]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopanal.c
tree-ssa-loop-ivopts.c: New file.
[thirdparty/gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "output.h"
31
32 /* Checks whether BB is executed exactly once in each LOOP iteration. */
33
34 bool
35 just_once_each_iteration_p (struct loop *loop, basic_block bb)
36 {
37 /* It must be executed at least once each iteration. */
38 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
39 return false;
40
41 /* And just once. */
42 if (bb->loop_father != loop)
43 return false;
44
45 /* But this was not enough. We might have some irreducible loop here. */
46 if (bb->flags & BB_IRREDUCIBLE_LOOP)
47 return false;
48
49 return true;
50 }
51
52 /* Structure representing edge of a graph. */
53
54 struct edge
55 {
56 int src, dest; /* Source and destination. */
57 struct edge *pred_next, *succ_next;
58 /* Next edge in predecessor and successor lists. */
59 void *data; /* Data attached to the edge. */
60 };
61
62 /* Structure representing vertex of a graph. */
63
64 struct vertex
65 {
66 struct edge *pred, *succ;
67 /* Lists of predecessors and successors. */
68 int component; /* Number of dfs restarts before reaching the
69 vertex. */
70 int post; /* Postorder number. */
71 };
72
73 /* Structure representing a graph. */
74
75 struct graph
76 {
77 int n_vertices; /* Number of vertices. */
78 struct vertex *vertices;
79 /* The vertices. */
80 };
81
82 /* Dumps graph G into F. */
83
84 extern void dump_graph (FILE *, struct graph *);
85 void dump_graph (FILE *f, struct graph *g)
86 {
87 int i;
88 struct edge *e;
89
90 for (i = 0; i < g->n_vertices; i++)
91 {
92 if (!g->vertices[i].pred
93 && !g->vertices[i].succ)
94 continue;
95
96 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
97 for (e = g->vertices[i].pred; e; e = e->pred_next)
98 fprintf (f, " %d", e->src);
99 fprintf (f, "\n");
100
101 fprintf (f, "\t->");
102 for (e = g->vertices[i].succ; e; e = e->succ_next)
103 fprintf (f, " %d", e->dest);
104 fprintf (f, "\n");
105 }
106 }
107
108 /* Creates a new graph with N_VERTICES vertices. */
109
110 static struct graph *
111 new_graph (int n_vertices)
112 {
113 struct graph *g = xmalloc (sizeof (struct graph));
114
115 g->n_vertices = n_vertices;
116 g->vertices = xcalloc (n_vertices, sizeof (struct vertex));
117
118 return g;
119 }
120
121 /* Adds an edge from F to T to graph G, with DATA attached. */
122
123 static void
124 add_edge (struct graph *g, int f, int t, void *data)
125 {
126 struct edge *e = xmalloc (sizeof (struct edge));
127
128 e->src = f;
129 e->dest = t;
130 e->data = data;
131
132 e->pred_next = g->vertices[t].pred;
133 g->vertices[t].pred = e;
134
135 e->succ_next = g->vertices[f].succ;
136 g->vertices[f].succ = e;
137 }
138
139 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
140 The vertices in postorder are stored into QT. If FORWARD is false,
141 backward dfs is run. */
142
143 static void
144 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
145 {
146 int i, tick = 0, v, comp = 0, top;
147 struct edge *e;
148 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
149
150 for (i = 0; i < g->n_vertices; i++)
151 {
152 g->vertices[i].component = -1;
153 g->vertices[i].post = -1;
154 }
155
156 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
157 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
158 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
159 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
160
161 for (i = 0; i < nq; i++)
162 {
163 v = qs[i];
164 if (g->vertices[v].post != -1)
165 continue;
166
167 g->vertices[v].component = comp++;
168 e = FST_EDGE (v);
169 top = 0;
170
171 while (1)
172 {
173 while (e && g->vertices[EDGE_DEST (e)].component != -1)
174 e = NEXT_EDGE (e);
175
176 if (!e)
177 {
178 if (qt)
179 qt[tick] = v;
180 g->vertices[v].post = tick++;
181
182 if (!top)
183 break;
184
185 e = stack[--top];
186 v = EDGE_SRC (e);
187 e = NEXT_EDGE (e);
188 continue;
189 }
190
191 stack[top++] = e;
192 v = EDGE_DEST (e);
193 e = FST_EDGE (v);
194 g->vertices[v].component = comp - 1;
195 }
196 }
197
198 free (stack);
199 }
200
201 /* Marks the edge E in graph G irreducible if it connects two vertices in the
202 same scc. */
203
204 static void
205 check_irred (struct graph *g, struct edge *e)
206 {
207 edge real = e->data;
208
209 /* All edges should lead from a component with higher number to the
210 one with lower one. */
211 if (g->vertices[e->src].component < g->vertices[e->dest].component)
212 abort ();
213
214 if (g->vertices[e->src].component != g->vertices[e->dest].component)
215 return;
216
217 real->flags |= EDGE_IRREDUCIBLE_LOOP;
218 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
219 real->src->flags |= BB_IRREDUCIBLE_LOOP;
220 }
221
222 /* Runs CALLBACK for all edges in G. */
223
224 static void
225 for_each_edge (struct graph *g,
226 void (callback) (struct graph *, struct edge *))
227 {
228 struct edge *e;
229 int i;
230
231 for (i = 0; i < g->n_vertices; i++)
232 for (e = g->vertices[i].succ; e; e = e->succ_next)
233 callback (g, e);
234 }
235
236 /* Releases the memory occupied by G. */
237
238 static void
239 free_graph (struct graph *g)
240 {
241 struct edge *e, *n;
242 int i;
243
244 for (i = 0; i < g->n_vertices; i++)
245 for (e = g->vertices[i].succ; e; e = n)
246 {
247 n = e->succ_next;
248 free (e);
249 }
250 free (g->vertices);
251 free (g);
252 }
253
254 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
255 throw away all latch edges and mark blocks inside any remaining cycle.
256 Everything is a bit complicated due to fact we do not want to do this
257 for parts of cycles that only "pass" through some loop -- i.e. for
258 each cycle, we want to mark blocks that belong directly to innermost
259 loop containing the whole cycle.
260
261 LOOPS is the loop tree. */
262
263 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
264 #define BB_REPR(BB) ((BB)->index + 1)
265
266 void
267 mark_irreducible_loops (struct loops *loops)
268 {
269 basic_block act;
270 edge e;
271 int i, src, dest;
272 struct graph *g;
273 int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
274 int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
275 int nq, depth;
276 struct loop *cloop;
277
278 /* Reset the flags. */
279 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
280 {
281 act->flags &= ~BB_IRREDUCIBLE_LOOP;
282 for (e = act->succ; e; e = e->succ_next)
283 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
284 }
285
286 /* Create the edge lists. */
287 g = new_graph (last_basic_block + loops->num);
288
289 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
290 for (e = act->succ; e; e = e->succ_next)
291 {
292 /* Ignore edges to exit. */
293 if (e->dest == EXIT_BLOCK_PTR)
294 continue;
295
296 /* And latch edges. */
297 if (e->dest->loop_father->header == e->dest
298 && e->dest->loop_father->latch == act)
299 continue;
300
301 /* Edges inside a single loop should be left where they are. Edges
302 to subloop headers should lead to representative of the subloop,
303 but from the same place.
304
305 Edges exiting loops should lead from representative
306 of the son of nearest common ancestor of the loops in that
307 act lays. */
308
309 src = BB_REPR (act);
310 dest = BB_REPR (e->dest);
311
312 if (e->dest->loop_father->header == e->dest)
313 dest = LOOP_REPR (e->dest->loop_father);
314
315 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
316 {
317 depth = find_common_loop (act->loop_father,
318 e->dest->loop_father)->depth + 1;
319 if (depth == act->loop_father->depth)
320 cloop = act->loop_father;
321 else
322 cloop = act->loop_father->pred[depth];
323
324 src = LOOP_REPR (cloop);
325 }
326
327 add_edge (g, src, dest, e);
328 }
329
330 /* Find the strongly connected components. Use the algorithm of Tarjan --
331 first determine the postorder dfs numbering in reversed graph, then
332 run the dfs on the original graph in the order given by decreasing
333 numbers assigned by the previous pass. */
334 nq = 0;
335 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
336 {
337 queue1[nq++] = BB_REPR (act);
338 }
339 for (i = 1; i < (int) loops->num; i++)
340 if (loops->parray[i])
341 queue1[nq++] = LOOP_REPR (loops->parray[i]);
342 dfs (g, queue1, nq, queue2, false);
343 for (i = 0; i < nq; i++)
344 queue1[i] = queue2[nq - i - 1];
345 dfs (g, queue1, nq, NULL, true);
346
347 /* Mark the irreducible loops. */
348 for_each_edge (g, check_irred);
349
350 free_graph (g);
351 free (queue1);
352 free (queue2);
353
354 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
355 }
356
357 /* Counts number of insns inside LOOP. */
358 int
359 num_loop_insns (struct loop *loop)
360 {
361 basic_block *bbs, bb;
362 unsigned i, ninsns = 0;
363 rtx insn;
364
365 bbs = get_loop_body (loop);
366 for (i = 0; i < loop->num_nodes; i++)
367 {
368 bb = bbs[i];
369 ninsns++;
370 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
371 if (INSN_P (insn))
372 ninsns++;
373 }
374 free(bbs);
375
376 return ninsns;
377 }
378
379 /* Counts number of insns executed on average per iteration LOOP. */
380 int
381 average_num_loop_insns (struct loop *loop)
382 {
383 basic_block *bbs, bb;
384 unsigned i, binsns, ninsns, ratio;
385 rtx insn;
386
387 ninsns = 0;
388 bbs = get_loop_body (loop);
389 for (i = 0; i < loop->num_nodes; i++)
390 {
391 bb = bbs[i];
392
393 binsns = 1;
394 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
395 if (INSN_P (insn))
396 binsns++;
397
398 ratio = loop->header->frequency == 0
399 ? BB_FREQ_MAX
400 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
401 ninsns += binsns * ratio;
402 }
403 free(bbs);
404
405 ninsns /= BB_FREQ_MAX;
406 if (!ninsns)
407 ninsns = 1; /* To avoid division by zero. */
408
409 return ninsns;
410 }
411
412 /* Returns expected number of LOOP iterations.
413 Compute upper bound on number of iterations in case they do not fit integer
414 to help loop peeling heuristics. Use exact counts if at all possible. */
415 unsigned
416 expected_loop_iterations (const struct loop *loop)
417 {
418 edge e;
419
420 if (loop->header->count)
421 {
422 gcov_type count_in, count_latch, expected;
423
424 count_in = 0;
425 count_latch = 0;
426
427 for (e = loop->header->pred; e; e = e->pred_next)
428 if (e->src == loop->latch)
429 count_latch = e->count;
430 else
431 count_in += e->count;
432
433 if (count_in == 0)
434 expected = count_latch * 2;
435 else
436 expected = (count_latch + count_in - 1) / count_in;
437
438 /* Avoid overflows. */
439 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
440 }
441 else
442 {
443 int freq_in, freq_latch;
444
445 freq_in = 0;
446 freq_latch = 0;
447
448 for (e = loop->header->pred; e; e = e->pred_next)
449 if (e->src == loop->latch)
450 freq_latch = EDGE_FREQUENCY (e);
451 else
452 freq_in += EDGE_FREQUENCY (e);
453
454 if (freq_in == 0)
455 return freq_latch * 2;
456
457 return (freq_latch + freq_in - 1) / freq_in;
458 }
459 }
460
461 /* Returns the maximum level of nesting of subloops of LOOP. */
462
463 unsigned
464 get_loop_level (const struct loop *loop)
465 {
466 const struct loop *ploop;
467 unsigned mx = 0, l;
468
469 for (ploop = loop->inner; ploop; ploop = ploop->next)
470 {
471 l = get_loop_level (ploop);
472 if (l >= mx)
473 mx = l + 1;
474 }
475 return mx;
476 }
477
478 /* Returns estimate on cost of computing SEQ. */
479
480 static unsigned
481 seq_cost (rtx seq)
482 {
483 unsigned cost = 0;
484 rtx set;
485
486 for (; seq; seq = NEXT_INSN (seq))
487 {
488 set = single_set (seq);
489 if (set)
490 cost += rtx_cost (set, SET);
491 else
492 cost++;
493 }
494
495 return cost;
496 }
497
498 /* The properties of the target. */
499
500 unsigned target_avail_regs; /* Number of available registers. */
501 unsigned target_res_regs; /* Number of reserved registers. */
502 unsigned target_small_cost; /* The cost for register when there is a free one. */
503 unsigned target_pres_cost; /* The cost for register when there are not too many
504 free ones. */
505 unsigned target_spill_cost; /* The cost for register when we need to spill. */
506
507 /* Initialize the constants for computing set costs. */
508
509 void
510 init_set_costs (void)
511 {
512 rtx seq;
513 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
514 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
515 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
516 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
517 unsigned i;
518
519 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
520 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
521 && !fixed_regs[i])
522 target_avail_regs++;
523
524 target_res_regs = 3;
525
526 /* These are really just heuristic values. */
527
528 start_sequence ();
529 emit_move_insn (reg1, reg2);
530 seq = get_insns ();
531 end_sequence ();
532 target_small_cost = seq_cost (seq);
533 target_pres_cost = 2 * target_small_cost;
534
535 start_sequence ();
536 emit_move_insn (mem, reg1);
537 emit_move_insn (reg2, mem);
538 seq = get_insns ();
539 end_sequence ();
540 target_spill_cost = seq_cost (seq);
541 }
542
543 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
544 number of global registers used in loop. N_USES is the number of relevant
545 variable uses. */
546
547 unsigned
548 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
549 {
550 unsigned regs_needed = regs_used + size;
551 unsigned cost = 0;
552
553 if (regs_needed + target_res_regs <= target_avail_regs)
554 cost += target_small_cost * size;
555 else if (regs_needed <= target_avail_regs)
556 cost += target_pres_cost * size;
557 else
558 {
559 cost += target_pres_cost * size;
560 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
561 }
562
563 return cost;
564 }
565