]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopanal.c
Handle loops with loop->latch == NULL (PR gcov-profile/71868)
[thirdparty/gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "emit-rtl.h"
28 #include "cfgloop.h"
29 #include "explow.h"
30 #include "expr.h"
31 #include "graphds.h"
32 #include "params.h"
33
34 struct target_cfgloop default_target_cfgloop;
35 #if SWITCHABLE_TARGET
36 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
37 #endif
38
39 /* Checks whether BB is executed exactly once in each LOOP iteration. */
40
41 bool
42 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
43 {
44 /* It must be executed at least once each iteration. */
45 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
46 return false;
47
48 /* And just once. */
49 if (bb->loop_father != loop)
50 return false;
51
52 /* But this was not enough. We might have some irreducible loop here. */
53 if (bb->flags & BB_IRREDUCIBLE_LOOP)
54 return false;
55
56 return true;
57 }
58
59 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
60 throw away all latch edges and mark blocks inside any remaining cycle.
61 Everything is a bit complicated due to fact we do not want to do this
62 for parts of cycles that only "pass" through some loop -- i.e. for
63 each cycle, we want to mark blocks that belong directly to innermost
64 loop containing the whole cycle.
65
66 LOOPS is the loop tree. */
67
68 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun))
69 #define BB_REPR(BB) ((BB)->index + 1)
70
71 bool
72 mark_irreducible_loops (void)
73 {
74 basic_block act;
75 struct graph_edge *ge;
76 edge e;
77 edge_iterator ei;
78 int src, dest;
79 unsigned depth;
80 struct graph *g;
81 int num = number_of_loops (cfun);
82 struct loop *cloop;
83 bool irred_loop_found = false;
84 int i;
85
86 gcc_assert (current_loops != NULL);
87
88 /* Reset the flags. */
89 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
90 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
91 {
92 act->flags &= ~BB_IRREDUCIBLE_LOOP;
93 FOR_EACH_EDGE (e, ei, act->succs)
94 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
95 }
96
97 /* Create the edge lists. */
98 g = new_graph (last_basic_block_for_fn (cfun) + num);
99
100 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
101 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
102 FOR_EACH_EDGE (e, ei, act->succs)
103 {
104 /* Ignore edges to exit. */
105 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
106 continue;
107
108 src = BB_REPR (act);
109 dest = BB_REPR (e->dest);
110
111 /* Ignore latch edges. */
112 if (e->dest->loop_father->header == e->dest
113 && e->dest->loop_father->latch == act)
114 continue;
115
116 /* Edges inside a single loop should be left where they are. Edges
117 to subloop headers should lead to representative of the subloop,
118 but from the same place.
119
120 Edges exiting loops should lead from representative
121 of the son of nearest common ancestor of the loops in that
122 act lays. */
123
124 if (e->dest->loop_father->header == e->dest)
125 dest = LOOP_REPR (e->dest->loop_father);
126
127 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
128 {
129 depth = 1 + loop_depth (find_common_loop (act->loop_father,
130 e->dest->loop_father));
131 if (depth == loop_depth (act->loop_father))
132 cloop = act->loop_father;
133 else
134 cloop = (*act->loop_father->superloops)[depth];
135
136 src = LOOP_REPR (cloop);
137 }
138
139 add_edge (g, src, dest)->data = e;
140 }
141
142 /* Find the strongly connected components. */
143 graphds_scc (g, NULL);
144
145 /* Mark the irreducible loops. */
146 for (i = 0; i < g->n_vertices; i++)
147 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
148 {
149 edge real = (edge) ge->data;
150 /* edge E in graph G is irreducible if it connects two vertices in the
151 same scc. */
152
153 /* All edges should lead from a component with higher number to the
154 one with lower one. */
155 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
156
157 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
158 continue;
159
160 real->flags |= EDGE_IRREDUCIBLE_LOOP;
161 irred_loop_found = true;
162 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
163 real->src->flags |= BB_IRREDUCIBLE_LOOP;
164 }
165
166 free_graph (g);
167
168 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
169 return irred_loop_found;
170 }
171
172 /* Counts number of insns inside LOOP. */
173 int
174 num_loop_insns (const struct loop *loop)
175 {
176 basic_block *bbs, bb;
177 unsigned i, ninsns = 0;
178 rtx_insn *insn;
179
180 bbs = get_loop_body (loop);
181 for (i = 0; i < loop->num_nodes; i++)
182 {
183 bb = bbs[i];
184 FOR_BB_INSNS (bb, insn)
185 if (NONDEBUG_INSN_P (insn))
186 ninsns++;
187 }
188 free (bbs);
189
190 if (!ninsns)
191 ninsns = 1; /* To avoid division by zero. */
192
193 return ninsns;
194 }
195
196 /* Counts number of insns executed on average per iteration LOOP. */
197 int
198 average_num_loop_insns (const struct loop *loop)
199 {
200 basic_block *bbs, bb;
201 unsigned i, binsns, ninsns, ratio;
202 rtx_insn *insn;
203
204 ninsns = 0;
205 bbs = get_loop_body (loop);
206 for (i = 0; i < loop->num_nodes; i++)
207 {
208 bb = bbs[i];
209
210 binsns = 0;
211 FOR_BB_INSNS (bb, insn)
212 if (NONDEBUG_INSN_P (insn))
213 binsns++;
214
215 ratio = loop->header->frequency == 0
216 ? BB_FREQ_MAX
217 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
218 ninsns += binsns * ratio;
219 }
220 free (bbs);
221
222 ninsns /= BB_FREQ_MAX;
223 if (!ninsns)
224 ninsns = 1; /* To avoid division by zero. */
225
226 return ninsns;
227 }
228
229 /* Returns expected number of iterations of LOOP, according to
230 measured or guessed profile. No bounding is done on the
231 value. */
232
233 gcov_type
234 expected_loop_iterations_unbounded (const struct loop *loop,
235 bool *read_profile_p)
236 {
237 edge e;
238 edge_iterator ei;
239 gcov_type expected;
240
241 if (read_profile_p)
242 *read_profile_p = false;
243
244 /* If we have no profile at all, use AVG_LOOP_NITER. */
245 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
246 expected = PARAM_VALUE (PARAM_AVG_LOOP_NITER);
247 else if (loop->latch && (loop->latch->count || loop->header->count))
248 {
249 gcov_type count_in, count_latch;
250
251 count_in = 0;
252 count_latch = 0;
253
254 FOR_EACH_EDGE (e, ei, loop->header->preds)
255 if (e->src == loop->latch)
256 count_latch = e->count;
257 else
258 count_in += e->count;
259
260 if (count_in == 0)
261 expected = count_latch * 2;
262 else
263 {
264 expected = (count_latch + count_in - 1) / count_in;
265 if (read_profile_p)
266 *read_profile_p = true;
267 }
268 }
269 else
270 {
271 int freq_in, freq_latch;
272
273 freq_in = 0;
274 freq_latch = 0;
275
276 FOR_EACH_EDGE (e, ei, loop->header->preds)
277 if (flow_bb_inside_loop_p (loop, e->src))
278 freq_latch += EDGE_FREQUENCY (e);
279 else
280 freq_in += EDGE_FREQUENCY (e);
281
282 if (freq_in == 0)
283 {
284 /* If we have no profile at all, use AVG_LOOP_NITER iterations. */
285 if (!freq_latch)
286 expected = PARAM_VALUE (PARAM_AVG_LOOP_NITER);
287 else
288 expected = freq_latch * 2;
289 }
290 else
291 expected = (freq_latch + freq_in - 1) / freq_in;
292 }
293
294 HOST_WIDE_INT max = get_max_loop_iterations_int (loop);
295 if (max != -1 && max < expected)
296 return max;
297 return expected;
298 }
299
300 /* Returns expected number of LOOP iterations. The returned value is bounded
301 by REG_BR_PROB_BASE. */
302
303 unsigned
304 expected_loop_iterations (struct loop *loop)
305 {
306 gcov_type expected = expected_loop_iterations_unbounded (loop);
307 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
308 }
309
310 /* Returns the maximum level of nesting of subloops of LOOP. */
311
312 unsigned
313 get_loop_level (const struct loop *loop)
314 {
315 const struct loop *ploop;
316 unsigned mx = 0, l;
317
318 for (ploop = loop->inner; ploop; ploop = ploop->next)
319 {
320 l = get_loop_level (ploop);
321 if (l >= mx)
322 mx = l + 1;
323 }
324 return mx;
325 }
326
327 /* Initialize the constants for computing set costs. */
328
329 void
330 init_set_costs (void)
331 {
332 int speed;
333 rtx_insn *seq;
334 rtx reg1 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 1);
335 rtx reg2 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 2);
336 rtx addr = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 3);
337 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
338 unsigned i;
339
340 target_avail_regs = 0;
341 target_clobbered_regs = 0;
342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
344 && !fixed_regs[i])
345 {
346 target_avail_regs++;
347 if (call_used_regs[i])
348 target_clobbered_regs++;
349 }
350
351 target_res_regs = 3;
352
353 for (speed = 0; speed < 2; speed++)
354 {
355 crtl->maybe_hot_insn_p = speed;
356 /* Set up the costs for using extra registers:
357
358 1) If not many free registers remain, we should prefer having an
359 additional move to decreasing the number of available registers.
360 (TARGET_REG_COST).
361 2) If no registers are available, we need to spill, which may require
362 storing the old value to memory and loading it back
363 (TARGET_SPILL_COST). */
364
365 start_sequence ();
366 emit_move_insn (reg1, reg2);
367 seq = get_insns ();
368 end_sequence ();
369 target_reg_cost [speed] = seq_cost (seq, speed);
370
371 start_sequence ();
372 emit_move_insn (mem, reg1);
373 emit_move_insn (reg2, mem);
374 seq = get_insns ();
375 end_sequence ();
376 target_spill_cost [speed] = seq_cost (seq, speed);
377 }
378 default_rtl_profile ();
379 }
380
381 /* Estimates cost of increased register pressure caused by making N_NEW new
382 registers live around the loop. N_OLD is the number of registers live
383 around the loop. If CALL_P is true, also take into account that
384 call-used registers may be clobbered in the loop body, reducing the
385 number of available registers before we spill. */
386
387 unsigned
388 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
389 bool call_p)
390 {
391 unsigned cost;
392 unsigned regs_needed = n_new + n_old;
393 unsigned available_regs = target_avail_regs;
394
395 /* If there is a call in the loop body, the call-clobbered registers
396 are not available for loop invariants. */
397 if (call_p)
398 available_regs = available_regs - target_clobbered_regs;
399
400 /* If we have enough registers, we should use them and not restrict
401 the transformations unnecessarily. */
402 if (regs_needed + target_res_regs <= available_regs)
403 return 0;
404
405 if (regs_needed <= available_regs)
406 /* If we are close to running out of registers, try to preserve
407 them. */
408 cost = target_reg_cost [speed] * n_new;
409 else
410 /* If we run out of registers, it is very expensive to add another
411 one. */
412 cost = target_spill_cost [speed] * n_new;
413
414 if (optimize && (flag_ira_region == IRA_REGION_ALL
415 || flag_ira_region == IRA_REGION_MIXED)
416 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
417 /* IRA regional allocation deals with high register pressure
418 better. So decrease the cost (to do more accurate the cost
419 calculation for IRA, we need to know how many registers lives
420 through the loop transparently). */
421 cost /= 2;
422
423 return cost;
424 }
425
426 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
427
428 void
429 mark_loop_exit_edges (void)
430 {
431 basic_block bb;
432 edge e;
433
434 if (number_of_loops (cfun) <= 1)
435 return;
436
437 FOR_EACH_BB_FN (bb, cfun)
438 {
439 edge_iterator ei;
440
441 FOR_EACH_EDGE (e, ei, bb->succs)
442 {
443 if (loop_outer (bb->loop_father)
444 && loop_exit_edge_p (bb->loop_father, e))
445 e->flags |= EDGE_LOOP_EXIT;
446 else
447 e->flags &= ~EDGE_LOOP_EXIT;
448 }
449 }
450 }
451
452 /* Return exit edge if loop has only one exit that is likely
453 to be executed on runtime (i.e. it is not EH or leading
454 to noreturn call. */
455
456 edge
457 single_likely_exit (struct loop *loop)
458 {
459 edge found = single_exit (loop);
460 vec<edge> exits;
461 unsigned i;
462 edge ex;
463
464 if (found)
465 return found;
466 exits = get_loop_exit_edges (loop);
467 FOR_EACH_VEC_ELT (exits, i, ex)
468 {
469 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
470 continue;
471 /* The constant of 5 is set in a way so noreturn calls are
472 ruled out by this test. The static branch prediction algorithm
473 will not assign such a low probability to conditionals for usual
474 reasons. */
475 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
476 && ex->probability < 5 && !ex->count)
477 continue;
478 if (!found)
479 found = ex;
480 else
481 {
482 exits.release ();
483 return NULL;
484 }
485 }
486 exits.release ();
487 return found;
488 }
489
490
491 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
492 order against direction of edges from latch. Specially, if
493 header != latch, latch is the 1-st block. */
494
495 vec<basic_block>
496 get_loop_hot_path (const struct loop *loop)
497 {
498 basic_block bb = loop->header;
499 vec<basic_block> path = vNULL;
500 bitmap visited = BITMAP_ALLOC (NULL);
501
502 while (true)
503 {
504 edge_iterator ei;
505 edge e;
506 edge best = NULL;
507
508 path.safe_push (bb);
509 bitmap_set_bit (visited, bb->index);
510 FOR_EACH_EDGE (e, ei, bb->succs)
511 if ((!best || e->probability > best->probability)
512 && !loop_exit_edge_p (loop, e)
513 && !bitmap_bit_p (visited, e->dest->index))
514 best = e;
515 if (!best || best->dest == loop->header)
516 break;
517 bb = best->dest;
518 }
519 BITMAP_FREE (visited);
520 return path;
521 }