]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
Fix up English grammar
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "tree-flow.h"
32 #include "pointer-set.h"
33 #include "ggc.h"
34 #include "dumpfile.h"
35
36 static void flow_loops_cfg_dump (FILE *);
37 \f
38 /* Dump loop related CFG information. */
39
40 static void
41 flow_loops_cfg_dump (FILE *file)
42 {
43 basic_block bb;
44
45 if (!file)
46 return;
47
48 FOR_EACH_BB (bb)
49 {
50 edge succ;
51 edge_iterator ei;
52
53 fprintf (file, ";; %d succs { ", bb->index);
54 FOR_EACH_EDGE (succ, ei, bb->succs)
55 fprintf (file, "%d ", succ->dest->index);
56 fprintf (file, "}\n");
57 }
58 }
59
60 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
61
62 bool
63 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
64 {
65 unsigned odepth = loop_depth (outer);
66
67 return (loop_depth (loop) > odepth
68 && (*loop->superloops)[odepth] == outer);
69 }
70
71 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
72 loops within LOOP. */
73
74 struct loop *
75 superloop_at_depth (struct loop *loop, unsigned depth)
76 {
77 unsigned ldepth = loop_depth (loop);
78
79 gcc_assert (depth <= ldepth);
80
81 if (depth == ldepth)
82 return loop;
83
84 return (*loop->superloops)[depth];
85 }
86
87 /* Returns the list of the latch edges of LOOP. */
88
89 static vec<edge>
90 get_loop_latch_edges (const struct loop *loop)
91 {
92 edge_iterator ei;
93 edge e;
94 vec<edge> ret = vNULL;
95
96 FOR_EACH_EDGE (e, ei, loop->header->preds)
97 {
98 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
99 ret.safe_push (e);
100 }
101
102 return ret;
103 }
104
105 /* Dump the loop information specified by LOOP to the stream FILE
106 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
107
108 void
109 flow_loop_dump (const struct loop *loop, FILE *file,
110 void (*loop_dump_aux) (const struct loop *, FILE *, int),
111 int verbose)
112 {
113 basic_block *bbs;
114 unsigned i;
115 vec<edge> latches;
116 edge e;
117
118 if (! loop || ! loop->header)
119 return;
120
121 fprintf (file, ";;\n;; Loop %d\n", loop->num);
122
123 fprintf (file, ";; header %d, ", loop->header->index);
124 if (loop->latch)
125 fprintf (file, "latch %d\n", loop->latch->index);
126 else
127 {
128 fprintf (file, "multiple latches:");
129 latches = get_loop_latch_edges (loop);
130 FOR_EACH_VEC_ELT (latches, i, e)
131 fprintf (file, " %d", e->src->index);
132 latches.release ();
133 fprintf (file, "\n");
134 }
135
136 fprintf (file, ";; depth %d, outer %ld\n",
137 loop_depth (loop), (long) (loop_outer (loop)
138 ? loop_outer (loop)->num : -1));
139
140 fprintf (file, ";; nodes:");
141 bbs = get_loop_body (loop);
142 for (i = 0; i < loop->num_nodes; i++)
143 fprintf (file, " %d", bbs[i]->index);
144 free (bbs);
145 fprintf (file, "\n");
146
147 if (loop_dump_aux)
148 loop_dump_aux (loop, file, verbose);
149 }
150
151 /* Dump the loop information about loops to the stream FILE,
152 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
153
154 void
155 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
156 {
157 loop_iterator li;
158 struct loop *loop;
159
160 if (!current_loops || ! file)
161 return;
162
163 fprintf (file, ";; %d loops found\n", number_of_loops ());
164
165 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
166 {
167 flow_loop_dump (loop, file, loop_dump_aux, verbose);
168 }
169
170 if (verbose)
171 flow_loops_cfg_dump (file);
172 }
173
174 /* Free data allocated for LOOP. */
175
176 void
177 flow_loop_free (struct loop *loop)
178 {
179 struct loop_exit *exit, *next;
180
181 vec_free (loop->superloops);
182
183 /* Break the list of the loop exit records. They will be freed when the
184 corresponding edge is rescanned or removed, and this avoids
185 accessing the (already released) head of the list stored in the
186 loop structure. */
187 for (exit = loop->exits->next; exit != loop->exits; exit = next)
188 {
189 next = exit->next;
190 exit->next = exit;
191 exit->prev = exit;
192 }
193
194 ggc_free (loop->exits);
195 ggc_free (loop);
196 }
197
198 /* Free all the memory allocated for LOOPS. */
199
200 void
201 flow_loops_free (struct loops *loops)
202 {
203 if (loops->larray)
204 {
205 unsigned i;
206 loop_p loop;
207
208 /* Free the loop descriptors. */
209 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
210 {
211 if (!loop)
212 continue;
213
214 flow_loop_free (loop);
215 }
216
217 vec_free (loops->larray);
218 }
219 }
220
221 /* Find the nodes contained within the LOOP with header HEADER.
222 Return the number of nodes within the loop. */
223
224 int
225 flow_loop_nodes_find (basic_block header, struct loop *loop)
226 {
227 vec<basic_block> stack = vNULL;
228 int num_nodes = 1;
229 edge latch;
230 edge_iterator latch_ei;
231
232 header->loop_father = loop;
233
234 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
235 {
236 if (latch->src->loop_father == loop
237 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
238 continue;
239
240 num_nodes++;
241 stack.safe_push (latch->src);
242 latch->src->loop_father = loop;
243
244 while (!stack.is_empty ())
245 {
246 basic_block node;
247 edge e;
248 edge_iterator ei;
249
250 node = stack.pop ();
251
252 FOR_EACH_EDGE (e, ei, node->preds)
253 {
254 basic_block ancestor = e->src;
255
256 if (ancestor->loop_father != loop)
257 {
258 ancestor->loop_father = loop;
259 num_nodes++;
260 stack.safe_push (ancestor);
261 }
262 }
263 }
264 }
265 stack.release ();
266
267 return num_nodes;
268 }
269
270 /* Records the vector of superloops of the loop LOOP, whose immediate
271 superloop is FATHER. */
272
273 static void
274 establish_preds (struct loop *loop, struct loop *father)
275 {
276 loop_p ploop;
277 unsigned depth = loop_depth (father) + 1;
278 unsigned i;
279
280 loop->superloops = 0;
281 vec_alloc (loop->superloops, depth);
282 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
283 loop->superloops->quick_push (ploop);
284 loop->superloops->quick_push (father);
285
286 for (ploop = loop->inner; ploop; ploop = ploop->next)
287 establish_preds (ploop, loop);
288 }
289
290 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
291 added loop. If LOOP has some children, take care of that their
292 pred field will be initialized correctly. */
293
294 void
295 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
296 {
297 loop->next = father->inner;
298 father->inner = loop;
299
300 establish_preds (loop, father);
301 }
302
303 /* Remove LOOP from the loop hierarchy tree. */
304
305 void
306 flow_loop_tree_node_remove (struct loop *loop)
307 {
308 struct loop *prev, *father;
309
310 father = loop_outer (loop);
311
312 /* Remove loop from the list of sons. */
313 if (father->inner == loop)
314 father->inner = loop->next;
315 else
316 {
317 for (prev = father->inner; prev->next != loop; prev = prev->next)
318 continue;
319 prev->next = loop->next;
320 }
321
322 loop->superloops = NULL;
323 }
324
325 /* Allocates and returns new loop structure. */
326
327 struct loop *
328 alloc_loop (void)
329 {
330 struct loop *loop = ggc_alloc_cleared_loop ();
331
332 loop->exits = ggc_alloc_cleared_loop_exit ();
333 loop->exits->next = loop->exits->prev = loop->exits;
334 loop->can_be_parallel = false;
335
336 return loop;
337 }
338
339 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
340 (including the root of the loop tree). */
341
342 static void
343 init_loops_structure (struct loops *loops, unsigned num_loops)
344 {
345 struct loop *root;
346
347 memset (loops, 0, sizeof *loops);
348 vec_alloc (loops->larray, num_loops);
349
350 /* Dummy loop containing whole function. */
351 root = alloc_loop ();
352 root->num_nodes = n_basic_blocks;
353 root->latch = EXIT_BLOCK_PTR;
354 root->header = ENTRY_BLOCK_PTR;
355 ENTRY_BLOCK_PTR->loop_father = root;
356 EXIT_BLOCK_PTR->loop_father = root;
357
358 loops->larray->quick_push (root);
359 loops->tree_root = root;
360 }
361
362 /* Find all the natural loops in the function and save in LOOPS structure and
363 recalculate loop_father information in basic block structures.
364 Return the number of natural loops found. */
365
366 int
367 flow_loops_find (struct loops *loops)
368 {
369 int b;
370 int num_loops;
371 edge e;
372 sbitmap headers;
373 int *dfs_order;
374 int *rc_order;
375 basic_block header;
376 basic_block bb;
377
378 /* Ensure that the dominators are computed. */
379 calculate_dominance_info (CDI_DOMINATORS);
380
381 /* Taking care of this degenerate case makes the rest of
382 this code simpler. */
383 if (n_basic_blocks == NUM_FIXED_BLOCKS)
384 {
385 init_loops_structure (loops, 1);
386 return 1;
387 }
388
389 dfs_order = NULL;
390 rc_order = NULL;
391
392 /* Count the number of loop headers. This should be the
393 same as the number of natural loops. */
394 headers = sbitmap_alloc (last_basic_block);
395 bitmap_clear (headers);
396
397 num_loops = 0;
398 FOR_EACH_BB (header)
399 {
400 edge_iterator ei;
401
402 /* If we have an abnormal predecessor, do not consider the
403 loop (not worth the problems). */
404 if (bb_has_abnormal_pred (header))
405 continue;
406
407 FOR_EACH_EDGE (e, ei, header->preds)
408 {
409 basic_block latch = e->src;
410
411 gcc_assert (!(e->flags & EDGE_ABNORMAL));
412
413 /* Look for back edges where a predecessor is dominated
414 by this block. A natural loop has a single entry
415 node (header) that dominates all the nodes in the
416 loop. It also has single back edge to the header
417 from a latch node. */
418 if (latch != ENTRY_BLOCK_PTR
419 && dominated_by_p (CDI_DOMINATORS, latch, header))
420 {
421 /* Shared headers should be eliminated by now. */
422 bitmap_set_bit (headers, header->index);
423 num_loops++;
424 }
425 }
426 }
427
428 /* Allocate loop structures. */
429 init_loops_structure (loops, num_loops + 1);
430
431 /* Find and record information about all the natural loops
432 in the CFG. */
433 FOR_EACH_BB (bb)
434 bb->loop_father = loops->tree_root;
435
436 if (num_loops)
437 {
438 /* Compute depth first search order of the CFG so that outer
439 natural loops will be found before inner natural loops. */
440 dfs_order = XNEWVEC (int, n_basic_blocks);
441 rc_order = XNEWVEC (int, n_basic_blocks);
442 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
443
444 num_loops = 1;
445
446 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
447 {
448 struct loop *loop;
449 edge_iterator ei;
450
451 /* Search the nodes of the CFG in reverse completion order
452 so that we can find outer loops first. */
453 if (!bitmap_bit_p (headers, rc_order[b]))
454 continue;
455
456 header = BASIC_BLOCK (rc_order[b]);
457
458 loop = alloc_loop ();
459 loops->larray->quick_push (loop);
460
461 loop->header = header;
462 loop->num = num_loops;
463 num_loops++;
464
465 flow_loop_tree_node_add (header->loop_father, loop);
466 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
467
468 /* Look for the latch for this header block, if it has just a
469 single one. */
470 FOR_EACH_EDGE (e, ei, header->preds)
471 {
472 basic_block latch = e->src;
473
474 if (flow_bb_inside_loop_p (loop, latch))
475 {
476 if (loop->latch != NULL)
477 {
478 /* More than one latch edge. */
479 loop->latch = NULL;
480 break;
481 }
482 loop->latch = latch;
483 }
484 }
485 }
486
487 free (dfs_order);
488 free (rc_order);
489 }
490
491 sbitmap_free (headers);
492
493 loops->exits = NULL;
494 return loops->larray->length ();
495 }
496
497 /* Ratio of frequencies of edges so that one of more latch edges is
498 considered to belong to inner loop with same header. */
499 #define HEAVY_EDGE_RATIO 8
500
501 /* Minimum number of samples for that we apply
502 find_subloop_latch_edge_by_profile heuristics. */
503 #define HEAVY_EDGE_MIN_SAMPLES 10
504
505 /* If the profile info is available, finds an edge in LATCHES that much more
506 frequent than the remaining edges. Returns such an edge, or NULL if we do
507 not find one.
508
509 We do not use guessed profile here, only the measured one. The guessed
510 profile is usually too flat and unreliable for this (and it is mostly based
511 on the loop structure of the program, so it does not make much sense to
512 derive the loop structure from it). */
513
514 static edge
515 find_subloop_latch_edge_by_profile (vec<edge> latches)
516 {
517 unsigned i;
518 edge e, me = NULL;
519 gcov_type mcount = 0, tcount = 0;
520
521 FOR_EACH_VEC_ELT (latches, i, e)
522 {
523 if (e->count > mcount)
524 {
525 me = e;
526 mcount = e->count;
527 }
528 tcount += e->count;
529 }
530
531 if (tcount < HEAVY_EDGE_MIN_SAMPLES
532 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
533 return NULL;
534
535 if (dump_file)
536 fprintf (dump_file,
537 "Found latch edge %d -> %d using profile information.\n",
538 me->src->index, me->dest->index);
539 return me;
540 }
541
542 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
543 on the structure of induction variables. Returns this edge, or NULL if we
544 do not find any.
545
546 We are quite conservative, and look just for an obvious simple innermost
547 loop (which is the case where we would lose the most performance by not
548 disambiguating the loop). More precisely, we look for the following
549 situation: The source of the chosen latch edge dominates sources of all
550 the other latch edges. Additionally, the header does not contain a phi node
551 such that the argument from the chosen edge is equal to the argument from
552 another edge. */
553
554 static edge
555 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
556 {
557 edge e, latch = latches[0];
558 unsigned i;
559 gimple phi;
560 gimple_stmt_iterator psi;
561 tree lop;
562 basic_block bb;
563
564 /* Find the candidate for the latch edge. */
565 for (i = 1; latches.iterate (i, &e); i++)
566 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
567 latch = e;
568
569 /* Verify that it dominates all the latch edges. */
570 FOR_EACH_VEC_ELT (latches, i, e)
571 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
572 return NULL;
573
574 /* Check for a phi node that would deny that this is a latch edge of
575 a subloop. */
576 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
577 {
578 phi = gsi_stmt (psi);
579 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
580
581 /* Ignore the values that are not changed inside the subloop. */
582 if (TREE_CODE (lop) != SSA_NAME
583 || SSA_NAME_DEF_STMT (lop) == phi)
584 continue;
585 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
586 if (!bb || !flow_bb_inside_loop_p (loop, bb))
587 continue;
588
589 FOR_EACH_VEC_ELT (latches, i, e)
590 if (e != latch
591 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
592 return NULL;
593 }
594
595 if (dump_file)
596 fprintf (dump_file,
597 "Found latch edge %d -> %d using iv structure.\n",
598 latch->src->index, latch->dest->index);
599 return latch;
600 }
601
602 /* If we can determine that one of the several latch edges of LOOP behaves
603 as a latch edge of a separate subloop, returns this edge. Otherwise
604 returns NULL. */
605
606 static edge
607 find_subloop_latch_edge (struct loop *loop)
608 {
609 vec<edge> latches = get_loop_latch_edges (loop);
610 edge latch = NULL;
611
612 if (latches.length () > 1)
613 {
614 latch = find_subloop_latch_edge_by_profile (latches);
615
616 if (!latch
617 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
618 should use cfghook for this, but it is hard to imagine it would
619 be useful elsewhere. */
620 && current_ir_type () == IR_GIMPLE)
621 latch = find_subloop_latch_edge_by_ivs (loop, latches);
622 }
623
624 latches.release ();
625 return latch;
626 }
627
628 /* Callback for make_forwarder_block. Returns true if the edge E is marked
629 in the set MFB_REIS_SET. */
630
631 static struct pointer_set_t *mfb_reis_set;
632 static bool
633 mfb_redirect_edges_in_set (edge e)
634 {
635 return pointer_set_contains (mfb_reis_set, e);
636 }
637
638 /* Creates a subloop of LOOP with latch edge LATCH. */
639
640 static void
641 form_subloop (struct loop *loop, edge latch)
642 {
643 edge_iterator ei;
644 edge e, new_entry;
645 struct loop *new_loop;
646
647 mfb_reis_set = pointer_set_create ();
648 FOR_EACH_EDGE (e, ei, loop->header->preds)
649 {
650 if (e != latch)
651 pointer_set_insert (mfb_reis_set, e);
652 }
653 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
654 NULL);
655 pointer_set_destroy (mfb_reis_set);
656
657 loop->header = new_entry->src;
658
659 /* Find the blocks and subloops that belong to the new loop, and add it to
660 the appropriate place in the loop tree. */
661 new_loop = alloc_loop ();
662 new_loop->header = new_entry->dest;
663 new_loop->latch = latch->src;
664 add_loop (new_loop, loop);
665 }
666
667 /* Make all the latch edges of LOOP to go to a single forwarder block --
668 a new latch of LOOP. */
669
670 static void
671 merge_latch_edges (struct loop *loop)
672 {
673 vec<edge> latches = get_loop_latch_edges (loop);
674 edge latch, e;
675 unsigned i;
676
677 gcc_assert (latches.length () > 0);
678
679 if (latches.length () == 1)
680 loop->latch = latches[0]->src;
681 else
682 {
683 if (dump_file)
684 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
685
686 mfb_reis_set = pointer_set_create ();
687 FOR_EACH_VEC_ELT (latches, i, e)
688 pointer_set_insert (mfb_reis_set, e);
689 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
690 NULL);
691 pointer_set_destroy (mfb_reis_set);
692
693 loop->header = latch->dest;
694 loop->latch = latch->src;
695 }
696
697 latches.release ();
698 }
699
700 /* LOOP may have several latch edges. Transform it into (possibly several)
701 loops with single latch edge. */
702
703 static void
704 disambiguate_multiple_latches (struct loop *loop)
705 {
706 edge e;
707
708 /* We eliminate the multiple latches by splitting the header to the forwarder
709 block F and the rest R, and redirecting the edges. There are two cases:
710
711 1) If there is a latch edge E that corresponds to a subloop (we guess
712 that based on profile -- if it is taken much more often than the
713 remaining edges; and on trees, using the information about induction
714 variables of the loops), we redirect E to R, all the remaining edges to
715 F, then rescan the loops and try again for the outer loop.
716 2) If there is no such edge, we redirect all latch edges to F, and the
717 entry edges to R, thus making F the single latch of the loop. */
718
719 if (dump_file)
720 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
721 loop->num);
722
723 /* During latch merging, we may need to redirect the entry edges to a new
724 block. This would cause problems if the entry edge was the one from the
725 entry block. To avoid having to handle this case specially, split
726 such entry edge. */
727 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
728 if (e)
729 split_edge (e);
730
731 while (1)
732 {
733 e = find_subloop_latch_edge (loop);
734 if (!e)
735 break;
736
737 form_subloop (loop, e);
738 }
739
740 merge_latch_edges (loop);
741 }
742
743 /* Split loops with multiple latch edges. */
744
745 void
746 disambiguate_loops_with_multiple_latches (void)
747 {
748 loop_iterator li;
749 struct loop *loop;
750
751 FOR_EACH_LOOP (li, loop, 0)
752 {
753 if (!loop->latch)
754 disambiguate_multiple_latches (loop);
755 }
756 }
757
758 /* Return nonzero if basic block BB belongs to LOOP. */
759 bool
760 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
761 {
762 struct loop *source_loop;
763
764 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
765 return 0;
766
767 source_loop = bb->loop_father;
768 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
769 }
770
771 /* Enumeration predicate for get_loop_body_with_size. */
772 static bool
773 glb_enum_p (const_basic_block bb, const void *glb_loop)
774 {
775 const struct loop *const loop = (const struct loop *) glb_loop;
776 return (bb != loop->header
777 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
778 }
779
780 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
781 order against direction of edges from latch. Specially, if
782 header != latch, latch is the 1-st block. LOOP cannot be the fake
783 loop tree root, and its size must be at most MAX_SIZE. The blocks
784 in the LOOP body are stored to BODY, and the size of the LOOP is
785 returned. */
786
787 unsigned
788 get_loop_body_with_size (const struct loop *loop, basic_block *body,
789 unsigned max_size)
790 {
791 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
792 body, max_size, loop);
793 }
794
795 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
796 order against direction of edges from latch. Specially, if
797 header != latch, latch is the 1-st block. */
798
799 basic_block *
800 get_loop_body (const struct loop *loop)
801 {
802 basic_block *body, bb;
803 unsigned tv = 0;
804
805 gcc_assert (loop->num_nodes);
806
807 body = XNEWVEC (basic_block, loop->num_nodes);
808
809 if (loop->latch == EXIT_BLOCK_PTR)
810 {
811 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
812 special-case the fake loop that contains the whole function. */
813 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
814 body[tv++] = loop->header;
815 body[tv++] = EXIT_BLOCK_PTR;
816 FOR_EACH_BB (bb)
817 body[tv++] = bb;
818 }
819 else
820 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
821
822 gcc_assert (tv == loop->num_nodes);
823 return body;
824 }
825
826 /* Fills dominance descendants inside LOOP of the basic block BB into
827 array TOVISIT from index *TV. */
828
829 static void
830 fill_sons_in_loop (const struct loop *loop, basic_block bb,
831 basic_block *tovisit, int *tv)
832 {
833 basic_block son, postpone = NULL;
834
835 tovisit[(*tv)++] = bb;
836 for (son = first_dom_son (CDI_DOMINATORS, bb);
837 son;
838 son = next_dom_son (CDI_DOMINATORS, son))
839 {
840 if (!flow_bb_inside_loop_p (loop, son))
841 continue;
842
843 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
844 {
845 postpone = son;
846 continue;
847 }
848 fill_sons_in_loop (loop, son, tovisit, tv);
849 }
850
851 if (postpone)
852 fill_sons_in_loop (loop, postpone, tovisit, tv);
853 }
854
855 /* Gets body of a LOOP (that must be different from the outermost loop)
856 sorted by dominance relation. Additionally, if a basic block s dominates
857 the latch, then only blocks dominated by s are be after it. */
858
859 basic_block *
860 get_loop_body_in_dom_order (const struct loop *loop)
861 {
862 basic_block *tovisit;
863 int tv;
864
865 gcc_assert (loop->num_nodes);
866
867 tovisit = XNEWVEC (basic_block, loop->num_nodes);
868
869 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
870
871 tv = 0;
872 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
873
874 gcc_assert (tv == (int) loop->num_nodes);
875
876 return tovisit;
877 }
878
879 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
880
881 basic_block *
882 get_loop_body_in_custom_order (const struct loop *loop,
883 int (*bb_comparator) (const void *, const void *))
884 {
885 basic_block *bbs = get_loop_body (loop);
886
887 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
888
889 return bbs;
890 }
891
892 /* Get body of a LOOP in breadth first sort order. */
893
894 basic_block *
895 get_loop_body_in_bfs_order (const struct loop *loop)
896 {
897 basic_block *blocks;
898 basic_block bb;
899 bitmap visited;
900 unsigned int i = 0;
901 unsigned int vc = 1;
902
903 gcc_assert (loop->num_nodes);
904 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
905
906 blocks = XNEWVEC (basic_block, loop->num_nodes);
907 visited = BITMAP_ALLOC (NULL);
908
909 bb = loop->header;
910 while (i < loop->num_nodes)
911 {
912 edge e;
913 edge_iterator ei;
914
915 if (bitmap_set_bit (visited, bb->index))
916 /* This basic block is now visited */
917 blocks[i++] = bb;
918
919 FOR_EACH_EDGE (e, ei, bb->succs)
920 {
921 if (flow_bb_inside_loop_p (loop, e->dest))
922 {
923 if (bitmap_set_bit (visited, e->dest->index))
924 blocks[i++] = e->dest;
925 }
926 }
927
928 gcc_assert (i >= vc);
929
930 bb = blocks[vc++];
931 }
932
933 BITMAP_FREE (visited);
934 return blocks;
935 }
936
937 /* Hash function for struct loop_exit. */
938
939 static hashval_t
940 loop_exit_hash (const void *ex)
941 {
942 const struct loop_exit *const exit = (const struct loop_exit *) ex;
943
944 return htab_hash_pointer (exit->e);
945 }
946
947 /* Equality function for struct loop_exit. Compares with edge. */
948
949 static int
950 loop_exit_eq (const void *ex, const void *e)
951 {
952 const struct loop_exit *const exit = (const struct loop_exit *) ex;
953
954 return exit->e == e;
955 }
956
957 /* Frees the list of loop exit descriptions EX. */
958
959 static void
960 loop_exit_free (void *ex)
961 {
962 struct loop_exit *exit = (struct loop_exit *) ex, *next;
963
964 for (; exit; exit = next)
965 {
966 next = exit->next_e;
967
968 exit->next->prev = exit->prev;
969 exit->prev->next = exit->next;
970
971 ggc_free (exit);
972 }
973 }
974
975 /* Returns the list of records for E as an exit of a loop. */
976
977 static struct loop_exit *
978 get_exit_descriptions (edge e)
979 {
980 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
981 htab_hash_pointer (e));
982 }
983
984 /* Updates the lists of loop exits in that E appears.
985 If REMOVED is true, E is being removed, and we
986 just remove it from the lists of exits.
987 If NEW_EDGE is true and E is not a loop exit, we
988 do not try to remove it from loop exit lists. */
989
990 void
991 rescan_loop_exit (edge e, bool new_edge, bool removed)
992 {
993 void **slot;
994 struct loop_exit *exits = NULL, *exit;
995 struct loop *aloop, *cloop;
996
997 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
998 return;
999
1000 if (!removed
1001 && e->src->loop_father != NULL
1002 && e->dest->loop_father != NULL
1003 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1004 {
1005 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1006 for (aloop = e->src->loop_father;
1007 aloop != cloop;
1008 aloop = loop_outer (aloop))
1009 {
1010 exit = ggc_alloc_loop_exit ();
1011 exit->e = e;
1012
1013 exit->next = aloop->exits->next;
1014 exit->prev = aloop->exits;
1015 exit->next->prev = exit;
1016 exit->prev->next = exit;
1017
1018 exit->next_e = exits;
1019 exits = exit;
1020 }
1021 }
1022
1023 if (!exits && new_edge)
1024 return;
1025
1026 slot = htab_find_slot_with_hash (current_loops->exits, e,
1027 htab_hash_pointer (e),
1028 exits ? INSERT : NO_INSERT);
1029 if (!slot)
1030 return;
1031
1032 if (exits)
1033 {
1034 if (*slot)
1035 loop_exit_free (*slot);
1036 *slot = exits;
1037 }
1038 else
1039 htab_clear_slot (current_loops->exits, slot);
1040 }
1041
1042 /* For each loop, record list of exit edges, and start maintaining these
1043 lists. */
1044
1045 void
1046 record_loop_exits (void)
1047 {
1048 basic_block bb;
1049 edge_iterator ei;
1050 edge e;
1051
1052 if (!current_loops)
1053 return;
1054
1055 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1056 return;
1057 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1058
1059 gcc_assert (current_loops->exits == NULL);
1060 current_loops->exits = htab_create_ggc (2 * number_of_loops (),
1061 loop_exit_hash, loop_exit_eq,
1062 loop_exit_free);
1063
1064 FOR_EACH_BB (bb)
1065 {
1066 FOR_EACH_EDGE (e, ei, bb->succs)
1067 {
1068 rescan_loop_exit (e, true, false);
1069 }
1070 }
1071 }
1072
1073 /* Dumps information about the exit in *SLOT to FILE.
1074 Callback for htab_traverse. */
1075
1076 static int
1077 dump_recorded_exit (void **slot, void *file)
1078 {
1079 struct loop_exit *exit = (struct loop_exit *) *slot;
1080 unsigned n = 0;
1081 edge e = exit->e;
1082
1083 for (; exit != NULL; exit = exit->next_e)
1084 n++;
1085
1086 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1087 e->src->index, e->dest->index, n);
1088
1089 return 1;
1090 }
1091
1092 /* Dumps the recorded exits of loops to FILE. */
1093
1094 extern void dump_recorded_exits (FILE *);
1095 void
1096 dump_recorded_exits (FILE *file)
1097 {
1098 if (!current_loops->exits)
1099 return;
1100 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1101 }
1102
1103 /* Releases lists of loop exits. */
1104
1105 void
1106 release_recorded_exits (void)
1107 {
1108 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1109 htab_delete (current_loops->exits);
1110 current_loops->exits = NULL;
1111 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1112 }
1113
1114 /* Returns the list of the exit edges of a LOOP. */
1115
1116 vec<edge>
1117 get_loop_exit_edges (const struct loop *loop)
1118 {
1119 vec<edge> edges = vNULL;
1120 edge e;
1121 unsigned i;
1122 basic_block *body;
1123 edge_iterator ei;
1124 struct loop_exit *exit;
1125
1126 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1127
1128 /* If we maintain the lists of exits, use them. Otherwise we must
1129 scan the body of the loop. */
1130 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1131 {
1132 for (exit = loop->exits->next; exit->e; exit = exit->next)
1133 edges.safe_push (exit->e);
1134 }
1135 else
1136 {
1137 body = get_loop_body (loop);
1138 for (i = 0; i < loop->num_nodes; i++)
1139 FOR_EACH_EDGE (e, ei, body[i]->succs)
1140 {
1141 if (!flow_bb_inside_loop_p (loop, e->dest))
1142 edges.safe_push (e);
1143 }
1144 free (body);
1145 }
1146
1147 return edges;
1148 }
1149
1150 /* Counts the number of conditional branches inside LOOP. */
1151
1152 unsigned
1153 num_loop_branches (const struct loop *loop)
1154 {
1155 unsigned i, n;
1156 basic_block * body;
1157
1158 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1159
1160 body = get_loop_body (loop);
1161 n = 0;
1162 for (i = 0; i < loop->num_nodes; i++)
1163 if (EDGE_COUNT (body[i]->succs) >= 2)
1164 n++;
1165 free (body);
1166
1167 return n;
1168 }
1169
1170 /* Adds basic block BB to LOOP. */
1171 void
1172 add_bb_to_loop (basic_block bb, struct loop *loop)
1173 {
1174 unsigned i;
1175 loop_p ploop;
1176 edge_iterator ei;
1177 edge e;
1178
1179 gcc_assert (bb->loop_father == NULL);
1180 bb->loop_father = loop;
1181 loop->num_nodes++;
1182 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1183 ploop->num_nodes++;
1184
1185 FOR_EACH_EDGE (e, ei, bb->succs)
1186 {
1187 rescan_loop_exit (e, true, false);
1188 }
1189 FOR_EACH_EDGE (e, ei, bb->preds)
1190 {
1191 rescan_loop_exit (e, true, false);
1192 }
1193 }
1194
1195 /* Remove basic block BB from loops. */
1196 void
1197 remove_bb_from_loops (basic_block bb)
1198 {
1199 unsigned i;
1200 struct loop *loop = bb->loop_father;
1201 loop_p ploop;
1202 edge_iterator ei;
1203 edge e;
1204
1205 gcc_assert (loop != NULL);
1206 loop->num_nodes--;
1207 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1208 ploop->num_nodes--;
1209 bb->loop_father = NULL;
1210
1211 FOR_EACH_EDGE (e, ei, bb->succs)
1212 {
1213 rescan_loop_exit (e, false, true);
1214 }
1215 FOR_EACH_EDGE (e, ei, bb->preds)
1216 {
1217 rescan_loop_exit (e, false, true);
1218 }
1219 }
1220
1221 /* Finds nearest common ancestor in loop tree for given loops. */
1222 struct loop *
1223 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1224 {
1225 unsigned sdepth, ddepth;
1226
1227 if (!loop_s) return loop_d;
1228 if (!loop_d) return loop_s;
1229
1230 sdepth = loop_depth (loop_s);
1231 ddepth = loop_depth (loop_d);
1232
1233 if (sdepth < ddepth)
1234 loop_d = (*loop_d->superloops)[sdepth];
1235 else if (sdepth > ddepth)
1236 loop_s = (*loop_s->superloops)[ddepth];
1237
1238 while (loop_s != loop_d)
1239 {
1240 loop_s = loop_outer (loop_s);
1241 loop_d = loop_outer (loop_d);
1242 }
1243 return loop_s;
1244 }
1245
1246 /* Removes LOOP from structures and frees its data. */
1247
1248 void
1249 delete_loop (struct loop *loop)
1250 {
1251 /* Remove the loop from structure. */
1252 flow_loop_tree_node_remove (loop);
1253
1254 /* Remove loop from loops array. */
1255 (*current_loops->larray)[loop->num] = NULL;
1256
1257 /* Free loop data. */
1258 flow_loop_free (loop);
1259 }
1260
1261 /* Cancels the LOOP; it must be innermost one. */
1262
1263 static void
1264 cancel_loop (struct loop *loop)
1265 {
1266 basic_block *bbs;
1267 unsigned i;
1268 struct loop *outer = loop_outer (loop);
1269
1270 gcc_assert (!loop->inner);
1271
1272 /* Move blocks up one level (they should be removed as soon as possible). */
1273 bbs = get_loop_body (loop);
1274 for (i = 0; i < loop->num_nodes; i++)
1275 bbs[i]->loop_father = outer;
1276
1277 free (bbs);
1278 delete_loop (loop);
1279 }
1280
1281 /* Cancels LOOP and all its subloops. */
1282 void
1283 cancel_loop_tree (struct loop *loop)
1284 {
1285 while (loop->inner)
1286 cancel_loop_tree (loop->inner);
1287 cancel_loop (loop);
1288 }
1289
1290 /* Checks that information about loops is correct
1291 -- sizes of loops are all right
1292 -- results of get_loop_body really belong to the loop
1293 -- loop header have just single entry edge and single latch edge
1294 -- loop latches have only single successor that is header of their loop
1295 -- irreducible loops are correctly marked
1296 -- the cached loop depth and loop father of each bb is correct
1297 */
1298 DEBUG_FUNCTION void
1299 verify_loop_structure (void)
1300 {
1301 unsigned *sizes, i, j;
1302 sbitmap irreds;
1303 basic_block *bbs, bb;
1304 struct loop *loop;
1305 int err = 0;
1306 edge e;
1307 unsigned num = number_of_loops ();
1308 loop_iterator li;
1309 struct loop_exit *exit, *mexit;
1310 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1311 sbitmap visited = sbitmap_alloc (last_basic_block);
1312
1313 /* We need up-to-date dominators, compute or verify them. */
1314 if (!dom_available)
1315 calculate_dominance_info (CDI_DOMINATORS);
1316 else
1317 verify_dominators (CDI_DOMINATORS);
1318
1319 /* Check sizes. */
1320 sizes = XCNEWVEC (unsigned, num);
1321 sizes[0] = 2;
1322
1323 FOR_EACH_BB (bb)
1324 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1325 sizes[loop->num]++;
1326
1327 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1328 {
1329 i = loop->num;
1330
1331 if (loop->num_nodes != sizes[i])
1332 {
1333 error ("size of loop %d should be %d, not %d",
1334 i, sizes[i], loop->num_nodes);
1335 err = 1;
1336 }
1337 }
1338
1339 /* Check get_loop_body. */
1340 FOR_EACH_LOOP (li, loop, 0)
1341 {
1342 bbs = get_loop_body (loop);
1343
1344 for (j = 0; j < loop->num_nodes; j++)
1345 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1346 {
1347 error ("bb %d does not belong to loop %d",
1348 bbs[j]->index, loop->num);
1349 err = 1;
1350 }
1351 free (bbs);
1352 }
1353 bitmap_clear (visited);
1354 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1355 {
1356 bbs = get_loop_body (loop);
1357
1358 for (j = 0; j < loop->num_nodes; j++)
1359 {
1360 bb = bbs[j];
1361
1362 /* Ignore this block if it is in an inner loop. */
1363 if (bitmap_bit_p (visited, bb->index))
1364 continue;
1365 bitmap_set_bit (visited, bb->index);
1366
1367 if (bb->loop_father != loop)
1368 {
1369 error ("bb %d has father loop %d, should be loop %d",
1370 bb->index, bb->loop_father->num, loop->num);
1371 err = 1;
1372 }
1373 }
1374 free (bbs);
1375 }
1376
1377 /* Check headers and latches. */
1378 FOR_EACH_LOOP (li, loop, 0)
1379 {
1380 i = loop->num;
1381
1382 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1383 && EDGE_COUNT (loop->header->preds) != 2)
1384 {
1385 error ("loop %d%'s header does not have exactly 2 entries", i);
1386 err = 1;
1387 }
1388 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1389 {
1390 if (!single_succ_p (loop->latch))
1391 {
1392 error ("loop %d%'s latch does not have exactly 1 successor", i);
1393 err = 1;
1394 }
1395 if (single_succ (loop->latch) != loop->header)
1396 {
1397 error ("loop %d%'s latch does not have header as successor", i);
1398 err = 1;
1399 }
1400 if (loop->latch->loop_father != loop)
1401 {
1402 error ("loop %d%'s latch does not belong directly to it", i);
1403 err = 1;
1404 }
1405 }
1406 if (loop->header->loop_father != loop)
1407 {
1408 error ("loop %d%'s header does not belong directly to it", i);
1409 err = 1;
1410 }
1411 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1412 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1413 {
1414 error ("loop %d%'s latch is marked as part of irreducible region", i);
1415 err = 1;
1416 }
1417 }
1418
1419 /* Check irreducible loops. */
1420 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1421 {
1422 /* Record old info. */
1423 irreds = sbitmap_alloc (last_basic_block);
1424 FOR_EACH_BB (bb)
1425 {
1426 edge_iterator ei;
1427 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1428 bitmap_set_bit (irreds, bb->index);
1429 else
1430 bitmap_clear_bit (irreds, bb->index);
1431 FOR_EACH_EDGE (e, ei, bb->succs)
1432 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1433 e->flags |= EDGE_ALL_FLAGS + 1;
1434 }
1435
1436 /* Recount it. */
1437 mark_irreducible_loops ();
1438
1439 /* Compare. */
1440 FOR_EACH_BB (bb)
1441 {
1442 edge_iterator ei;
1443
1444 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1445 && !bitmap_bit_p (irreds, bb->index))
1446 {
1447 error ("basic block %d should be marked irreducible", bb->index);
1448 err = 1;
1449 }
1450 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1451 && bitmap_bit_p (irreds, bb->index))
1452 {
1453 error ("basic block %d should not be marked irreducible", bb->index);
1454 err = 1;
1455 }
1456 FOR_EACH_EDGE (e, ei, bb->succs)
1457 {
1458 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1459 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1460 {
1461 error ("edge from %d to %d should be marked irreducible",
1462 e->src->index, e->dest->index);
1463 err = 1;
1464 }
1465 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1466 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1467 {
1468 error ("edge from %d to %d should not be marked irreducible",
1469 e->src->index, e->dest->index);
1470 err = 1;
1471 }
1472 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1473 }
1474 }
1475 free (irreds);
1476 }
1477
1478 /* Check the recorded loop exits. */
1479 FOR_EACH_LOOP (li, loop, 0)
1480 {
1481 if (!loop->exits || loop->exits->e != NULL)
1482 {
1483 error ("corrupted head of the exits list of loop %d",
1484 loop->num);
1485 err = 1;
1486 }
1487 else
1488 {
1489 /* Check that the list forms a cycle, and all elements except
1490 for the head are nonnull. */
1491 for (mexit = loop->exits, exit = mexit->next, i = 0;
1492 exit->e && exit != mexit;
1493 exit = exit->next)
1494 {
1495 if (i++ & 1)
1496 mexit = mexit->next;
1497 }
1498
1499 if (exit != loop->exits)
1500 {
1501 error ("corrupted exits list of loop %d", loop->num);
1502 err = 1;
1503 }
1504 }
1505
1506 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1507 {
1508 if (loop->exits->next != loop->exits)
1509 {
1510 error ("nonempty exits list of loop %d, but exits are not recorded",
1511 loop->num);
1512 err = 1;
1513 }
1514 }
1515 }
1516
1517 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1518 {
1519 unsigned n_exits = 0, eloops;
1520
1521 memset (sizes, 0, sizeof (unsigned) * num);
1522 FOR_EACH_BB (bb)
1523 {
1524 edge_iterator ei;
1525 if (bb->loop_father == current_loops->tree_root)
1526 continue;
1527 FOR_EACH_EDGE (e, ei, bb->succs)
1528 {
1529 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1530 continue;
1531
1532 n_exits++;
1533 exit = get_exit_descriptions (e);
1534 if (!exit)
1535 {
1536 error ("exit %d->%d not recorded",
1537 e->src->index, e->dest->index);
1538 err = 1;
1539 }
1540 eloops = 0;
1541 for (; exit; exit = exit->next_e)
1542 eloops++;
1543
1544 for (loop = bb->loop_father;
1545 loop != e->dest->loop_father;
1546 loop = loop_outer (loop))
1547 {
1548 eloops--;
1549 sizes[loop->num]++;
1550 }
1551
1552 if (eloops != 0)
1553 {
1554 error ("wrong list of exited loops for edge %d->%d",
1555 e->src->index, e->dest->index);
1556 err = 1;
1557 }
1558 }
1559 }
1560
1561 if (n_exits != htab_elements (current_loops->exits))
1562 {
1563 error ("too many loop exits recorded");
1564 err = 1;
1565 }
1566
1567 FOR_EACH_LOOP (li, loop, 0)
1568 {
1569 eloops = 0;
1570 for (exit = loop->exits->next; exit->e; exit = exit->next)
1571 eloops++;
1572 if (eloops != sizes[loop->num])
1573 {
1574 error ("%d exits recorded for loop %d (having %d exits)",
1575 eloops, loop->num, sizes[loop->num]);
1576 err = 1;
1577 }
1578 }
1579 }
1580
1581 gcc_assert (!err);
1582
1583 sbitmap_free (visited);
1584 free (sizes);
1585 if (!dom_available)
1586 free_dominance_info (CDI_DOMINATORS);
1587 }
1588
1589 /* Returns latch edge of LOOP. */
1590 edge
1591 loop_latch_edge (const struct loop *loop)
1592 {
1593 return find_edge (loop->latch, loop->header);
1594 }
1595
1596 /* Returns preheader edge of LOOP. */
1597 edge
1598 loop_preheader_edge (const struct loop *loop)
1599 {
1600 edge e;
1601 edge_iterator ei;
1602
1603 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1604
1605 FOR_EACH_EDGE (e, ei, loop->header->preds)
1606 if (e->src != loop->latch)
1607 break;
1608
1609 return e;
1610 }
1611
1612 /* Returns true if E is an exit of LOOP. */
1613
1614 bool
1615 loop_exit_edge_p (const struct loop *loop, const_edge e)
1616 {
1617 return (flow_bb_inside_loop_p (loop, e->src)
1618 && !flow_bb_inside_loop_p (loop, e->dest));
1619 }
1620
1621 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1622 or more than one exit. If loops do not have the exits recorded, NULL
1623 is returned always. */
1624
1625 edge
1626 single_exit (const struct loop *loop)
1627 {
1628 struct loop_exit *exit = loop->exits->next;
1629
1630 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1631 return NULL;
1632
1633 if (exit->e && exit->next == loop->exits)
1634 return exit->e;
1635 else
1636 return NULL;
1637 }
1638
1639 /* Returns true when BB has an incoming edge exiting LOOP. */
1640
1641 bool
1642 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1643 {
1644 edge e;
1645 edge_iterator ei;
1646
1647 FOR_EACH_EDGE (e, ei, bb->preds)
1648 if (loop_exit_edge_p (loop, e))
1649 return true;
1650
1651 return false;
1652 }
1653
1654 /* Returns true when BB has an outgoing edge exiting LOOP. */
1655
1656 bool
1657 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1658 {
1659 edge e;
1660 edge_iterator ei;
1661
1662 FOR_EACH_EDGE (e, ei, bb->succs)
1663 if (loop_exit_edge_p (loop, e))
1664 return true;
1665
1666 return false;
1667 }
1668
1669 /* Return location corresponding to the loop control condition if possible. */
1670
1671 location_t
1672 get_loop_location (struct loop *loop)
1673 {
1674 rtx insn = NULL;
1675 struct niter_desc *desc = NULL;
1676 edge exit;
1677
1678 /* For a for or while loop, we would like to return the location
1679 of the for or while statement, if possible. To do this, look
1680 for the branch guarding the loop back-edge. */
1681
1682 /* If this is a simple loop with an in_edge, then the loop control
1683 branch is typically at the end of its source. */
1684 desc = get_simple_loop_desc (loop);
1685 if (desc->in_edge)
1686 {
1687 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1688 {
1689 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1690 return INSN_LOCATION (insn);
1691 }
1692 }
1693 /* If loop has a single exit, then the loop control branch
1694 must be at the end of its source. */
1695 if ((exit = single_exit (loop)))
1696 {
1697 FOR_BB_INSNS_REVERSE (exit->src, insn)
1698 {
1699 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1700 return INSN_LOCATION (insn);
1701 }
1702 }
1703 /* Next check the latch, to see if it is non-empty. */
1704 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1705 {
1706 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1707 return INSN_LOCATION (insn);
1708 }
1709 /* Finally, if none of the above identifies the loop control branch,
1710 return the first location in the loop header. */
1711 FOR_BB_INSNS (loop->header, insn)
1712 {
1713 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1714 return INSN_LOCATION (insn);
1715 }
1716 /* If all else fails, simply return the current function location. */
1717 return DECL_SOURCE_LOCATION (current_function_decl);
1718 }
1719