]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
2008-07-28 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "function.h"
29 #include "basic-block.h"
30 #include "toplev.h"
31 #include "cfgloop.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "tree-flow.h"
35 #include "pointer-set.h"
36 #include "output.h"
37 #include "ggc.h"
38
39 static void flow_loops_cfg_dump (FILE *);
40 \f
41 /* Dump loop related CFG information. */
42
43 static void
44 flow_loops_cfg_dump (FILE *file)
45 {
46 basic_block bb;
47
48 if (!file)
49 return;
50
51 FOR_EACH_BB (bb)
52 {
53 edge succ;
54 edge_iterator ei;
55
56 fprintf (file, ";; %d succs { ", bb->index);
57 FOR_EACH_EDGE (succ, ei, bb->succs)
58 fprintf (file, "%d ", succ->dest->index);
59 fprintf (file, "}\n");
60 }
61 }
62
63 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
64
65 bool
66 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
67 {
68 unsigned odepth = loop_depth (outer);
69
70 return (loop_depth (loop) > odepth
71 && VEC_index (loop_p, loop->superloops, odepth) == outer);
72 }
73
74 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
75 loops within LOOP. */
76
77 struct loop *
78 superloop_at_depth (struct loop *loop, unsigned depth)
79 {
80 unsigned ldepth = loop_depth (loop);
81
82 gcc_assert (depth <= ldepth);
83
84 if (depth == ldepth)
85 return loop;
86
87 return VEC_index (loop_p, loop->superloops, depth);
88 }
89
90 /* Returns the list of the latch edges of LOOP. */
91
92 static VEC (edge, heap) *
93 get_loop_latch_edges (const struct loop *loop)
94 {
95 edge_iterator ei;
96 edge e;
97 VEC (edge, heap) *ret = NULL;
98
99 FOR_EACH_EDGE (e, ei, loop->header->preds)
100 {
101 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
102 VEC_safe_push (edge, heap, ret, e);
103 }
104
105 return ret;
106 }
107
108 /* Dump the loop information specified by LOOP to the stream FILE
109 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
110
111 void
112 flow_loop_dump (const struct loop *loop, FILE *file,
113 void (*loop_dump_aux) (const struct loop *, FILE *, int),
114 int verbose)
115 {
116 basic_block *bbs;
117 unsigned i;
118 VEC (edge, heap) *latches;
119 edge e;
120
121 if (! loop || ! loop->header)
122 return;
123
124 fprintf (file, ";;\n;; Loop %d\n", loop->num);
125
126 fprintf (file, ";; header %d, ", loop->header->index);
127 if (loop->latch)
128 fprintf (file, "latch %d\n", loop->latch->index);
129 else
130 {
131 fprintf (file, "multiple latches:");
132 latches = get_loop_latch_edges (loop);
133 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
134 fprintf (file, " %d", e->src->index);
135 VEC_free (edge, heap, latches);
136 fprintf (file, "\n");
137 }
138
139 fprintf (file, ";; depth %d, outer %ld\n",
140 loop_depth (loop), (long) (loop_outer (loop)
141 ? loop_outer (loop)->num : -1));
142
143 fprintf (file, ";; nodes:");
144 bbs = get_loop_body (loop);
145 for (i = 0; i < loop->num_nodes; i++)
146 fprintf (file, " %d", bbs[i]->index);
147 free (bbs);
148 fprintf (file, "\n");
149
150 if (loop_dump_aux)
151 loop_dump_aux (loop, file, verbose);
152 }
153
154 /* Dump the loop information about loops to the stream FILE,
155 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
156
157 void
158 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
159 {
160 loop_iterator li;
161 struct loop *loop;
162
163 if (!current_loops || ! file)
164 return;
165
166 fprintf (file, ";; %d loops found\n", number_of_loops ());
167
168 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
169 {
170 flow_loop_dump (loop, file, loop_dump_aux, verbose);
171 }
172
173 if (verbose)
174 flow_loops_cfg_dump (file);
175 }
176
177 /* Free data allocated for LOOP. */
178
179 void
180 flow_loop_free (struct loop *loop)
181 {
182 struct loop_exit *exit, *next;
183
184 VEC_free (loop_p, gc, loop->superloops);
185
186 /* Break the list of the loop exit records. They will be freed when the
187 corresponding edge is rescanned or removed, and this avoids
188 accessing the (already released) head of the list stored in the
189 loop structure. */
190 for (exit = loop->exits->next; exit != loop->exits; exit = next)
191 {
192 next = exit->next;
193 exit->next = exit;
194 exit->prev = exit;
195 }
196
197 ggc_free (loop->exits);
198 ggc_free (loop);
199 }
200
201 /* Free all the memory allocated for LOOPS. */
202
203 void
204 flow_loops_free (struct loops *loops)
205 {
206 if (loops->larray)
207 {
208 unsigned i;
209 loop_p loop;
210
211 /* Free the loop descriptors. */
212 for (i = 0; VEC_iterate (loop_p, loops->larray, i, loop); i++)
213 {
214 if (!loop)
215 continue;
216
217 flow_loop_free (loop);
218 }
219
220 VEC_free (loop_p, gc, loops->larray);
221 }
222 }
223
224 /* Find the nodes contained within the LOOP with header HEADER.
225 Return the number of nodes within the loop. */
226
227 int
228 flow_loop_nodes_find (basic_block header, struct loop *loop)
229 {
230 VEC (basic_block, heap) *stack = NULL;
231 int num_nodes = 1;
232 edge latch;
233 edge_iterator latch_ei;
234 unsigned depth = loop_depth (loop);
235
236 header->loop_father = loop;
237 header->loop_depth = depth;
238
239 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
240 {
241 if (latch->src->loop_father == loop
242 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
243 continue;
244
245 num_nodes++;
246 VEC_safe_push (basic_block, heap, stack, latch->src);
247 latch->src->loop_father = loop;
248 latch->src->loop_depth = depth;
249
250 while (!VEC_empty (basic_block, stack))
251 {
252 basic_block node;
253 edge e;
254 edge_iterator ei;
255
256 node = VEC_pop (basic_block, stack);
257
258 FOR_EACH_EDGE (e, ei, node->preds)
259 {
260 basic_block ancestor = e->src;
261
262 if (ancestor->loop_father != loop)
263 {
264 ancestor->loop_father = loop;
265 ancestor->loop_depth = depth;
266 num_nodes++;
267 VEC_safe_push (basic_block, heap, stack, ancestor);
268 }
269 }
270 }
271 }
272 VEC_free (basic_block, heap, stack);
273
274 return num_nodes;
275 }
276
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
282 {
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 VEC_truncate (loop_p, loop->superloops, 0);
288 VEC_reserve (loop_p, gc, loop->superloops, depth);
289 for (i = 0; VEC_iterate (loop_p, father->superloops, i, ploop); i++)
290 VEC_quick_push (loop_p, loop->superloops, ploop);
291 VEC_quick_push (loop_p, loop->superloops, father);
292
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
295 }
296
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
300
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
303 {
304 loop->next = father->inner;
305 father->inner = loop;
306
307 establish_preds (loop, father);
308 }
309
310 /* Remove LOOP from the loop hierarchy tree. */
311
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
314 {
315 struct loop *prev, *father;
316
317 father = loop_outer (loop);
318
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
323 {
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
327 }
328
329 VEC_truncate (loop_p, loop->superloops, 0);
330 }
331
332 /* Allocates and returns new loop structure. */
333
334 struct loop *
335 alloc_loop (void)
336 {
337 struct loop *loop = GGC_CNEW (struct loop);
338
339 loop->exits = GGC_CNEW (struct loop_exit);
340 loop->exits->next = loop->exits->prev = loop->exits;
341
342 return loop;
343 }
344
345 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
346 (including the root of the loop tree). */
347
348 static void
349 init_loops_structure (struct loops *loops, unsigned num_loops)
350 {
351 struct loop *root;
352
353 memset (loops, 0, sizeof *loops);
354 loops->larray = VEC_alloc (loop_p, gc, num_loops);
355
356 /* Dummy loop containing whole function. */
357 root = alloc_loop ();
358 root->num_nodes = n_basic_blocks;
359 root->latch = EXIT_BLOCK_PTR;
360 root->header = ENTRY_BLOCK_PTR;
361 ENTRY_BLOCK_PTR->loop_father = root;
362 EXIT_BLOCK_PTR->loop_father = root;
363
364 VEC_quick_push (loop_p, loops->larray, root);
365 loops->tree_root = root;
366 }
367
368 /* Find all the natural loops in the function and save in LOOPS structure and
369 recalculate loop_depth information in basic block structures.
370 Return the number of natural loops found. */
371
372 int
373 flow_loops_find (struct loops *loops)
374 {
375 int b;
376 int num_loops;
377 edge e;
378 sbitmap headers;
379 int *dfs_order;
380 int *rc_order;
381 basic_block header;
382 basic_block bb;
383
384 /* Ensure that the dominators are computed. */
385 calculate_dominance_info (CDI_DOMINATORS);
386
387 /* Taking care of this degenerate case makes the rest of
388 this code simpler. */
389 if (n_basic_blocks == NUM_FIXED_BLOCKS)
390 {
391 init_loops_structure (loops, 1);
392 return 1;
393 }
394
395 dfs_order = NULL;
396 rc_order = NULL;
397
398 /* Count the number of loop headers. This should be the
399 same as the number of natural loops. */
400 headers = sbitmap_alloc (last_basic_block);
401 sbitmap_zero (headers);
402
403 num_loops = 0;
404 FOR_EACH_BB (header)
405 {
406 edge_iterator ei;
407
408 header->loop_depth = 0;
409
410 /* If we have an abnormal predecessor, do not consider the
411 loop (not worth the problems). */
412 FOR_EACH_EDGE (e, ei, header->preds)
413 if (e->flags & EDGE_ABNORMAL)
414 break;
415 if (e)
416 continue;
417
418 FOR_EACH_EDGE (e, ei, header->preds)
419 {
420 basic_block latch = e->src;
421
422 gcc_assert (!(e->flags & EDGE_ABNORMAL));
423
424 /* Look for back edges where a predecessor is dominated
425 by this block. A natural loop has a single entry
426 node (header) that dominates all the nodes in the
427 loop. It also has single back edge to the header
428 from a latch node. */
429 if (latch != ENTRY_BLOCK_PTR
430 && dominated_by_p (CDI_DOMINATORS, latch, header))
431 {
432 /* Shared headers should be eliminated by now. */
433 SET_BIT (headers, header->index);
434 num_loops++;
435 }
436 }
437 }
438
439 /* Allocate loop structures. */
440 init_loops_structure (loops, num_loops + 1);
441
442 /* Find and record information about all the natural loops
443 in the CFG. */
444 FOR_EACH_BB (bb)
445 bb->loop_father = loops->tree_root;
446
447 if (num_loops)
448 {
449 /* Compute depth first search order of the CFG so that outer
450 natural loops will be found before inner natural loops. */
451 dfs_order = XNEWVEC (int, n_basic_blocks);
452 rc_order = XNEWVEC (int, n_basic_blocks);
453 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
454
455 num_loops = 1;
456
457 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
458 {
459 struct loop *loop;
460 edge_iterator ei;
461
462 /* Search the nodes of the CFG in reverse completion order
463 so that we can find outer loops first. */
464 if (!TEST_BIT (headers, rc_order[b]))
465 continue;
466
467 header = BASIC_BLOCK (rc_order[b]);
468
469 loop = alloc_loop ();
470 VEC_quick_push (loop_p, loops->larray, loop);
471
472 loop->header = header;
473 loop->num = num_loops;
474 num_loops++;
475
476 flow_loop_tree_node_add (header->loop_father, loop);
477 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
478
479 /* Look for the latch for this header block, if it has just a
480 single one. */
481 FOR_EACH_EDGE (e, ei, header->preds)
482 {
483 basic_block latch = e->src;
484
485 if (flow_bb_inside_loop_p (loop, latch))
486 {
487 if (loop->latch != NULL)
488 {
489 /* More than one latch edge. */
490 loop->latch = NULL;
491 break;
492 }
493 loop->latch = latch;
494 }
495 }
496 }
497
498 free (dfs_order);
499 free (rc_order);
500 }
501
502 sbitmap_free (headers);
503
504 loops->exits = NULL;
505 return VEC_length (loop_p, loops->larray);
506 }
507
508 /* Ratio of frequencies of edges so that one of more latch edges is
509 considered to belong to inner loop with same header. */
510 #define HEAVY_EDGE_RATIO 8
511
512 /* Minimum number of samples for that we apply
513 find_subloop_latch_edge_by_profile heuristics. */
514 #define HEAVY_EDGE_MIN_SAMPLES 10
515
516 /* If the profile info is available, finds an edge in LATCHES that much more
517 frequent than the remaining edges. Returns such an edge, or NULL if we do
518 not find one.
519
520 We do not use guessed profile here, only the measured one. The guessed
521 profile is usually too flat and unreliable for this (and it is mostly based
522 on the loop structure of the program, so it does not make much sense to
523 derive the loop structure from it). */
524
525 static edge
526 find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
527 {
528 unsigned i;
529 edge e, me = NULL;
530 gcov_type mcount = 0, tcount = 0;
531
532 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
533 {
534 if (e->count > mcount)
535 {
536 me = e;
537 mcount = e->count;
538 }
539 tcount += e->count;
540 }
541
542 if (tcount < HEAVY_EDGE_MIN_SAMPLES
543 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
544 return NULL;
545
546 if (dump_file)
547 fprintf (dump_file,
548 "Found latch edge %d -> %d using profile information.\n",
549 me->src->index, me->dest->index);
550 return me;
551 }
552
553 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
554 on the structure of induction variables. Returns this edge, or NULL if we
555 do not find any.
556
557 We are quite conservative, and look just for an obvious simple innermost
558 loop (which is the case where we would lose the most performance by not
559 disambiguating the loop). More precisely, we look for the following
560 situation: The source of the chosen latch edge dominates sources of all
561 the other latch edges. Additionally, the header does not contain a phi node
562 such that the argument from the chosen edge is equal to the argument from
563 another edge. */
564
565 static edge
566 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
567 {
568 edge e, latch = VEC_index (edge, latches, 0);
569 unsigned i;
570 gimple phi;
571 gimple_stmt_iterator psi;
572 tree lop;
573 basic_block bb;
574
575 /* Find the candidate for the latch edge. */
576 for (i = 1; VEC_iterate (edge, latches, i, e); i++)
577 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
578 latch = e;
579
580 /* Verify that it dominates all the latch edges. */
581 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
582 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
583 return NULL;
584
585 /* Check for a phi node that would deny that this is a latch edge of
586 a subloop. */
587 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
588 {
589 phi = gsi_stmt (psi);
590 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
591
592 /* Ignore the values that are not changed inside the subloop. */
593 if (TREE_CODE (lop) != SSA_NAME
594 || SSA_NAME_DEF_STMT (lop) == phi)
595 continue;
596 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
597 if (!bb || !flow_bb_inside_loop_p (loop, bb))
598 continue;
599
600 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
601 if (e != latch
602 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
603 return NULL;
604 }
605
606 if (dump_file)
607 fprintf (dump_file,
608 "Found latch edge %d -> %d using iv structure.\n",
609 latch->src->index, latch->dest->index);
610 return latch;
611 }
612
613 /* If we can determine that one of the several latch edges of LOOP behaves
614 as a latch edge of a separate subloop, returns this edge. Otherwise
615 returns NULL. */
616
617 static edge
618 find_subloop_latch_edge (struct loop *loop)
619 {
620 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
621 edge latch = NULL;
622
623 if (VEC_length (edge, latches) > 1)
624 {
625 latch = find_subloop_latch_edge_by_profile (latches);
626
627 if (!latch
628 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
629 should use cfghook for this, but it is hard to imagine it would
630 be useful elsewhere. */
631 && current_ir_type () == IR_GIMPLE)
632 latch = find_subloop_latch_edge_by_ivs (loop, latches);
633 }
634
635 VEC_free (edge, heap, latches);
636 return latch;
637 }
638
639 /* Callback for make_forwarder_block. Returns true if the edge E is marked
640 in the set MFB_REIS_SET. */
641
642 static struct pointer_set_t *mfb_reis_set;
643 static bool
644 mfb_redirect_edges_in_set (edge e)
645 {
646 return pointer_set_contains (mfb_reis_set, e);
647 }
648
649 /* Creates a subloop of LOOP with latch edge LATCH. */
650
651 static void
652 form_subloop (struct loop *loop, edge latch)
653 {
654 edge_iterator ei;
655 edge e, new_entry;
656 struct loop *new_loop;
657
658 mfb_reis_set = pointer_set_create ();
659 FOR_EACH_EDGE (e, ei, loop->header->preds)
660 {
661 if (e != latch)
662 pointer_set_insert (mfb_reis_set, e);
663 }
664 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
665 NULL);
666 pointer_set_destroy (mfb_reis_set);
667
668 loop->header = new_entry->src;
669
670 /* Find the blocks and subloops that belong to the new loop, and add it to
671 the appropriate place in the loop tree. */
672 new_loop = alloc_loop ();
673 new_loop->header = new_entry->dest;
674 new_loop->latch = latch->src;
675 add_loop (new_loop, loop);
676 }
677
678 /* Make all the latch edges of LOOP to go to a single forwarder block --
679 a new latch of LOOP. */
680
681 static void
682 merge_latch_edges (struct loop *loop)
683 {
684 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
685 edge latch, e;
686 unsigned i;
687
688 gcc_assert (VEC_length (edge, latches) > 0);
689
690 if (VEC_length (edge, latches) == 1)
691 loop->latch = VEC_index (edge, latches, 0)->src;
692 else
693 {
694 if (dump_file)
695 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
696
697 mfb_reis_set = pointer_set_create ();
698 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
699 pointer_set_insert (mfb_reis_set, e);
700 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
701 NULL);
702 pointer_set_destroy (mfb_reis_set);
703
704 loop->header = latch->dest;
705 loop->latch = latch->src;
706 }
707
708 VEC_free (edge, heap, latches);
709 }
710
711 /* LOOP may have several latch edges. Transform it into (possibly several)
712 loops with single latch edge. */
713
714 static void
715 disambiguate_multiple_latches (struct loop *loop)
716 {
717 edge e;
718
719 /* We eliminate the multiple latches by splitting the header to the forwarder
720 block F and the rest R, and redirecting the edges. There are two cases:
721
722 1) If there is a latch edge E that corresponds to a subloop (we guess
723 that based on profile -- if it is taken much more often than the
724 remaining edges; and on trees, using the information about induction
725 variables of the loops), we redirect E to R, all the remaining edges to
726 F, then rescan the loops and try again for the outer loop.
727 2) If there is no such edge, we redirect all latch edges to F, and the
728 entry edges to R, thus making F the single latch of the loop. */
729
730 if (dump_file)
731 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
732 loop->num);
733
734 /* During latch merging, we may need to redirect the entry edges to a new
735 block. This would cause problems if the entry edge was the one from the
736 entry block. To avoid having to handle this case specially, split
737 such entry edge. */
738 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
739 if (e)
740 split_edge (e);
741
742 while (1)
743 {
744 e = find_subloop_latch_edge (loop);
745 if (!e)
746 break;
747
748 form_subloop (loop, e);
749 }
750
751 merge_latch_edges (loop);
752 }
753
754 /* Split loops with multiple latch edges. */
755
756 void
757 disambiguate_loops_with_multiple_latches (void)
758 {
759 loop_iterator li;
760 struct loop *loop;
761
762 FOR_EACH_LOOP (li, loop, 0)
763 {
764 if (!loop->latch)
765 disambiguate_multiple_latches (loop);
766 }
767 }
768
769 /* Return nonzero if basic block BB belongs to LOOP. */
770 bool
771 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
772 {
773 struct loop *source_loop;
774
775 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
776 return 0;
777
778 source_loop = bb->loop_father;
779 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
780 }
781
782 /* Enumeration predicate for get_loop_body_with_size. */
783 static bool
784 glb_enum_p (const_basic_block bb, const void *glb_loop)
785 {
786 const struct loop *const loop = (const struct loop *) glb_loop;
787 return (bb != loop->header
788 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
789 }
790
791 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
792 order against direction of edges from latch. Specially, if
793 header != latch, latch is the 1-st block. LOOP cannot be the fake
794 loop tree root, and its size must be at most MAX_SIZE. The blocks
795 in the LOOP body are stored to BODY, and the size of the LOOP is
796 returned. */
797
798 unsigned
799 get_loop_body_with_size (const struct loop *loop, basic_block *body,
800 unsigned max_size)
801 {
802 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
803 body, max_size, loop);
804 }
805
806 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
807 order against direction of edges from latch. Specially, if
808 header != latch, latch is the 1-st block. */
809
810 basic_block *
811 get_loop_body (const struct loop *loop)
812 {
813 basic_block *body, bb;
814 unsigned tv = 0;
815
816 gcc_assert (loop->num_nodes);
817
818 body = XCNEWVEC (basic_block, loop->num_nodes);
819
820 if (loop->latch == EXIT_BLOCK_PTR)
821 {
822 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
823 special-case the fake loop that contains the whole function. */
824 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
825 body[tv++] = loop->header;
826 body[tv++] = EXIT_BLOCK_PTR;
827 FOR_EACH_BB (bb)
828 body[tv++] = bb;
829 }
830 else
831 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
832
833 gcc_assert (tv == loop->num_nodes);
834 return body;
835 }
836
837 /* Fills dominance descendants inside LOOP of the basic block BB into
838 array TOVISIT from index *TV. */
839
840 static void
841 fill_sons_in_loop (const struct loop *loop, basic_block bb,
842 basic_block *tovisit, int *tv)
843 {
844 basic_block son, postpone = NULL;
845
846 tovisit[(*tv)++] = bb;
847 for (son = first_dom_son (CDI_DOMINATORS, bb);
848 son;
849 son = next_dom_son (CDI_DOMINATORS, son))
850 {
851 if (!flow_bb_inside_loop_p (loop, son))
852 continue;
853
854 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
855 {
856 postpone = son;
857 continue;
858 }
859 fill_sons_in_loop (loop, son, tovisit, tv);
860 }
861
862 if (postpone)
863 fill_sons_in_loop (loop, postpone, tovisit, tv);
864 }
865
866 /* Gets body of a LOOP (that must be different from the outermost loop)
867 sorted by dominance relation. Additionally, if a basic block s dominates
868 the latch, then only blocks dominated by s are be after it. */
869
870 basic_block *
871 get_loop_body_in_dom_order (const struct loop *loop)
872 {
873 basic_block *tovisit;
874 int tv;
875
876 gcc_assert (loop->num_nodes);
877
878 tovisit = XCNEWVEC (basic_block, loop->num_nodes);
879
880 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
881
882 tv = 0;
883 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
884
885 gcc_assert (tv == (int) loop->num_nodes);
886
887 return tovisit;
888 }
889
890 /* Get body of a LOOP in breadth first sort order. */
891
892 basic_block *
893 get_loop_body_in_bfs_order (const struct loop *loop)
894 {
895 basic_block *blocks;
896 basic_block bb;
897 bitmap visited;
898 unsigned int i = 0;
899 unsigned int vc = 1;
900
901 gcc_assert (loop->num_nodes);
902 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
903
904 blocks = XCNEWVEC (basic_block, loop->num_nodes);
905 visited = BITMAP_ALLOC (NULL);
906
907 bb = loop->header;
908 while (i < loop->num_nodes)
909 {
910 edge e;
911 edge_iterator ei;
912
913 if (!bitmap_bit_p (visited, bb->index))
914 {
915 /* This basic block is now visited */
916 bitmap_set_bit (visited, bb->index);
917 blocks[i++] = bb;
918 }
919
920 FOR_EACH_EDGE (e, ei, bb->succs)
921 {
922 if (flow_bb_inside_loop_p (loop, e->dest))
923 {
924 if (!bitmap_bit_p (visited, e->dest->index))
925 {
926 bitmap_set_bit (visited, e->dest->index);
927 blocks[i++] = e->dest;
928 }
929 }
930 }
931
932 gcc_assert (i >= vc);
933
934 bb = blocks[vc++];
935 }
936
937 BITMAP_FREE (visited);
938 return blocks;
939 }
940
941 /* Hash function for struct loop_exit. */
942
943 static hashval_t
944 loop_exit_hash (const void *ex)
945 {
946 const struct loop_exit *const exit = (const struct loop_exit *) ex;
947
948 return htab_hash_pointer (exit->e);
949 }
950
951 /* Equality function for struct loop_exit. Compares with edge. */
952
953 static int
954 loop_exit_eq (const void *ex, const void *e)
955 {
956 const struct loop_exit *const exit = (const struct loop_exit *) ex;
957
958 return exit->e == e;
959 }
960
961 /* Frees the list of loop exit descriptions EX. */
962
963 static void
964 loop_exit_free (void *ex)
965 {
966 struct loop_exit *exit = (struct loop_exit *) ex, *next;
967
968 for (; exit; exit = next)
969 {
970 next = exit->next_e;
971
972 exit->next->prev = exit->prev;
973 exit->prev->next = exit->next;
974
975 ggc_free (exit);
976 }
977 }
978
979 /* Returns the list of records for E as an exit of a loop. */
980
981 static struct loop_exit *
982 get_exit_descriptions (edge e)
983 {
984 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
985 htab_hash_pointer (e));
986 }
987
988 /* Updates the lists of loop exits in that E appears.
989 If REMOVED is true, E is being removed, and we
990 just remove it from the lists of exits.
991 If NEW_EDGE is true and E is not a loop exit, we
992 do not try to remove it from loop exit lists. */
993
994 void
995 rescan_loop_exit (edge e, bool new_edge, bool removed)
996 {
997 void **slot;
998 struct loop_exit *exits = NULL, *exit;
999 struct loop *aloop, *cloop;
1000
1001 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1002 return;
1003
1004 if (!removed
1005 && e->src->loop_father != NULL
1006 && e->dest->loop_father != NULL
1007 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1008 {
1009 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1010 for (aloop = e->src->loop_father;
1011 aloop != cloop;
1012 aloop = loop_outer (aloop))
1013 {
1014 exit = GGC_NEW (struct loop_exit);
1015 exit->e = e;
1016
1017 exit->next = aloop->exits->next;
1018 exit->prev = aloop->exits;
1019 exit->next->prev = exit;
1020 exit->prev->next = exit;
1021
1022 exit->next_e = exits;
1023 exits = exit;
1024 }
1025 }
1026
1027 if (!exits && new_edge)
1028 return;
1029
1030 slot = htab_find_slot_with_hash (current_loops->exits, e,
1031 htab_hash_pointer (e),
1032 exits ? INSERT : NO_INSERT);
1033 if (!slot)
1034 return;
1035
1036 if (exits)
1037 {
1038 if (*slot)
1039 loop_exit_free (*slot);
1040 *slot = exits;
1041 }
1042 else
1043 htab_clear_slot (current_loops->exits, slot);
1044 }
1045
1046 /* For each loop, record list of exit edges, and start maintaining these
1047 lists. */
1048
1049 void
1050 record_loop_exits (void)
1051 {
1052 basic_block bb;
1053 edge_iterator ei;
1054 edge e;
1055
1056 if (!current_loops)
1057 return;
1058
1059 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1060 return;
1061 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1062
1063 gcc_assert (current_loops->exits == NULL);
1064 current_loops->exits = htab_create_alloc (2 * number_of_loops (),
1065 loop_exit_hash,
1066 loop_exit_eq,
1067 loop_exit_free,
1068 ggc_calloc, ggc_free);
1069
1070 FOR_EACH_BB (bb)
1071 {
1072 FOR_EACH_EDGE (e, ei, bb->succs)
1073 {
1074 rescan_loop_exit (e, true, false);
1075 }
1076 }
1077 }
1078
1079 /* Dumps information about the exit in *SLOT to FILE.
1080 Callback for htab_traverse. */
1081
1082 static int
1083 dump_recorded_exit (void **slot, void *file)
1084 {
1085 struct loop_exit *exit = (struct loop_exit *) *slot;
1086 unsigned n = 0;
1087 edge e = exit->e;
1088
1089 for (; exit != NULL; exit = exit->next_e)
1090 n++;
1091
1092 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1093 e->src->index, e->dest->index, n);
1094
1095 return 1;
1096 }
1097
1098 /* Dumps the recorded exits of loops to FILE. */
1099
1100 extern void dump_recorded_exits (FILE *);
1101 void
1102 dump_recorded_exits (FILE *file)
1103 {
1104 if (!current_loops->exits)
1105 return;
1106 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1107 }
1108
1109 /* Releases lists of loop exits. */
1110
1111 void
1112 release_recorded_exits (void)
1113 {
1114 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1115 htab_delete (current_loops->exits);
1116 current_loops->exits = NULL;
1117 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1118 }
1119
1120 /* Returns the list of the exit edges of a LOOP. */
1121
1122 VEC (edge, heap) *
1123 get_loop_exit_edges (const struct loop *loop)
1124 {
1125 VEC (edge, heap) *edges = NULL;
1126 edge e;
1127 unsigned i;
1128 basic_block *body;
1129 edge_iterator ei;
1130 struct loop_exit *exit;
1131
1132 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1133
1134 /* If we maintain the lists of exits, use them. Otherwise we must
1135 scan the body of the loop. */
1136 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1137 {
1138 for (exit = loop->exits->next; exit->e; exit = exit->next)
1139 VEC_safe_push (edge, heap, edges, exit->e);
1140 }
1141 else
1142 {
1143 body = get_loop_body (loop);
1144 for (i = 0; i < loop->num_nodes; i++)
1145 FOR_EACH_EDGE (e, ei, body[i]->succs)
1146 {
1147 if (!flow_bb_inside_loop_p (loop, e->dest))
1148 VEC_safe_push (edge, heap, edges, e);
1149 }
1150 free (body);
1151 }
1152
1153 return edges;
1154 }
1155
1156 /* Counts the number of conditional branches inside LOOP. */
1157
1158 unsigned
1159 num_loop_branches (const struct loop *loop)
1160 {
1161 unsigned i, n;
1162 basic_block * body;
1163
1164 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1165
1166 body = get_loop_body (loop);
1167 n = 0;
1168 for (i = 0; i < loop->num_nodes; i++)
1169 if (EDGE_COUNT (body[i]->succs) >= 2)
1170 n++;
1171 free (body);
1172
1173 return n;
1174 }
1175
1176 /* Adds basic block BB to LOOP. */
1177 void
1178 add_bb_to_loop (basic_block bb, struct loop *loop)
1179 {
1180 unsigned i;
1181 loop_p ploop;
1182 edge_iterator ei;
1183 edge e;
1184
1185 gcc_assert (bb->loop_father == NULL);
1186 bb->loop_father = loop;
1187 bb->loop_depth = loop_depth (loop);
1188 loop->num_nodes++;
1189 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1190 ploop->num_nodes++;
1191
1192 FOR_EACH_EDGE (e, ei, bb->succs)
1193 {
1194 rescan_loop_exit (e, true, false);
1195 }
1196 FOR_EACH_EDGE (e, ei, bb->preds)
1197 {
1198 rescan_loop_exit (e, true, false);
1199 }
1200 }
1201
1202 /* Remove basic block BB from loops. */
1203 void
1204 remove_bb_from_loops (basic_block bb)
1205 {
1206 int i;
1207 struct loop *loop = bb->loop_father;
1208 loop_p ploop;
1209 edge_iterator ei;
1210 edge e;
1211
1212 gcc_assert (loop != NULL);
1213 loop->num_nodes--;
1214 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1215 ploop->num_nodes--;
1216 bb->loop_father = NULL;
1217 bb->loop_depth = 0;
1218
1219 FOR_EACH_EDGE (e, ei, bb->succs)
1220 {
1221 rescan_loop_exit (e, false, true);
1222 }
1223 FOR_EACH_EDGE (e, ei, bb->preds)
1224 {
1225 rescan_loop_exit (e, false, true);
1226 }
1227 }
1228
1229 /* Finds nearest common ancestor in loop tree for given loops. */
1230 struct loop *
1231 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1232 {
1233 unsigned sdepth, ddepth;
1234
1235 if (!loop_s) return loop_d;
1236 if (!loop_d) return loop_s;
1237
1238 sdepth = loop_depth (loop_s);
1239 ddepth = loop_depth (loop_d);
1240
1241 if (sdepth < ddepth)
1242 loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
1243 else if (sdepth > ddepth)
1244 loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
1245
1246 while (loop_s != loop_d)
1247 {
1248 loop_s = loop_outer (loop_s);
1249 loop_d = loop_outer (loop_d);
1250 }
1251 return loop_s;
1252 }
1253
1254 /* Removes LOOP from structures and frees its data. */
1255
1256 void
1257 delete_loop (struct loop *loop)
1258 {
1259 /* Remove the loop from structure. */
1260 flow_loop_tree_node_remove (loop);
1261
1262 /* Remove loop from loops array. */
1263 VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
1264
1265 /* Free loop data. */
1266 flow_loop_free (loop);
1267 }
1268
1269 /* Cancels the LOOP; it must be innermost one. */
1270
1271 static void
1272 cancel_loop (struct loop *loop)
1273 {
1274 basic_block *bbs;
1275 unsigned i;
1276 struct loop *outer = loop_outer (loop);
1277
1278 gcc_assert (!loop->inner);
1279
1280 /* Move blocks up one level (they should be removed as soon as possible). */
1281 bbs = get_loop_body (loop);
1282 for (i = 0; i < loop->num_nodes; i++)
1283 bbs[i]->loop_father = outer;
1284
1285 delete_loop (loop);
1286 }
1287
1288 /* Cancels LOOP and all its subloops. */
1289 void
1290 cancel_loop_tree (struct loop *loop)
1291 {
1292 while (loop->inner)
1293 cancel_loop_tree (loop->inner);
1294 cancel_loop (loop);
1295 }
1296
1297 /* Checks that information about loops is correct
1298 -- sizes of loops are all right
1299 -- results of get_loop_body really belong to the loop
1300 -- loop header have just single entry edge and single latch edge
1301 -- loop latches have only single successor that is header of their loop
1302 -- irreducible loops are correctly marked
1303 */
1304 void
1305 verify_loop_structure (void)
1306 {
1307 unsigned *sizes, i, j;
1308 sbitmap irreds;
1309 basic_block *bbs, bb;
1310 struct loop *loop;
1311 int err = 0;
1312 edge e;
1313 unsigned num = number_of_loops ();
1314 loop_iterator li;
1315 struct loop_exit *exit, *mexit;
1316
1317 /* Check sizes. */
1318 sizes = XCNEWVEC (unsigned, num);
1319 sizes[0] = 2;
1320
1321 FOR_EACH_BB (bb)
1322 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1323 sizes[loop->num]++;
1324
1325 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1326 {
1327 i = loop->num;
1328
1329 if (loop->num_nodes != sizes[i])
1330 {
1331 error ("size of loop %d should be %d, not %d",
1332 i, sizes[i], loop->num_nodes);
1333 err = 1;
1334 }
1335 }
1336
1337 /* Check get_loop_body. */
1338 FOR_EACH_LOOP (li, loop, 0)
1339 {
1340 bbs = get_loop_body (loop);
1341
1342 for (j = 0; j < loop->num_nodes; j++)
1343 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1344 {
1345 error ("bb %d do not belong to loop %d",
1346 bbs[j]->index, loop->num);
1347 err = 1;
1348 }
1349 free (bbs);
1350 }
1351
1352 /* Check headers and latches. */
1353 FOR_EACH_LOOP (li, loop, 0)
1354 {
1355 i = loop->num;
1356
1357 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1358 && EDGE_COUNT (loop->header->preds) != 2)
1359 {
1360 error ("loop %d's header does not have exactly 2 entries", i);
1361 err = 1;
1362 }
1363 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1364 {
1365 if (!single_succ_p (loop->latch))
1366 {
1367 error ("loop %d's latch does not have exactly 1 successor", i);
1368 err = 1;
1369 }
1370 if (single_succ (loop->latch) != loop->header)
1371 {
1372 error ("loop %d's latch does not have header as successor", i);
1373 err = 1;
1374 }
1375 if (loop->latch->loop_father != loop)
1376 {
1377 error ("loop %d's latch does not belong directly to it", i);
1378 err = 1;
1379 }
1380 }
1381 if (loop->header->loop_father != loop)
1382 {
1383 error ("loop %d's header does not belong directly to it", i);
1384 err = 1;
1385 }
1386 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1387 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1388 {
1389 error ("loop %d's latch is marked as part of irreducible region", i);
1390 err = 1;
1391 }
1392 }
1393
1394 /* Check irreducible loops. */
1395 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1396 {
1397 /* Record old info. */
1398 irreds = sbitmap_alloc (last_basic_block);
1399 FOR_EACH_BB (bb)
1400 {
1401 edge_iterator ei;
1402 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1403 SET_BIT (irreds, bb->index);
1404 else
1405 RESET_BIT (irreds, bb->index);
1406 FOR_EACH_EDGE (e, ei, bb->succs)
1407 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1408 e->flags |= EDGE_ALL_FLAGS + 1;
1409 }
1410
1411 /* Recount it. */
1412 mark_irreducible_loops ();
1413
1414 /* Compare. */
1415 FOR_EACH_BB (bb)
1416 {
1417 edge_iterator ei;
1418
1419 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1420 && !TEST_BIT (irreds, bb->index))
1421 {
1422 error ("basic block %d should be marked irreducible", bb->index);
1423 err = 1;
1424 }
1425 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1426 && TEST_BIT (irreds, bb->index))
1427 {
1428 error ("basic block %d should not be marked irreducible", bb->index);
1429 err = 1;
1430 }
1431 FOR_EACH_EDGE (e, ei, bb->succs)
1432 {
1433 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1434 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1435 {
1436 error ("edge from %d to %d should be marked irreducible",
1437 e->src->index, e->dest->index);
1438 err = 1;
1439 }
1440 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1441 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1442 {
1443 error ("edge from %d to %d should not be marked irreducible",
1444 e->src->index, e->dest->index);
1445 err = 1;
1446 }
1447 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1448 }
1449 }
1450 free (irreds);
1451 }
1452
1453 /* Check the recorded loop exits. */
1454 FOR_EACH_LOOP (li, loop, 0)
1455 {
1456 if (!loop->exits || loop->exits->e != NULL)
1457 {
1458 error ("corrupted head of the exits list of loop %d",
1459 loop->num);
1460 err = 1;
1461 }
1462 else
1463 {
1464 /* Check that the list forms a cycle, and all elements except
1465 for the head are nonnull. */
1466 for (mexit = loop->exits, exit = mexit->next, i = 0;
1467 exit->e && exit != mexit;
1468 exit = exit->next)
1469 {
1470 if (i++ & 1)
1471 mexit = mexit->next;
1472 }
1473
1474 if (exit != loop->exits)
1475 {
1476 error ("corrupted exits list of loop %d", loop->num);
1477 err = 1;
1478 }
1479 }
1480
1481 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1482 {
1483 if (loop->exits->next != loop->exits)
1484 {
1485 error ("nonempty exits list of loop %d, but exits are not recorded",
1486 loop->num);
1487 err = 1;
1488 }
1489 }
1490 }
1491
1492 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1493 {
1494 unsigned n_exits = 0, eloops;
1495
1496 memset (sizes, 0, sizeof (unsigned) * num);
1497 FOR_EACH_BB (bb)
1498 {
1499 edge_iterator ei;
1500 if (bb->loop_father == current_loops->tree_root)
1501 continue;
1502 FOR_EACH_EDGE (e, ei, bb->succs)
1503 {
1504 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1505 continue;
1506
1507 n_exits++;
1508 exit = get_exit_descriptions (e);
1509 if (!exit)
1510 {
1511 error ("Exit %d->%d not recorded",
1512 e->src->index, e->dest->index);
1513 err = 1;
1514 }
1515 eloops = 0;
1516 for (; exit; exit = exit->next_e)
1517 eloops++;
1518
1519 for (loop = bb->loop_father;
1520 loop != e->dest->loop_father;
1521 loop = loop_outer (loop))
1522 {
1523 eloops--;
1524 sizes[loop->num]++;
1525 }
1526
1527 if (eloops != 0)
1528 {
1529 error ("Wrong list of exited loops for edge %d->%d",
1530 e->src->index, e->dest->index);
1531 err = 1;
1532 }
1533 }
1534 }
1535
1536 if (n_exits != htab_elements (current_loops->exits))
1537 {
1538 error ("Too many loop exits recorded");
1539 err = 1;
1540 }
1541
1542 FOR_EACH_LOOP (li, loop, 0)
1543 {
1544 eloops = 0;
1545 for (exit = loop->exits->next; exit->e; exit = exit->next)
1546 eloops++;
1547 if (eloops != sizes[loop->num])
1548 {
1549 error ("%d exits recorded for loop %d (having %d exits)",
1550 eloops, loop->num, sizes[loop->num]);
1551 err = 1;
1552 }
1553 }
1554 }
1555
1556 gcc_assert (!err);
1557
1558 free (sizes);
1559 }
1560
1561 /* Returns latch edge of LOOP. */
1562 edge
1563 loop_latch_edge (const struct loop *loop)
1564 {
1565 return find_edge (loop->latch, loop->header);
1566 }
1567
1568 /* Returns preheader edge of LOOP. */
1569 edge
1570 loop_preheader_edge (const struct loop *loop)
1571 {
1572 edge e;
1573 edge_iterator ei;
1574
1575 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1576
1577 FOR_EACH_EDGE (e, ei, loop->header->preds)
1578 if (e->src != loop->latch)
1579 break;
1580
1581 return e;
1582 }
1583
1584 /* Returns true if E is an exit of LOOP. */
1585
1586 bool
1587 loop_exit_edge_p (const struct loop *loop, const_edge e)
1588 {
1589 return (flow_bb_inside_loop_p (loop, e->src)
1590 && !flow_bb_inside_loop_p (loop, e->dest));
1591 }
1592
1593 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1594 or more than one exit. If loops do not have the exits recorded, NULL
1595 is returned always. */
1596
1597 edge
1598 single_exit (const struct loop *loop)
1599 {
1600 struct loop_exit *exit = loop->exits->next;
1601
1602 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1603 return NULL;
1604
1605 if (exit->e && exit->next == loop->exits)
1606 return exit->e;
1607 else
1608 return NULL;
1609 }