]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
Eliminate FOR_EACH_BB macro.
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "pointer-set.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "dumpfile.h"
40
41 static void flow_loops_cfg_dump (FILE *);
42 \f
43 /* Dump loop related CFG information. */
44
45 static void
46 flow_loops_cfg_dump (FILE *file)
47 {
48 basic_block bb;
49
50 if (!file)
51 return;
52
53 FOR_EACH_BB_FN (bb, cfun)
54 {
55 edge succ;
56 edge_iterator ei;
57
58 fprintf (file, ";; %d succs { ", bb->index);
59 FOR_EACH_EDGE (succ, ei, bb->succs)
60 fprintf (file, "%d ", succ->dest->index);
61 fprintf (file, "}\n");
62 }
63 }
64
65 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
66
67 bool
68 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
69 {
70 unsigned odepth = loop_depth (outer);
71
72 return (loop_depth (loop) > odepth
73 && (*loop->superloops)[odepth] == outer);
74 }
75
76 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
77 loops within LOOP. */
78
79 struct loop *
80 superloop_at_depth (struct loop *loop, unsigned depth)
81 {
82 unsigned ldepth = loop_depth (loop);
83
84 gcc_assert (depth <= ldepth);
85
86 if (depth == ldepth)
87 return loop;
88
89 return (*loop->superloops)[depth];
90 }
91
92 /* Returns the list of the latch edges of LOOP. */
93
94 static vec<edge>
95 get_loop_latch_edges (const struct loop *loop)
96 {
97 edge_iterator ei;
98 edge e;
99 vec<edge> ret = vNULL;
100
101 FOR_EACH_EDGE (e, ei, loop->header->preds)
102 {
103 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
104 ret.safe_push (e);
105 }
106
107 return ret;
108 }
109
110 /* Dump the loop information specified by LOOP to the stream FILE
111 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
112
113 void
114 flow_loop_dump (const struct loop *loop, FILE *file,
115 void (*loop_dump_aux) (const struct loop *, FILE *, int),
116 int verbose)
117 {
118 basic_block *bbs;
119 unsigned i;
120 vec<edge> latches;
121 edge e;
122
123 if (! loop || ! loop->header)
124 return;
125
126 fprintf (file, ";;\n;; Loop %d\n", loop->num);
127
128 fprintf (file, ";; header %d, ", loop->header->index);
129 if (loop->latch)
130 fprintf (file, "latch %d\n", loop->latch->index);
131 else
132 {
133 fprintf (file, "multiple latches:");
134 latches = get_loop_latch_edges (loop);
135 FOR_EACH_VEC_ELT (latches, i, e)
136 fprintf (file, " %d", e->src->index);
137 latches.release ();
138 fprintf (file, "\n");
139 }
140
141 fprintf (file, ";; depth %d, outer %ld\n",
142 loop_depth (loop), (long) (loop_outer (loop)
143 ? loop_outer (loop)->num : -1));
144
145 fprintf (file, ";; nodes:");
146 bbs = get_loop_body (loop);
147 for (i = 0; i < loop->num_nodes; i++)
148 fprintf (file, " %d", bbs[i]->index);
149 free (bbs);
150 fprintf (file, "\n");
151
152 if (loop_dump_aux)
153 loop_dump_aux (loop, file, verbose);
154 }
155
156 /* Dump the loop information about loops to the stream FILE,
157 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
158
159 void
160 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
161 {
162 struct loop *loop;
163
164 if (!current_loops || ! file)
165 return;
166
167 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
168
169 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
170 {
171 flow_loop_dump (loop, file, loop_dump_aux, verbose);
172 }
173
174 if (verbose)
175 flow_loops_cfg_dump (file);
176 }
177
178 /* Free data allocated for LOOP. */
179
180 void
181 flow_loop_free (struct loop *loop)
182 {
183 struct loop_exit *exit, *next;
184
185 vec_free (loop->superloops);
186
187 /* Break the list of the loop exit records. They will be freed when the
188 corresponding edge is rescanned or removed, and this avoids
189 accessing the (already released) head of the list stored in the
190 loop structure. */
191 for (exit = loop->exits->next; exit != loop->exits; exit = next)
192 {
193 next = exit->next;
194 exit->next = exit;
195 exit->prev = exit;
196 }
197
198 ggc_free (loop->exits);
199 ggc_free (loop);
200 }
201
202 /* Free all the memory allocated for LOOPS. */
203
204 void
205 flow_loops_free (struct loops *loops)
206 {
207 if (loops->larray)
208 {
209 unsigned i;
210 loop_p loop;
211
212 /* Free the loop descriptors. */
213 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
214 {
215 if (!loop)
216 continue;
217
218 flow_loop_free (loop);
219 }
220
221 vec_free (loops->larray);
222 }
223 }
224
225 /* Find the nodes contained within the LOOP with header HEADER.
226 Return the number of nodes within the loop. */
227
228 int
229 flow_loop_nodes_find (basic_block header, struct loop *loop)
230 {
231 vec<basic_block> stack = vNULL;
232 int num_nodes = 1;
233 edge latch;
234 edge_iterator latch_ei;
235
236 header->loop_father = loop;
237
238 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
239 {
240 if (latch->src->loop_father == loop
241 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
242 continue;
243
244 num_nodes++;
245 stack.safe_push (latch->src);
246 latch->src->loop_father = loop;
247
248 while (!stack.is_empty ())
249 {
250 basic_block node;
251 edge e;
252 edge_iterator ei;
253
254 node = stack.pop ();
255
256 FOR_EACH_EDGE (e, ei, node->preds)
257 {
258 basic_block ancestor = e->src;
259
260 if (ancestor->loop_father != loop)
261 {
262 ancestor->loop_father = loop;
263 num_nodes++;
264 stack.safe_push (ancestor);
265 }
266 }
267 }
268 }
269 stack.release ();
270
271 return num_nodes;
272 }
273
274 /* Records the vector of superloops of the loop LOOP, whose immediate
275 superloop is FATHER. */
276
277 static void
278 establish_preds (struct loop *loop, struct loop *father)
279 {
280 loop_p ploop;
281 unsigned depth = loop_depth (father) + 1;
282 unsigned i;
283
284 loop->superloops = 0;
285 vec_alloc (loop->superloops, depth);
286 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
287 loop->superloops->quick_push (ploop);
288 loop->superloops->quick_push (father);
289
290 for (ploop = loop->inner; ploop; ploop = ploop->next)
291 establish_preds (ploop, loop);
292 }
293
294 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
295 added loop. If LOOP has some children, take care of that their
296 pred field will be initialized correctly. */
297
298 void
299 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
300 {
301 loop->next = father->inner;
302 father->inner = loop;
303
304 establish_preds (loop, father);
305 }
306
307 /* Remove LOOP from the loop hierarchy tree. */
308
309 void
310 flow_loop_tree_node_remove (struct loop *loop)
311 {
312 struct loop *prev, *father;
313
314 father = loop_outer (loop);
315
316 /* Remove loop from the list of sons. */
317 if (father->inner == loop)
318 father->inner = loop->next;
319 else
320 {
321 for (prev = father->inner; prev->next != loop; prev = prev->next)
322 continue;
323 prev->next = loop->next;
324 }
325
326 loop->superloops = NULL;
327 }
328
329 /* Allocates and returns new loop structure. */
330
331 struct loop *
332 alloc_loop (void)
333 {
334 struct loop *loop = ggc_alloc_cleared_loop ();
335
336 loop->exits = ggc_alloc_cleared_loop_exit ();
337 loop->exits->next = loop->exits->prev = loop->exits;
338 loop->can_be_parallel = false;
339
340 return loop;
341 }
342
343 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
344 (including the root of the loop tree). */
345
346 void
347 init_loops_structure (struct function *fn,
348 struct loops *loops, unsigned num_loops)
349 {
350 struct loop *root;
351
352 memset (loops, 0, sizeof *loops);
353 vec_alloc (loops->larray, num_loops);
354
355 /* Dummy loop containing whole function. */
356 root = alloc_loop ();
357 root->num_nodes = n_basic_blocks_for_fn (fn);
358 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
359 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
360 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
361 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
362
363 loops->larray->quick_push (root);
364 loops->tree_root = root;
365 }
366
367 /* Returns whether HEADER is a loop header. */
368
369 bool
370 bb_loop_header_p (basic_block header)
371 {
372 edge_iterator ei;
373 edge e;
374
375 /* If we have an abnormal predecessor, do not consider the
376 loop (not worth the problems). */
377 if (bb_has_abnormal_pred (header))
378 return false;
379
380 /* Look for back edges where a predecessor is dominated
381 by this block. A natural loop has a single entry
382 node (header) that dominates all the nodes in the
383 loop. It also has single back edge to the header
384 from a latch node. */
385 FOR_EACH_EDGE (e, ei, header->preds)
386 {
387 basic_block latch = e->src;
388 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
389 && dominated_by_p (CDI_DOMINATORS, latch, header))
390 return true;
391 }
392
393 return false;
394 }
395
396 /* Find all the natural loops in the function and save in LOOPS structure and
397 recalculate loop_father information in basic block structures.
398 If LOOPS is non-NULL then the loop structures for already recorded loops
399 will be re-used and their number will not change. We assume that no
400 stale loops exist in LOOPS.
401 When LOOPS is NULL it is allocated and re-built from scratch.
402 Return the built LOOPS structure. */
403
404 struct loops *
405 flow_loops_find (struct loops *loops)
406 {
407 bool from_scratch = (loops == NULL);
408 int *rc_order;
409 int b;
410 unsigned i;
411
412 /* Ensure that the dominators are computed. */
413 calculate_dominance_info (CDI_DOMINATORS);
414
415 if (!loops)
416 {
417 loops = ggc_alloc_cleared_loops ();
418 init_loops_structure (cfun, loops, 1);
419 }
420
421 /* Ensure that loop exits were released. */
422 gcc_assert (loops->exits == NULL);
423
424 /* Taking care of this degenerate case makes the rest of
425 this code simpler. */
426 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
427 return loops;
428
429 /* The root loop node contains all basic-blocks. */
430 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
431
432 /* Compute depth first search order of the CFG so that outer
433 natural loops will be found before inner natural loops. */
434 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
435 pre_and_rev_post_order_compute (NULL, rc_order, false);
436
437 /* Gather all loop headers in reverse completion order and allocate
438 loop structures for loops that are not already present. */
439 auto_vec<loop_p> larray (loops->larray->length ());
440 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
441 {
442 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
443 if (bb_loop_header_p (header))
444 {
445 struct loop *loop;
446
447 /* The current active loop tree has valid loop-fathers for
448 header blocks. */
449 if (!from_scratch
450 && header->loop_father->header == header)
451 {
452 loop = header->loop_father;
453 /* If we found an existing loop remove it from the
454 loop tree. It is going to be inserted again
455 below. */
456 flow_loop_tree_node_remove (loop);
457 }
458 else
459 {
460 /* Otherwise allocate a new loop structure for the loop. */
461 loop = alloc_loop ();
462 /* ??? We could re-use unused loop slots here. */
463 loop->num = loops->larray->length ();
464 vec_safe_push (loops->larray, loop);
465 loop->header = header;
466
467 if (!from_scratch
468 && dump_file && (dump_flags & TDF_DETAILS))
469 fprintf (dump_file, "flow_loops_find: discovered new "
470 "loop %d with header %d\n",
471 loop->num, header->index);
472 }
473 /* Reset latch, we recompute it below. */
474 loop->latch = NULL;
475 larray.safe_push (loop);
476 }
477
478 /* Make blocks part of the loop root node at start. */
479 header->loop_father = loops->tree_root;
480 }
481
482 free (rc_order);
483
484 /* Now iterate over the loops found, insert them into the loop tree
485 and assign basic-block ownership. */
486 for (i = 0; i < larray.length (); ++i)
487 {
488 struct loop *loop = larray[i];
489 basic_block header = loop->header;
490 edge_iterator ei;
491 edge e;
492
493 flow_loop_tree_node_add (header->loop_father, loop);
494 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
495
496 /* Look for the latch for this header block, if it has just a
497 single one. */
498 FOR_EACH_EDGE (e, ei, header->preds)
499 {
500 basic_block latch = e->src;
501
502 if (flow_bb_inside_loop_p (loop, latch))
503 {
504 if (loop->latch != NULL)
505 {
506 /* More than one latch edge. */
507 loop->latch = NULL;
508 break;
509 }
510 loop->latch = latch;
511 }
512 }
513 }
514
515 return loops;
516 }
517
518 /* Ratio of frequencies of edges so that one of more latch edges is
519 considered to belong to inner loop with same header. */
520 #define HEAVY_EDGE_RATIO 8
521
522 /* Minimum number of samples for that we apply
523 find_subloop_latch_edge_by_profile heuristics. */
524 #define HEAVY_EDGE_MIN_SAMPLES 10
525
526 /* If the profile info is available, finds an edge in LATCHES that much more
527 frequent than the remaining edges. Returns such an edge, or NULL if we do
528 not find one.
529
530 We do not use guessed profile here, only the measured one. The guessed
531 profile is usually too flat and unreliable for this (and it is mostly based
532 on the loop structure of the program, so it does not make much sense to
533 derive the loop structure from it). */
534
535 static edge
536 find_subloop_latch_edge_by_profile (vec<edge> latches)
537 {
538 unsigned i;
539 edge e, me = NULL;
540 gcov_type mcount = 0, tcount = 0;
541
542 FOR_EACH_VEC_ELT (latches, i, e)
543 {
544 if (e->count > mcount)
545 {
546 me = e;
547 mcount = e->count;
548 }
549 tcount += e->count;
550 }
551
552 if (tcount < HEAVY_EDGE_MIN_SAMPLES
553 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
554 return NULL;
555
556 if (dump_file)
557 fprintf (dump_file,
558 "Found latch edge %d -> %d using profile information.\n",
559 me->src->index, me->dest->index);
560 return me;
561 }
562
563 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
564 on the structure of induction variables. Returns this edge, or NULL if we
565 do not find any.
566
567 We are quite conservative, and look just for an obvious simple innermost
568 loop (which is the case where we would lose the most performance by not
569 disambiguating the loop). More precisely, we look for the following
570 situation: The source of the chosen latch edge dominates sources of all
571 the other latch edges. Additionally, the header does not contain a phi node
572 such that the argument from the chosen edge is equal to the argument from
573 another edge. */
574
575 static edge
576 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
577 {
578 edge e, latch = latches[0];
579 unsigned i;
580 gimple phi;
581 gimple_stmt_iterator psi;
582 tree lop;
583 basic_block bb;
584
585 /* Find the candidate for the latch edge. */
586 for (i = 1; latches.iterate (i, &e); i++)
587 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
588 latch = e;
589
590 /* Verify that it dominates all the latch edges. */
591 FOR_EACH_VEC_ELT (latches, i, e)
592 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
593 return NULL;
594
595 /* Check for a phi node that would deny that this is a latch edge of
596 a subloop. */
597 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
598 {
599 phi = gsi_stmt (psi);
600 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
601
602 /* Ignore the values that are not changed inside the subloop. */
603 if (TREE_CODE (lop) != SSA_NAME
604 || SSA_NAME_DEF_STMT (lop) == phi)
605 continue;
606 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
607 if (!bb || !flow_bb_inside_loop_p (loop, bb))
608 continue;
609
610 FOR_EACH_VEC_ELT (latches, i, e)
611 if (e != latch
612 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
613 return NULL;
614 }
615
616 if (dump_file)
617 fprintf (dump_file,
618 "Found latch edge %d -> %d using iv structure.\n",
619 latch->src->index, latch->dest->index);
620 return latch;
621 }
622
623 /* If we can determine that one of the several latch edges of LOOP behaves
624 as a latch edge of a separate subloop, returns this edge. Otherwise
625 returns NULL. */
626
627 static edge
628 find_subloop_latch_edge (struct loop *loop)
629 {
630 vec<edge> latches = get_loop_latch_edges (loop);
631 edge latch = NULL;
632
633 if (latches.length () > 1)
634 {
635 latch = find_subloop_latch_edge_by_profile (latches);
636
637 if (!latch
638 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
639 should use cfghook for this, but it is hard to imagine it would
640 be useful elsewhere. */
641 && current_ir_type () == IR_GIMPLE)
642 latch = find_subloop_latch_edge_by_ivs (loop, latches);
643 }
644
645 latches.release ();
646 return latch;
647 }
648
649 /* Callback for make_forwarder_block. Returns true if the edge E is marked
650 in the set MFB_REIS_SET. */
651
652 static struct pointer_set_t *mfb_reis_set;
653 static bool
654 mfb_redirect_edges_in_set (edge e)
655 {
656 return pointer_set_contains (mfb_reis_set, e);
657 }
658
659 /* Creates a subloop of LOOP with latch edge LATCH. */
660
661 static void
662 form_subloop (struct loop *loop, edge latch)
663 {
664 edge_iterator ei;
665 edge e, new_entry;
666 struct loop *new_loop;
667
668 mfb_reis_set = pointer_set_create ();
669 FOR_EACH_EDGE (e, ei, loop->header->preds)
670 {
671 if (e != latch)
672 pointer_set_insert (mfb_reis_set, e);
673 }
674 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
675 NULL);
676 pointer_set_destroy (mfb_reis_set);
677
678 loop->header = new_entry->src;
679
680 /* Find the blocks and subloops that belong to the new loop, and add it to
681 the appropriate place in the loop tree. */
682 new_loop = alloc_loop ();
683 new_loop->header = new_entry->dest;
684 new_loop->latch = latch->src;
685 add_loop (new_loop, loop);
686 }
687
688 /* Make all the latch edges of LOOP to go to a single forwarder block --
689 a new latch of LOOP. */
690
691 static void
692 merge_latch_edges (struct loop *loop)
693 {
694 vec<edge> latches = get_loop_latch_edges (loop);
695 edge latch, e;
696 unsigned i;
697
698 gcc_assert (latches.length () > 0);
699
700 if (latches.length () == 1)
701 loop->latch = latches[0]->src;
702 else
703 {
704 if (dump_file)
705 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
706
707 mfb_reis_set = pointer_set_create ();
708 FOR_EACH_VEC_ELT (latches, i, e)
709 pointer_set_insert (mfb_reis_set, e);
710 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
711 NULL);
712 pointer_set_destroy (mfb_reis_set);
713
714 loop->header = latch->dest;
715 loop->latch = latch->src;
716 }
717
718 latches.release ();
719 }
720
721 /* LOOP may have several latch edges. Transform it into (possibly several)
722 loops with single latch edge. */
723
724 static void
725 disambiguate_multiple_latches (struct loop *loop)
726 {
727 edge e;
728
729 /* We eliminate the multiple latches by splitting the header to the forwarder
730 block F and the rest R, and redirecting the edges. There are two cases:
731
732 1) If there is a latch edge E that corresponds to a subloop (we guess
733 that based on profile -- if it is taken much more often than the
734 remaining edges; and on trees, using the information about induction
735 variables of the loops), we redirect E to R, all the remaining edges to
736 F, then rescan the loops and try again for the outer loop.
737 2) If there is no such edge, we redirect all latch edges to F, and the
738 entry edges to R, thus making F the single latch of the loop. */
739
740 if (dump_file)
741 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
742 loop->num);
743
744 /* During latch merging, we may need to redirect the entry edges to a new
745 block. This would cause problems if the entry edge was the one from the
746 entry block. To avoid having to handle this case specially, split
747 such entry edge. */
748 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
749 if (e)
750 split_edge (e);
751
752 while (1)
753 {
754 e = find_subloop_latch_edge (loop);
755 if (!e)
756 break;
757
758 form_subloop (loop, e);
759 }
760
761 merge_latch_edges (loop);
762 }
763
764 /* Split loops with multiple latch edges. */
765
766 void
767 disambiguate_loops_with_multiple_latches (void)
768 {
769 struct loop *loop;
770
771 FOR_EACH_LOOP (loop, 0)
772 {
773 if (!loop->latch)
774 disambiguate_multiple_latches (loop);
775 }
776 }
777
778 /* Return nonzero if basic block BB belongs to LOOP. */
779 bool
780 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
781 {
782 struct loop *source_loop;
783
784 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
785 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
786 return 0;
787
788 source_loop = bb->loop_father;
789 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
790 }
791
792 /* Enumeration predicate for get_loop_body_with_size. */
793 static bool
794 glb_enum_p (const_basic_block bb, const void *glb_loop)
795 {
796 const struct loop *const loop = (const struct loop *) glb_loop;
797 return (bb != loop->header
798 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
799 }
800
801 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
802 order against direction of edges from latch. Specially, if
803 header != latch, latch is the 1-st block. LOOP cannot be the fake
804 loop tree root, and its size must be at most MAX_SIZE. The blocks
805 in the LOOP body are stored to BODY, and the size of the LOOP is
806 returned. */
807
808 unsigned
809 get_loop_body_with_size (const struct loop *loop, basic_block *body,
810 unsigned max_size)
811 {
812 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
813 body, max_size, loop);
814 }
815
816 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
817 order against direction of edges from latch. Specially, if
818 header != latch, latch is the 1-st block. */
819
820 basic_block *
821 get_loop_body (const struct loop *loop)
822 {
823 basic_block *body, bb;
824 unsigned tv = 0;
825
826 gcc_assert (loop->num_nodes);
827
828 body = XNEWVEC (basic_block, loop->num_nodes);
829
830 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
831 {
832 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
833 special-case the fake loop that contains the whole function. */
834 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
835 body[tv++] = loop->header;
836 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
837 FOR_EACH_BB_FN (bb, cfun)
838 body[tv++] = bb;
839 }
840 else
841 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
842
843 gcc_assert (tv == loop->num_nodes);
844 return body;
845 }
846
847 /* Fills dominance descendants inside LOOP of the basic block BB into
848 array TOVISIT from index *TV. */
849
850 static void
851 fill_sons_in_loop (const struct loop *loop, basic_block bb,
852 basic_block *tovisit, int *tv)
853 {
854 basic_block son, postpone = NULL;
855
856 tovisit[(*tv)++] = bb;
857 for (son = first_dom_son (CDI_DOMINATORS, bb);
858 son;
859 son = next_dom_son (CDI_DOMINATORS, son))
860 {
861 if (!flow_bb_inside_loop_p (loop, son))
862 continue;
863
864 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
865 {
866 postpone = son;
867 continue;
868 }
869 fill_sons_in_loop (loop, son, tovisit, tv);
870 }
871
872 if (postpone)
873 fill_sons_in_loop (loop, postpone, tovisit, tv);
874 }
875
876 /* Gets body of a LOOP (that must be different from the outermost loop)
877 sorted by dominance relation. Additionally, if a basic block s dominates
878 the latch, then only blocks dominated by s are be after it. */
879
880 basic_block *
881 get_loop_body_in_dom_order (const struct loop *loop)
882 {
883 basic_block *tovisit;
884 int tv;
885
886 gcc_assert (loop->num_nodes);
887
888 tovisit = XNEWVEC (basic_block, loop->num_nodes);
889
890 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
891
892 tv = 0;
893 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
894
895 gcc_assert (tv == (int) loop->num_nodes);
896
897 return tovisit;
898 }
899
900 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
901
902 basic_block *
903 get_loop_body_in_custom_order (const struct loop *loop,
904 int (*bb_comparator) (const void *, const void *))
905 {
906 basic_block *bbs = get_loop_body (loop);
907
908 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
909
910 return bbs;
911 }
912
913 /* Get body of a LOOP in breadth first sort order. */
914
915 basic_block *
916 get_loop_body_in_bfs_order (const struct loop *loop)
917 {
918 basic_block *blocks;
919 basic_block bb;
920 bitmap visited;
921 unsigned int i = 0;
922 unsigned int vc = 1;
923
924 gcc_assert (loop->num_nodes);
925 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
926
927 blocks = XNEWVEC (basic_block, loop->num_nodes);
928 visited = BITMAP_ALLOC (NULL);
929
930 bb = loop->header;
931 while (i < loop->num_nodes)
932 {
933 edge e;
934 edge_iterator ei;
935
936 if (bitmap_set_bit (visited, bb->index))
937 /* This basic block is now visited */
938 blocks[i++] = bb;
939
940 FOR_EACH_EDGE (e, ei, bb->succs)
941 {
942 if (flow_bb_inside_loop_p (loop, e->dest))
943 {
944 if (bitmap_set_bit (visited, e->dest->index))
945 blocks[i++] = e->dest;
946 }
947 }
948
949 gcc_assert (i >= vc);
950
951 bb = blocks[vc++];
952 }
953
954 BITMAP_FREE (visited);
955 return blocks;
956 }
957
958 /* Hash function for struct loop_exit. */
959
960 static hashval_t
961 loop_exit_hash (const void *ex)
962 {
963 const struct loop_exit *const exit = (const struct loop_exit *) ex;
964
965 return htab_hash_pointer (exit->e);
966 }
967
968 /* Equality function for struct loop_exit. Compares with edge. */
969
970 static int
971 loop_exit_eq (const void *ex, const void *e)
972 {
973 const struct loop_exit *const exit = (const struct loop_exit *) ex;
974
975 return exit->e == e;
976 }
977
978 /* Frees the list of loop exit descriptions EX. */
979
980 static void
981 loop_exit_free (void *ex)
982 {
983 struct loop_exit *exit = (struct loop_exit *) ex, *next;
984
985 for (; exit; exit = next)
986 {
987 next = exit->next_e;
988
989 exit->next->prev = exit->prev;
990 exit->prev->next = exit->next;
991
992 ggc_free (exit);
993 }
994 }
995
996 /* Returns the list of records for E as an exit of a loop. */
997
998 static struct loop_exit *
999 get_exit_descriptions (edge e)
1000 {
1001 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
1002 htab_hash_pointer (e));
1003 }
1004
1005 /* Updates the lists of loop exits in that E appears.
1006 If REMOVED is true, E is being removed, and we
1007 just remove it from the lists of exits.
1008 If NEW_EDGE is true and E is not a loop exit, we
1009 do not try to remove it from loop exit lists. */
1010
1011 void
1012 rescan_loop_exit (edge e, bool new_edge, bool removed)
1013 {
1014 void **slot;
1015 struct loop_exit *exits = NULL, *exit;
1016 struct loop *aloop, *cloop;
1017
1018 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1019 return;
1020
1021 if (!removed
1022 && e->src->loop_father != NULL
1023 && e->dest->loop_father != NULL
1024 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1025 {
1026 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1027 for (aloop = e->src->loop_father;
1028 aloop != cloop;
1029 aloop = loop_outer (aloop))
1030 {
1031 exit = ggc_alloc_loop_exit ();
1032 exit->e = e;
1033
1034 exit->next = aloop->exits->next;
1035 exit->prev = aloop->exits;
1036 exit->next->prev = exit;
1037 exit->prev->next = exit;
1038
1039 exit->next_e = exits;
1040 exits = exit;
1041 }
1042 }
1043
1044 if (!exits && new_edge)
1045 return;
1046
1047 slot = htab_find_slot_with_hash (current_loops->exits, e,
1048 htab_hash_pointer (e),
1049 exits ? INSERT : NO_INSERT);
1050 if (!slot)
1051 return;
1052
1053 if (exits)
1054 {
1055 if (*slot)
1056 loop_exit_free (*slot);
1057 *slot = exits;
1058 }
1059 else
1060 htab_clear_slot (current_loops->exits, slot);
1061 }
1062
1063 /* For each loop, record list of exit edges, and start maintaining these
1064 lists. */
1065
1066 void
1067 record_loop_exits (void)
1068 {
1069 basic_block bb;
1070 edge_iterator ei;
1071 edge e;
1072
1073 if (!current_loops)
1074 return;
1075
1076 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1077 return;
1078 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1079
1080 gcc_assert (current_loops->exits == NULL);
1081 current_loops->exits = htab_create_ggc (2 * number_of_loops (cfun),
1082 loop_exit_hash, loop_exit_eq,
1083 loop_exit_free);
1084
1085 FOR_EACH_BB_FN (bb, cfun)
1086 {
1087 FOR_EACH_EDGE (e, ei, bb->succs)
1088 {
1089 rescan_loop_exit (e, true, false);
1090 }
1091 }
1092 }
1093
1094 /* Dumps information about the exit in *SLOT to FILE.
1095 Callback for htab_traverse. */
1096
1097 static int
1098 dump_recorded_exit (void **slot, void *file)
1099 {
1100 struct loop_exit *exit = (struct loop_exit *) *slot;
1101 unsigned n = 0;
1102 edge e = exit->e;
1103
1104 for (; exit != NULL; exit = exit->next_e)
1105 n++;
1106
1107 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1108 e->src->index, e->dest->index, n);
1109
1110 return 1;
1111 }
1112
1113 /* Dumps the recorded exits of loops to FILE. */
1114
1115 extern void dump_recorded_exits (FILE *);
1116 void
1117 dump_recorded_exits (FILE *file)
1118 {
1119 if (!current_loops->exits)
1120 return;
1121 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1122 }
1123
1124 /* Releases lists of loop exits. */
1125
1126 void
1127 release_recorded_exits (void)
1128 {
1129 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1130 htab_delete (current_loops->exits);
1131 current_loops->exits = NULL;
1132 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1133 }
1134
1135 /* Returns the list of the exit edges of a LOOP. */
1136
1137 vec<edge>
1138 get_loop_exit_edges (const struct loop *loop)
1139 {
1140 vec<edge> edges = vNULL;
1141 edge e;
1142 unsigned i;
1143 basic_block *body;
1144 edge_iterator ei;
1145 struct loop_exit *exit;
1146
1147 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1148
1149 /* If we maintain the lists of exits, use them. Otherwise we must
1150 scan the body of the loop. */
1151 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1152 {
1153 for (exit = loop->exits->next; exit->e; exit = exit->next)
1154 edges.safe_push (exit->e);
1155 }
1156 else
1157 {
1158 body = get_loop_body (loop);
1159 for (i = 0; i < loop->num_nodes; i++)
1160 FOR_EACH_EDGE (e, ei, body[i]->succs)
1161 {
1162 if (!flow_bb_inside_loop_p (loop, e->dest))
1163 edges.safe_push (e);
1164 }
1165 free (body);
1166 }
1167
1168 return edges;
1169 }
1170
1171 /* Counts the number of conditional branches inside LOOP. */
1172
1173 unsigned
1174 num_loop_branches (const struct loop *loop)
1175 {
1176 unsigned i, n;
1177 basic_block * body;
1178
1179 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1180
1181 body = get_loop_body (loop);
1182 n = 0;
1183 for (i = 0; i < loop->num_nodes; i++)
1184 if (EDGE_COUNT (body[i]->succs) >= 2)
1185 n++;
1186 free (body);
1187
1188 return n;
1189 }
1190
1191 /* Adds basic block BB to LOOP. */
1192 void
1193 add_bb_to_loop (basic_block bb, struct loop *loop)
1194 {
1195 unsigned i;
1196 loop_p ploop;
1197 edge_iterator ei;
1198 edge e;
1199
1200 gcc_assert (bb->loop_father == NULL);
1201 bb->loop_father = loop;
1202 loop->num_nodes++;
1203 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1204 ploop->num_nodes++;
1205
1206 FOR_EACH_EDGE (e, ei, bb->succs)
1207 {
1208 rescan_loop_exit (e, true, false);
1209 }
1210 FOR_EACH_EDGE (e, ei, bb->preds)
1211 {
1212 rescan_loop_exit (e, true, false);
1213 }
1214 }
1215
1216 /* Remove basic block BB from loops. */
1217 void
1218 remove_bb_from_loops (basic_block bb)
1219 {
1220 unsigned i;
1221 struct loop *loop = bb->loop_father;
1222 loop_p ploop;
1223 edge_iterator ei;
1224 edge e;
1225
1226 gcc_assert (loop != NULL);
1227 loop->num_nodes--;
1228 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1229 ploop->num_nodes--;
1230 bb->loop_father = NULL;
1231
1232 FOR_EACH_EDGE (e, ei, bb->succs)
1233 {
1234 rescan_loop_exit (e, false, true);
1235 }
1236 FOR_EACH_EDGE (e, ei, bb->preds)
1237 {
1238 rescan_loop_exit (e, false, true);
1239 }
1240 }
1241
1242 /* Finds nearest common ancestor in loop tree for given loops. */
1243 struct loop *
1244 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1245 {
1246 unsigned sdepth, ddepth;
1247
1248 if (!loop_s) return loop_d;
1249 if (!loop_d) return loop_s;
1250
1251 sdepth = loop_depth (loop_s);
1252 ddepth = loop_depth (loop_d);
1253
1254 if (sdepth < ddepth)
1255 loop_d = (*loop_d->superloops)[sdepth];
1256 else if (sdepth > ddepth)
1257 loop_s = (*loop_s->superloops)[ddepth];
1258
1259 while (loop_s != loop_d)
1260 {
1261 loop_s = loop_outer (loop_s);
1262 loop_d = loop_outer (loop_d);
1263 }
1264 return loop_s;
1265 }
1266
1267 /* Removes LOOP from structures and frees its data. */
1268
1269 void
1270 delete_loop (struct loop *loop)
1271 {
1272 /* Remove the loop from structure. */
1273 flow_loop_tree_node_remove (loop);
1274
1275 /* Remove loop from loops array. */
1276 (*current_loops->larray)[loop->num] = NULL;
1277
1278 /* Free loop data. */
1279 flow_loop_free (loop);
1280 }
1281
1282 /* Cancels the LOOP; it must be innermost one. */
1283
1284 static void
1285 cancel_loop (struct loop *loop)
1286 {
1287 basic_block *bbs;
1288 unsigned i;
1289 struct loop *outer = loop_outer (loop);
1290
1291 gcc_assert (!loop->inner);
1292
1293 /* Move blocks up one level (they should be removed as soon as possible). */
1294 bbs = get_loop_body (loop);
1295 for (i = 0; i < loop->num_nodes; i++)
1296 bbs[i]->loop_father = outer;
1297
1298 free (bbs);
1299 delete_loop (loop);
1300 }
1301
1302 /* Cancels LOOP and all its subloops. */
1303 void
1304 cancel_loop_tree (struct loop *loop)
1305 {
1306 while (loop->inner)
1307 cancel_loop_tree (loop->inner);
1308 cancel_loop (loop);
1309 }
1310
1311 /* Checks that information about loops is correct
1312 -- sizes of loops are all right
1313 -- results of get_loop_body really belong to the loop
1314 -- loop header have just single entry edge and single latch edge
1315 -- loop latches have only single successor that is header of their loop
1316 -- irreducible loops are correctly marked
1317 -- the cached loop depth and loop father of each bb is correct
1318 */
1319 DEBUG_FUNCTION void
1320 verify_loop_structure (void)
1321 {
1322 unsigned *sizes, i, j;
1323 sbitmap irreds;
1324 basic_block bb, *bbs;
1325 struct loop *loop;
1326 int err = 0;
1327 edge e;
1328 unsigned num = number_of_loops (cfun);
1329 struct loop_exit *exit, *mexit;
1330 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1331 sbitmap visited;
1332
1333 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1334 {
1335 error ("loop verification on loop tree that needs fixup");
1336 err = 1;
1337 }
1338
1339 /* We need up-to-date dominators, compute or verify them. */
1340 if (!dom_available)
1341 calculate_dominance_info (CDI_DOMINATORS);
1342 else
1343 verify_dominators (CDI_DOMINATORS);
1344
1345 /* Check the headers. */
1346 FOR_EACH_BB_FN (bb, cfun)
1347 if (bb_loop_header_p (bb))
1348 {
1349 if (bb->loop_father->header == NULL)
1350 {
1351 error ("loop with header %d marked for removal", bb->index);
1352 err = 1;
1353 }
1354 else if (bb->loop_father->header != bb)
1355 {
1356 error ("loop with header %d not in loop tree", bb->index);
1357 err = 1;
1358 }
1359 }
1360 else if (bb->loop_father->header == bb)
1361 {
1362 error ("non-loop with header %d not marked for removal", bb->index);
1363 err = 1;
1364 }
1365
1366 /* Check the recorded loop father and sizes of loops. */
1367 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1368 bitmap_clear (visited);
1369 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1370 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1371 {
1372 unsigned n;
1373
1374 if (loop->header == NULL)
1375 {
1376 error ("removed loop %d in loop tree", loop->num);
1377 err = 1;
1378 continue;
1379 }
1380
1381 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1382 if (loop->num_nodes != n)
1383 {
1384 error ("size of loop %d should be %d, not %d",
1385 loop->num, n, loop->num_nodes);
1386 err = 1;
1387 }
1388
1389 for (j = 0; j < n; j++)
1390 {
1391 bb = bbs[j];
1392
1393 if (!flow_bb_inside_loop_p (loop, bb))
1394 {
1395 error ("bb %d does not belong to loop %d",
1396 bb->index, loop->num);
1397 err = 1;
1398 }
1399
1400 /* Ignore this block if it is in an inner loop. */
1401 if (bitmap_bit_p (visited, bb->index))
1402 continue;
1403 bitmap_set_bit (visited, bb->index);
1404
1405 if (bb->loop_father != loop)
1406 {
1407 error ("bb %d has father loop %d, should be loop %d",
1408 bb->index, bb->loop_father->num, loop->num);
1409 err = 1;
1410 }
1411 }
1412 }
1413 free (bbs);
1414 sbitmap_free (visited);
1415
1416 /* Check headers and latches. */
1417 FOR_EACH_LOOP (loop, 0)
1418 {
1419 i = loop->num;
1420 if (loop->header == NULL)
1421 continue;
1422 if (!bb_loop_header_p (loop->header))
1423 {
1424 error ("loop %d%'s header is not a loop header", i);
1425 err = 1;
1426 }
1427 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1428 && EDGE_COUNT (loop->header->preds) != 2)
1429 {
1430 error ("loop %d%'s header does not have exactly 2 entries", i);
1431 err = 1;
1432 }
1433 if (loop->latch)
1434 {
1435 if (!find_edge (loop->latch, loop->header))
1436 {
1437 error ("loop %d%'s latch does not have an edge to its header", i);
1438 err = 1;
1439 }
1440 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1441 {
1442 error ("loop %d%'s latch is not dominated by its header", i);
1443 err = 1;
1444 }
1445 }
1446 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1447 {
1448 if (!single_succ_p (loop->latch))
1449 {
1450 error ("loop %d%'s latch does not have exactly 1 successor", i);
1451 err = 1;
1452 }
1453 if (single_succ (loop->latch) != loop->header)
1454 {
1455 error ("loop %d%'s latch does not have header as successor", i);
1456 err = 1;
1457 }
1458 if (loop->latch->loop_father != loop)
1459 {
1460 error ("loop %d%'s latch does not belong directly to it", i);
1461 err = 1;
1462 }
1463 }
1464 if (loop->header->loop_father != loop)
1465 {
1466 error ("loop %d%'s header does not belong directly to it", i);
1467 err = 1;
1468 }
1469 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1470 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1471 {
1472 error ("loop %d%'s latch is marked as part of irreducible region", i);
1473 err = 1;
1474 }
1475 }
1476
1477 /* Check irreducible loops. */
1478 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1479 {
1480 /* Record old info. */
1481 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1482 FOR_EACH_BB_FN (bb, cfun)
1483 {
1484 edge_iterator ei;
1485 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1486 bitmap_set_bit (irreds, bb->index);
1487 else
1488 bitmap_clear_bit (irreds, bb->index);
1489 FOR_EACH_EDGE (e, ei, bb->succs)
1490 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1491 e->flags |= EDGE_ALL_FLAGS + 1;
1492 }
1493
1494 /* Recount it. */
1495 mark_irreducible_loops ();
1496
1497 /* Compare. */
1498 FOR_EACH_BB_FN (bb, cfun)
1499 {
1500 edge_iterator ei;
1501
1502 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1503 && !bitmap_bit_p (irreds, bb->index))
1504 {
1505 error ("basic block %d should be marked irreducible", bb->index);
1506 err = 1;
1507 }
1508 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1509 && bitmap_bit_p (irreds, bb->index))
1510 {
1511 error ("basic block %d should not be marked irreducible", bb->index);
1512 err = 1;
1513 }
1514 FOR_EACH_EDGE (e, ei, bb->succs)
1515 {
1516 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1517 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1518 {
1519 error ("edge from %d to %d should be marked irreducible",
1520 e->src->index, e->dest->index);
1521 err = 1;
1522 }
1523 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1524 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1525 {
1526 error ("edge from %d to %d should not be marked irreducible",
1527 e->src->index, e->dest->index);
1528 err = 1;
1529 }
1530 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1531 }
1532 }
1533 free (irreds);
1534 }
1535
1536 /* Check the recorded loop exits. */
1537 FOR_EACH_LOOP (loop, 0)
1538 {
1539 if (!loop->exits || loop->exits->e != NULL)
1540 {
1541 error ("corrupted head of the exits list of loop %d",
1542 loop->num);
1543 err = 1;
1544 }
1545 else
1546 {
1547 /* Check that the list forms a cycle, and all elements except
1548 for the head are nonnull. */
1549 for (mexit = loop->exits, exit = mexit->next, i = 0;
1550 exit->e && exit != mexit;
1551 exit = exit->next)
1552 {
1553 if (i++ & 1)
1554 mexit = mexit->next;
1555 }
1556
1557 if (exit != loop->exits)
1558 {
1559 error ("corrupted exits list of loop %d", loop->num);
1560 err = 1;
1561 }
1562 }
1563
1564 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1565 {
1566 if (loop->exits->next != loop->exits)
1567 {
1568 error ("nonempty exits list of loop %d, but exits are not recorded",
1569 loop->num);
1570 err = 1;
1571 }
1572 }
1573 }
1574
1575 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1576 {
1577 unsigned n_exits = 0, eloops;
1578
1579 sizes = XCNEWVEC (unsigned, num);
1580 memset (sizes, 0, sizeof (unsigned) * num);
1581 FOR_EACH_BB_FN (bb, cfun)
1582 {
1583 edge_iterator ei;
1584 if (bb->loop_father == current_loops->tree_root)
1585 continue;
1586 FOR_EACH_EDGE (e, ei, bb->succs)
1587 {
1588 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1589 continue;
1590
1591 n_exits++;
1592 exit = get_exit_descriptions (e);
1593 if (!exit)
1594 {
1595 error ("exit %d->%d not recorded",
1596 e->src->index, e->dest->index);
1597 err = 1;
1598 }
1599 eloops = 0;
1600 for (; exit; exit = exit->next_e)
1601 eloops++;
1602
1603 for (loop = bb->loop_father;
1604 loop != e->dest->loop_father
1605 /* When a loop exit is also an entry edge which
1606 can happen when avoiding CFG manipulations
1607 then the last loop exited is the outer loop
1608 of the loop entered. */
1609 && loop != loop_outer (e->dest->loop_father);
1610 loop = loop_outer (loop))
1611 {
1612 eloops--;
1613 sizes[loop->num]++;
1614 }
1615
1616 if (eloops != 0)
1617 {
1618 error ("wrong list of exited loops for edge %d->%d",
1619 e->src->index, e->dest->index);
1620 err = 1;
1621 }
1622 }
1623 }
1624
1625 if (n_exits != htab_elements (current_loops->exits))
1626 {
1627 error ("too many loop exits recorded");
1628 err = 1;
1629 }
1630
1631 FOR_EACH_LOOP (loop, 0)
1632 {
1633 eloops = 0;
1634 for (exit = loop->exits->next; exit->e; exit = exit->next)
1635 eloops++;
1636 if (eloops != sizes[loop->num])
1637 {
1638 error ("%d exits recorded for loop %d (having %d exits)",
1639 eloops, loop->num, sizes[loop->num]);
1640 err = 1;
1641 }
1642 }
1643
1644 free (sizes);
1645 }
1646
1647 gcc_assert (!err);
1648
1649 if (!dom_available)
1650 free_dominance_info (CDI_DOMINATORS);
1651 }
1652
1653 /* Returns latch edge of LOOP. */
1654 edge
1655 loop_latch_edge (const struct loop *loop)
1656 {
1657 return find_edge (loop->latch, loop->header);
1658 }
1659
1660 /* Returns preheader edge of LOOP. */
1661 edge
1662 loop_preheader_edge (const struct loop *loop)
1663 {
1664 edge e;
1665 edge_iterator ei;
1666
1667 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1668
1669 FOR_EACH_EDGE (e, ei, loop->header->preds)
1670 if (e->src != loop->latch)
1671 break;
1672
1673 return e;
1674 }
1675
1676 /* Returns true if E is an exit of LOOP. */
1677
1678 bool
1679 loop_exit_edge_p (const struct loop *loop, const_edge e)
1680 {
1681 return (flow_bb_inside_loop_p (loop, e->src)
1682 && !flow_bb_inside_loop_p (loop, e->dest));
1683 }
1684
1685 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1686 or more than one exit. If loops do not have the exits recorded, NULL
1687 is returned always. */
1688
1689 edge
1690 single_exit (const struct loop *loop)
1691 {
1692 struct loop_exit *exit = loop->exits->next;
1693
1694 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1695 return NULL;
1696
1697 if (exit->e && exit->next == loop->exits)
1698 return exit->e;
1699 else
1700 return NULL;
1701 }
1702
1703 /* Returns true when BB has an incoming edge exiting LOOP. */
1704
1705 bool
1706 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1707 {
1708 edge e;
1709 edge_iterator ei;
1710
1711 FOR_EACH_EDGE (e, ei, bb->preds)
1712 if (loop_exit_edge_p (loop, e))
1713 return true;
1714
1715 return false;
1716 }
1717
1718 /* Returns true when BB has an outgoing edge exiting LOOP. */
1719
1720 bool
1721 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1722 {
1723 edge e;
1724 edge_iterator ei;
1725
1726 FOR_EACH_EDGE (e, ei, bb->succs)
1727 if (loop_exit_edge_p (loop, e))
1728 return true;
1729
1730 return false;
1731 }
1732
1733 /* Return location corresponding to the loop control condition if possible. */
1734
1735 location_t
1736 get_loop_location (struct loop *loop)
1737 {
1738 rtx insn = NULL;
1739 struct niter_desc *desc = NULL;
1740 edge exit;
1741
1742 /* For a for or while loop, we would like to return the location
1743 of the for or while statement, if possible. To do this, look
1744 for the branch guarding the loop back-edge. */
1745
1746 /* If this is a simple loop with an in_edge, then the loop control
1747 branch is typically at the end of its source. */
1748 desc = get_simple_loop_desc (loop);
1749 if (desc->in_edge)
1750 {
1751 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1752 {
1753 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1754 return INSN_LOCATION (insn);
1755 }
1756 }
1757 /* If loop has a single exit, then the loop control branch
1758 must be at the end of its source. */
1759 if ((exit = single_exit (loop)))
1760 {
1761 FOR_BB_INSNS_REVERSE (exit->src, insn)
1762 {
1763 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1764 return INSN_LOCATION (insn);
1765 }
1766 }
1767 /* Next check the latch, to see if it is non-empty. */
1768 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1769 {
1770 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1771 return INSN_LOCATION (insn);
1772 }
1773 /* Finally, if none of the above identifies the loop control branch,
1774 return the first location in the loop header. */
1775 FOR_BB_INSNS (loop->header, insn)
1776 {
1777 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1778 return INSN_LOCATION (insn);
1779 }
1780 /* If all else fails, simply return the current function location. */
1781 return DECL_SOURCE_LOCATION (current_function_decl);
1782 }
1783
1784 /* Records that every statement in LOOP is executed I_BOUND times.
1785 REALISTIC is true if I_BOUND is expected to be close to the real number
1786 of iterations. UPPER is true if we are sure the loop iterates at most
1787 I_BOUND times. */
1788
1789 void
1790 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
1791 bool upper)
1792 {
1793 /* Update the bounds only when there is no previous estimation, or when the
1794 current estimation is smaller. */
1795 if (upper
1796 && (!loop->any_upper_bound
1797 || i_bound.ult (loop->nb_iterations_upper_bound)))
1798 {
1799 loop->any_upper_bound = true;
1800 loop->nb_iterations_upper_bound = i_bound;
1801 }
1802 if (realistic
1803 && (!loop->any_estimate
1804 || i_bound.ult (loop->nb_iterations_estimate)))
1805 {
1806 loop->any_estimate = true;
1807 loop->nb_iterations_estimate = i_bound;
1808 }
1809
1810 /* If an upper bound is smaller than the realistic estimate of the
1811 number of iterations, use the upper bound instead. */
1812 if (loop->any_upper_bound
1813 && loop->any_estimate
1814 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
1815 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1816 }
1817
1818 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1819 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1820 on the number of iterations of LOOP could not be derived, returns -1. */
1821
1822 HOST_WIDE_INT
1823 get_estimated_loop_iterations_int (struct loop *loop)
1824 {
1825 double_int nit;
1826 HOST_WIDE_INT hwi_nit;
1827
1828 if (!get_estimated_loop_iterations (loop, &nit))
1829 return -1;
1830
1831 if (!nit.fits_shwi ())
1832 return -1;
1833 hwi_nit = nit.to_shwi ();
1834
1835 return hwi_nit < 0 ? -1 : hwi_nit;
1836 }
1837
1838 /* Returns an upper bound on the number of executions of statements
1839 in the LOOP. For statements before the loop exit, this exceeds
1840 the number of execution of the latch by one. */
1841
1842 HOST_WIDE_INT
1843 max_stmt_executions_int (struct loop *loop)
1844 {
1845 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1846 HOST_WIDE_INT snit;
1847
1848 if (nit == -1)
1849 return -1;
1850
1851 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1852
1853 /* If the computation overflows, return -1. */
1854 return snit < 0 ? -1 : snit;
1855 }
1856
1857 /* Sets NIT to the estimated number of executions of the latch of the
1858 LOOP. If we have no reliable estimate, the function returns false, otherwise
1859 returns true. */
1860
1861 bool
1862 get_estimated_loop_iterations (struct loop *loop, double_int *nit)
1863 {
1864 /* Even if the bound is not recorded, possibly we can derrive one from
1865 profile. */
1866 if (!loop->any_estimate)
1867 {
1868 if (loop->header->count)
1869 {
1870 *nit = gcov_type_to_double_int
1871 (expected_loop_iterations_unbounded (loop) + 1);
1872 return true;
1873 }
1874 return false;
1875 }
1876
1877 *nit = loop->nb_iterations_estimate;
1878 return true;
1879 }
1880
1881 /* Sets NIT to an upper bound for the maximum number of executions of the
1882 latch of the LOOP. If we have no reliable estimate, the function returns
1883 false, otherwise returns true. */
1884
1885 bool
1886 get_max_loop_iterations (struct loop *loop, double_int *nit)
1887 {
1888 if (!loop->any_upper_bound)
1889 return false;
1890
1891 *nit = loop->nb_iterations_upper_bound;
1892 return true;
1893 }
1894
1895 /* Similar to get_max_loop_iterations, but returns the estimate only
1896 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1897 on the number of iterations of LOOP could not be derived, returns -1. */
1898
1899 HOST_WIDE_INT
1900 get_max_loop_iterations_int (struct loop *loop)
1901 {
1902 double_int nit;
1903 HOST_WIDE_INT hwi_nit;
1904
1905 if (!get_max_loop_iterations (loop, &nit))
1906 return -1;
1907
1908 if (!nit.fits_shwi ())
1909 return -1;
1910 hwi_nit = nit.to_shwi ();
1911
1912 return hwi_nit < 0 ? -1 : hwi_nit;
1913 }
1914
1915 /* Returns the loop depth of the loop BB belongs to. */
1916
1917 int
1918 bb_loop_depth (const_basic_block bb)
1919 {
1920 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1921 }