]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
2013-03-26 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "tree-flow.h"
32 #include "pointer-set.h"
33 #include "ggc.h"
34 #include "dumpfile.h"
35
36 static void flow_loops_cfg_dump (FILE *);
37 \f
38 /* Dump loop related CFG information. */
39
40 static void
41 flow_loops_cfg_dump (FILE *file)
42 {
43 basic_block bb;
44
45 if (!file)
46 return;
47
48 FOR_EACH_BB (bb)
49 {
50 edge succ;
51 edge_iterator ei;
52
53 fprintf (file, ";; %d succs { ", bb->index);
54 FOR_EACH_EDGE (succ, ei, bb->succs)
55 fprintf (file, "%d ", succ->dest->index);
56 fprintf (file, "}\n");
57 }
58 }
59
60 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
61
62 bool
63 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
64 {
65 unsigned odepth = loop_depth (outer);
66
67 return (loop_depth (loop) > odepth
68 && (*loop->superloops)[odepth] == outer);
69 }
70
71 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
72 loops within LOOP. */
73
74 struct loop *
75 superloop_at_depth (struct loop *loop, unsigned depth)
76 {
77 unsigned ldepth = loop_depth (loop);
78
79 gcc_assert (depth <= ldepth);
80
81 if (depth == ldepth)
82 return loop;
83
84 return (*loop->superloops)[depth];
85 }
86
87 /* Returns the list of the latch edges of LOOP. */
88
89 static vec<edge>
90 get_loop_latch_edges (const struct loop *loop)
91 {
92 edge_iterator ei;
93 edge e;
94 vec<edge> ret = vNULL;
95
96 FOR_EACH_EDGE (e, ei, loop->header->preds)
97 {
98 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
99 ret.safe_push (e);
100 }
101
102 return ret;
103 }
104
105 /* Dump the loop information specified by LOOP to the stream FILE
106 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
107
108 void
109 flow_loop_dump (const struct loop *loop, FILE *file,
110 void (*loop_dump_aux) (const struct loop *, FILE *, int),
111 int verbose)
112 {
113 basic_block *bbs;
114 unsigned i;
115 vec<edge> latches;
116 edge e;
117
118 if (! loop || ! loop->header)
119 return;
120
121 fprintf (file, ";;\n;; Loop %d\n", loop->num);
122
123 fprintf (file, ";; header %d, ", loop->header->index);
124 if (loop->latch)
125 fprintf (file, "latch %d\n", loop->latch->index);
126 else
127 {
128 fprintf (file, "multiple latches:");
129 latches = get_loop_latch_edges (loop);
130 FOR_EACH_VEC_ELT (latches, i, e)
131 fprintf (file, " %d", e->src->index);
132 latches.release ();
133 fprintf (file, "\n");
134 }
135
136 fprintf (file, ";; depth %d, outer %ld\n",
137 loop_depth (loop), (long) (loop_outer (loop)
138 ? loop_outer (loop)->num : -1));
139
140 fprintf (file, ";; nodes:");
141 bbs = get_loop_body (loop);
142 for (i = 0; i < loop->num_nodes; i++)
143 fprintf (file, " %d", bbs[i]->index);
144 free (bbs);
145 fprintf (file, "\n");
146
147 if (loop_dump_aux)
148 loop_dump_aux (loop, file, verbose);
149 }
150
151 /* Dump the loop information about loops to the stream FILE,
152 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
153
154 void
155 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
156 {
157 loop_iterator li;
158 struct loop *loop;
159
160 if (!current_loops || ! file)
161 return;
162
163 fprintf (file, ";; %d loops found\n", number_of_loops ());
164
165 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
166 {
167 flow_loop_dump (loop, file, loop_dump_aux, verbose);
168 }
169
170 if (verbose)
171 flow_loops_cfg_dump (file);
172 }
173
174 /* Free data allocated for LOOP. */
175
176 void
177 flow_loop_free (struct loop *loop)
178 {
179 struct loop_exit *exit, *next;
180
181 vec_free (loop->superloops);
182
183 /* Break the list of the loop exit records. They will be freed when the
184 corresponding edge is rescanned or removed, and this avoids
185 accessing the (already released) head of the list stored in the
186 loop structure. */
187 for (exit = loop->exits->next; exit != loop->exits; exit = next)
188 {
189 next = exit->next;
190 exit->next = exit;
191 exit->prev = exit;
192 }
193
194 ggc_free (loop->exits);
195 ggc_free (loop);
196 }
197
198 /* Free all the memory allocated for LOOPS. */
199
200 void
201 flow_loops_free (struct loops *loops)
202 {
203 if (loops->larray)
204 {
205 unsigned i;
206 loop_p loop;
207
208 /* Free the loop descriptors. */
209 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
210 {
211 if (!loop)
212 continue;
213
214 flow_loop_free (loop);
215 }
216
217 vec_free (loops->larray);
218 }
219 }
220
221 /* Find the nodes contained within the LOOP with header HEADER.
222 Return the number of nodes within the loop. */
223
224 int
225 flow_loop_nodes_find (basic_block header, struct loop *loop)
226 {
227 vec<basic_block> stack = vNULL;
228 int num_nodes = 1;
229 edge latch;
230 edge_iterator latch_ei;
231
232 header->loop_father = loop;
233
234 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
235 {
236 if (latch->src->loop_father == loop
237 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
238 continue;
239
240 num_nodes++;
241 stack.safe_push (latch->src);
242 latch->src->loop_father = loop;
243
244 while (!stack.is_empty ())
245 {
246 basic_block node;
247 edge e;
248 edge_iterator ei;
249
250 node = stack.pop ();
251
252 FOR_EACH_EDGE (e, ei, node->preds)
253 {
254 basic_block ancestor = e->src;
255
256 if (ancestor->loop_father != loop)
257 {
258 ancestor->loop_father = loop;
259 num_nodes++;
260 stack.safe_push (ancestor);
261 }
262 }
263 }
264 }
265 stack.release ();
266
267 return num_nodes;
268 }
269
270 /* Records the vector of superloops of the loop LOOP, whose immediate
271 superloop is FATHER. */
272
273 static void
274 establish_preds (struct loop *loop, struct loop *father)
275 {
276 loop_p ploop;
277 unsigned depth = loop_depth (father) + 1;
278 unsigned i;
279
280 loop->superloops = 0;
281 vec_alloc (loop->superloops, depth);
282 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
283 loop->superloops->quick_push (ploop);
284 loop->superloops->quick_push (father);
285
286 for (ploop = loop->inner; ploop; ploop = ploop->next)
287 establish_preds (ploop, loop);
288 }
289
290 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
291 added loop. If LOOP has some children, take care of that their
292 pred field will be initialized correctly. */
293
294 void
295 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
296 {
297 loop->next = father->inner;
298 father->inner = loop;
299
300 establish_preds (loop, father);
301 }
302
303 /* Remove LOOP from the loop hierarchy tree. */
304
305 void
306 flow_loop_tree_node_remove (struct loop *loop)
307 {
308 struct loop *prev, *father;
309
310 father = loop_outer (loop);
311
312 /* Remove loop from the list of sons. */
313 if (father->inner == loop)
314 father->inner = loop->next;
315 else
316 {
317 for (prev = father->inner; prev->next != loop; prev = prev->next)
318 continue;
319 prev->next = loop->next;
320 }
321
322 loop->superloops = NULL;
323 }
324
325 /* Allocates and returns new loop structure. */
326
327 struct loop *
328 alloc_loop (void)
329 {
330 struct loop *loop = ggc_alloc_cleared_loop ();
331
332 loop->exits = ggc_alloc_cleared_loop_exit ();
333 loop->exits->next = loop->exits->prev = loop->exits;
334 loop->can_be_parallel = false;
335
336 return loop;
337 }
338
339 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
340 (including the root of the loop tree). */
341
342 static void
343 init_loops_structure (struct loops *loops, unsigned num_loops)
344 {
345 struct loop *root;
346
347 memset (loops, 0, sizeof *loops);
348 vec_alloc (loops->larray, num_loops);
349
350 /* Dummy loop containing whole function. */
351 root = alloc_loop ();
352 root->num_nodes = n_basic_blocks;
353 root->latch = EXIT_BLOCK_PTR;
354 root->header = ENTRY_BLOCK_PTR;
355 ENTRY_BLOCK_PTR->loop_father = root;
356 EXIT_BLOCK_PTR->loop_father = root;
357
358 loops->larray->quick_push (root);
359 loops->tree_root = root;
360 }
361
362 /* Returns whether HEADER is a loop header. */
363
364 bool
365 bb_loop_header_p (basic_block header)
366 {
367 edge_iterator ei;
368 edge e;
369
370 /* If we have an abnormal predecessor, do not consider the
371 loop (not worth the problems). */
372 if (bb_has_abnormal_pred (header))
373 return false;
374
375 /* Look for back edges where a predecessor is dominated
376 by this block. A natural loop has a single entry
377 node (header) that dominates all the nodes in the
378 loop. It also has single back edge to the header
379 from a latch node. */
380 FOR_EACH_EDGE (e, ei, header->preds)
381 {
382 basic_block latch = e->src;
383 if (latch != ENTRY_BLOCK_PTR
384 && dominated_by_p (CDI_DOMINATORS, latch, header))
385 return true;
386 }
387
388 return false;
389 }
390
391 /* Find all the natural loops in the function and save in LOOPS structure and
392 recalculate loop_father information in basic block structures.
393 If LOOPS is non-NULL then the loop structures for already recorded loops
394 will be re-used and their number will not change. We assume that no
395 stale loops exist in LOOPS.
396 When LOOPS is NULL it is allocated and re-built from scratch.
397 Return the built LOOPS structure. */
398
399 struct loops *
400 flow_loops_find (struct loops *loops)
401 {
402 bool from_scratch = (loops == NULL);
403 int *rc_order;
404 int b;
405 unsigned i;
406 vec<loop_p> larray;
407
408 /* Ensure that the dominators are computed. */
409 calculate_dominance_info (CDI_DOMINATORS);
410
411 if (!loops)
412 {
413 loops = ggc_alloc_cleared_loops ();
414 init_loops_structure (loops, 1);
415 }
416
417 /* Ensure that loop exits were released. */
418 gcc_assert (loops->exits == NULL);
419
420 /* Taking care of this degenerate case makes the rest of
421 this code simpler. */
422 if (n_basic_blocks == NUM_FIXED_BLOCKS)
423 return loops;
424
425 /* The root loop node contains all basic-blocks. */
426 loops->tree_root->num_nodes = n_basic_blocks;
427
428 /* Compute depth first search order of the CFG so that outer
429 natural loops will be found before inner natural loops. */
430 rc_order = XNEWVEC (int, n_basic_blocks);
431 pre_and_rev_post_order_compute (NULL, rc_order, false);
432
433 /* Gather all loop headers in reverse completion order and allocate
434 loop structures for loops that are not already present. */
435 larray.create (loops->larray->length());
436 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
437 {
438 basic_block header = BASIC_BLOCK (rc_order[b]);
439 if (bb_loop_header_p (header))
440 {
441 struct loop *loop;
442
443 /* The current active loop tree has valid loop-fathers for
444 header blocks. */
445 if (!from_scratch
446 && header->loop_father->header == header)
447 {
448 loop = header->loop_father;
449 /* If we found an existing loop remove it from the
450 loop tree. It is going to be inserted again
451 below. */
452 flow_loop_tree_node_remove (loop);
453 }
454 else
455 {
456 /* Otherwise allocate a new loop structure for the loop. */
457 loop = alloc_loop ();
458 /* ??? We could re-use unused loop slots here. */
459 loop->num = loops->larray->length ();
460 vec_safe_push (loops->larray, loop);
461 loop->header = header;
462
463 if (!from_scratch
464 && dump_file && (dump_flags & TDF_DETAILS))
465 fprintf (dump_file, "flow_loops_find: discovered new "
466 "loop %d with header %d\n",
467 loop->num, header->index);
468 }
469 /* Reset latch, we recompute it below. */
470 loop->latch = NULL;
471 larray.safe_push (loop);
472 }
473
474 /* Make blocks part of the loop root node at start. */
475 header->loop_father = loops->tree_root;
476 }
477
478 free (rc_order);
479
480 /* Now iterate over the loops found, insert them into the loop tree
481 and assign basic-block ownership. */
482 for (i = 0; i < larray.length (); ++i)
483 {
484 struct loop *loop = larray[i];
485 basic_block header = loop->header;
486 edge_iterator ei;
487 edge e;
488
489 flow_loop_tree_node_add (header->loop_father, loop);
490 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
491
492 /* Look for the latch for this header block, if it has just a
493 single one. */
494 FOR_EACH_EDGE (e, ei, header->preds)
495 {
496 basic_block latch = e->src;
497
498 if (flow_bb_inside_loop_p (loop, latch))
499 {
500 if (loop->latch != NULL)
501 {
502 /* More than one latch edge. */
503 loop->latch = NULL;
504 break;
505 }
506 loop->latch = latch;
507 }
508 }
509 }
510
511 larray.release();
512
513 return loops;
514 }
515
516 /* Ratio of frequencies of edges so that one of more latch edges is
517 considered to belong to inner loop with same header. */
518 #define HEAVY_EDGE_RATIO 8
519
520 /* Minimum number of samples for that we apply
521 find_subloop_latch_edge_by_profile heuristics. */
522 #define HEAVY_EDGE_MIN_SAMPLES 10
523
524 /* If the profile info is available, finds an edge in LATCHES that much more
525 frequent than the remaining edges. Returns such an edge, or NULL if we do
526 not find one.
527
528 We do not use guessed profile here, only the measured one. The guessed
529 profile is usually too flat and unreliable for this (and it is mostly based
530 on the loop structure of the program, so it does not make much sense to
531 derive the loop structure from it). */
532
533 static edge
534 find_subloop_latch_edge_by_profile (vec<edge> latches)
535 {
536 unsigned i;
537 edge e, me = NULL;
538 gcov_type mcount = 0, tcount = 0;
539
540 FOR_EACH_VEC_ELT (latches, i, e)
541 {
542 if (e->count > mcount)
543 {
544 me = e;
545 mcount = e->count;
546 }
547 tcount += e->count;
548 }
549
550 if (tcount < HEAVY_EDGE_MIN_SAMPLES
551 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
552 return NULL;
553
554 if (dump_file)
555 fprintf (dump_file,
556 "Found latch edge %d -> %d using profile information.\n",
557 me->src->index, me->dest->index);
558 return me;
559 }
560
561 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
562 on the structure of induction variables. Returns this edge, or NULL if we
563 do not find any.
564
565 We are quite conservative, and look just for an obvious simple innermost
566 loop (which is the case where we would lose the most performance by not
567 disambiguating the loop). More precisely, we look for the following
568 situation: The source of the chosen latch edge dominates sources of all
569 the other latch edges. Additionally, the header does not contain a phi node
570 such that the argument from the chosen edge is equal to the argument from
571 another edge. */
572
573 static edge
574 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
575 {
576 edge e, latch = latches[0];
577 unsigned i;
578 gimple phi;
579 gimple_stmt_iterator psi;
580 tree lop;
581 basic_block bb;
582
583 /* Find the candidate for the latch edge. */
584 for (i = 1; latches.iterate (i, &e); i++)
585 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
586 latch = e;
587
588 /* Verify that it dominates all the latch edges. */
589 FOR_EACH_VEC_ELT (latches, i, e)
590 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
591 return NULL;
592
593 /* Check for a phi node that would deny that this is a latch edge of
594 a subloop. */
595 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
596 {
597 phi = gsi_stmt (psi);
598 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
599
600 /* Ignore the values that are not changed inside the subloop. */
601 if (TREE_CODE (lop) != SSA_NAME
602 || SSA_NAME_DEF_STMT (lop) == phi)
603 continue;
604 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
605 if (!bb || !flow_bb_inside_loop_p (loop, bb))
606 continue;
607
608 FOR_EACH_VEC_ELT (latches, i, e)
609 if (e != latch
610 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
611 return NULL;
612 }
613
614 if (dump_file)
615 fprintf (dump_file,
616 "Found latch edge %d -> %d using iv structure.\n",
617 latch->src->index, latch->dest->index);
618 return latch;
619 }
620
621 /* If we can determine that one of the several latch edges of LOOP behaves
622 as a latch edge of a separate subloop, returns this edge. Otherwise
623 returns NULL. */
624
625 static edge
626 find_subloop_latch_edge (struct loop *loop)
627 {
628 vec<edge> latches = get_loop_latch_edges (loop);
629 edge latch = NULL;
630
631 if (latches.length () > 1)
632 {
633 latch = find_subloop_latch_edge_by_profile (latches);
634
635 if (!latch
636 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
637 should use cfghook for this, but it is hard to imagine it would
638 be useful elsewhere. */
639 && current_ir_type () == IR_GIMPLE)
640 latch = find_subloop_latch_edge_by_ivs (loop, latches);
641 }
642
643 latches.release ();
644 return latch;
645 }
646
647 /* Callback for make_forwarder_block. Returns true if the edge E is marked
648 in the set MFB_REIS_SET. */
649
650 static struct pointer_set_t *mfb_reis_set;
651 static bool
652 mfb_redirect_edges_in_set (edge e)
653 {
654 return pointer_set_contains (mfb_reis_set, e);
655 }
656
657 /* Creates a subloop of LOOP with latch edge LATCH. */
658
659 static void
660 form_subloop (struct loop *loop, edge latch)
661 {
662 edge_iterator ei;
663 edge e, new_entry;
664 struct loop *new_loop;
665
666 mfb_reis_set = pointer_set_create ();
667 FOR_EACH_EDGE (e, ei, loop->header->preds)
668 {
669 if (e != latch)
670 pointer_set_insert (mfb_reis_set, e);
671 }
672 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
673 NULL);
674 pointer_set_destroy (mfb_reis_set);
675
676 loop->header = new_entry->src;
677
678 /* Find the blocks and subloops that belong to the new loop, and add it to
679 the appropriate place in the loop tree. */
680 new_loop = alloc_loop ();
681 new_loop->header = new_entry->dest;
682 new_loop->latch = latch->src;
683 add_loop (new_loop, loop);
684 }
685
686 /* Make all the latch edges of LOOP to go to a single forwarder block --
687 a new latch of LOOP. */
688
689 static void
690 merge_latch_edges (struct loop *loop)
691 {
692 vec<edge> latches = get_loop_latch_edges (loop);
693 edge latch, e;
694 unsigned i;
695
696 gcc_assert (latches.length () > 0);
697
698 if (latches.length () == 1)
699 loop->latch = latches[0]->src;
700 else
701 {
702 if (dump_file)
703 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
704
705 mfb_reis_set = pointer_set_create ();
706 FOR_EACH_VEC_ELT (latches, i, e)
707 pointer_set_insert (mfb_reis_set, e);
708 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
709 NULL);
710 pointer_set_destroy (mfb_reis_set);
711
712 loop->header = latch->dest;
713 loop->latch = latch->src;
714 }
715
716 latches.release ();
717 }
718
719 /* LOOP may have several latch edges. Transform it into (possibly several)
720 loops with single latch edge. */
721
722 static void
723 disambiguate_multiple_latches (struct loop *loop)
724 {
725 edge e;
726
727 /* We eliminate the multiple latches by splitting the header to the forwarder
728 block F and the rest R, and redirecting the edges. There are two cases:
729
730 1) If there is a latch edge E that corresponds to a subloop (we guess
731 that based on profile -- if it is taken much more often than the
732 remaining edges; and on trees, using the information about induction
733 variables of the loops), we redirect E to R, all the remaining edges to
734 F, then rescan the loops and try again for the outer loop.
735 2) If there is no such edge, we redirect all latch edges to F, and the
736 entry edges to R, thus making F the single latch of the loop. */
737
738 if (dump_file)
739 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
740 loop->num);
741
742 /* During latch merging, we may need to redirect the entry edges to a new
743 block. This would cause problems if the entry edge was the one from the
744 entry block. To avoid having to handle this case specially, split
745 such entry edge. */
746 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
747 if (e)
748 split_edge (e);
749
750 while (1)
751 {
752 e = find_subloop_latch_edge (loop);
753 if (!e)
754 break;
755
756 form_subloop (loop, e);
757 }
758
759 merge_latch_edges (loop);
760 }
761
762 /* Split loops with multiple latch edges. */
763
764 void
765 disambiguate_loops_with_multiple_latches (void)
766 {
767 loop_iterator li;
768 struct loop *loop;
769
770 FOR_EACH_LOOP (li, loop, 0)
771 {
772 if (!loop->latch)
773 disambiguate_multiple_latches (loop);
774 }
775 }
776
777 /* Return nonzero if basic block BB belongs to LOOP. */
778 bool
779 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
780 {
781 struct loop *source_loop;
782
783 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
784 return 0;
785
786 source_loop = bb->loop_father;
787 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
788 }
789
790 /* Enumeration predicate for get_loop_body_with_size. */
791 static bool
792 glb_enum_p (const_basic_block bb, const void *glb_loop)
793 {
794 const struct loop *const loop = (const struct loop *) glb_loop;
795 return (bb != loop->header
796 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
797 }
798
799 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
800 order against direction of edges from latch. Specially, if
801 header != latch, latch is the 1-st block. LOOP cannot be the fake
802 loop tree root, and its size must be at most MAX_SIZE. The blocks
803 in the LOOP body are stored to BODY, and the size of the LOOP is
804 returned. */
805
806 unsigned
807 get_loop_body_with_size (const struct loop *loop, basic_block *body,
808 unsigned max_size)
809 {
810 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
811 body, max_size, loop);
812 }
813
814 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
815 order against direction of edges from latch. Specially, if
816 header != latch, latch is the 1-st block. */
817
818 basic_block *
819 get_loop_body (const struct loop *loop)
820 {
821 basic_block *body, bb;
822 unsigned tv = 0;
823
824 gcc_assert (loop->num_nodes);
825
826 body = XNEWVEC (basic_block, loop->num_nodes);
827
828 if (loop->latch == EXIT_BLOCK_PTR)
829 {
830 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
831 special-case the fake loop that contains the whole function. */
832 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
833 body[tv++] = loop->header;
834 body[tv++] = EXIT_BLOCK_PTR;
835 FOR_EACH_BB (bb)
836 body[tv++] = bb;
837 }
838 else
839 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
840
841 gcc_assert (tv == loop->num_nodes);
842 return body;
843 }
844
845 /* Fills dominance descendants inside LOOP of the basic block BB into
846 array TOVISIT from index *TV. */
847
848 static void
849 fill_sons_in_loop (const struct loop *loop, basic_block bb,
850 basic_block *tovisit, int *tv)
851 {
852 basic_block son, postpone = NULL;
853
854 tovisit[(*tv)++] = bb;
855 for (son = first_dom_son (CDI_DOMINATORS, bb);
856 son;
857 son = next_dom_son (CDI_DOMINATORS, son))
858 {
859 if (!flow_bb_inside_loop_p (loop, son))
860 continue;
861
862 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
863 {
864 postpone = son;
865 continue;
866 }
867 fill_sons_in_loop (loop, son, tovisit, tv);
868 }
869
870 if (postpone)
871 fill_sons_in_loop (loop, postpone, tovisit, tv);
872 }
873
874 /* Gets body of a LOOP (that must be different from the outermost loop)
875 sorted by dominance relation. Additionally, if a basic block s dominates
876 the latch, then only blocks dominated by s are be after it. */
877
878 basic_block *
879 get_loop_body_in_dom_order (const struct loop *loop)
880 {
881 basic_block *tovisit;
882 int tv;
883
884 gcc_assert (loop->num_nodes);
885
886 tovisit = XNEWVEC (basic_block, loop->num_nodes);
887
888 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
889
890 tv = 0;
891 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
892
893 gcc_assert (tv == (int) loop->num_nodes);
894
895 return tovisit;
896 }
897
898 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
899
900 basic_block *
901 get_loop_body_in_custom_order (const struct loop *loop,
902 int (*bb_comparator) (const void *, const void *))
903 {
904 basic_block *bbs = get_loop_body (loop);
905
906 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
907
908 return bbs;
909 }
910
911 /* Get body of a LOOP in breadth first sort order. */
912
913 basic_block *
914 get_loop_body_in_bfs_order (const struct loop *loop)
915 {
916 basic_block *blocks;
917 basic_block bb;
918 bitmap visited;
919 unsigned int i = 0;
920 unsigned int vc = 1;
921
922 gcc_assert (loop->num_nodes);
923 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
924
925 blocks = XNEWVEC (basic_block, loop->num_nodes);
926 visited = BITMAP_ALLOC (NULL);
927
928 bb = loop->header;
929 while (i < loop->num_nodes)
930 {
931 edge e;
932 edge_iterator ei;
933
934 if (bitmap_set_bit (visited, bb->index))
935 /* This basic block is now visited */
936 blocks[i++] = bb;
937
938 FOR_EACH_EDGE (e, ei, bb->succs)
939 {
940 if (flow_bb_inside_loop_p (loop, e->dest))
941 {
942 if (bitmap_set_bit (visited, e->dest->index))
943 blocks[i++] = e->dest;
944 }
945 }
946
947 gcc_assert (i >= vc);
948
949 bb = blocks[vc++];
950 }
951
952 BITMAP_FREE (visited);
953 return blocks;
954 }
955
956 /* Hash function for struct loop_exit. */
957
958 static hashval_t
959 loop_exit_hash (const void *ex)
960 {
961 const struct loop_exit *const exit = (const struct loop_exit *) ex;
962
963 return htab_hash_pointer (exit->e);
964 }
965
966 /* Equality function for struct loop_exit. Compares with edge. */
967
968 static int
969 loop_exit_eq (const void *ex, const void *e)
970 {
971 const struct loop_exit *const exit = (const struct loop_exit *) ex;
972
973 return exit->e == e;
974 }
975
976 /* Frees the list of loop exit descriptions EX. */
977
978 static void
979 loop_exit_free (void *ex)
980 {
981 struct loop_exit *exit = (struct loop_exit *) ex, *next;
982
983 for (; exit; exit = next)
984 {
985 next = exit->next_e;
986
987 exit->next->prev = exit->prev;
988 exit->prev->next = exit->next;
989
990 ggc_free (exit);
991 }
992 }
993
994 /* Returns the list of records for E as an exit of a loop. */
995
996 static struct loop_exit *
997 get_exit_descriptions (edge e)
998 {
999 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
1000 htab_hash_pointer (e));
1001 }
1002
1003 /* Updates the lists of loop exits in that E appears.
1004 If REMOVED is true, E is being removed, and we
1005 just remove it from the lists of exits.
1006 If NEW_EDGE is true and E is not a loop exit, we
1007 do not try to remove it from loop exit lists. */
1008
1009 void
1010 rescan_loop_exit (edge e, bool new_edge, bool removed)
1011 {
1012 void **slot;
1013 struct loop_exit *exits = NULL, *exit;
1014 struct loop *aloop, *cloop;
1015
1016 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1017 return;
1018
1019 if (!removed
1020 && e->src->loop_father != NULL
1021 && e->dest->loop_father != NULL
1022 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1023 {
1024 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1025 for (aloop = e->src->loop_father;
1026 aloop != cloop;
1027 aloop = loop_outer (aloop))
1028 {
1029 exit = ggc_alloc_loop_exit ();
1030 exit->e = e;
1031
1032 exit->next = aloop->exits->next;
1033 exit->prev = aloop->exits;
1034 exit->next->prev = exit;
1035 exit->prev->next = exit;
1036
1037 exit->next_e = exits;
1038 exits = exit;
1039 }
1040 }
1041
1042 if (!exits && new_edge)
1043 return;
1044
1045 slot = htab_find_slot_with_hash (current_loops->exits, e,
1046 htab_hash_pointer (e),
1047 exits ? INSERT : NO_INSERT);
1048 if (!slot)
1049 return;
1050
1051 if (exits)
1052 {
1053 if (*slot)
1054 loop_exit_free (*slot);
1055 *slot = exits;
1056 }
1057 else
1058 htab_clear_slot (current_loops->exits, slot);
1059 }
1060
1061 /* For each loop, record list of exit edges, and start maintaining these
1062 lists. */
1063
1064 void
1065 record_loop_exits (void)
1066 {
1067 basic_block bb;
1068 edge_iterator ei;
1069 edge e;
1070
1071 if (!current_loops)
1072 return;
1073
1074 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1075 return;
1076 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1077
1078 gcc_assert (current_loops->exits == NULL);
1079 current_loops->exits = htab_create_ggc (2 * number_of_loops (),
1080 loop_exit_hash, loop_exit_eq,
1081 loop_exit_free);
1082
1083 FOR_EACH_BB (bb)
1084 {
1085 FOR_EACH_EDGE (e, ei, bb->succs)
1086 {
1087 rescan_loop_exit (e, true, false);
1088 }
1089 }
1090 }
1091
1092 /* Dumps information about the exit in *SLOT to FILE.
1093 Callback for htab_traverse. */
1094
1095 static int
1096 dump_recorded_exit (void **slot, void *file)
1097 {
1098 struct loop_exit *exit = (struct loop_exit *) *slot;
1099 unsigned n = 0;
1100 edge e = exit->e;
1101
1102 for (; exit != NULL; exit = exit->next_e)
1103 n++;
1104
1105 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1106 e->src->index, e->dest->index, n);
1107
1108 return 1;
1109 }
1110
1111 /* Dumps the recorded exits of loops to FILE. */
1112
1113 extern void dump_recorded_exits (FILE *);
1114 void
1115 dump_recorded_exits (FILE *file)
1116 {
1117 if (!current_loops->exits)
1118 return;
1119 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1120 }
1121
1122 /* Releases lists of loop exits. */
1123
1124 void
1125 release_recorded_exits (void)
1126 {
1127 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1128 htab_delete (current_loops->exits);
1129 current_loops->exits = NULL;
1130 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1131 }
1132
1133 /* Returns the list of the exit edges of a LOOP. */
1134
1135 vec<edge>
1136 get_loop_exit_edges (const struct loop *loop)
1137 {
1138 vec<edge> edges = vNULL;
1139 edge e;
1140 unsigned i;
1141 basic_block *body;
1142 edge_iterator ei;
1143 struct loop_exit *exit;
1144
1145 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1146
1147 /* If we maintain the lists of exits, use them. Otherwise we must
1148 scan the body of the loop. */
1149 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1150 {
1151 for (exit = loop->exits->next; exit->e; exit = exit->next)
1152 edges.safe_push (exit->e);
1153 }
1154 else
1155 {
1156 body = get_loop_body (loop);
1157 for (i = 0; i < loop->num_nodes; i++)
1158 FOR_EACH_EDGE (e, ei, body[i]->succs)
1159 {
1160 if (!flow_bb_inside_loop_p (loop, e->dest))
1161 edges.safe_push (e);
1162 }
1163 free (body);
1164 }
1165
1166 return edges;
1167 }
1168
1169 /* Counts the number of conditional branches inside LOOP. */
1170
1171 unsigned
1172 num_loop_branches (const struct loop *loop)
1173 {
1174 unsigned i, n;
1175 basic_block * body;
1176
1177 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1178
1179 body = get_loop_body (loop);
1180 n = 0;
1181 for (i = 0; i < loop->num_nodes; i++)
1182 if (EDGE_COUNT (body[i]->succs) >= 2)
1183 n++;
1184 free (body);
1185
1186 return n;
1187 }
1188
1189 /* Adds basic block BB to LOOP. */
1190 void
1191 add_bb_to_loop (basic_block bb, struct loop *loop)
1192 {
1193 unsigned i;
1194 loop_p ploop;
1195 edge_iterator ei;
1196 edge e;
1197
1198 gcc_assert (bb->loop_father == NULL);
1199 bb->loop_father = loop;
1200 loop->num_nodes++;
1201 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1202 ploop->num_nodes++;
1203
1204 FOR_EACH_EDGE (e, ei, bb->succs)
1205 {
1206 rescan_loop_exit (e, true, false);
1207 }
1208 FOR_EACH_EDGE (e, ei, bb->preds)
1209 {
1210 rescan_loop_exit (e, true, false);
1211 }
1212 }
1213
1214 /* Remove basic block BB from loops. */
1215 void
1216 remove_bb_from_loops (basic_block bb)
1217 {
1218 unsigned i;
1219 struct loop *loop = bb->loop_father;
1220 loop_p ploop;
1221 edge_iterator ei;
1222 edge e;
1223
1224 gcc_assert (loop != NULL);
1225 loop->num_nodes--;
1226 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1227 ploop->num_nodes--;
1228 bb->loop_father = NULL;
1229
1230 FOR_EACH_EDGE (e, ei, bb->succs)
1231 {
1232 rescan_loop_exit (e, false, true);
1233 }
1234 FOR_EACH_EDGE (e, ei, bb->preds)
1235 {
1236 rescan_loop_exit (e, false, true);
1237 }
1238 }
1239
1240 /* Finds nearest common ancestor in loop tree for given loops. */
1241 struct loop *
1242 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1243 {
1244 unsigned sdepth, ddepth;
1245
1246 if (!loop_s) return loop_d;
1247 if (!loop_d) return loop_s;
1248
1249 sdepth = loop_depth (loop_s);
1250 ddepth = loop_depth (loop_d);
1251
1252 if (sdepth < ddepth)
1253 loop_d = (*loop_d->superloops)[sdepth];
1254 else if (sdepth > ddepth)
1255 loop_s = (*loop_s->superloops)[ddepth];
1256
1257 while (loop_s != loop_d)
1258 {
1259 loop_s = loop_outer (loop_s);
1260 loop_d = loop_outer (loop_d);
1261 }
1262 return loop_s;
1263 }
1264
1265 /* Removes LOOP from structures and frees its data. */
1266
1267 void
1268 delete_loop (struct loop *loop)
1269 {
1270 /* Remove the loop from structure. */
1271 flow_loop_tree_node_remove (loop);
1272
1273 /* Remove loop from loops array. */
1274 (*current_loops->larray)[loop->num] = NULL;
1275
1276 /* Free loop data. */
1277 flow_loop_free (loop);
1278 }
1279
1280 /* Cancels the LOOP; it must be innermost one. */
1281
1282 static void
1283 cancel_loop (struct loop *loop)
1284 {
1285 basic_block *bbs;
1286 unsigned i;
1287 struct loop *outer = loop_outer (loop);
1288
1289 gcc_assert (!loop->inner);
1290
1291 /* Move blocks up one level (they should be removed as soon as possible). */
1292 bbs = get_loop_body (loop);
1293 for (i = 0; i < loop->num_nodes; i++)
1294 bbs[i]->loop_father = outer;
1295
1296 free (bbs);
1297 delete_loop (loop);
1298 }
1299
1300 /* Cancels LOOP and all its subloops. */
1301 void
1302 cancel_loop_tree (struct loop *loop)
1303 {
1304 while (loop->inner)
1305 cancel_loop_tree (loop->inner);
1306 cancel_loop (loop);
1307 }
1308
1309 /* Checks that information about loops is correct
1310 -- sizes of loops are all right
1311 -- results of get_loop_body really belong to the loop
1312 -- loop header have just single entry edge and single latch edge
1313 -- loop latches have only single successor that is header of their loop
1314 -- irreducible loops are correctly marked
1315 -- the cached loop depth and loop father of each bb is correct
1316 */
1317 DEBUG_FUNCTION void
1318 verify_loop_structure (void)
1319 {
1320 unsigned *sizes, i, j;
1321 sbitmap irreds;
1322 basic_block bb, *bbs;
1323 struct loop *loop;
1324 int err = 0;
1325 edge e;
1326 unsigned num = number_of_loops ();
1327 loop_iterator li;
1328 struct loop_exit *exit, *mexit;
1329 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1330 sbitmap visited;
1331
1332 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1333 {
1334 error ("loop verification on loop tree that needs fixup");
1335 err = 1;
1336 }
1337
1338 /* We need up-to-date dominators, compute or verify them. */
1339 if (!dom_available)
1340 calculate_dominance_info (CDI_DOMINATORS);
1341 else
1342 verify_dominators (CDI_DOMINATORS);
1343
1344 /* Check the headers. */
1345 FOR_EACH_BB (bb)
1346 if (bb_loop_header_p (bb))
1347 {
1348 if (bb->loop_father->header == NULL)
1349 {
1350 error ("loop with header %d marked for removal", bb->index);
1351 err = 1;
1352 }
1353 else if (bb->loop_father->header != bb)
1354 {
1355 error ("loop with header %d not in loop tree", bb->index);
1356 err = 1;
1357 }
1358 }
1359 else if (bb->loop_father->header == bb)
1360 {
1361 error ("non-loop with header %d not marked for removal", bb->index);
1362 err = 1;
1363 }
1364
1365 /* Check the recorded loop father and sizes of loops. */
1366 visited = sbitmap_alloc (last_basic_block);
1367 bitmap_clear (visited);
1368 bbs = XNEWVEC (basic_block, n_basic_blocks);
1369 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1370 {
1371 unsigned n;
1372
1373 if (loop->header == NULL)
1374 {
1375 error ("removed loop %d in loop tree", loop->num);
1376 err = 1;
1377 continue;
1378 }
1379
1380 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
1381 if (loop->num_nodes != n)
1382 {
1383 error ("size of loop %d should be %d, not %d",
1384 loop->num, n, loop->num_nodes);
1385 err = 1;
1386 }
1387
1388 for (j = 0; j < n; j++)
1389 {
1390 bb = bbs[j];
1391
1392 if (!flow_bb_inside_loop_p (loop, bb))
1393 {
1394 error ("bb %d does not belong to loop %d",
1395 bb->index, loop->num);
1396 err = 1;
1397 }
1398
1399 /* Ignore this block if it is in an inner loop. */
1400 if (bitmap_bit_p (visited, bb->index))
1401 continue;
1402 bitmap_set_bit (visited, bb->index);
1403
1404 if (bb->loop_father != loop)
1405 {
1406 error ("bb %d has father loop %d, should be loop %d",
1407 bb->index, bb->loop_father->num, loop->num);
1408 err = 1;
1409 }
1410 }
1411 }
1412 free (bbs);
1413 sbitmap_free (visited);
1414
1415 /* Check headers and latches. */
1416 FOR_EACH_LOOP (li, loop, 0)
1417 {
1418 i = loop->num;
1419 if (loop->header == NULL)
1420 continue;
1421 if (!bb_loop_header_p (loop->header))
1422 {
1423 error ("loop %d%'s header is not a loop header", i);
1424 err = 1;
1425 }
1426 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1427 && EDGE_COUNT (loop->header->preds) != 2)
1428 {
1429 error ("loop %d%'s header does not have exactly 2 entries", i);
1430 err = 1;
1431 }
1432 if (loop->latch)
1433 {
1434 if (!find_edge (loop->latch, loop->header))
1435 {
1436 error ("loop %d%'s latch does not have an edge to its header", i);
1437 err = 1;
1438 }
1439 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1440 {
1441 error ("loop %d%'s latch is not dominated by its header", i);
1442 err = 1;
1443 }
1444 }
1445 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1446 {
1447 if (!single_succ_p (loop->latch))
1448 {
1449 error ("loop %d%'s latch does not have exactly 1 successor", i);
1450 err = 1;
1451 }
1452 if (single_succ (loop->latch) != loop->header)
1453 {
1454 error ("loop %d%'s latch does not have header as successor", i);
1455 err = 1;
1456 }
1457 if (loop->latch->loop_father != loop)
1458 {
1459 error ("loop %d%'s latch does not belong directly to it", i);
1460 err = 1;
1461 }
1462 }
1463 if (loop->header->loop_father != loop)
1464 {
1465 error ("loop %d%'s header does not belong directly to it", i);
1466 err = 1;
1467 }
1468 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1469 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1470 {
1471 error ("loop %d%'s latch is marked as part of irreducible region", i);
1472 err = 1;
1473 }
1474 }
1475
1476 /* Check irreducible loops. */
1477 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1478 {
1479 /* Record old info. */
1480 irreds = sbitmap_alloc (last_basic_block);
1481 FOR_EACH_BB (bb)
1482 {
1483 edge_iterator ei;
1484 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1485 bitmap_set_bit (irreds, bb->index);
1486 else
1487 bitmap_clear_bit (irreds, bb->index);
1488 FOR_EACH_EDGE (e, ei, bb->succs)
1489 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1490 e->flags |= EDGE_ALL_FLAGS + 1;
1491 }
1492
1493 /* Recount it. */
1494 mark_irreducible_loops ();
1495
1496 /* Compare. */
1497 FOR_EACH_BB (bb)
1498 {
1499 edge_iterator ei;
1500
1501 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1502 && !bitmap_bit_p (irreds, bb->index))
1503 {
1504 error ("basic block %d should be marked irreducible", bb->index);
1505 err = 1;
1506 }
1507 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1508 && bitmap_bit_p (irreds, bb->index))
1509 {
1510 error ("basic block %d should not be marked irreducible", bb->index);
1511 err = 1;
1512 }
1513 FOR_EACH_EDGE (e, ei, bb->succs)
1514 {
1515 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1516 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1517 {
1518 error ("edge from %d to %d should be marked irreducible",
1519 e->src->index, e->dest->index);
1520 err = 1;
1521 }
1522 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1523 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1524 {
1525 error ("edge from %d to %d should not be marked irreducible",
1526 e->src->index, e->dest->index);
1527 err = 1;
1528 }
1529 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1530 }
1531 }
1532 free (irreds);
1533 }
1534
1535 /* Check the recorded loop exits. */
1536 FOR_EACH_LOOP (li, loop, 0)
1537 {
1538 if (!loop->exits || loop->exits->e != NULL)
1539 {
1540 error ("corrupted head of the exits list of loop %d",
1541 loop->num);
1542 err = 1;
1543 }
1544 else
1545 {
1546 /* Check that the list forms a cycle, and all elements except
1547 for the head are nonnull. */
1548 for (mexit = loop->exits, exit = mexit->next, i = 0;
1549 exit->e && exit != mexit;
1550 exit = exit->next)
1551 {
1552 if (i++ & 1)
1553 mexit = mexit->next;
1554 }
1555
1556 if (exit != loop->exits)
1557 {
1558 error ("corrupted exits list of loop %d", loop->num);
1559 err = 1;
1560 }
1561 }
1562
1563 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1564 {
1565 if (loop->exits->next != loop->exits)
1566 {
1567 error ("nonempty exits list of loop %d, but exits are not recorded",
1568 loop->num);
1569 err = 1;
1570 }
1571 }
1572 }
1573
1574 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1575 {
1576 unsigned n_exits = 0, eloops;
1577
1578 sizes = XCNEWVEC (unsigned, num);
1579 memset (sizes, 0, sizeof (unsigned) * num);
1580 FOR_EACH_BB (bb)
1581 {
1582 edge_iterator ei;
1583 if (bb->loop_father == current_loops->tree_root)
1584 continue;
1585 FOR_EACH_EDGE (e, ei, bb->succs)
1586 {
1587 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1588 continue;
1589
1590 n_exits++;
1591 exit = get_exit_descriptions (e);
1592 if (!exit)
1593 {
1594 error ("exit %d->%d not recorded",
1595 e->src->index, e->dest->index);
1596 err = 1;
1597 }
1598 eloops = 0;
1599 for (; exit; exit = exit->next_e)
1600 eloops++;
1601
1602 for (loop = bb->loop_father;
1603 loop != e->dest->loop_father
1604 /* When a loop exit is also an entry edge which
1605 can happen when avoiding CFG manipulations
1606 then the last loop exited is the outer loop
1607 of the loop entered. */
1608 && loop != loop_outer (e->dest->loop_father);
1609 loop = loop_outer (loop))
1610 {
1611 eloops--;
1612 sizes[loop->num]++;
1613 }
1614
1615 if (eloops != 0)
1616 {
1617 error ("wrong list of exited loops for edge %d->%d",
1618 e->src->index, e->dest->index);
1619 err = 1;
1620 }
1621 }
1622 }
1623
1624 if (n_exits != htab_elements (current_loops->exits))
1625 {
1626 error ("too many loop exits recorded");
1627 err = 1;
1628 }
1629
1630 FOR_EACH_LOOP (li, loop, 0)
1631 {
1632 eloops = 0;
1633 for (exit = loop->exits->next; exit->e; exit = exit->next)
1634 eloops++;
1635 if (eloops != sizes[loop->num])
1636 {
1637 error ("%d exits recorded for loop %d (having %d exits)",
1638 eloops, loop->num, sizes[loop->num]);
1639 err = 1;
1640 }
1641 }
1642
1643 free (sizes);
1644 }
1645
1646 gcc_assert (!err);
1647
1648 if (!dom_available)
1649 free_dominance_info (CDI_DOMINATORS);
1650 }
1651
1652 /* Returns latch edge of LOOP. */
1653 edge
1654 loop_latch_edge (const struct loop *loop)
1655 {
1656 return find_edge (loop->latch, loop->header);
1657 }
1658
1659 /* Returns preheader edge of LOOP. */
1660 edge
1661 loop_preheader_edge (const struct loop *loop)
1662 {
1663 edge e;
1664 edge_iterator ei;
1665
1666 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1667
1668 FOR_EACH_EDGE (e, ei, loop->header->preds)
1669 if (e->src != loop->latch)
1670 break;
1671
1672 return e;
1673 }
1674
1675 /* Returns true if E is an exit of LOOP. */
1676
1677 bool
1678 loop_exit_edge_p (const struct loop *loop, const_edge e)
1679 {
1680 return (flow_bb_inside_loop_p (loop, e->src)
1681 && !flow_bb_inside_loop_p (loop, e->dest));
1682 }
1683
1684 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1685 or more than one exit. If loops do not have the exits recorded, NULL
1686 is returned always. */
1687
1688 edge
1689 single_exit (const struct loop *loop)
1690 {
1691 struct loop_exit *exit = loop->exits->next;
1692
1693 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1694 return NULL;
1695
1696 if (exit->e && exit->next == loop->exits)
1697 return exit->e;
1698 else
1699 return NULL;
1700 }
1701
1702 /* Returns true when BB has an incoming edge exiting LOOP. */
1703
1704 bool
1705 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1706 {
1707 edge e;
1708 edge_iterator ei;
1709
1710 FOR_EACH_EDGE (e, ei, bb->preds)
1711 if (loop_exit_edge_p (loop, e))
1712 return true;
1713
1714 return false;
1715 }
1716
1717 /* Returns true when BB has an outgoing edge exiting LOOP. */
1718
1719 bool
1720 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1721 {
1722 edge e;
1723 edge_iterator ei;
1724
1725 FOR_EACH_EDGE (e, ei, bb->succs)
1726 if (loop_exit_edge_p (loop, e))
1727 return true;
1728
1729 return false;
1730 }
1731
1732 /* Return location corresponding to the loop control condition if possible. */
1733
1734 location_t
1735 get_loop_location (struct loop *loop)
1736 {
1737 rtx insn = NULL;
1738 struct niter_desc *desc = NULL;
1739 edge exit;
1740
1741 /* For a for or while loop, we would like to return the location
1742 of the for or while statement, if possible. To do this, look
1743 for the branch guarding the loop back-edge. */
1744
1745 /* If this is a simple loop with an in_edge, then the loop control
1746 branch is typically at the end of its source. */
1747 desc = get_simple_loop_desc (loop);
1748 if (desc->in_edge)
1749 {
1750 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1751 {
1752 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1753 return INSN_LOCATION (insn);
1754 }
1755 }
1756 /* If loop has a single exit, then the loop control branch
1757 must be at the end of its source. */
1758 if ((exit = single_exit (loop)))
1759 {
1760 FOR_BB_INSNS_REVERSE (exit->src, insn)
1761 {
1762 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1763 return INSN_LOCATION (insn);
1764 }
1765 }
1766 /* Next check the latch, to see if it is non-empty. */
1767 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1768 {
1769 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1770 return INSN_LOCATION (insn);
1771 }
1772 /* Finally, if none of the above identifies the loop control branch,
1773 return the first location in the loop header. */
1774 FOR_BB_INSNS (loop->header, insn)
1775 {
1776 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1777 return INSN_LOCATION (insn);
1778 }
1779 /* If all else fails, simply return the current function location. */
1780 return DECL_SOURCE_LOCATION (current_function_decl);
1781 }
1782