]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
* cfgloop.c (flow_loop_dump): Cast nit to uint64_t and print it using
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34
35 static void flow_loops_cfg_dump (FILE *);
36 \f
37 /* Dump loop related CFG information. */
38
39 static void
40 flow_loops_cfg_dump (FILE *file)
41 {
42 basic_block bb;
43
44 if (!file)
45 return;
46
47 FOR_EACH_BB_FN (bb, cfun)
48 {
49 edge succ;
50 edge_iterator ei;
51
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
56 }
57 }
58
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
60
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
63 {
64 unsigned odepth = loop_depth (outer);
65
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
68 }
69
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
72
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
75 {
76 unsigned ldepth = loop_depth (loop);
77
78 gcc_assert (depth <= ldepth);
79
80 if (depth == ldepth)
81 return loop;
82
83 return (*loop->superloops)[depth];
84 }
85
86 /* Returns the list of the latch edges of LOOP. */
87
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
90 {
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
94
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
96 {
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
99 }
100
101 return ret;
102 }
103
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
106
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
111 {
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
116
117 if (! loop || ! loop->header)
118 return;
119
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
121
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
126 {
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
133 }
134
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
138
139 if (loop->latch)
140 {
141 bool read_profile_p;
142 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
143 if (read_profile_p && !loop->any_estimate)
144 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
145 (uint64_t) nit);
146 }
147
148 fprintf (file, ";; nodes:");
149 bbs = get_loop_body (loop);
150 for (i = 0; i < loop->num_nodes; i++)
151 fprintf (file, " %d", bbs[i]->index);
152 free (bbs);
153 fprintf (file, "\n");
154
155 if (loop_dump_aux)
156 loop_dump_aux (loop, file, verbose);
157 }
158
159 /* Dump the loop information about loops to the stream FILE,
160 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
161
162 void
163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
164 {
165 struct loop *loop;
166
167 if (!current_loops || ! file)
168 return;
169
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
171
172 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
173 {
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
175 }
176
177 if (verbose)
178 flow_loops_cfg_dump (file);
179 }
180
181 /* Free data allocated for LOOP. */
182
183 void
184 flow_loop_free (struct loop *loop)
185 {
186 struct loop_exit *exit, *next;
187
188 vec_free (loop->superloops);
189
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
195 {
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
199 }
200
201 ggc_free (loop->exits);
202 ggc_free (loop);
203 }
204
205 /* Free all the memory allocated for LOOPS. */
206
207 void
208 flow_loops_free (struct loops *loops)
209 {
210 if (loops->larray)
211 {
212 unsigned i;
213 loop_p loop;
214
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
217 {
218 if (!loop)
219 continue;
220
221 flow_loop_free (loop);
222 }
223
224 vec_free (loops->larray);
225 }
226 }
227
228 /* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
230
231 int
232 flow_loop_nodes_find (basic_block header, struct loop *loop)
233 {
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
238
239 header->loop_father = loop;
240
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
242 {
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
246
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
250
251 while (!stack.is_empty ())
252 {
253 basic_block node;
254 edge e;
255 edge_iterator ei;
256
257 node = stack.pop ();
258
259 FOR_EACH_EDGE (e, ei, node->preds)
260 {
261 basic_block ancestor = e->src;
262
263 if (ancestor->loop_father != loop)
264 {
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
268 }
269 }
270 }
271 }
272 stack.release ();
273
274 return num_nodes;
275 }
276
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
282 {
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
292
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
295 }
296
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
300
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
303 {
304 loop->next = father->inner;
305 father->inner = loop;
306
307 establish_preds (loop, father);
308 }
309
310 /* Remove LOOP from the loop hierarchy tree. */
311
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
314 {
315 struct loop *prev, *father;
316
317 father = loop_outer (loop);
318
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
323 {
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
327 }
328
329 loop->superloops = NULL;
330 }
331
332 /* Allocates and returns new loop structure. */
333
334 struct loop *
335 alloc_loop (void)
336 {
337 struct loop *loop = ggc_cleared_alloc<struct loop> ();
338
339 loop->exits = ggc_cleared_alloc<loop_exit> ();
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
342 loop->nb_iterations_upper_bound = 0;
343 loop->nb_iterations_likely_upper_bound = 0;
344 loop->nb_iterations_estimate = 0;
345 return loop;
346 }
347
348 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
349 (including the root of the loop tree). */
350
351 void
352 init_loops_structure (struct function *fn,
353 struct loops *loops, unsigned num_loops)
354 {
355 struct loop *root;
356
357 memset (loops, 0, sizeof *loops);
358 vec_alloc (loops->larray, num_loops);
359
360 /* Dummy loop containing whole function. */
361 root = alloc_loop ();
362 root->num_nodes = n_basic_blocks_for_fn (fn);
363 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
364 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
365 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
366 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
367
368 loops->larray->quick_push (root);
369 loops->tree_root = root;
370 }
371
372 /* Returns whether HEADER is a loop header. */
373
374 bool
375 bb_loop_header_p (basic_block header)
376 {
377 edge_iterator ei;
378 edge e;
379
380 /* If we have an abnormal predecessor, do not consider the
381 loop (not worth the problems). */
382 if (bb_has_abnormal_pred (header))
383 return false;
384
385 /* Look for back edges where a predecessor is dominated
386 by this block. A natural loop has a single entry
387 node (header) that dominates all the nodes in the
388 loop. It also has single back edge to the header
389 from a latch node. */
390 FOR_EACH_EDGE (e, ei, header->preds)
391 {
392 basic_block latch = e->src;
393 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
394 && dominated_by_p (CDI_DOMINATORS, latch, header))
395 return true;
396 }
397
398 return false;
399 }
400
401 /* Find all the natural loops in the function and save in LOOPS structure and
402 recalculate loop_father information in basic block structures.
403 If LOOPS is non-NULL then the loop structures for already recorded loops
404 will be re-used and their number will not change. We assume that no
405 stale loops exist in LOOPS.
406 When LOOPS is NULL it is allocated and re-built from scratch.
407 Return the built LOOPS structure. */
408
409 struct loops *
410 flow_loops_find (struct loops *loops)
411 {
412 bool from_scratch = (loops == NULL);
413 int *rc_order;
414 int b;
415 unsigned i;
416
417 /* Ensure that the dominators are computed. */
418 calculate_dominance_info (CDI_DOMINATORS);
419
420 if (!loops)
421 {
422 loops = ggc_cleared_alloc<struct loops> ();
423 init_loops_structure (cfun, loops, 1);
424 }
425
426 /* Ensure that loop exits were released. */
427 gcc_assert (loops->exits == NULL);
428
429 /* Taking care of this degenerate case makes the rest of
430 this code simpler. */
431 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
432 return loops;
433
434 /* The root loop node contains all basic-blocks. */
435 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
436
437 /* Compute depth first search order of the CFG so that outer
438 natural loops will be found before inner natural loops. */
439 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
440 pre_and_rev_post_order_compute (NULL, rc_order, false);
441
442 /* Gather all loop headers in reverse completion order and allocate
443 loop structures for loops that are not already present. */
444 auto_vec<loop_p> larray (loops->larray->length ());
445 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
446 {
447 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
448 if (bb_loop_header_p (header))
449 {
450 struct loop *loop;
451
452 /* The current active loop tree has valid loop-fathers for
453 header blocks. */
454 if (!from_scratch
455 && header->loop_father->header == header)
456 {
457 loop = header->loop_father;
458 /* If we found an existing loop remove it from the
459 loop tree. It is going to be inserted again
460 below. */
461 flow_loop_tree_node_remove (loop);
462 }
463 else
464 {
465 /* Otherwise allocate a new loop structure for the loop. */
466 loop = alloc_loop ();
467 /* ??? We could re-use unused loop slots here. */
468 loop->num = loops->larray->length ();
469 vec_safe_push (loops->larray, loop);
470 loop->header = header;
471
472 if (!from_scratch
473 && dump_file && (dump_flags & TDF_DETAILS))
474 fprintf (dump_file, "flow_loops_find: discovered new "
475 "loop %d with header %d\n",
476 loop->num, header->index);
477 }
478 /* Reset latch, we recompute it below. */
479 loop->latch = NULL;
480 larray.safe_push (loop);
481 }
482
483 /* Make blocks part of the loop root node at start. */
484 header->loop_father = loops->tree_root;
485 }
486
487 free (rc_order);
488
489 /* Now iterate over the loops found, insert them into the loop tree
490 and assign basic-block ownership. */
491 for (i = 0; i < larray.length (); ++i)
492 {
493 struct loop *loop = larray[i];
494 basic_block header = loop->header;
495 edge_iterator ei;
496 edge e;
497
498 flow_loop_tree_node_add (header->loop_father, loop);
499 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
500
501 /* Look for the latch for this header block, if it has just a
502 single one. */
503 FOR_EACH_EDGE (e, ei, header->preds)
504 {
505 basic_block latch = e->src;
506
507 if (flow_bb_inside_loop_p (loop, latch))
508 {
509 if (loop->latch != NULL)
510 {
511 /* More than one latch edge. */
512 loop->latch = NULL;
513 break;
514 }
515 loop->latch = latch;
516 }
517 }
518 }
519
520 return loops;
521 }
522
523 /* Ratio of frequencies of edges so that one of more latch edges is
524 considered to belong to inner loop with same header. */
525 #define HEAVY_EDGE_RATIO 8
526
527 /* Minimum number of samples for that we apply
528 find_subloop_latch_edge_by_profile heuristics. */
529 #define HEAVY_EDGE_MIN_SAMPLES 10
530
531 /* If the profile info is available, finds an edge in LATCHES that much more
532 frequent than the remaining edges. Returns such an edge, or NULL if we do
533 not find one.
534
535 We do not use guessed profile here, only the measured one. The guessed
536 profile is usually too flat and unreliable for this (and it is mostly based
537 on the loop structure of the program, so it does not make much sense to
538 derive the loop structure from it). */
539
540 static edge
541 find_subloop_latch_edge_by_profile (vec<edge> latches)
542 {
543 unsigned i;
544 edge e, me = NULL;
545 gcov_type mcount = 0, tcount = 0;
546
547 FOR_EACH_VEC_ELT (latches, i, e)
548 {
549 if (e->count > mcount)
550 {
551 me = e;
552 mcount = e->count;
553 }
554 tcount += e->count;
555 }
556
557 if (tcount < HEAVY_EDGE_MIN_SAMPLES
558 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
559 return NULL;
560
561 if (dump_file)
562 fprintf (dump_file,
563 "Found latch edge %d -> %d using profile information.\n",
564 me->src->index, me->dest->index);
565 return me;
566 }
567
568 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
569 on the structure of induction variables. Returns this edge, or NULL if we
570 do not find any.
571
572 We are quite conservative, and look just for an obvious simple innermost
573 loop (which is the case where we would lose the most performance by not
574 disambiguating the loop). More precisely, we look for the following
575 situation: The source of the chosen latch edge dominates sources of all
576 the other latch edges. Additionally, the header does not contain a phi node
577 such that the argument from the chosen edge is equal to the argument from
578 another edge. */
579
580 static edge
581 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
582 {
583 edge e, latch = latches[0];
584 unsigned i;
585 gphi *phi;
586 gphi_iterator psi;
587 tree lop;
588 basic_block bb;
589
590 /* Find the candidate for the latch edge. */
591 for (i = 1; latches.iterate (i, &e); i++)
592 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
593 latch = e;
594
595 /* Verify that it dominates all the latch edges. */
596 FOR_EACH_VEC_ELT (latches, i, e)
597 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
598 return NULL;
599
600 /* Check for a phi node that would deny that this is a latch edge of
601 a subloop. */
602 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
603 {
604 phi = psi.phi ();
605 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
606
607 /* Ignore the values that are not changed inside the subloop. */
608 if (TREE_CODE (lop) != SSA_NAME
609 || SSA_NAME_DEF_STMT (lop) == phi)
610 continue;
611 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
612 if (!bb || !flow_bb_inside_loop_p (loop, bb))
613 continue;
614
615 FOR_EACH_VEC_ELT (latches, i, e)
616 if (e != latch
617 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
618 return NULL;
619 }
620
621 if (dump_file)
622 fprintf (dump_file,
623 "Found latch edge %d -> %d using iv structure.\n",
624 latch->src->index, latch->dest->index);
625 return latch;
626 }
627
628 /* If we can determine that one of the several latch edges of LOOP behaves
629 as a latch edge of a separate subloop, returns this edge. Otherwise
630 returns NULL. */
631
632 static edge
633 find_subloop_latch_edge (struct loop *loop)
634 {
635 vec<edge> latches = get_loop_latch_edges (loop);
636 edge latch = NULL;
637
638 if (latches.length () > 1)
639 {
640 latch = find_subloop_latch_edge_by_profile (latches);
641
642 if (!latch
643 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
644 should use cfghook for this, but it is hard to imagine it would
645 be useful elsewhere. */
646 && current_ir_type () == IR_GIMPLE)
647 latch = find_subloop_latch_edge_by_ivs (loop, latches);
648 }
649
650 latches.release ();
651 return latch;
652 }
653
654 /* Callback for make_forwarder_block. Returns true if the edge E is marked
655 in the set MFB_REIS_SET. */
656
657 static hash_set<edge> *mfb_reis_set;
658 static bool
659 mfb_redirect_edges_in_set (edge e)
660 {
661 return mfb_reis_set->contains (e);
662 }
663
664 /* Creates a subloop of LOOP with latch edge LATCH. */
665
666 static void
667 form_subloop (struct loop *loop, edge latch)
668 {
669 edge_iterator ei;
670 edge e, new_entry;
671 struct loop *new_loop;
672
673 mfb_reis_set = new hash_set<edge>;
674 FOR_EACH_EDGE (e, ei, loop->header->preds)
675 {
676 if (e != latch)
677 mfb_reis_set->add (e);
678 }
679 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
680 NULL);
681 delete mfb_reis_set;
682
683 loop->header = new_entry->src;
684
685 /* Find the blocks and subloops that belong to the new loop, and add it to
686 the appropriate place in the loop tree. */
687 new_loop = alloc_loop ();
688 new_loop->header = new_entry->dest;
689 new_loop->latch = latch->src;
690 add_loop (new_loop, loop);
691 }
692
693 /* Make all the latch edges of LOOP to go to a single forwarder block --
694 a new latch of LOOP. */
695
696 static void
697 merge_latch_edges (struct loop *loop)
698 {
699 vec<edge> latches = get_loop_latch_edges (loop);
700 edge latch, e;
701 unsigned i;
702
703 gcc_assert (latches.length () > 0);
704
705 if (latches.length () == 1)
706 loop->latch = latches[0]->src;
707 else
708 {
709 if (dump_file)
710 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
711
712 mfb_reis_set = new hash_set<edge>;
713 FOR_EACH_VEC_ELT (latches, i, e)
714 mfb_reis_set->add (e);
715 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
716 NULL);
717 delete mfb_reis_set;
718
719 loop->header = latch->dest;
720 loop->latch = latch->src;
721 }
722
723 latches.release ();
724 }
725
726 /* LOOP may have several latch edges. Transform it into (possibly several)
727 loops with single latch edge. */
728
729 static void
730 disambiguate_multiple_latches (struct loop *loop)
731 {
732 edge e;
733
734 /* We eliminate the multiple latches by splitting the header to the forwarder
735 block F and the rest R, and redirecting the edges. There are two cases:
736
737 1) If there is a latch edge E that corresponds to a subloop (we guess
738 that based on profile -- if it is taken much more often than the
739 remaining edges; and on trees, using the information about induction
740 variables of the loops), we redirect E to R, all the remaining edges to
741 F, then rescan the loops and try again for the outer loop.
742 2) If there is no such edge, we redirect all latch edges to F, and the
743 entry edges to R, thus making F the single latch of the loop. */
744
745 if (dump_file)
746 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
747 loop->num);
748
749 /* During latch merging, we may need to redirect the entry edges to a new
750 block. This would cause problems if the entry edge was the one from the
751 entry block. To avoid having to handle this case specially, split
752 such entry edge. */
753 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
754 if (e)
755 split_edge (e);
756
757 while (1)
758 {
759 e = find_subloop_latch_edge (loop);
760 if (!e)
761 break;
762
763 form_subloop (loop, e);
764 }
765
766 merge_latch_edges (loop);
767 }
768
769 /* Split loops with multiple latch edges. */
770
771 void
772 disambiguate_loops_with_multiple_latches (void)
773 {
774 struct loop *loop;
775
776 FOR_EACH_LOOP (loop, 0)
777 {
778 if (!loop->latch)
779 disambiguate_multiple_latches (loop);
780 }
781 }
782
783 /* Return nonzero if basic block BB belongs to LOOP. */
784 bool
785 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
786 {
787 struct loop *source_loop;
788
789 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
790 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
791 return 0;
792
793 source_loop = bb->loop_father;
794 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
795 }
796
797 /* Enumeration predicate for get_loop_body_with_size. */
798 static bool
799 glb_enum_p (const_basic_block bb, const void *glb_loop)
800 {
801 const struct loop *const loop = (const struct loop *) glb_loop;
802 return (bb != loop->header
803 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
804 }
805
806 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
807 order against direction of edges from latch. Specially, if
808 header != latch, latch is the 1-st block. LOOP cannot be the fake
809 loop tree root, and its size must be at most MAX_SIZE. The blocks
810 in the LOOP body are stored to BODY, and the size of the LOOP is
811 returned. */
812
813 unsigned
814 get_loop_body_with_size (const struct loop *loop, basic_block *body,
815 unsigned max_size)
816 {
817 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
818 body, max_size, loop);
819 }
820
821 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
822 order against direction of edges from latch. Specially, if
823 header != latch, latch is the 1-st block. */
824
825 basic_block *
826 get_loop_body (const struct loop *loop)
827 {
828 basic_block *body, bb;
829 unsigned tv = 0;
830
831 gcc_assert (loop->num_nodes);
832
833 body = XNEWVEC (basic_block, loop->num_nodes);
834
835 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
836 {
837 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
838 special-case the fake loop that contains the whole function. */
839 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
840 body[tv++] = loop->header;
841 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
842 FOR_EACH_BB_FN (bb, cfun)
843 body[tv++] = bb;
844 }
845 else
846 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
847
848 gcc_assert (tv == loop->num_nodes);
849 return body;
850 }
851
852 /* Fills dominance descendants inside LOOP of the basic block BB into
853 array TOVISIT from index *TV. */
854
855 static void
856 fill_sons_in_loop (const struct loop *loop, basic_block bb,
857 basic_block *tovisit, int *tv)
858 {
859 basic_block son, postpone = NULL;
860
861 tovisit[(*tv)++] = bb;
862 for (son = first_dom_son (CDI_DOMINATORS, bb);
863 son;
864 son = next_dom_son (CDI_DOMINATORS, son))
865 {
866 if (!flow_bb_inside_loop_p (loop, son))
867 continue;
868
869 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
870 {
871 postpone = son;
872 continue;
873 }
874 fill_sons_in_loop (loop, son, tovisit, tv);
875 }
876
877 if (postpone)
878 fill_sons_in_loop (loop, postpone, tovisit, tv);
879 }
880
881 /* Gets body of a LOOP (that must be different from the outermost loop)
882 sorted by dominance relation. Additionally, if a basic block s dominates
883 the latch, then only blocks dominated by s are be after it. */
884
885 basic_block *
886 get_loop_body_in_dom_order (const struct loop *loop)
887 {
888 basic_block *tovisit;
889 int tv;
890
891 gcc_assert (loop->num_nodes);
892
893 tovisit = XNEWVEC (basic_block, loop->num_nodes);
894
895 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
896
897 tv = 0;
898 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
899
900 gcc_assert (tv == (int) loop->num_nodes);
901
902 return tovisit;
903 }
904
905 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
906
907 basic_block *
908 get_loop_body_in_custom_order (const struct loop *loop,
909 int (*bb_comparator) (const void *, const void *))
910 {
911 basic_block *bbs = get_loop_body (loop);
912
913 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
914
915 return bbs;
916 }
917
918 /* Get body of a LOOP in breadth first sort order. */
919
920 basic_block *
921 get_loop_body_in_bfs_order (const struct loop *loop)
922 {
923 basic_block *blocks;
924 basic_block bb;
925 bitmap visited;
926 unsigned int i = 1;
927 unsigned int vc = 0;
928
929 gcc_assert (loop->num_nodes);
930 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
931
932 blocks = XNEWVEC (basic_block, loop->num_nodes);
933 visited = BITMAP_ALLOC (NULL);
934 blocks[0] = loop->header;
935 bitmap_set_bit (visited, loop->header->index);
936 while (i < loop->num_nodes)
937 {
938 edge e;
939 edge_iterator ei;
940 gcc_assert (i > vc);
941 bb = blocks[vc++];
942
943 FOR_EACH_EDGE (e, ei, bb->succs)
944 {
945 if (flow_bb_inside_loop_p (loop, e->dest))
946 {
947 /* This bb is now visited. */
948 if (bitmap_set_bit (visited, e->dest->index))
949 blocks[i++] = e->dest;
950 }
951 }
952 }
953
954 BITMAP_FREE (visited);
955 return blocks;
956 }
957
958 /* Hash function for struct loop_exit. */
959
960 hashval_t
961 loop_exit_hasher::hash (loop_exit *exit)
962 {
963 return htab_hash_pointer (exit->e);
964 }
965
966 /* Equality function for struct loop_exit. Compares with edge. */
967
968 bool
969 loop_exit_hasher::equal (loop_exit *exit, edge e)
970 {
971 return exit->e == e;
972 }
973
974 /* Frees the list of loop exit descriptions EX. */
975
976 void
977 loop_exit_hasher::remove (loop_exit *exit)
978 {
979 loop_exit *next;
980 for (; exit; exit = next)
981 {
982 next = exit->next_e;
983
984 exit->next->prev = exit->prev;
985 exit->prev->next = exit->next;
986
987 ggc_free (exit);
988 }
989 }
990
991 /* Returns the list of records for E as an exit of a loop. */
992
993 static struct loop_exit *
994 get_exit_descriptions (edge e)
995 {
996 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
997 }
998
999 /* Updates the lists of loop exits in that E appears.
1000 If REMOVED is true, E is being removed, and we
1001 just remove it from the lists of exits.
1002 If NEW_EDGE is true and E is not a loop exit, we
1003 do not try to remove it from loop exit lists. */
1004
1005 void
1006 rescan_loop_exit (edge e, bool new_edge, bool removed)
1007 {
1008 struct loop_exit *exits = NULL, *exit;
1009 struct loop *aloop, *cloop;
1010
1011 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1012 return;
1013
1014 if (!removed
1015 && e->src->loop_father != NULL
1016 && e->dest->loop_father != NULL
1017 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1018 {
1019 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1020 for (aloop = e->src->loop_father;
1021 aloop != cloop;
1022 aloop = loop_outer (aloop))
1023 {
1024 exit = ggc_alloc<loop_exit> ();
1025 exit->e = e;
1026
1027 exit->next = aloop->exits->next;
1028 exit->prev = aloop->exits;
1029 exit->next->prev = exit;
1030 exit->prev->next = exit;
1031
1032 exit->next_e = exits;
1033 exits = exit;
1034 }
1035 }
1036
1037 if (!exits && new_edge)
1038 return;
1039
1040 loop_exit **slot
1041 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1042 exits ? INSERT : NO_INSERT);
1043 if (!slot)
1044 return;
1045
1046 if (exits)
1047 {
1048 if (*slot)
1049 loop_exit_hasher::remove (*slot);
1050 *slot = exits;
1051 }
1052 else
1053 current_loops->exits->clear_slot (slot);
1054 }
1055
1056 /* For each loop, record list of exit edges, and start maintaining these
1057 lists. */
1058
1059 void
1060 record_loop_exits (void)
1061 {
1062 basic_block bb;
1063 edge_iterator ei;
1064 edge e;
1065
1066 if (!current_loops)
1067 return;
1068
1069 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1070 return;
1071 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1072
1073 gcc_assert (current_loops->exits == NULL);
1074 current_loops->exits
1075 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1076
1077 FOR_EACH_BB_FN (bb, cfun)
1078 {
1079 FOR_EACH_EDGE (e, ei, bb->succs)
1080 {
1081 rescan_loop_exit (e, true, false);
1082 }
1083 }
1084 }
1085
1086 /* Dumps information about the exit in *SLOT to FILE.
1087 Callback for htab_traverse. */
1088
1089 int
1090 dump_recorded_exit (loop_exit **slot, FILE *file)
1091 {
1092 struct loop_exit *exit = *slot;
1093 unsigned n = 0;
1094 edge e = exit->e;
1095
1096 for (; exit != NULL; exit = exit->next_e)
1097 n++;
1098
1099 fprintf (file, "Edge %d->%d exits %u loops\n",
1100 e->src->index, e->dest->index, n);
1101
1102 return 1;
1103 }
1104
1105 /* Dumps the recorded exits of loops to FILE. */
1106
1107 extern void dump_recorded_exits (FILE *);
1108 void
1109 dump_recorded_exits (FILE *file)
1110 {
1111 if (!current_loops->exits)
1112 return;
1113 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1114 }
1115
1116 /* Releases lists of loop exits. */
1117
1118 void
1119 release_recorded_exits (function *fn)
1120 {
1121 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1122 loops_for_fn (fn)->exits->empty ();
1123 loops_for_fn (fn)->exits = NULL;
1124 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1125 }
1126
1127 /* Returns the list of the exit edges of a LOOP. */
1128
1129 vec<edge>
1130 get_loop_exit_edges (const struct loop *loop)
1131 {
1132 vec<edge> edges = vNULL;
1133 edge e;
1134 unsigned i;
1135 basic_block *body;
1136 edge_iterator ei;
1137 struct loop_exit *exit;
1138
1139 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1140
1141 /* If we maintain the lists of exits, use them. Otherwise we must
1142 scan the body of the loop. */
1143 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1144 {
1145 for (exit = loop->exits->next; exit->e; exit = exit->next)
1146 edges.safe_push (exit->e);
1147 }
1148 else
1149 {
1150 body = get_loop_body (loop);
1151 for (i = 0; i < loop->num_nodes; i++)
1152 FOR_EACH_EDGE (e, ei, body[i]->succs)
1153 {
1154 if (!flow_bb_inside_loop_p (loop, e->dest))
1155 edges.safe_push (e);
1156 }
1157 free (body);
1158 }
1159
1160 return edges;
1161 }
1162
1163 /* Counts the number of conditional branches inside LOOP. */
1164
1165 unsigned
1166 num_loop_branches (const struct loop *loop)
1167 {
1168 unsigned i, n;
1169 basic_block * body;
1170
1171 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1172
1173 body = get_loop_body (loop);
1174 n = 0;
1175 for (i = 0; i < loop->num_nodes; i++)
1176 if (EDGE_COUNT (body[i]->succs) >= 2)
1177 n++;
1178 free (body);
1179
1180 return n;
1181 }
1182
1183 /* Adds basic block BB to LOOP. */
1184 void
1185 add_bb_to_loop (basic_block bb, struct loop *loop)
1186 {
1187 unsigned i;
1188 loop_p ploop;
1189 edge_iterator ei;
1190 edge e;
1191
1192 gcc_assert (bb->loop_father == NULL);
1193 bb->loop_father = loop;
1194 loop->num_nodes++;
1195 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1196 ploop->num_nodes++;
1197
1198 FOR_EACH_EDGE (e, ei, bb->succs)
1199 {
1200 rescan_loop_exit (e, true, false);
1201 }
1202 FOR_EACH_EDGE (e, ei, bb->preds)
1203 {
1204 rescan_loop_exit (e, true, false);
1205 }
1206 }
1207
1208 /* Remove basic block BB from loops. */
1209 void
1210 remove_bb_from_loops (basic_block bb)
1211 {
1212 unsigned i;
1213 struct loop *loop = bb->loop_father;
1214 loop_p ploop;
1215 edge_iterator ei;
1216 edge e;
1217
1218 gcc_assert (loop != NULL);
1219 loop->num_nodes--;
1220 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1221 ploop->num_nodes--;
1222 bb->loop_father = NULL;
1223
1224 FOR_EACH_EDGE (e, ei, bb->succs)
1225 {
1226 rescan_loop_exit (e, false, true);
1227 }
1228 FOR_EACH_EDGE (e, ei, bb->preds)
1229 {
1230 rescan_loop_exit (e, false, true);
1231 }
1232 }
1233
1234 /* Finds nearest common ancestor in loop tree for given loops. */
1235 struct loop *
1236 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1237 {
1238 unsigned sdepth, ddepth;
1239
1240 if (!loop_s) return loop_d;
1241 if (!loop_d) return loop_s;
1242
1243 sdepth = loop_depth (loop_s);
1244 ddepth = loop_depth (loop_d);
1245
1246 if (sdepth < ddepth)
1247 loop_d = (*loop_d->superloops)[sdepth];
1248 else if (sdepth > ddepth)
1249 loop_s = (*loop_s->superloops)[ddepth];
1250
1251 while (loop_s != loop_d)
1252 {
1253 loop_s = loop_outer (loop_s);
1254 loop_d = loop_outer (loop_d);
1255 }
1256 return loop_s;
1257 }
1258
1259 /* Removes LOOP from structures and frees its data. */
1260
1261 void
1262 delete_loop (struct loop *loop)
1263 {
1264 /* Remove the loop from structure. */
1265 flow_loop_tree_node_remove (loop);
1266
1267 /* Remove loop from loops array. */
1268 (*current_loops->larray)[loop->num] = NULL;
1269
1270 /* Free loop data. */
1271 flow_loop_free (loop);
1272 }
1273
1274 /* Cancels the LOOP; it must be innermost one. */
1275
1276 static void
1277 cancel_loop (struct loop *loop)
1278 {
1279 basic_block *bbs;
1280 unsigned i;
1281 struct loop *outer = loop_outer (loop);
1282
1283 gcc_assert (!loop->inner);
1284
1285 /* Move blocks up one level (they should be removed as soon as possible). */
1286 bbs = get_loop_body (loop);
1287 for (i = 0; i < loop->num_nodes; i++)
1288 bbs[i]->loop_father = outer;
1289
1290 free (bbs);
1291 delete_loop (loop);
1292 }
1293
1294 /* Cancels LOOP and all its subloops. */
1295 void
1296 cancel_loop_tree (struct loop *loop)
1297 {
1298 while (loop->inner)
1299 cancel_loop_tree (loop->inner);
1300 cancel_loop (loop);
1301 }
1302
1303 /* Checks that information about loops is correct
1304 -- sizes of loops are all right
1305 -- results of get_loop_body really belong to the loop
1306 -- loop header have just single entry edge and single latch edge
1307 -- loop latches have only single successor that is header of their loop
1308 -- irreducible loops are correctly marked
1309 -- the cached loop depth and loop father of each bb is correct
1310 */
1311 DEBUG_FUNCTION void
1312 verify_loop_structure (void)
1313 {
1314 unsigned *sizes, i, j;
1315 sbitmap irreds;
1316 basic_block bb, *bbs;
1317 struct loop *loop;
1318 int err = 0;
1319 edge e;
1320 unsigned num = number_of_loops (cfun);
1321 struct loop_exit *exit, *mexit;
1322 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1323 sbitmap visited;
1324
1325 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1326 {
1327 error ("loop verification on loop tree that needs fixup");
1328 err = 1;
1329 }
1330
1331 /* We need up-to-date dominators, compute or verify them. */
1332 if (!dom_available)
1333 calculate_dominance_info (CDI_DOMINATORS);
1334 else
1335 verify_dominators (CDI_DOMINATORS);
1336
1337 /* Check the loop tree root. */
1338 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1339 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1340 || (current_loops->tree_root->num_nodes
1341 != (unsigned) n_basic_blocks_for_fn (cfun)))
1342 {
1343 error ("corrupt loop tree root");
1344 err = 1;
1345 }
1346
1347 /* Check the headers. */
1348 FOR_EACH_BB_FN (bb, cfun)
1349 if (bb_loop_header_p (bb))
1350 {
1351 if (bb->loop_father->header == NULL)
1352 {
1353 error ("loop with header %d marked for removal", bb->index);
1354 err = 1;
1355 }
1356 else if (bb->loop_father->header != bb)
1357 {
1358 error ("loop with header %d not in loop tree", bb->index);
1359 err = 1;
1360 }
1361 }
1362 else if (bb->loop_father->header == bb)
1363 {
1364 error ("non-loop with header %d not marked for removal", bb->index);
1365 err = 1;
1366 }
1367
1368 /* Check the recorded loop father and sizes of loops. */
1369 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1370 bitmap_clear (visited);
1371 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1372 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1373 {
1374 unsigned n;
1375
1376 if (loop->header == NULL)
1377 {
1378 error ("removed loop %d in loop tree", loop->num);
1379 err = 1;
1380 continue;
1381 }
1382
1383 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1384 if (loop->num_nodes != n)
1385 {
1386 error ("size of loop %d should be %d, not %d",
1387 loop->num, n, loop->num_nodes);
1388 err = 1;
1389 }
1390
1391 for (j = 0; j < n; j++)
1392 {
1393 bb = bbs[j];
1394
1395 if (!flow_bb_inside_loop_p (loop, bb))
1396 {
1397 error ("bb %d does not belong to loop %d",
1398 bb->index, loop->num);
1399 err = 1;
1400 }
1401
1402 /* Ignore this block if it is in an inner loop. */
1403 if (bitmap_bit_p (visited, bb->index))
1404 continue;
1405 bitmap_set_bit (visited, bb->index);
1406
1407 if (bb->loop_father != loop)
1408 {
1409 error ("bb %d has father loop %d, should be loop %d",
1410 bb->index, bb->loop_father->num, loop->num);
1411 err = 1;
1412 }
1413 }
1414 }
1415 free (bbs);
1416 sbitmap_free (visited);
1417
1418 /* Check headers and latches. */
1419 FOR_EACH_LOOP (loop, 0)
1420 {
1421 i = loop->num;
1422 if (loop->header == NULL)
1423 continue;
1424 if (!bb_loop_header_p (loop->header))
1425 {
1426 error ("loop %d%'s header is not a loop header", i);
1427 err = 1;
1428 }
1429 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1430 && EDGE_COUNT (loop->header->preds) != 2)
1431 {
1432 error ("loop %d%'s header does not have exactly 2 entries", i);
1433 err = 1;
1434 }
1435 if (loop->latch)
1436 {
1437 if (!find_edge (loop->latch, loop->header))
1438 {
1439 error ("loop %d%'s latch does not have an edge to its header", i);
1440 err = 1;
1441 }
1442 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1443 {
1444 error ("loop %d%'s latch is not dominated by its header", i);
1445 err = 1;
1446 }
1447 }
1448 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1449 {
1450 if (!single_succ_p (loop->latch))
1451 {
1452 error ("loop %d%'s latch does not have exactly 1 successor", i);
1453 err = 1;
1454 }
1455 if (single_succ (loop->latch) != loop->header)
1456 {
1457 error ("loop %d%'s latch does not have header as successor", i);
1458 err = 1;
1459 }
1460 if (loop->latch->loop_father != loop)
1461 {
1462 error ("loop %d%'s latch does not belong directly to it", i);
1463 err = 1;
1464 }
1465 }
1466 if (loop->header->loop_father != loop)
1467 {
1468 error ("loop %d%'s header does not belong directly to it", i);
1469 err = 1;
1470 }
1471 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1472 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1473 {
1474 error ("loop %d%'s latch is marked as part of irreducible region", i);
1475 err = 1;
1476 }
1477 }
1478
1479 /* Check irreducible loops. */
1480 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1481 {
1482 /* Record old info. */
1483 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1484 FOR_EACH_BB_FN (bb, cfun)
1485 {
1486 edge_iterator ei;
1487 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1488 bitmap_set_bit (irreds, bb->index);
1489 else
1490 bitmap_clear_bit (irreds, bb->index);
1491 FOR_EACH_EDGE (e, ei, bb->succs)
1492 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1493 e->flags |= EDGE_ALL_FLAGS + 1;
1494 }
1495
1496 /* Recount it. */
1497 mark_irreducible_loops ();
1498
1499 /* Compare. */
1500 FOR_EACH_BB_FN (bb, cfun)
1501 {
1502 edge_iterator ei;
1503
1504 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1505 && !bitmap_bit_p (irreds, bb->index))
1506 {
1507 error ("basic block %d should be marked irreducible", bb->index);
1508 err = 1;
1509 }
1510 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1511 && bitmap_bit_p (irreds, bb->index))
1512 {
1513 error ("basic block %d should not be marked irreducible", bb->index);
1514 err = 1;
1515 }
1516 FOR_EACH_EDGE (e, ei, bb->succs)
1517 {
1518 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1519 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1520 {
1521 error ("edge from %d to %d should be marked irreducible",
1522 e->src->index, e->dest->index);
1523 err = 1;
1524 }
1525 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1526 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1527 {
1528 error ("edge from %d to %d should not be marked irreducible",
1529 e->src->index, e->dest->index);
1530 err = 1;
1531 }
1532 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1533 }
1534 }
1535 free (irreds);
1536 }
1537
1538 /* Check the recorded loop exits. */
1539 FOR_EACH_LOOP (loop, 0)
1540 {
1541 if (!loop->exits || loop->exits->e != NULL)
1542 {
1543 error ("corrupted head of the exits list of loop %d",
1544 loop->num);
1545 err = 1;
1546 }
1547 else
1548 {
1549 /* Check that the list forms a cycle, and all elements except
1550 for the head are nonnull. */
1551 for (mexit = loop->exits, exit = mexit->next, i = 0;
1552 exit->e && exit != mexit;
1553 exit = exit->next)
1554 {
1555 if (i++ & 1)
1556 mexit = mexit->next;
1557 }
1558
1559 if (exit != loop->exits)
1560 {
1561 error ("corrupted exits list of loop %d", loop->num);
1562 err = 1;
1563 }
1564 }
1565
1566 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1567 {
1568 if (loop->exits->next != loop->exits)
1569 {
1570 error ("nonempty exits list of loop %d, but exits are not recorded",
1571 loop->num);
1572 err = 1;
1573 }
1574 }
1575 }
1576
1577 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1578 {
1579 unsigned n_exits = 0, eloops;
1580
1581 sizes = XCNEWVEC (unsigned, num);
1582 memset (sizes, 0, sizeof (unsigned) * num);
1583 FOR_EACH_BB_FN (bb, cfun)
1584 {
1585 edge_iterator ei;
1586 if (bb->loop_father == current_loops->tree_root)
1587 continue;
1588 FOR_EACH_EDGE (e, ei, bb->succs)
1589 {
1590 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1591 continue;
1592
1593 n_exits++;
1594 exit = get_exit_descriptions (e);
1595 if (!exit)
1596 {
1597 error ("exit %d->%d not recorded",
1598 e->src->index, e->dest->index);
1599 err = 1;
1600 }
1601 eloops = 0;
1602 for (; exit; exit = exit->next_e)
1603 eloops++;
1604
1605 for (loop = bb->loop_father;
1606 loop != e->dest->loop_father
1607 /* When a loop exit is also an entry edge which
1608 can happen when avoiding CFG manipulations
1609 then the last loop exited is the outer loop
1610 of the loop entered. */
1611 && loop != loop_outer (e->dest->loop_father);
1612 loop = loop_outer (loop))
1613 {
1614 eloops--;
1615 sizes[loop->num]++;
1616 }
1617
1618 if (eloops != 0)
1619 {
1620 error ("wrong list of exited loops for edge %d->%d",
1621 e->src->index, e->dest->index);
1622 err = 1;
1623 }
1624 }
1625 }
1626
1627 if (n_exits != current_loops->exits->elements ())
1628 {
1629 error ("too many loop exits recorded");
1630 err = 1;
1631 }
1632
1633 FOR_EACH_LOOP (loop, 0)
1634 {
1635 eloops = 0;
1636 for (exit = loop->exits->next; exit->e; exit = exit->next)
1637 eloops++;
1638 if (eloops != sizes[loop->num])
1639 {
1640 error ("%d exits recorded for loop %d (having %d exits)",
1641 eloops, loop->num, sizes[loop->num]);
1642 err = 1;
1643 }
1644 }
1645
1646 free (sizes);
1647 }
1648
1649 gcc_assert (!err);
1650
1651 if (!dom_available)
1652 free_dominance_info (CDI_DOMINATORS);
1653 }
1654
1655 /* Returns latch edge of LOOP. */
1656 edge
1657 loop_latch_edge (const struct loop *loop)
1658 {
1659 return find_edge (loop->latch, loop->header);
1660 }
1661
1662 /* Returns preheader edge of LOOP. */
1663 edge
1664 loop_preheader_edge (const struct loop *loop)
1665 {
1666 edge e;
1667 edge_iterator ei;
1668
1669 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1670
1671 FOR_EACH_EDGE (e, ei, loop->header->preds)
1672 if (e->src != loop->latch)
1673 break;
1674
1675 return e;
1676 }
1677
1678 /* Returns true if E is an exit of LOOP. */
1679
1680 bool
1681 loop_exit_edge_p (const struct loop *loop, const_edge e)
1682 {
1683 return (flow_bb_inside_loop_p (loop, e->src)
1684 && !flow_bb_inside_loop_p (loop, e->dest));
1685 }
1686
1687 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1688 or more than one exit. If loops do not have the exits recorded, NULL
1689 is returned always. */
1690
1691 edge
1692 single_exit (const struct loop *loop)
1693 {
1694 struct loop_exit *exit = loop->exits->next;
1695
1696 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1697 return NULL;
1698
1699 if (exit->e && exit->next == loop->exits)
1700 return exit->e;
1701 else
1702 return NULL;
1703 }
1704
1705 /* Returns true when BB has an incoming edge exiting LOOP. */
1706
1707 bool
1708 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1709 {
1710 edge e;
1711 edge_iterator ei;
1712
1713 FOR_EACH_EDGE (e, ei, bb->preds)
1714 if (loop_exit_edge_p (loop, e))
1715 return true;
1716
1717 return false;
1718 }
1719
1720 /* Returns true when BB has an outgoing edge exiting LOOP. */
1721
1722 bool
1723 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1724 {
1725 edge e;
1726 edge_iterator ei;
1727
1728 FOR_EACH_EDGE (e, ei, bb->succs)
1729 if (loop_exit_edge_p (loop, e))
1730 return true;
1731
1732 return false;
1733 }
1734
1735 /* Return location corresponding to the loop control condition if possible. */
1736
1737 location_t
1738 get_loop_location (struct loop *loop)
1739 {
1740 rtx_insn *insn = NULL;
1741 struct niter_desc *desc = NULL;
1742 edge exit;
1743
1744 /* For a for or while loop, we would like to return the location
1745 of the for or while statement, if possible. To do this, look
1746 for the branch guarding the loop back-edge. */
1747
1748 /* If this is a simple loop with an in_edge, then the loop control
1749 branch is typically at the end of its source. */
1750 desc = get_simple_loop_desc (loop);
1751 if (desc->in_edge)
1752 {
1753 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1754 {
1755 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1756 return INSN_LOCATION (insn);
1757 }
1758 }
1759 /* If loop has a single exit, then the loop control branch
1760 must be at the end of its source. */
1761 if ((exit = single_exit (loop)))
1762 {
1763 FOR_BB_INSNS_REVERSE (exit->src, insn)
1764 {
1765 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1766 return INSN_LOCATION (insn);
1767 }
1768 }
1769 /* Next check the latch, to see if it is non-empty. */
1770 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1771 {
1772 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1773 return INSN_LOCATION (insn);
1774 }
1775 /* Finally, if none of the above identifies the loop control branch,
1776 return the first location in the loop header. */
1777 FOR_BB_INSNS (loop->header, insn)
1778 {
1779 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1780 return INSN_LOCATION (insn);
1781 }
1782 /* If all else fails, simply return the current function location. */
1783 return DECL_SOURCE_LOCATION (current_function_decl);
1784 }
1785
1786 /* Records that every statement in LOOP is executed I_BOUND times.
1787 REALISTIC is true if I_BOUND is expected to be close to the real number
1788 of iterations. UPPER is true if we are sure the loop iterates at most
1789 I_BOUND times. */
1790
1791 void
1792 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1793 bool realistic, bool upper)
1794 {
1795 /* Update the bounds only when there is no previous estimation, or when the
1796 current estimation is smaller. */
1797 if (upper
1798 && (!loop->any_upper_bound
1799 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1800 {
1801 loop->any_upper_bound = true;
1802 loop->nb_iterations_upper_bound = i_bound;
1803 if (!loop->any_likely_upper_bound)
1804 {
1805 loop->any_likely_upper_bound = true;
1806 loop->nb_iterations_likely_upper_bound = i_bound;
1807 }
1808 }
1809 if (realistic
1810 && (!loop->any_estimate
1811 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1812 {
1813 loop->any_estimate = true;
1814 loop->nb_iterations_estimate = i_bound;
1815 }
1816 if (!realistic
1817 && (!loop->any_likely_upper_bound
1818 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1819 {
1820 loop->any_likely_upper_bound = true;
1821 loop->nb_iterations_likely_upper_bound = i_bound;
1822 }
1823
1824 /* If an upper bound is smaller than the realistic estimate of the
1825 number of iterations, use the upper bound instead. */
1826 if (loop->any_upper_bound
1827 && loop->any_estimate
1828 && wi::ltu_p (loop->nb_iterations_upper_bound,
1829 loop->nb_iterations_estimate))
1830 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1831 if (loop->any_upper_bound
1832 && loop->any_likely_upper_bound
1833 && wi::ltu_p (loop->nb_iterations_upper_bound,
1834 loop->nb_iterations_likely_upper_bound))
1835 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1836 }
1837
1838 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1839 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1840 on the number of iterations of LOOP could not be derived, returns -1. */
1841
1842 HOST_WIDE_INT
1843 get_estimated_loop_iterations_int (struct loop *loop)
1844 {
1845 widest_int nit;
1846 HOST_WIDE_INT hwi_nit;
1847
1848 if (!get_estimated_loop_iterations (loop, &nit))
1849 return -1;
1850
1851 if (!wi::fits_shwi_p (nit))
1852 return -1;
1853 hwi_nit = nit.to_shwi ();
1854
1855 return hwi_nit < 0 ? -1 : hwi_nit;
1856 }
1857
1858 /* Returns an upper bound on the number of executions of statements
1859 in the LOOP. For statements before the loop exit, this exceeds
1860 the number of execution of the latch by one. */
1861
1862 HOST_WIDE_INT
1863 max_stmt_executions_int (struct loop *loop)
1864 {
1865 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1866 HOST_WIDE_INT snit;
1867
1868 if (nit == -1)
1869 return -1;
1870
1871 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1872
1873 /* If the computation overflows, return -1. */
1874 return snit < 0 ? -1 : snit;
1875 }
1876
1877 /* Returns an likely upper bound on the number of executions of statements
1878 in the LOOP. For statements before the loop exit, this exceeds
1879 the number of execution of the latch by one. */
1880
1881 HOST_WIDE_INT
1882 likely_max_stmt_executions_int (struct loop *loop)
1883 {
1884 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1885 HOST_WIDE_INT snit;
1886
1887 if (nit == -1)
1888 return -1;
1889
1890 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1891
1892 /* If the computation overflows, return -1. */
1893 return snit < 0 ? -1 : snit;
1894 }
1895
1896 /* Sets NIT to the estimated number of executions of the latch of the
1897 LOOP. If we have no reliable estimate, the function returns false, otherwise
1898 returns true. */
1899
1900 bool
1901 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1902 {
1903 /* Even if the bound is not recorded, possibly we can derrive one from
1904 profile. */
1905 if (!loop->any_estimate)
1906 {
1907 if (loop->header->count)
1908 {
1909 *nit = gcov_type_to_wide_int
1910 (expected_loop_iterations_unbounded (loop) + 1);
1911 return true;
1912 }
1913 return false;
1914 }
1915
1916 *nit = loop->nb_iterations_estimate;
1917 return true;
1918 }
1919
1920 /* Sets NIT to an upper bound for the maximum number of executions of the
1921 latch of the LOOP. If we have no reliable estimate, the function returns
1922 false, otherwise returns true. */
1923
1924 bool
1925 get_max_loop_iterations (const struct loop *loop, widest_int *nit)
1926 {
1927 if (!loop->any_upper_bound)
1928 return false;
1929
1930 *nit = loop->nb_iterations_upper_bound;
1931 return true;
1932 }
1933
1934 /* Similar to get_max_loop_iterations, but returns the estimate only
1935 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1936 on the number of iterations of LOOP could not be derived, returns -1. */
1937
1938 HOST_WIDE_INT
1939 get_max_loop_iterations_int (const struct loop *loop)
1940 {
1941 widest_int nit;
1942 HOST_WIDE_INT hwi_nit;
1943
1944 if (!get_max_loop_iterations (loop, &nit))
1945 return -1;
1946
1947 if (!wi::fits_shwi_p (nit))
1948 return -1;
1949 hwi_nit = nit.to_shwi ();
1950
1951 return hwi_nit < 0 ? -1 : hwi_nit;
1952 }
1953
1954 /* Sets NIT to an upper bound for the maximum number of executions of the
1955 latch of the LOOP. If we have no reliable estimate, the function returns
1956 false, otherwise returns true. */
1957
1958 bool
1959 get_likely_max_loop_iterations (struct loop *loop, widest_int *nit)
1960 {
1961 if (!loop->any_likely_upper_bound)
1962 return false;
1963
1964 *nit = loop->nb_iterations_likely_upper_bound;
1965 return true;
1966 }
1967
1968 /* Similar to get_max_loop_iterations, but returns the estimate only
1969 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1970 on the number of iterations of LOOP could not be derived, returns -1. */
1971
1972 HOST_WIDE_INT
1973 get_likely_max_loop_iterations_int (struct loop *loop)
1974 {
1975 widest_int nit;
1976 HOST_WIDE_INT hwi_nit;
1977
1978 if (!get_likely_max_loop_iterations (loop, &nit))
1979 return -1;
1980
1981 if (!wi::fits_shwi_p (nit))
1982 return -1;
1983 hwi_nit = nit.to_shwi ();
1984
1985 return hwi_nit < 0 ? -1 : hwi_nit;
1986 }
1987
1988 /* Returns the loop depth of the loop BB belongs to. */
1989
1990 int
1991 bb_loop_depth (const_basic_block bb)
1992 {
1993 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1994 }
1995
1996 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1997
1998 void
1999 mark_loop_for_removal (loop_p loop)
2000 {
2001 if (loop->header == NULL)
2002 return;
2003 loop->former_header = loop->header;
2004 loop->header = NULL;
2005 loop->latch = NULL;
2006 loops_state_set (LOOPS_NEED_FIXUP);
2007 }