]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopanal.c
tree-loop-linear.c (gather_interchange_stats, [...]): Use loop_depth and loop_outer...
[thirdparty/gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34
35 bool
36 just_once_each_iteration_p (const struct loop *loop, basic_block bb)
37 {
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
40 return false;
41
42 /* And just once. */
43 if (bb->loop_father != loop)
44 return false;
45
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb->flags & BB_IRREDUCIBLE_LOOP)
48 return false;
49
50 return true;
51 }
52
53 /* Structure representing edge of a graph. */
54
55 struct edge
56 {
57 int src, dest; /* Source and destination. */
58 struct edge *pred_next, *succ_next;
59 /* Next edge in predecessor and successor lists. */
60 void *data; /* Data attached to the edge. */
61 };
62
63 /* Structure representing vertex of a graph. */
64
65 struct vertex
66 {
67 struct edge *pred, *succ;
68 /* Lists of predecessors and successors. */
69 int component; /* Number of dfs restarts before reaching the
70 vertex. */
71 int post; /* Postorder number. */
72 };
73
74 /* Structure representing a graph. */
75
76 struct graph
77 {
78 int n_vertices; /* Number of vertices. */
79 struct vertex *vertices;
80 /* The vertices. */
81 };
82
83 /* Dumps graph G into F. */
84
85 extern void dump_graph (FILE *, struct graph *);
86
87 void
88 dump_graph (FILE *f, struct graph *g)
89 {
90 int i;
91 struct edge *e;
92
93 for (i = 0; i < g->n_vertices; i++)
94 {
95 if (!g->vertices[i].pred
96 && !g->vertices[i].succ)
97 continue;
98
99 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
100 for (e = g->vertices[i].pred; e; e = e->pred_next)
101 fprintf (f, " %d", e->src);
102 fprintf (f, "\n");
103
104 fprintf (f, "\t->");
105 for (e = g->vertices[i].succ; e; e = e->succ_next)
106 fprintf (f, " %d", e->dest);
107 fprintf (f, "\n");
108 }
109 }
110
111 /* Creates a new graph with N_VERTICES vertices. */
112
113 static struct graph *
114 new_graph (int n_vertices)
115 {
116 struct graph *g = XNEW (struct graph);
117
118 g->n_vertices = n_vertices;
119 g->vertices = XCNEWVEC (struct vertex, n_vertices);
120
121 return g;
122 }
123
124 /* Adds an edge from F to T to graph G, with DATA attached. */
125
126 static void
127 add_edge (struct graph *g, int f, int t, void *data)
128 {
129 struct edge *e = xmalloc (sizeof (struct edge));
130
131 e->src = f;
132 e->dest = t;
133 e->data = data;
134
135 e->pred_next = g->vertices[t].pred;
136 g->vertices[t].pred = e;
137
138 e->succ_next = g->vertices[f].succ;
139 g->vertices[f].succ = e;
140 }
141
142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
143 The vertices in postorder are stored into QT. If FORWARD is false,
144 backward dfs is run. */
145
146 static void
147 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
148 {
149 int i, tick = 0, v, comp = 0, top;
150 struct edge *e;
151 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
152
153 for (i = 0; i < g->n_vertices; i++)
154 {
155 g->vertices[i].component = -1;
156 g->vertices[i].post = -1;
157 }
158
159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
163
164 for (i = 0; i < nq; i++)
165 {
166 v = qs[i];
167 if (g->vertices[v].post != -1)
168 continue;
169
170 g->vertices[v].component = comp++;
171 e = FST_EDGE (v);
172 top = 0;
173
174 while (1)
175 {
176 while (e && g->vertices[EDGE_DEST (e)].component != -1)
177 e = NEXT_EDGE (e);
178
179 if (!e)
180 {
181 if (qt)
182 qt[tick] = v;
183 g->vertices[v].post = tick++;
184
185 if (!top)
186 break;
187
188 e = stack[--top];
189 v = EDGE_SRC (e);
190 e = NEXT_EDGE (e);
191 continue;
192 }
193
194 stack[top++] = e;
195 v = EDGE_DEST (e);
196 e = FST_EDGE (v);
197 g->vertices[v].component = comp - 1;
198 }
199 }
200
201 free (stack);
202 }
203
204 /* Marks the edge E in graph G irreducible if it connects two vertices in the
205 same scc. */
206
207 static void
208 check_irred (struct graph *g, struct edge *e)
209 {
210 edge real = e->data;
211
212 /* All edges should lead from a component with higher number to the
213 one with lower one. */
214 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
215
216 if (g->vertices[e->src].component != g->vertices[e->dest].component)
217 return;
218
219 real->flags |= EDGE_IRREDUCIBLE_LOOP;
220 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
221 real->src->flags |= BB_IRREDUCIBLE_LOOP;
222 }
223
224 /* Runs CALLBACK for all edges in G. */
225
226 static void
227 for_each_edge (struct graph *g,
228 void (callback) (struct graph *, struct edge *))
229 {
230 struct edge *e;
231 int i;
232
233 for (i = 0; i < g->n_vertices; i++)
234 for (e = g->vertices[i].succ; e; e = e->succ_next)
235 callback (g, e);
236 }
237
238 /* Releases the memory occupied by G. */
239
240 static void
241 free_graph (struct graph *g)
242 {
243 struct edge *e, *n;
244 int i;
245
246 for (i = 0; i < g->n_vertices; i++)
247 for (e = g->vertices[i].succ; e; e = n)
248 {
249 n = e->succ_next;
250 free (e);
251 }
252 free (g->vertices);
253 free (g);
254 }
255
256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
257 throw away all latch edges and mark blocks inside any remaining cycle.
258 Everything is a bit complicated due to fact we do not want to do this
259 for parts of cycles that only "pass" through some loop -- i.e. for
260 each cycle, we want to mark blocks that belong directly to innermost
261 loop containing the whole cycle.
262
263 LOOPS is the loop tree. */
264
265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
266 #define BB_REPR(BB) ((BB)->index + 1)
267
268 void
269 mark_irreducible_loops (void)
270 {
271 basic_block act;
272 edge e;
273 edge_iterator ei;
274 int i, src, dest;
275 struct graph *g;
276 int num = current_loops ? number_of_loops () : 1;
277 int *queue1 = XNEWVEC (int, last_basic_block + num);
278 int *queue2 = XNEWVEC (int, last_basic_block + num);
279 int nq;
280 unsigned depth;
281 struct loop *cloop, *loop;
282 loop_iterator li;
283
284 /* Reset the flags. */
285 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
286 {
287 act->flags &= ~BB_IRREDUCIBLE_LOOP;
288 FOR_EACH_EDGE (e, ei, act->succs)
289 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
290 }
291
292 /* Create the edge lists. */
293 g = new_graph (last_basic_block + num);
294
295 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
296 FOR_EACH_EDGE (e, ei, act->succs)
297 {
298 /* Ignore edges to exit. */
299 if (e->dest == EXIT_BLOCK_PTR)
300 continue;
301
302 src = BB_REPR (act);
303 dest = BB_REPR (e->dest);
304
305 if (current_loops)
306 {
307 /* Ignore latch edges. */
308 if (e->dest->loop_father->header == e->dest
309 && e->dest->loop_father->latch == act)
310 continue;
311
312 /* Edges inside a single loop should be left where they are. Edges
313 to subloop headers should lead to representative of the subloop,
314 but from the same place.
315
316 Edges exiting loops should lead from representative
317 of the son of nearest common ancestor of the loops in that
318 act lays. */
319
320 if (e->dest->loop_father->header == e->dest)
321 dest = LOOP_REPR (e->dest->loop_father);
322
323 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
324 {
325 depth = 1 + loop_depth (find_common_loop (act->loop_father,
326 e->dest->loop_father));
327 if (depth == loop_depth (act->loop_father))
328 cloop = act->loop_father;
329 else
330 cloop = VEC_index (loop_p, act->loop_father->superloops,
331 depth);
332
333 src = LOOP_REPR (cloop);
334 }
335 }
336
337 add_edge (g, src, dest, e);
338 }
339
340 /* Find the strongly connected components. Use the algorithm of Tarjan --
341 first determine the postorder dfs numbering in reversed graph, then
342 run the dfs on the original graph in the order given by decreasing
343 numbers assigned by the previous pass. */
344 nq = 0;
345 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
346 {
347 queue1[nq++] = BB_REPR (act);
348 }
349
350 if (current_loops)
351 {
352 FOR_EACH_LOOP (li, loop, 0)
353 {
354 queue1[nq++] = LOOP_REPR (loop);
355 }
356 }
357 dfs (g, queue1, nq, queue2, false);
358 for (i = 0; i < nq; i++)
359 queue1[i] = queue2[nq - i - 1];
360 dfs (g, queue1, nq, NULL, true);
361
362 /* Mark the irreducible loops. */
363 for_each_edge (g, check_irred);
364
365 free_graph (g);
366 free (queue1);
367 free (queue2);
368
369 if (current_loops)
370 current_loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
371 }
372
373 /* Counts number of insns inside LOOP. */
374 int
375 num_loop_insns (struct loop *loop)
376 {
377 basic_block *bbs, bb;
378 unsigned i, ninsns = 0;
379 rtx insn;
380
381 bbs = get_loop_body (loop);
382 for (i = 0; i < loop->num_nodes; i++)
383 {
384 bb = bbs[i];
385 ninsns++;
386 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
387 if (INSN_P (insn))
388 ninsns++;
389 }
390 free(bbs);
391
392 return ninsns;
393 }
394
395 /* Counts number of insns executed on average per iteration LOOP. */
396 int
397 average_num_loop_insns (struct loop *loop)
398 {
399 basic_block *bbs, bb;
400 unsigned i, binsns, ninsns, ratio;
401 rtx insn;
402
403 ninsns = 0;
404 bbs = get_loop_body (loop);
405 for (i = 0; i < loop->num_nodes; i++)
406 {
407 bb = bbs[i];
408
409 binsns = 1;
410 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
411 if (INSN_P (insn))
412 binsns++;
413
414 ratio = loop->header->frequency == 0
415 ? BB_FREQ_MAX
416 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
417 ninsns += binsns * ratio;
418 }
419 free(bbs);
420
421 ninsns /= BB_FREQ_MAX;
422 if (!ninsns)
423 ninsns = 1; /* To avoid division by zero. */
424
425 return ninsns;
426 }
427
428 /* Returns expected number of iterations of LOOP, according to
429 measured or guessed profile. No bounding is done on the
430 value. */
431
432 gcov_type
433 expected_loop_iterations_unbounded (const struct loop *loop)
434 {
435 edge e;
436 edge_iterator ei;
437
438 if (loop->latch->count || loop->header->count)
439 {
440 gcov_type count_in, count_latch, expected;
441
442 count_in = 0;
443 count_latch = 0;
444
445 FOR_EACH_EDGE (e, ei, loop->header->preds)
446 if (e->src == loop->latch)
447 count_latch = e->count;
448 else
449 count_in += e->count;
450
451 if (count_in == 0)
452 expected = count_latch * 2;
453 else
454 expected = (count_latch + count_in - 1) / count_in;
455
456 return expected;
457 }
458 else
459 {
460 int freq_in, freq_latch;
461
462 freq_in = 0;
463 freq_latch = 0;
464
465 FOR_EACH_EDGE (e, ei, loop->header->preds)
466 if (e->src == loop->latch)
467 freq_latch = EDGE_FREQUENCY (e);
468 else
469 freq_in += EDGE_FREQUENCY (e);
470
471 if (freq_in == 0)
472 return freq_latch * 2;
473
474 return (freq_latch + freq_in - 1) / freq_in;
475 }
476 }
477
478 /* Returns expected number of LOOP iterations. The returned value is bounded
479 by REG_BR_PROB_BASE. */
480
481 unsigned
482 expected_loop_iterations (const struct loop *loop)
483 {
484 gcov_type expected = expected_loop_iterations_unbounded (loop);
485 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
486 }
487
488 /* Returns the maximum level of nesting of subloops of LOOP. */
489
490 unsigned
491 get_loop_level (const struct loop *loop)
492 {
493 const struct loop *ploop;
494 unsigned mx = 0, l;
495
496 for (ploop = loop->inner; ploop; ploop = ploop->next)
497 {
498 l = get_loop_level (ploop);
499 if (l >= mx)
500 mx = l + 1;
501 }
502 return mx;
503 }
504
505 /* Returns estimate on cost of computing SEQ. */
506
507 static unsigned
508 seq_cost (rtx seq)
509 {
510 unsigned cost = 0;
511 rtx set;
512
513 for (; seq; seq = NEXT_INSN (seq))
514 {
515 set = single_set (seq);
516 if (set)
517 cost += rtx_cost (set, SET);
518 else
519 cost++;
520 }
521
522 return cost;
523 }
524
525 /* The properties of the target. */
526
527 unsigned target_avail_regs; /* Number of available registers. */
528 unsigned target_res_regs; /* Number of registers reserved for temporary
529 expressions. */
530 unsigned target_reg_cost; /* The cost for register when there still
531 is some reserve, but we are approaching
532 the number of available registers. */
533 unsigned target_spill_cost; /* The cost for register when we need
534 to spill. */
535
536 /* Initialize the constants for computing set costs. */
537
538 void
539 init_set_costs (void)
540 {
541 rtx seq;
542 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
543 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
544 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
545 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
546 unsigned i;
547
548 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
549 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
550 && !fixed_regs[i])
551 target_avail_regs++;
552
553 target_res_regs = 3;
554
555 /* Set up the costs for using extra registers:
556
557 1) If not many free registers remain, we should prefer having an
558 additional move to decreasing the number of available registers.
559 (TARGET_REG_COST).
560 2) If no registers are available, we need to spill, which may require
561 storing the old value to memory and loading it back
562 (TARGET_SPILL_COST). */
563
564 start_sequence ();
565 emit_move_insn (reg1, reg2);
566 seq = get_insns ();
567 end_sequence ();
568 target_reg_cost = seq_cost (seq);
569
570 start_sequence ();
571 emit_move_insn (mem, reg1);
572 emit_move_insn (reg2, mem);
573 seq = get_insns ();
574 end_sequence ();
575 target_spill_cost = seq_cost (seq);
576 }
577
578 /* Estimates cost of increased register pressure caused by making N_NEW new
579 registers live around the loop. N_OLD is the number of registers live
580 around the loop. */
581
582 unsigned
583 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old)
584 {
585 unsigned regs_needed = n_new + n_old;
586
587 /* If we have enough registers, we should use them and not restrict
588 the transformations unnecessarily. */
589 if (regs_needed + target_res_regs <= target_avail_regs)
590 return 0;
591
592 /* If we are close to running out of registers, try to preserve them. */
593 if (regs_needed <= target_avail_regs)
594 return target_reg_cost * n_new;
595
596 /* If we run out of registers, it is very expensive to add another one. */
597 return target_spill_cost * n_new;
598 }
599
600 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
601
602 void
603 mark_loop_exit_edges (void)
604 {
605 basic_block bb;
606 edge e;
607
608 if (!current_loops)
609 return;
610
611 FOR_EACH_BB (bb)
612 {
613 edge_iterator ei;
614
615 FOR_EACH_EDGE (e, ei, bb->succs)
616 {
617 if (loop_outer (bb->loop_father)
618 && loop_exit_edge_p (bb->loop_father, e))
619 e->flags |= EDGE_LOOP_EXIT;
620 else
621 e->flags &= ~EDGE_LOOP_EXIT;
622 }
623 }
624 }
625