]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopanal.c
tree-vrp.c (execute_vrp): Do not check whether current_loops == NULL.
[thirdparty/gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34
35 bool
36 just_once_each_iteration_p (const struct loop *loop, basic_block bb)
37 {
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
40 return false;
41
42 /* And just once. */
43 if (bb->loop_father != loop)
44 return false;
45
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb->flags & BB_IRREDUCIBLE_LOOP)
48 return false;
49
50 return true;
51 }
52
53 /* Structure representing edge of a graph. */
54
55 struct edge
56 {
57 int src, dest; /* Source and destination. */
58 struct edge *pred_next, *succ_next;
59 /* Next edge in predecessor and successor lists. */
60 void *data; /* Data attached to the edge. */
61 };
62
63 /* Structure representing vertex of a graph. */
64
65 struct vertex
66 {
67 struct edge *pred, *succ;
68 /* Lists of predecessors and successors. */
69 int component; /* Number of dfs restarts before reaching the
70 vertex. */
71 int post; /* Postorder number. */
72 };
73
74 /* Structure representing a graph. */
75
76 struct graph
77 {
78 int n_vertices; /* Number of vertices. */
79 struct vertex *vertices;
80 /* The vertices. */
81 };
82
83 /* Dumps graph G into F. */
84
85 extern void dump_graph (FILE *, struct graph *);
86
87 void
88 dump_graph (FILE *f, struct graph *g)
89 {
90 int i;
91 struct edge *e;
92
93 for (i = 0; i < g->n_vertices; i++)
94 {
95 if (!g->vertices[i].pred
96 && !g->vertices[i].succ)
97 continue;
98
99 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
100 for (e = g->vertices[i].pred; e; e = e->pred_next)
101 fprintf (f, " %d", e->src);
102 fprintf (f, "\n");
103
104 fprintf (f, "\t->");
105 for (e = g->vertices[i].succ; e; e = e->succ_next)
106 fprintf (f, " %d", e->dest);
107 fprintf (f, "\n");
108 }
109 }
110
111 /* Creates a new graph with N_VERTICES vertices. */
112
113 static struct graph *
114 new_graph (int n_vertices)
115 {
116 struct graph *g = XNEW (struct graph);
117
118 g->n_vertices = n_vertices;
119 g->vertices = XCNEWVEC (struct vertex, n_vertices);
120
121 return g;
122 }
123
124 /* Adds an edge from F to T to graph G, with DATA attached. */
125
126 static void
127 add_edge (struct graph *g, int f, int t, void *data)
128 {
129 struct edge *e = xmalloc (sizeof (struct edge));
130
131 e->src = f;
132 e->dest = t;
133 e->data = data;
134
135 e->pred_next = g->vertices[t].pred;
136 g->vertices[t].pred = e;
137
138 e->succ_next = g->vertices[f].succ;
139 g->vertices[f].succ = e;
140 }
141
142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
143 The vertices in postorder are stored into QT. If FORWARD is false,
144 backward dfs is run. */
145
146 static void
147 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
148 {
149 int i, tick = 0, v, comp = 0, top;
150 struct edge *e;
151 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
152
153 for (i = 0; i < g->n_vertices; i++)
154 {
155 g->vertices[i].component = -1;
156 g->vertices[i].post = -1;
157 }
158
159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
163
164 for (i = 0; i < nq; i++)
165 {
166 v = qs[i];
167 if (g->vertices[v].post != -1)
168 continue;
169
170 g->vertices[v].component = comp++;
171 e = FST_EDGE (v);
172 top = 0;
173
174 while (1)
175 {
176 while (e && g->vertices[EDGE_DEST (e)].component != -1)
177 e = NEXT_EDGE (e);
178
179 if (!e)
180 {
181 if (qt)
182 qt[tick] = v;
183 g->vertices[v].post = tick++;
184
185 if (!top)
186 break;
187
188 e = stack[--top];
189 v = EDGE_SRC (e);
190 e = NEXT_EDGE (e);
191 continue;
192 }
193
194 stack[top++] = e;
195 v = EDGE_DEST (e);
196 e = FST_EDGE (v);
197 g->vertices[v].component = comp - 1;
198 }
199 }
200
201 free (stack);
202 }
203
204 /* Marks the edge E in graph G irreducible if it connects two vertices in the
205 same scc. */
206
207 static void
208 check_irred (struct graph *g, struct edge *e)
209 {
210 edge real = e->data;
211
212 /* All edges should lead from a component with higher number to the
213 one with lower one. */
214 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
215
216 if (g->vertices[e->src].component != g->vertices[e->dest].component)
217 return;
218
219 real->flags |= EDGE_IRREDUCIBLE_LOOP;
220 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
221 real->src->flags |= BB_IRREDUCIBLE_LOOP;
222 }
223
224 /* Runs CALLBACK for all edges in G. */
225
226 static void
227 for_each_edge (struct graph *g,
228 void (callback) (struct graph *, struct edge *))
229 {
230 struct edge *e;
231 int i;
232
233 for (i = 0; i < g->n_vertices; i++)
234 for (e = g->vertices[i].succ; e; e = e->succ_next)
235 callback (g, e);
236 }
237
238 /* Releases the memory occupied by G. */
239
240 static void
241 free_graph (struct graph *g)
242 {
243 struct edge *e, *n;
244 int i;
245
246 for (i = 0; i < g->n_vertices; i++)
247 for (e = g->vertices[i].succ; e; e = n)
248 {
249 n = e->succ_next;
250 free (e);
251 }
252 free (g->vertices);
253 free (g);
254 }
255
256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
257 throw away all latch edges and mark blocks inside any remaining cycle.
258 Everything is a bit complicated due to fact we do not want to do this
259 for parts of cycles that only "pass" through some loop -- i.e. for
260 each cycle, we want to mark blocks that belong directly to innermost
261 loop containing the whole cycle.
262
263 LOOPS is the loop tree. */
264
265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
266 #define BB_REPR(BB) ((BB)->index + 1)
267
268 void
269 mark_irreducible_loops (void)
270 {
271 basic_block act;
272 edge e;
273 edge_iterator ei;
274 int i, src, dest;
275 struct graph *g;
276 int num = number_of_loops ();
277 int *queue1 = XNEWVEC (int, last_basic_block + num);
278 int *queue2 = XNEWVEC (int, last_basic_block + num);
279 int nq;
280 unsigned depth;
281 struct loop *cloop, *loop;
282 loop_iterator li;
283
284 gcc_assert (current_loops != NULL);
285
286 /* Reset the flags. */
287 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
288 {
289 act->flags &= ~BB_IRREDUCIBLE_LOOP;
290 FOR_EACH_EDGE (e, ei, act->succs)
291 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
292 }
293
294 /* Create the edge lists. */
295 g = new_graph (last_basic_block + num);
296
297 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
298 FOR_EACH_EDGE (e, ei, act->succs)
299 {
300 /* Ignore edges to exit. */
301 if (e->dest == EXIT_BLOCK_PTR)
302 continue;
303
304 src = BB_REPR (act);
305 dest = BB_REPR (e->dest);
306
307 /* Ignore latch edges. */
308 if (e->dest->loop_father->header == e->dest
309 && e->dest->loop_father->latch == act)
310 continue;
311
312 /* Edges inside a single loop should be left where they are. Edges
313 to subloop headers should lead to representative of the subloop,
314 but from the same place.
315
316 Edges exiting loops should lead from representative
317 of the son of nearest common ancestor of the loops in that
318 act lays. */
319
320 if (e->dest->loop_father->header == e->dest)
321 dest = LOOP_REPR (e->dest->loop_father);
322
323 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
324 {
325 depth = 1 + loop_depth (find_common_loop (act->loop_father,
326 e->dest->loop_father));
327 if (depth == loop_depth (act->loop_father))
328 cloop = act->loop_father;
329 else
330 cloop = VEC_index (loop_p, act->loop_father->superloops, depth);
331
332 src = LOOP_REPR (cloop);
333 }
334
335 add_edge (g, src, dest, e);
336 }
337
338 /* Find the strongly connected components. Use the algorithm of Tarjan --
339 first determine the postorder dfs numbering in reversed graph, then
340 run the dfs on the original graph in the order given by decreasing
341 numbers assigned by the previous pass. */
342 nq = 0;
343 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
344 {
345 queue1[nq++] = BB_REPR (act);
346 }
347
348 FOR_EACH_LOOP (li, loop, 0)
349 {
350 queue1[nq++] = LOOP_REPR (loop);
351 }
352 dfs (g, queue1, nq, queue2, false);
353 for (i = 0; i < nq; i++)
354 queue1[i] = queue2[nq - i - 1];
355 dfs (g, queue1, nq, NULL, true);
356
357 /* Mark the irreducible loops. */
358 for_each_edge (g, check_irred);
359
360 free_graph (g);
361 free (queue1);
362 free (queue2);
363
364 current_loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
365 }
366
367 /* Counts number of insns inside LOOP. */
368 int
369 num_loop_insns (struct loop *loop)
370 {
371 basic_block *bbs, bb;
372 unsigned i, ninsns = 0;
373 rtx insn;
374
375 bbs = get_loop_body (loop);
376 for (i = 0; i < loop->num_nodes; i++)
377 {
378 bb = bbs[i];
379 ninsns++;
380 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
381 if (INSN_P (insn))
382 ninsns++;
383 }
384 free(bbs);
385
386 return ninsns;
387 }
388
389 /* Counts number of insns executed on average per iteration LOOP. */
390 int
391 average_num_loop_insns (struct loop *loop)
392 {
393 basic_block *bbs, bb;
394 unsigned i, binsns, ninsns, ratio;
395 rtx insn;
396
397 ninsns = 0;
398 bbs = get_loop_body (loop);
399 for (i = 0; i < loop->num_nodes; i++)
400 {
401 bb = bbs[i];
402
403 binsns = 1;
404 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
405 if (INSN_P (insn))
406 binsns++;
407
408 ratio = loop->header->frequency == 0
409 ? BB_FREQ_MAX
410 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
411 ninsns += binsns * ratio;
412 }
413 free(bbs);
414
415 ninsns /= BB_FREQ_MAX;
416 if (!ninsns)
417 ninsns = 1; /* To avoid division by zero. */
418
419 return ninsns;
420 }
421
422 /* Returns expected number of iterations of LOOP, according to
423 measured or guessed profile. No bounding is done on the
424 value. */
425
426 gcov_type
427 expected_loop_iterations_unbounded (const struct loop *loop)
428 {
429 edge e;
430 edge_iterator ei;
431
432 if (loop->latch->count || loop->header->count)
433 {
434 gcov_type count_in, count_latch, expected;
435
436 count_in = 0;
437 count_latch = 0;
438
439 FOR_EACH_EDGE (e, ei, loop->header->preds)
440 if (e->src == loop->latch)
441 count_latch = e->count;
442 else
443 count_in += e->count;
444
445 if (count_in == 0)
446 expected = count_latch * 2;
447 else
448 expected = (count_latch + count_in - 1) / count_in;
449
450 return expected;
451 }
452 else
453 {
454 int freq_in, freq_latch;
455
456 freq_in = 0;
457 freq_latch = 0;
458
459 FOR_EACH_EDGE (e, ei, loop->header->preds)
460 if (e->src == loop->latch)
461 freq_latch = EDGE_FREQUENCY (e);
462 else
463 freq_in += EDGE_FREQUENCY (e);
464
465 if (freq_in == 0)
466 return freq_latch * 2;
467
468 return (freq_latch + freq_in - 1) / freq_in;
469 }
470 }
471
472 /* Returns expected number of LOOP iterations. The returned value is bounded
473 by REG_BR_PROB_BASE. */
474
475 unsigned
476 expected_loop_iterations (const struct loop *loop)
477 {
478 gcov_type expected = expected_loop_iterations_unbounded (loop);
479 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
480 }
481
482 /* Returns the maximum level of nesting of subloops of LOOP. */
483
484 unsigned
485 get_loop_level (const struct loop *loop)
486 {
487 const struct loop *ploop;
488 unsigned mx = 0, l;
489
490 for (ploop = loop->inner; ploop; ploop = ploop->next)
491 {
492 l = get_loop_level (ploop);
493 if (l >= mx)
494 mx = l + 1;
495 }
496 return mx;
497 }
498
499 /* Returns estimate on cost of computing SEQ. */
500
501 static unsigned
502 seq_cost (rtx seq)
503 {
504 unsigned cost = 0;
505 rtx set;
506
507 for (; seq; seq = NEXT_INSN (seq))
508 {
509 set = single_set (seq);
510 if (set)
511 cost += rtx_cost (set, SET);
512 else
513 cost++;
514 }
515
516 return cost;
517 }
518
519 /* The properties of the target. */
520
521 unsigned target_avail_regs; /* Number of available registers. */
522 unsigned target_res_regs; /* Number of registers reserved for temporary
523 expressions. */
524 unsigned target_reg_cost; /* The cost for register when there still
525 is some reserve, but we are approaching
526 the number of available registers. */
527 unsigned target_spill_cost; /* The cost for register when we need
528 to spill. */
529
530 /* Initialize the constants for computing set costs. */
531
532 void
533 init_set_costs (void)
534 {
535 rtx seq;
536 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
537 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
538 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
539 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
540 unsigned i;
541
542 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
543 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
544 && !fixed_regs[i])
545 target_avail_regs++;
546
547 target_res_regs = 3;
548
549 /* Set up the costs for using extra registers:
550
551 1) If not many free registers remain, we should prefer having an
552 additional move to decreasing the number of available registers.
553 (TARGET_REG_COST).
554 2) If no registers are available, we need to spill, which may require
555 storing the old value to memory and loading it back
556 (TARGET_SPILL_COST). */
557
558 start_sequence ();
559 emit_move_insn (reg1, reg2);
560 seq = get_insns ();
561 end_sequence ();
562 target_reg_cost = seq_cost (seq);
563
564 start_sequence ();
565 emit_move_insn (mem, reg1);
566 emit_move_insn (reg2, mem);
567 seq = get_insns ();
568 end_sequence ();
569 target_spill_cost = seq_cost (seq);
570 }
571
572 /* Estimates cost of increased register pressure caused by making N_NEW new
573 registers live around the loop. N_OLD is the number of registers live
574 around the loop. */
575
576 unsigned
577 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old)
578 {
579 unsigned regs_needed = n_new + n_old;
580
581 /* If we have enough registers, we should use them and not restrict
582 the transformations unnecessarily. */
583 if (regs_needed + target_res_regs <= target_avail_regs)
584 return 0;
585
586 /* If we are close to running out of registers, try to preserve them. */
587 if (regs_needed <= target_avail_regs)
588 return target_reg_cost * n_new;
589
590 /* If we run out of registers, it is very expensive to add another one. */
591 return target_spill_cost * n_new;
592 }
593
594 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
595
596 void
597 mark_loop_exit_edges (void)
598 {
599 basic_block bb;
600 edge e;
601
602 if (number_of_loops () <= 1)
603 return;
604
605 FOR_EACH_BB (bb)
606 {
607 edge_iterator ei;
608
609 FOR_EACH_EDGE (e, ei, bb->succs)
610 {
611 if (loop_outer (bb->loop_father)
612 && loop_exit_edge_p (bb->loop_father, e))
613 e->flags |= EDGE_LOOP_EXIT;
614 else
615 e->flags &= ~EDGE_LOOP_EXIT;
616 }
617 }
618 }
619