
56 fprintf (file, "%d ", succ->dest->index);
57 fprintf (file, "}\n");
58 }
59 }
60
61 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
62
63 bool
64 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
65 {
66 unsigned odepth = loop_depth (outer);
67
68 return (loop_depth (loop) > odepth
69 && (*loop->superloops)[odepth] == outer);
70 }
71
72 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
73 loops within LOOP. */
74
75 struct loop *
76 superloop_at_depth (struct loop *loop, unsigned depth)
77 {
78 unsigned ldepth = loop_depth (loop);
79
80 gcc_assert (depth <= ldepth);
81
82 if (depth == ldepth)
83 return loop;
84
85 return (*loop->superloops)[depth];
86 }
87
88 /* Returns the list of the latch edges of LOOP. */
89
90 static vec<edge>
91 get_loop_latch_edges (const struct loop *loop)
92 {
93 edge_iterator ei;
94 edge e;
95 vec<edge> ret = vNULL;
96
97 FOR_EACH_EDGE (e, ei, loop->header->preds)
98 {
99 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
100 ret.safe_push (e);
101 }
102
103 return ret;
104 }
105
106 /* Dump the loop information specified by LOOP to the stream FILE
107 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
108
109 void
110 flow_loop_dump (const struct loop *loop, FILE *file,
111 void (*loop_dump_aux) (const struct loop *, FILE *, int),
112 int verbose)
113 {
114 basic_block *bbs;
115 unsigned i;
116 vec<edge> latches;
117 edge e;
118
119 if (! loop || ! loop->header)
120 return;
121
122 fprintf (file, ";;\n;; Loop %d\n", loop->num);
123
124 fprintf (file, ";; header %d, ", loop->header->index);
125 if (loop->latch)
126 fprintf (file, "latch %d\n", loop->latch->index);
127 else
128 {
129 fprintf (file, "multiple latches:");
130 latches = get_loop_latch_edges (loop);
131 FOR_EACH_VEC_ELT (latches, i, e)
132 fprintf (file, " %d", e->src->index);
133 latches.release ();
134 fprintf (file, "\n");
135 }
136
137 fprintf (file, ";; depth %d, outer %ld\n",
138 loop_depth (loop), (long) (loop_outer (loop)
139 ? loop_outer (loop)->num : -1));
140
141 fprintf (file, ";; nodes:");
142 bbs = get_loop_body (loop);
143 for (i = 0; i < loop->num_nodes; i++)
144 fprintf (file, " %d", bbs[i]->index);
145 free (bbs);
146 fprintf (file, "\n");
147
148 if (loop_dump_aux)
149 loop_dump_aux (loop, file, verbose);
150 }
151
152 /* Dump the loop information about loops to the stream FILE,
153 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
154
155 void
156 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
157 {
158 loop_iterator li;
159 struct loop *loop;
160
161 if (!current_loops || ! file)
162 return;
163
164 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
165
166 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
167 {
168 flow_loop_dump (loop, file, loop_dump_aux, verbose);
169 }
170
171 if (verbose)
172 flow_loops_cfg_dump (file);
173 }
174
175 /* Free data allocated for LOOP. */
176
177 void
178 flow_loop_free (struct loop *loop)
179 {
180 struct loop_exit *exit, *next;
181
182 vec_free (loop->superloops);
183
184 /* Break the list of the loop exit records. They will be freed when the
185 corresponding edge is rescanned or removed, and this avoids
186 accessing the (already released) head of the list stored in the
187 loop structure. */
188 for (exit = loop->exits->next; exit != loop->exits; exit = next)
189 {
190 next = exit->next;
191 exit->next = exit;
192 exit->prev = exit;
193 }
194
195 ggc_free (loop->exits);
196 ggc_free (loop);
197 }
198
199 /* Free all the memory allocated for LOOPS. */
200
201 void
202 flow_loops_free (struct loops *loops)
203 {
204 if (loops->larray)
205 {
206 unsigned i;
207 loop_p loop;
208
209 /* Free the loop descriptors. */
210 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
211 {
212 if (!loop)
213 continue;
214
215 flow_loop_free (loop);
216 }
217
218 vec_free (loops->larray);
219 }
220 }
221
222 /* Find the nodes contained within the LOOP with header HEADER.
223 Return the number of nodes within the loop. */
224
225 int
226 flow_loop_nodes_find (basic_block header, struct loop *loop)
227 {
228 vec<basic_block> stack = vNULL;
229 int num_nodes = 1;
230 edge latch;
231 edge_iterator latch_ei;
232
233 header->loop_father = loop;
234
235 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
236 {
237 if (latch->src->loop_father == loop
238 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
239 continue;
240
241 num_nodes++;
242 stack.safe_push (latch->src);
243 latch->src->loop_father = loop;
244
245 while (!stack.is_empty ())
246 {
247 basic_block node;
248 edge e;
249 edge_iterator ei;
250
251 node = stack.pop ();
252
253 FOR_EACH_EDGE (e, ei, node->preds)
254 {
255 basic_block ancestor = e->src;
256
257 if (ancestor->loop_father != loop)
258 {
259 ancestor->loop_father = loop;
260 num_nodes++;
261 stack.safe_push (ancestor);
262 }
263 }
264 }
265 }
266 stack.release ();
267
268 return num_nodes;
269 }
270
271 /* Records the vector of superloops of the loop LOOP, whose immediate
272 superloop is FATHER. */
273
274 static void
275 establish_preds (struct loop *loop, struct loop *father)
276 {
277 loop_p ploop;
278 unsigned depth = loop_depth (father) + 1;
279 unsigned i;
280
281 loop->superloops = 0;
282 vec_alloc (loop->superloops, depth);
283 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
284 loop->superloops->quick_push (ploop);
285 loop->superloops->quick_push (father);
286
287 for (ploop = loop->inner; ploop; ploop = ploop->next)
288 establish_preds (ploop, loop);
289 }
290
291 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
292 added loop. If LOOP has some children, take care of that their
293 pred field will be initialized correctly. */
294
295 void
296 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
297 {
298 loop->next = father->inner;
299 father->inner = loop;
300
301 establish_preds (loop, father);
302 }
303
304 /* Remove LOOP from the loop hierarchy tree. */
305
306 void
307 flow_loop_tree_node_remove (struct loop *loop)
308 {
309 struct loop *prev, *father;
310
311 father = loop_outer (loop);
312
313 /* Remove loop from the list of sons. */
314 if (father->inner == loop)
315 father->inner = loop->next;
316 else
317 {
318 for (prev = father->inner; prev->next != loop; prev = prev->next)
319 continue;
320 prev->next = loop->next;
321 }
322
323 loop->superloops = NULL;
324 }
325
326 /* Allocates and returns new loop structure. */
327
328 struct loop *
329 alloc_loop (void)
330 {
331 struct loop *loop = ggc_alloc_cleared_loop ();
332
333 loop->exits = ggc_alloc_cleared_loop_exit ();
334 loop->exits->next = loop->exits->prev = loop->exits;
335 loop->can_be_parallel = false;
336 loop->nb_iterations_upper_bound = 0;
337 loop->nb_iterations_estimate = 0;
338 return loop;
339 }
340
341 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
342 (including the root of the loop tree). */
343
344 void
345 init_loops_structure (struct function *fn,
346 struct loops *loops, unsigned num_loops)
347 {
348 struct loop *root;
349
350 memset (loops, 0, sizeof *loops);
351 vec_alloc (loops->larray, num_loops);
352
353 /* Dummy loop containing whole function. */
354 root = alloc_loop ();
355 root->num_nodes = n_basic_blocks_for_function (fn);
356 root->latch = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
357 root->header = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
358 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->loop_father = root;
359 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->loop_father = root;
360
361 loops->larray->quick_push (root);
362 loops->tree_root = root;
363 }
364
365 /* Returns whether HEADER is a loop header. */
366
367 bool
368 bb_loop_header_p (basic_block header)
369 {
370 edge_iterator ei;
371 edge e;
372
373 /* If we have an abnormal predecessor, do not consider the
374 loop (not worth the problems). */
375 if (bb_has_abnormal_pred (header))
376 return false;
377
378 /* Look for back edges where a predecessor is dominated
379 by this block. A natural loop has a single entry
380 node (header) that dominates all the nodes in the
381 loop. It also has single back edge to the header
382 from a latch node. */
383 FOR_EACH_EDGE (e, ei, header->preds)
384 {
385 basic_block latch = e->src;
386 if (latch != ENTRY_BLOCK_PTR
387 && dominated_by_p (CDI_DOMINATORS, latch, header))
388 return true;
389 }
390
391 return false;
392 }
393
394 /* Find all the natural loops in the function and save in LOOPS structure and
395 recalculate loop_father information in basic block structures.
396 If LOOPS is non-NULL then the loop structures for already recorded loops
397 will be re-used and their number will not change. We assume that no
398 stale loops exist in LOOPS.
399 When LOOPS is NULL it is allocated and re-built from scratch.
400 Return the built LOOPS structure. */
401
402 struct loops *
403 flow_loops_find (struct loops *loops)
404 {
405 bool from_scratch = (loops == NULL);
406 int *rc_order;
407 int b;
408 unsigned i;
409 vec<loop_p> larray;
410
411 /* Ensure that the dominators are computed. */
412 calculate_dominance_info (CDI_DOMINATORS);
413
414 if (!loops)
415 {
416 loops = ggc_alloc_cleared_loops ();
417 init_loops_structure (cfun, loops, 1);
418 }
419
420 /* Ensure that loop exits were released. */
421 gcc_assert (loops->exits == NULL);
422
423 /* Taking care of this degenerate case makes the rest of
424 this code simpler. */
425 if (n_basic_blocks == NUM_FIXED_BLOCKS)
426 return loops;
427
428 /* The root loop node contains all basic-blocks. */
429 loops->tree_root->num_nodes = n_basic_blocks;
430
431 /* Compute depth first search order of the CFG so that outer
432 natural loops will be found before inner natural loops. */
433 rc_order = XNEWVEC (int, n_basic_blocks);
434 pre_and_rev_post_order_compute (NULL, rc_order, false);
435
436 /* Gather all loop headers in reverse completion order and allocate
437 loop structures for loops that are not already present. */
438 larray.create (loops->larray->length ());
439 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
440 {
441 basic_block header = BASIC_BLOCK (rc_order[b]);
442 if (bb_loop_header_p (header))
443 {
444 struct loop *loop;
445
446 /* The current active loop tree has valid loop-fathers for
447 header blocks. */
448 if (!from_scratch
449 && header->loop_father->header == header)
450 {
451 loop = header->loop_father;
452 /* If we found an existing loop remove it from the
453 loop tree. It is going to be inserted again
454 below. */
455 flow_loop_tree_node_remove (loop);
456 }
457 else
458 {
459 /* Otherwise allocate a new loop structure for the loop. */
460 loop = alloc_loop ();
461 /* ??? We could re-use unused loop slots here. */
462 loop->num = loops->larray->length ();
463 vec_safe_push (loops->larray, loop);
464 loop->header = header;
465
466 if (!from_scratch
467 && dump_file && (dump_flags & TDF_DETAILS))
468 fprintf (dump_file, "flow_loops_find: discovered new "
469 "loop %d with header %d\n",
470 loop->num, header->index);
471 }
472 /* Reset latch, we recompute it below. */
473 loop->latch = NULL;
474 larray.safe_push (loop);
475 }
476
477 /* Make blocks part of the loop root node at start. */
478 header->loop_father = loops->tree_root;
479 }
480
481 free (rc_order);
482
483 /* Now iterate over the loops found, insert them into the loop tree
484 and assign basic-block ownership. */
485 for (i = 0; i < larray.length (); ++i)
486 {
487 struct loop *loop = larray[i];
488 basic_block header = loop->header;
489 edge_iterator ei;
490 edge e;
491
492 flow_loop_tree_node_add (header->loop_father, loop);
493 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
494
495 /* Look for the latch for this header block, if it has just a
496 single one. */
497 FOR_EACH_EDGE (e, ei, header->preds)
498 {
499 basic_block latch = e->src;
500
501 if (flow_bb_inside_loop_p (loop, latch))
502 {
503 if (loop->latch != NULL)
504 {
505 /* More than one latch edge. */
506 loop->latch = NULL;
507 break;
508 }
509 loop->latch = latch;
510 }
511 }
512 }
513
514 larray.release ();
515
516 return loops;
517 }
518
519 /* Ratio of frequencies of edges so that one of more latch edges is
520 considered to belong to inner loop with same header. */
521 #define HEAVY_EDGE_RATIO 8
522
523 /* Minimum number of samples for that we apply
524 find_subloop_latch_edge_by_profile heuristics. */
525 #define HEAVY_EDGE_MIN_SAMPLES 10
526
527 /* If the profile info is available, finds an edge in LATCHES that much more
528 frequent than the remaining edges. Returns such an edge, or NULL if we do
529 not find one.
530
531 We do not use guessed profile here, only the measured one. The guessed
532 profile is usually too flat and unreliable for this (and it is mostly based
533 on the loop structure of the program, so it does not make much sense to
534 derive the loop structure from it). */
535
536 static edge
537 find_subloop_latch_edge_by_profile (vec<edge> latches)
538 {
539 unsigned i;
540 edge e, me = NULL;
541 gcov_type mcount = 0, tcount = 0;
542
543 FOR_EACH_VEC_ELT (latches, i, e)
544 {
545 if (e->count > mcount)
546 {
547 me = e;
548 mcount = e->count;
549 }
550 tcount += e->count;
551 }
552
553 if (tcount < HEAVY_EDGE_MIN_SAMPLES
554 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
555 return NULL;
556
557 if (dump_file)
558 fprintf (dump_file,
559 "Found latch edge %d -> %d using profile information.\n",
560 me->src->index, me->dest->index);
561 return me;
562 }
563
564 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
565 on the structure of induction variables. Returns this edge, or NULL if we
566 do not find any.
567
568 We are quite conservative, and look just for an obvious simple innermost
569 loop (which is the case where we would lose the most performance by not
570 disambiguating the loop). More precisely, we look for the following
571 situation: The source of the chosen latch edge dominates sources of all
572 the other latch edges. Additionally, the header does not contain a phi node
573 such that the argument from the chosen edge is equal to the argument from
574 another edge. */
575
576 static edge
577 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
578 {
579 edge e, latch = latches[0];
580 unsigned i;
581 gimple phi;
582 gimple_stmt_iterator psi;
583 tree lop;
584 basic_block bb;
585
586 /* Find the candidate for the latch edge. */
587 for (i = 1; latches.iterate (i, &e); i++)
588 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
589 latch = e;
590
591 /* Verify that it dominates all the latch edges. */
592 FOR_EACH_VEC_ELT (latches, i, e)
593 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
594 return NULL;
595
596 /* Check for a phi node that would deny that this is a latch edge of
597 a subloop. */
598 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
599 {
600 phi = gsi_stmt (psi);
601 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
602
603 /* Ignore the values that are not changed inside the subloop. */
604 if (TREE_CODE (lop) != SSA_NAME
605 || SSA_NAME_DEF_STMT (lop) == phi)
606 continue;
607 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
608 if (!bb || !flow_bb_inside_loop_p (loop, bb))
609 continue;
610
611 FOR_EACH_VEC_ELT (latches, i, e)
612 if (e != latch
613 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
614 return NULL;
615 }
616
617 if (dump_file)
618 fprintf (dump_file,
619 "Found latch edge %d -> %d using iv structure.\n",
620 latch->src->index, latch->dest->index);
621 return latch;
622 }
623
624 /* If we can determine that one of the several latch edges of LOOP behaves
625 as a latch edge of a separate subloop, returns this edge. Otherwise
626 returns NULL. */
627
628 static edge
629 find_subloop_latch_edge (struct loop *loop)
630 {
631 vec<edge> latches = get_loop_latch_edges (loop);
632 edge latch = NULL;
633
634 if (latches.length () > 1)
635 {
636 latch = find_subloop_latch_edge_by_profile (latches);
637
638 if (!latch
639 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
640 should use cfghook for this, but it is hard to imagine it would
641 be useful elsewhere. */
642 && current_ir_type () == IR_GIMPLE)
643 latch = find_subloop_latch_edge_by_ivs (loop, latches);
644 }
645
646 latches.release ();
647 return latch;
648 }
649
650 /* Callback for make_forwarder_block. Returns true if the edge E is marked
651 in the set MFB_REIS_SET. */
652
653 static struct pointer_set_t *mfb_reis_set;
654 static bool
655 mfb_redirect_edges_in_set (edge e)
656 {
657 return pointer_set_contains (mfb_reis_set, e);
658 }
659
660 /* Creates a subloop of LOOP with latch edge LATCH. */
661
662 static void
663 form_subloop (struct loop *loop, edge latch)
664 {
665 edge_iterator ei;
666 edge e, new_entry;
667 struct loop *new_loop;
668
669 mfb_reis_set = pointer_set_create ();
670 FOR_EACH_EDGE (e, ei, loop->header->preds)
671 {
672 if (e != latch)
673 pointer_set_insert (mfb_reis_set, e);
674 }
675 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
676 NULL);
677 pointer_set_destroy (mfb_reis_set);
678
679 loop->header = new_entry->src;
680
681 /* Find the blocks and subloops that belong to the new loop, and add it to
682 the appropriate place in the loop tree. */
683 new_loop = alloc_loop ();
684 new_loop->header = new_entry->dest;
685 new_loop->latch = latch->src;
686 add_loop (new_loop, loop);
687 }
688
689 /* Make all the latch edges of LOOP to go to a single forwarder block --
690 a new latch of LOOP. */
691
692 static void
693 merge_latch_edges (struct loop *loop)
694 {
695 vec<edge> latches = get_loop_latch_edges (loop);
696 edge latch, e;
697 unsigned i;
698
699 gcc_assert (latches.length () > 0);
700
701 if (latches.length () == 1)
702 loop->latch = latches[0]->src;
703 else
704 {
705 if (dump_file)
706 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
707
708 mfb_reis_set = pointer_set_create ();
709 FOR_EACH_VEC_ELT (latches, i, e)
710 pointer_set_insert (mfb_reis_set, e);
711 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
712 NULL);
713 pointer_set_destroy (mfb_reis_set);
714
715 loop->header = latch->dest;
716 loop->latch = latch->src;
717 }
718
719 latches.release ();
720 }
721
722 /* LOOP may have several latch edges. Transform it into (possibly several)
723 loops with single latch edge. */
724
725 static void
726 disambiguate_multiple_latches (struct loop *loop)
727 {
728 edge e;
729
730 /* We eliminate the multiple latches by splitting the header to the forwarder
731 block F and the rest R, and redirecting the edges. There are two cases:
732
733 1) If there is a latch edge E that corresponds to a subloop (we guess
734 that based on profile -- if it is taken much more often than the
735 remaining edges; and on trees, using the information about induction
736 variables of the loops), we redirect E to R, all the remaining edges to
737 F, then rescan the loops and try again for the outer loop.
738 2) If there is no such edge, we redirect all latch edges to F, and the
739 entry edges to R, thus making F the single latch of the loop. */
740
741 if (dump_file)
742 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
743 loop->num);
744
745 /* During latch merging, we may need to redirect the entry edges to a new
746 block. This would cause problems if the entry edge was the one from the
747 entry block. To avoid having to handle this case specially, split
748 such entry edge. */
749 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
750 if (e)
751 split_edge (e);
752
753 while (1)
754 {
755 e = find_subloop_latch_edge (loop);
756 if (!e)
757 break;
758
759 form_subloop (loop, e);
760 }
761
762 merge_latch_edges (loop);
763 }
764
765 /* Split loops with multiple latch edges. */
766
767 void
768 disambiguate_loops_with_multiple_latches (void)
769 {
770 loop_iterator li;
771 struct loop *loop;
772
773 FOR_EACH_LOOP (li, loop, 0)
774 {
775 if (!loop->latch)
776 disambiguate_multiple_latches (loop);
777 }
778 }
779
780 /* Return nonzero if basic block BB belongs to LOOP. */
781 bool
782 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
783 {
784 struct loop *source_loop;
785
786 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
787 return 0;
788
789 source_loop = bb->loop_father;
790 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
791 }
792
793 /* Enumeration predicate for get_loop_body_with_size. */
794 static bool
795 glb_enum_p (const_basic_block bb, const void *glb_loop)
796 {
797 const struct loop *const loop = (const struct loop *) glb_loop;
798 return (bb != loop->header
799 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
800 }
801
802 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
803 order against direction of edges from latch. Specially, if
804 header != latch, latch is the 1-st block. LOOP cannot be the fake
805 loop tree root, and its size must be at most MAX_SIZE. The blocks
806 in the LOOP body are stored to BODY, and the size of the LOOP is
807 returned. */
808
809 unsigned
810 get_loop_body_with_size (const struct loop *loop, basic_block *body,
811 unsigned max_size)
812 {
813 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
814 body, max_size, loop);
815 }
816
817 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
818 order against direction of edges from latch. Specially, if
819 header != latch, latch is the 1-st block. */
820
821 basic_block *
822 get_loop_body (const struct loop *loop)
823 {
824 basic_block *body, bb;
825 unsigned tv = 0;
826
827 gcc_assert (loop->num_nodes);
828
829 body = XNEWVEC (basic_block, loop->num_nodes);
830
831 if (loop->latch == EXIT_BLOCK_PTR)
832 {
833 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
834 special-case the fake loop that contains the whole function. */
835 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
836 body[tv++] = loop->header;
837 body[tv++] = EXIT_BLOCK_PTR;
838 FOR_EACH_BB (bb)
839 body[tv++] = bb;
840 }
841 else
842 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
843
844 gcc_assert (tv == loop->num_nodes);
845 return body;
846 }
847
848 /* Fills dominance descendants inside LOOP of the basic block BB into
849 array TOVISIT from index *TV. */
850
851 static void
852 fill_sons_in_loop (const struct loop *loop, basic_block bb,
853 basic_block *tovisit, int *tv)
854 {
855 basic_block son, postpone = NULL;
856
857 tovisit[(*tv)++] = bb;
858 for (son = first_dom_son (CDI_DOMINATORS, bb);
859 son;
860 son = next_dom_son (CDI_DOMINATORS, son))
861 {
862 if (!flow_bb_inside_loop_p (loop, son))
863 continue;
864
865 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
866 {
867 postpone = son;
868 continue;
869 }
870 fill_sons_in_loop (loop, son, tovisit, tv);
871 }
872
873 if (postpone)
874 fill_sons_in_loop (loop, postpone, tovisit, tv);
875 }
876
877 /* Gets body of a LOOP (that must be different from the outermost loop)
878 sorted by dominance relation. Additionally, if a basic block s dominates
879 the latch, then only blocks dominated by s are be after it. */
880
881 basic_block *
882 get_loop_body_in_dom_order (const struct loop *loop)
883 {
884 basic_block *tovisit;
885 int tv;
886
887 gcc_assert (loop->num_nodes);
888
889 tovisit = XNEWVEC (basic_block, loop->num_nodes);
890
891 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
892
893 tv = 0;
894 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
895
896 gcc_assert (tv == (int) loop->num_nodes);
897
898 return tovisit;
899 }
900
901 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
902
903 basic_block *
904 get_loop_body_in_custom_order (const struct loop *loop,
905 int (*bb_comparator) (const void *, const void *))
906 {
907 basic_block *bbs = get_loop_body (loop);
908
909 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
910
911 return bbs;
912 }
913
914 /* Get body of a LOOP in breadth first sort order. */
915
916 basic_block *
917 get_loop_body_in_bfs_order (const struct loop *loop)
918 {
919 basic_block *blocks;
920 basic_block bb;
921 bitmap visited;
922 unsigned int i = 0;
923 unsigned int vc = 1;
924
925 gcc_assert (loop->num_nodes);
926 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
927
928 blocks = XNEWVEC (basic_block, loop->num_nodes);
929 visited = BITMAP_ALLOC (NULL);
930
931 bb = loop->header;
932 while (i < loop->num_nodes)
933 {
934 edge e;
935 edge_iterator ei;
936
937 if (bitmap_set_bit (visited, bb->index))
938 /* This basic block is now visited */
939 blocks[i++] = bb;
940
941 FOR_EACH_EDGE (e, ei, bb->succs)
942 {
943 if (flow_bb_inside_loop_p (loop, e->dest))
944 {
945 if (bitmap_set_bit (visited, e->dest->index))
946 blocks[i++] = e->dest;
947 }
948 }
949
950 gcc_assert (i >= vc);
951
952 bb = blocks[vc++];
953 }
954
955 BITMAP_FREE (visited);
956 return blocks;
957 }
958
959 /* Hash function for struct loop_exit. */
960
961 static hashval_t
962 loop_exit_hash (const void *ex)
963 {
964 const struct loop_exit *const exit = (const struct loop_exit *) ex;
965
966 return htab_hash_pointer (exit->e);
967 }
968
969 /* Equality function for struct loop_exit. Compares with edge. */
970
971 static int
972 loop_exit_eq (const void *ex, const void *e)
973 {
974 const struct loop_exit *const exit = (const struct loop_exit *) ex;
975
976 return exit->e == e;
977 }
978
979 /* Frees the list of loop exit descriptions EX. */
980
981 static void
982 loop_exit_free (void *ex)
983 {
984 struct loop_exit *exit = (struct loop_exit *) ex, *next;
985
986 for (; exit; exit = next)
987 {
988 next = exit->next_e;
989
990 exit->next->prev = exit->prev;
991 exit->prev->next = exit->next;
992
993 ggc_free (exit);
994 }
995 }
996
997 /* Returns the list of records for E as an exit of a loop. */
998
999 static struct loop_exit *
1000 get_exit_descriptions (edge e)
1001 {
1002 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
1003 htab_hash_pointer (e));
1004 }
1005
1006 /* Updates the lists of loop exits in that E appears.
1007 If REMOVED is true, E is being removed, and we
1008 just remove it from the lists of exits.
1009 If NEW_EDGE is true and E is not a loop exit, we
1010 do not try to remove it from loop exit lists. */
1011
1012 void
1013 rescan_loop_exit (edge e, bool new_edge, bool removed)
1014 {
1015 void **slot;
1016 struct loop_exit *exits = NULL, *exit;
1017 struct loop *aloop, *cloop;
1018
1019 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1020 return;
1021
1022 if (!removed
1023 && e->src->loop_father != NULL
1024 && e->dest->loop_father != NULL
1025 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1026 {
1027 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1028 for (aloop = e->src->loop_father;
1029 aloop != cloop;
1030 aloop = loop_outer (aloop))
1031 {
1032 exit = ggc_alloc_loop_exit ();
1033 exit->e = e;
1034
1035 exit->next = aloop->exits->next;
1036 exit->prev = aloop->exits;
1037 exit->next->prev = exit;
1038 exit->prev->next = exit;
1039
1040 exit->next_e = exits;
1041 exits = exit;
1042 }
1043 }
1044
1045 if (!exits && new_edge)
1046 return;
1047
1048 slot = htab_find_slot_with_hash (current_loops->exits, e,
1049 htab_hash_pointer (e),
1050 exits ? INSERT : NO_INSERT);
1051 if (!slot)
1052 return;
1053
1054 if (exits)
1055 {
1056 if (*slot)
1057 loop_exit_free (*slot);
1058 *slot = exits;
1059 }
1060 else
1061 htab_clear_slot (current_loops->exits, slot);
1062 }
1063
1064 /* For each loop, record list of exit edges, and start maintaining these
1065 lists. */
1066
1067 void
1068 record_loop_exits (void)
1069 {
1070 basic_block bb;
1071 edge_iterator ei;
1072 edge e;
1073
1074 if (!current_loops)
1075 return;
1076
1077 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1078 return;
1079 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1080
1081 gcc_assert (current_loops->exits == NULL);
1082 current_loops->exits = htab_create_ggc (2 * number_of_loops (cfun),
1083 loop_exit_hash, loop_exit_eq,
1084 loop_exit_free);
1085
1086 FOR_EACH_BB (bb)
1087 {
1088 FOR_EACH_EDGE (e, ei, bb->succs)
1089 {
1090 rescan_loop_exit (e, true, false);
1091 }
1092 }
1093 }
1094
1095 /* Dumps information about the exit in *SLOT to FILE.
1096 Callback for htab_traverse. */
1097
1098 static int
1099 dump_recorded_exit (void **slot, void *file)
1100 {
1101 struct loop_exit *exit = (struct loop_exit *) *slot;
1102 unsigned n = 0;
1103 edge e = exit->e;
1104
1105 for (; exit != NULL; exit = exit->next_e)
1106 n++;
1107
1108 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1109 e->src->index, e->dest->index, n);
1110
1111 return 1;
1112 }
1113
1114 /* Dumps the recorded exits of loops to FILE. */
1115
1116 extern void dump_recorded_exits (FILE *);
1117 void
1118 dump_recorded_exits (FILE *file)
1119 {
1120 if (!current_loops->exits)
1121 return;
1122 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1123 }
1124
1125 /* Releases lists of loop exits. */
1126
1127 void
1128 release_recorded_exits (void)
1129 {
1130 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1131 htab_delete (current_loops->exits);
1132 current_loops->exits = NULL;
1133 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1134 }
1135
1136 /* Returns the list of the exit edges of a LOOP. */
1137
1138 vec<edge>
1139 get_loop_exit_edges (const struct loop *loop)
1140 {
1141 vec<edge> edges = vNULL;
1142 edge e;
1143 unsigned i;
1144 basic_block *body;
1145 edge_iterator ei;
1146 struct loop_exit *exit;
1147
1148 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1149
1150 /* If we maintain the lists of exits, use them. Otherwise we must
1151 scan the body of the loop. */
1152 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1153 {
1154 for (exit = loop->exits->next; exit->e; exit = exit->next)
1155 edges.safe_push (exit->e);
1156 }
1157 else
1158 {
1159 body = get_loop_body (loop);
1160 for (i = 0; i < loop->num_nodes; i++)
1161 FOR_EACH_EDGE (e, ei, body[i]->succs)
1162 {
1163 if (!flow_bb_inside_loop_p (loop, e->dest))
1164 edges.safe_push (e);
1165 }
1166 free (body);
1167 }
1168
1169 return edges;
1170 }
1171
1172 /* Counts the number of conditional branches inside LOOP. */
1173
1174 unsigned
1175 num_loop_branches (const struct loop *loop)
1176 {
1177 unsigned i, n;
1178 basic_block * body;
1179
1180 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1181
1182 body = get_loop_body (loop);
1183 n = 0;
1184 for (i = 0; i < loop->num_nodes; i++)
1185 if (EDGE_COUNT (body[i]->succs) >= 2)
1186 n++;
1187 free (body);
1188
1189 return n;
1190 }
1191
1192 /* Adds basic block BB to LOOP. */
1193 void
1194 add_bb_to_loop (basic_block bb, struct loop *loop)
1195 {
1196 unsigned i;
1197 loop_p ploop;
1198 edge_iterator ei;
1199 edge e;
1200
1201 gcc_assert (bb->loop_father == NULL);
1202 bb->loop_father = loop;
1203 loop->num_nodes++;
1204 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1205 ploop->num_nodes++;
1206
1207 FOR_EACH_EDGE (e, ei, bb->succs)
1208 {
1209 rescan_loop_exit (e, true, false);
1210 }
1211 FOR_EACH_EDGE (e, ei, bb->preds)
1212 {
1213 rescan_loop_exit (e, true, false);
1214 }
1215 }
1216
1217 /* Remove basic block BB from loops. */
1218 void
1219 remove_bb_from_loops (basic_block bb)
1220 {
1221 unsigned i;
1222 struct loop *loop = bb->loop_father;
1223 loop_p ploop;
1224 edge_iterator ei;
1225 edge e;
1226
1227 gcc_assert (loop != NULL);
1228 loop->num_nodes--;
1229 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1230 ploop->num_nodes--;
1231 bb->loop_father = NULL;
1232
1233 FOR_EACH_EDGE (e, ei, bb->succs)
1234 {
1235 rescan_loop_exit (e, false, true);
1236 }
1237 FOR_EACH_EDGE (e, ei, bb->preds)
1238 {
1239 rescan_loop_exit (e, false, true);
1240 }
1241 }
1242
1243 /* Finds nearest common ancestor in loop tree for given loops. */
1244 struct loop *
1245 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1246 {
1247 unsigned sdepth, ddepth;
1248
1249 if (!loop_s) return loop_d;
1250 if (!loop_d) return loop_s;
1251
1252 sdepth = loop_depth (loop_s);
1253 ddepth = loop_depth (loop_d);
1254
1255 if (sdepth < ddepth)
1256 loop_d = (*loop_d->superloops)[sdepth];
1257 else if (sdepth > ddepth)
1258 loop_s = (*loop_s->superloops)[ddepth];
1259
1260 while (loop_s != loop_d)
1261 {
1262 loop_s = loop_outer (loop_s);
1263 loop_d = loop_outer (loop_d);
1264 }
1265 return loop_s;
1266 }
1267
1268 /* Removes LOOP from structures and frees its data. */
1269
1270 void
1271 delete_loop (struct loop *loop)
1272 {
1273 /* Remove the loop from structure. */
1274 flow_loop_tree_node_remove (loop);
1275
1276 /* Remove loop from loops array. */
1277 (*current_loops->larray)[loop->num] = NULL;
1278
1279 /* Free loop data. */
1280 flow_loop_free (loop);
1281 }
1282
1283 /* Cancels the LOOP; it must be innermost one. */
1284
1285 static void
1286 cancel_loop (struct loop *loop)
1287 {
1288 basic_block *bbs;
1289 unsigned i;
1290 struct loop *outer = loop_outer (loop);
1291
1292 gcc_assert (!loop->inner);
1293
1294 /* Move blocks up one level (they should be removed as soon as possible). */
1295 bbs = get_loop_body (loop);
1296 for (i = 0; i < loop->num_nodes; i++)
1297 bbs[i]->loop_father = outer;
1298
1299 free (bbs);
1300 delete_loop (loop);
1301 }
1302
1303 /* Cancels LOOP and all its subloops. */
1304 void
1305 cancel_loop_tree (struct loop *loop)
1306 {
1307 while (loop->inner)
1308 cancel_loop_tree (loop->inner);
1309 cancel_loop (loop);
1310 }
1311
1312 /* Checks that information about loops is correct
1313 -- sizes of loops are all right
1314 -- results of get_loop_body really belong to the loop
1315 -- loop header have just single entry edge and single latch edge
1316 -- loop latches have only single successor that is header of their loop
1317 -- irreducible loops are correctly marked
1318 -- the cached loop depth and loop father of each bb is correct
1319 */
1320 DEBUG_FUNCTION void
1321 verify_loop_structure (void)
1322 {
1323 unsigned *sizes, i, j;
1324 sbitmap irreds;
1325 basic_block bb, *bbs;
1326 struct loop *loop;
1327 int err = 0;
1328 edge e;
1329 unsigned num = number_of_loops (cfun);
1330 loop_iterator li;
1331 struct loop_exit *exit, *mexit;
1332 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1333 sbitmap visited;
1334
1335 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1336 {
1337 error ("loop verification on loop tree that needs fixup");
1338 err = 1;
1339 }
1340
1341 /* We need up-to-date dominators, compute or verify them. */
1342 if (!dom_available)
1343 calculate_dominance_info (CDI_DOMINATORS);
1344 else
1345 verify_dominators (CDI_DOMINATORS);
1346
1347 /* Check the headers. */
1348 FOR_EACH_BB (bb)
1349 if (bb_loop_header_p (bb))
1350 {
1351 if (bb->loop_father->header == NULL)
1352 {
1353 error ("loop with header %d marked for removal", bb->index);
1354 err = 1;
1355 }
1356 else if (bb->loop_father->header != bb)
1357 {
1358 error ("loop with header %d not in loop tree", bb->index);
1359 err = 1;
1360 }
1361 }
1362 else if (bb->loop_father->header == bb)
1363 {
1364 error ("non-loop with header %d not marked for removal", bb->index);
1365 err = 1;
1366 }
1367
1368 /* Check the recorded loop father and sizes of loops. */
1369 visited = sbitmap_alloc (last_basic_block);
1370 bitmap_clear (visited);
1371 bbs = XNEWVEC (basic_block, n_basic_blocks);
1372 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1373 {
1374 unsigned n;
1375
1376 if (loop->header == NULL)
1377 {
1378 error ("removed loop %d in loop tree", loop->num);
1379 err = 1;
1380 continue;
1381 }
1382
1383 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
1384 if (loop->num_nodes != n)
1385 {
1386 error ("size of loop %d should be %d, not %d",
1387 loop->num, n, loop->num_nodes);
1388 err = 1;
1389 }
1390
1391 for (j = 0; j < n; j++)
1392 {
1393 bb = bbs[j];
1394
1395 if (!flow_bb_inside_loop_p (loop, bb))
1396 {
1397 error ("bb %d does not belong to loop %d",
1398 bb->index, loop->num);
1399 err = 1;
1400 }
1401
1402 /* Ignore this block if it is in an inner loop. */
1403 if (bitmap_bit_p (visited, bb->index))
1404 continue;
1405 bitmap_set_bit (visited, bb->index);
1406
1407 if (bb->loop_father != loop)
1408 {
1409 error ("bb %d has father loop %d, should be loop %d",
1410 bb->index, bb->loop_father->num, loop->num);
1411 err = 1;
1412 }
1413 }
1414 }
1415 free (bbs);
1416 sbitmap_free (visited);
1417
1418 /* Check headers and latches. */
1419 FOR_EACH_LOOP (li, loop, 0)
1420 {
1421 i = loop->num;
1422 if (loop->header == NULL)
1423 continue;
1424 if (!bb_loop_header_p (loop->header))
1425 {
1426 error ("loop %d%'s header is not a loop header", i);
1427 err = 1;
1428 }
1429 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1430 && EDGE_COUNT (loop->header->preds) != 2)
1431 {
1432 error ("loop %d%'s header does not have exactly 2 entries", i);
1433 err = 1;
1434 }
1435 if (loop->latch)
1436 {
1437 if (!find_edge (loop->latch, loop->header))
1438 {
1439 error ("loop %d%'s latch does not have an edge to its header", i);
1440 err = 1;
1441 }
1442 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1443 {
1444 error ("loop %d%'s latch is not dominated by its header", i);
1445 err = 1;
1446 }
1447 }
1448 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1449 {
1450 if (!single_succ_p (loop->latch))
1451 {
1452 error ("loop %d%'s latch does not have exactly 1 successor", i);
1453 err = 1;
1454 }
1455 if (single_succ (loop->latch) != loop->header)
1456 {
1457 error ("loop %d%'s latch does not have header as successor", i);
1458 err = 1;
1459 }
1460 if (loop->latch->loop_father != loop)
1461 {
1462 error ("loop %d%'s latch does not belong directly to it", i);
1463 err = 1;
1464 }
1465 }
1466 if (loop->header->loop_father != loop)
1467 {
1468 error ("loop %d%'s header does not belong directly to it", i);
1469 err = 1;
1470 }
1471 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1472 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1473 {
1474 error ("loop %d%'s latch is marked as part of irreducible region", i);
1475 err = 1;
1476 }
1477 }
1478
1479 /* Check irreducible loops. */
1480 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1481 {
1482 /* Record old info. */
1483 irreds = sbitmap_alloc (last_basic_block);
1484 FOR_EACH_BB (bb)
1485 {
1486 edge_iterator ei;
1487 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1488 bitmap_set_bit (irreds, bb->index);
1489 else
1490 bitmap_clear_bit (irreds, bb->index);
1491 FOR_EACH_EDGE (e, ei, bb->succs)
1492 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1493 e->flags |= EDGE_ALL_FLAGS + 1;
1494 }
1495
1496 /* Recount it. */
1497 mark_irreducible_loops ();
1498
1499 /* Compare. */
1500 FOR_EACH_BB (bb)
1501 {
1502 edge_iterator ei;
1503
1504 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1505 && !bitmap_bit_p (irreds, bb->index))
1506 {
1507 error ("basic block %d should be marked irreducible", bb->index);
1508 err = 1;
1509 }
1510 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1511 && bitmap_bit_p (irreds, bb->index))
1512 {
1513 error ("basic block %d should not be marked irreducible", bb->index);
1514 err = 1;
1515 }
1516 FOR_EACH_EDGE (e, ei, bb->succs)
1517 {
1518 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1519 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1520 {
1521 error ("edge from %d to %d should be marked irreducible",
1522 e->src->index, e->dest->index);
1523 err = 1;
1524 }
1525 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1526 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1527 {
1528 error ("edge from %d to %d should not be marked irreducible",
1529 e->src->index, e->dest->index);
1530 err = 1;
1531 }
1532 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1533 }
1534 }
1535 free (irreds);
1536 }
1537
1538 /* Check the recorded loop exits. */
1539 FOR_EACH_LOOP (li, loop, 0)
1540 {
1541 if (!loop->exits || loop->exits->e != NULL)
1542 {
1543 error ("corrupted head of the exits list of loop %d",
1544 loop->num);
1545 err = 1;
1546 }
1547 else
1548 {
1549 /* Check that the list forms a cycle, and all elements except
1550 for the head are nonnull. */
1551 for (mexit = loop->exits, exit = mexit->next, i = 0;
1552 exit->e && exit != mexit;
1553 exit = exit->next)
1554 {
1555 if (i++ & 1)
1556 mexit = mexit->next;
1557 }
1558
1559 if (exit != loop->exits)
1560 {
1561 error ("corrupted exits list of loop %d", loop->num);
1562 err = 1;
1563 }
1564 }
1565
1566 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1567 {
1568 if (loop->exits->next != loop->exits)
1569 {
1570 error ("nonempty exits list of loop %d, but exits are not recorded",
1571 loop->num);
1572 err = 1;
1573 }
1574 }
1575 }
1576
1577 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1578 {
1579 unsigned n_exits = 0, eloops;
1580
1581 sizes = XCNEWVEC (unsigned, num);
1582 memset (sizes, 0, sizeof (unsigned) * num);
1583 FOR_EACH_BB (bb)
1584 {
1585 edge_iterator ei;
1586 if (bb->loop_father == current_loops->tree_root)
1587 continue;
1588 FOR_EACH_EDGE (e, ei, bb->succs)
1589 {
1590 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1591 continue;
1592
1593 n_exits++;
1594 exit = get_exit_descriptions (e);
1595 if (!exit)
1596 {
1597 error ("exit %d->%d not recorded",
1598 e->src->index, e->dest->index);
1599 err = 1;
1600 }
1601 eloops = 0;
1602 for (; exit; exit = exit->next_e)
1603 eloops++;
1604
1605 for (loop = bb->loop_father;
1606 loop != e->dest->loop_father
1607 /* When a loop exit is also an entry edge which
1608 can happen when avoiding CFG manipulations
1609 then the last loop exited is the outer loop
1610 of the loop entered. */
1611 && loop != loop_outer (e->dest->loop_father);
1612 loop = loop_outer (loop))
1613 {
1614 eloops--;
1615 sizes[loop->num]++;
1616 }
1617
1618 if (eloops != 0)
1619 {
1620 error ("wrong list of exited loops for edge %d->%d",
1621 e->src->index, e->dest->index);
1622 err = 1;
1623 }
1624 }
1625 }
1626
1627 if (n_exits != htab_elements (current_loops->exits))
1628 {
1629 error ("too many loop exits recorded");
1630 err = 1;
1631 }
1632
1633 FOR_EACH_LOOP (li, loop, 0)
1634 {
1635 eloops = 0;
1636 for (exit = loop->exits->next; exit->e; exit = exit->next)
1637 eloops++;
1638 if (eloops != sizes[loop->num])
1639 {
1640 error ("%d exits recorded for loop %d (having %d exits)",
1641 eloops, loop->num, sizes[loop->num]);
1642 err = 1;
1643 }
1644 }
1645
1646 free (sizes);
1647 }
1648
1649 gcc_assert (!err);
1650
1651 if (!dom_available)
1652 free_dominance_info (CDI_DOMINATORS);
1653 }
1654
1655 /* Returns latch edge of LOOP. */
1656 edge
1657 loop_latch_edge (const struct loop *loop)
1658 {
1659 return find_edge (loop->latch, loop->header);
1660 }
1661
1662 /* Returns preheader edge of LOOP. */
1663 edge
1664 loop_preheader_edge (const struct loop *loop)
1665 {
1666 edge e;
1667 edge_iterator ei;
1668
1669 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1670
1671 FOR_EACH_EDGE (e, ei, loop->header->preds)
1672 if (e->src != loop->latch)
1673 break;
1674
1675 return e;
1676 }
1677
1678 /* Returns true if E is an exit of LOOP. */
1679
1680 bool
1681 loop_exit_edge_p (const struct loop *loop, const_edge e)
1682 {
1683 return (flow_bb_inside_loop_p (loop, e->src)
1684 && !flow_bb_inside_loop_p (loop, e->dest));
1685 }
1686
1687 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1688 or more than one exit. If loops do not have the exits recorded, NULL
1689 is returned always. */
1690
1691 edge
1692 single_exit (const struct loop *loop)
1693 {
1694 struct loop_exit *exit = loop->exits->next;
1695
1696 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1697 return NULL;
1698
1699 if (exit->e && exit->next == loop->exits)
1700 return exit->e;
1701 else
1702 return NULL;
1703 }
1704
1705 /* Returns true when BB has an incoming edge exiting LOOP. */
1706
1707 bool
1708 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1709 {
1710 edge e;
1711 edge_iterator ei;
1712
1713 FOR_EACH_EDGE (e, ei, bb->preds)
1714 if (loop_exit_edge_p (loop, e))
1715 return true;
1716
1717 return false;
1718 }
1719
1720 /* Returns true when BB has an outgoing edge exiting LOOP. */
1721
1722 bool
1723 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1724 {
1725 edge e;
1726 edge_iterator ei;
1727
1728 FOR_EACH_EDGE (e, ei, bb->succs)
1729 if (loop_exit_edge_p (loop, e))
1730 return true;
1731
1732 return false;
1733 }
1734
1735 /* Return location corresponding to the loop control condition if possible. */
1736
1737 location_t
1738 get_loop_location (struct loop *loop)
1739 {
1740 rtx insn = NULL;
1741 struct niter_desc *desc = NULL;
1742 edge exit;
1743
1744 /* For a for or while loop, we would like to return the location
1745 of the for or while statement, if possible. To do this, look
1746 for the branch guarding the loop back-edge. */
1747
1748 /* If this is a simple loop with an in_edge, then the loop control
1749 branch is typically at the end of its source. */
1750 desc = get_simple_loop_desc (loop);
1751 if (desc->in_edge)
1752 {
1753 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1754 {
1755 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1756 return INSN_LOCATION (insn);
1757 }
1758 }
1759 /* If loop has a single exit, then the loop control branch
1760 must be at the end of its source. */
1761 if ((exit = single_exit (loop)))
1762 {
1763 FOR_BB_INSNS_REVERSE (exit->src, insn)
1764 {
1765 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1766 return INSN_LOCATION (insn);
1767 }
1768 }
1769 /* Next check the latch, to see if it is non-empty. */
1770 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1771 {
1772 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1773 return INSN_LOCATION (insn);
1774 }
1775 /* Finally, if none of the above identifies the loop control branch,
1776 return the first location in the loop header. */
1777 FOR_BB_INSNS (loop->header, insn)
1778 {
1779 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1780 return INSN_LOCATION (insn);
1781 }
1782 /* If all else fails, simply return the current function location. */
1783 return DECL_SOURCE_LOCATION (current_function_decl);
1784 }
1785
1786 /* Records that every statement in LOOP is executed I_BOUND times.
1787 REALISTIC is true if I_BOUND is expected to be close to the real number
1788 of iterations. UPPER is true if we are sure the loop iterates at most
1789 I_BOUND times. */
1790
1791 void
1792 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1793 bool realistic, bool upper)
1794 {
1795 /* Update the bounds only when there is no previous estimation, or when the
1796 current estimation is smaller. */
1797 if (upper
1798 && (!loop->any_upper_bound
1799 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1800 {
1801 loop->any_upper_bound = true;
1802 loop->nb_iterations_upper_bound = i_bound;
1803 }
1804 if (realistic
1805 && (!loop->any_estimate
1806 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1807 {
1808 loop->any_estimate = true;
1809 loop->nb_iterations_estimate = i_bound;
1810 }
1811
1812 /* If an upper bound is smaller than the realistic estimate of the
1813 number of iterations, use the upper bound instead. */
1814 if (loop->any_upper_bound
1815 && loop->any_estimate
1816 && wi::ltu_p (loop->nb_iterations_upper_bound,
1817 loop->nb_iterations_estimate))
1818 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1819 }
1820
1821 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1822 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1823 on the number of iterations of LOOP could not be derived, returns -1. */
1824
1825 HOST_WIDE_INT
1826 get_estimated_loop_iterations_int (struct loop *loop)
1827 {
1828 widest_int nit;
1829 HOST_WIDE_INT hwi_nit;
1830
1831 if (!get_estimated_loop_iterations (loop, &nit))
1832 return -1;
1833
1834 if (!wi::fits_shwi_p (nit))
1835 return -1;
1836 hwi_nit = nit.to_shwi ();
1837
1838 return hwi_nit < 0 ? -1 : hwi_nit;
1839 }
1840
1841 /* Returns an upper bound on the number of executions of statements
1842 in the LOOP. For statements before the loop exit, this exceeds
1843 the number of execution of the latch by one. */
1844
1845 HOST_WIDE_INT
1846 max_stmt_executions_int (struct loop *loop)
1847 {
1848 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1849 HOST_WIDE_INT snit;
1850
1851 if (nit == -1)
1852 return -1;
1853
1854 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1855
1856 /* If the computation overflows, return -1. */
1857 return snit < 0 ? -1 : snit;
1858 }
1859
1860 /* Sets NIT to the estimated number of executions of the latch of the
1861 LOOP. If we have no reliable estimate, the function returns false, otherwise
1862 returns true. */
1863
1864 bool
1865 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1866 {
1867 /* Even if the bound is not recorded, possibly we can derrive one from
1868 profile. */
1869 if (!loop->any_estimate)
1870 {
1871 if (loop->header->count)
1872 {
1873 *nit = gcov_type_to_wide_int
1874 (expected_loop_iterations_unbounded (loop) + 1);
1875 return true;
1876 }
1877 return false;
1878 }
1879
1880 *nit = loop->nb_iterations_estimate;
1881 return true;
1882 }
1883
1884 /* Sets NIT to an upper bound for the maximum number of executions of the
1885 latch of the LOOP. If we have no reliable estimate, the function returns
1886 false, otherwise returns true. */
1887
1888 bool
1889 get_max_loop_iterations (struct loop *loop, widest_int *nit)
1890 {
1891 if (!loop->any_upper_bound)
1892 return false;
1893
1894 *nit = loop->nb_iterations_upper_bound;
1895 return true;
1896 }
1897
1898 /* Similar to get_max_loop_iterations, but returns the estimate only
1899 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1900 on the number of iterations of LOOP could not be derived, returns -1. */
1901
1902 HOST_WIDE_INT
1903 get_max_loop_iterations_int (struct loop *loop)
1904 {
1905 widest_int nit;
1906 HOST_WIDE_INT hwi_nit;
1907
1908 if (!get_max_loop_iterations (loop, &nit))
1909 return -1;
1910
1911 if (!wi::fits_shwi_p (nit))
1912 return -1;
1913 hwi_nit = nit.to_shwi ();
1914
1915 return hwi_nit < 0 ? -1 : hwi_nit;
1916 }
1917
1918 /* Returns the loop depth of the loop BB belongs to. */
1919
1920 int
1921 bb_loop_depth (const_basic_block bb)
1922 {
1923 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1924 }