]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopanal.cc
Implement flat loop profile detection
[thirdparty/gcc.git] / gcc / cfgloopanal.cc
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "memmodel.h"
28 #include "emit-rtl.h"
29 #include "cfgloop.h"
30 #include "explow.h"
31 #include "expr.h"
32 #include "graphds.h"
33 #include "sreal.h"
34 #include "regs.h"
35 #include "function-abi.h"
36
37 struct target_cfgloop default_target_cfgloop;
38 #if SWITCHABLE_TARGET
39 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
40 #endif
41
42 /* Checks whether BB is executed exactly once in each LOOP iteration. */
43
44 bool
45 just_once_each_iteration_p (const class loop *loop, const_basic_block bb)
46 {
47 /* It must be executed at least once each iteration. */
48 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
49 return false;
50
51 /* And just once. */
52 if (bb->loop_father != loop)
53 return false;
54
55 /* But this was not enough. We might have some irreducible loop here. */
56 if (bb->flags & BB_IRREDUCIBLE_LOOP)
57 return false;
58
59 return true;
60 }
61
62 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
63 throw away all latch edges and mark blocks inside any remaining cycle.
64 Everything is a bit complicated due to fact we do not want to do this
65 for parts of cycles that only "pass" through some loop -- i.e. for
66 each cycle, we want to mark blocks that belong directly to innermost
67 loop containing the whole cycle.
68
69 LOOPS is the loop tree. */
70
71 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block_for_fn (cfun))
72 #define BB_REPR(BB) ((BB)->index + 1)
73
74 bool
75 mark_irreducible_loops (void)
76 {
77 basic_block act;
78 struct graph_edge *ge;
79 edge e;
80 edge_iterator ei;
81 int src, dest;
82 unsigned depth;
83 struct graph *g;
84 int num = number_of_loops (cfun);
85 class loop *cloop;
86 bool irred_loop_found = false;
87 int i;
88
89 gcc_assert (current_loops != NULL);
90
91 /* Reset the flags. */
92 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
93 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
94 {
95 act->flags &= ~BB_IRREDUCIBLE_LOOP;
96 FOR_EACH_EDGE (e, ei, act->succs)
97 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
98 }
99
100 /* Create the edge lists. */
101 g = new_graph (last_basic_block_for_fn (cfun) + num);
102
103 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
104 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
105 FOR_EACH_EDGE (e, ei, act->succs)
106 {
107 /* Ignore edges to exit. */
108 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
109 continue;
110
111 src = BB_REPR (act);
112 dest = BB_REPR (e->dest);
113
114 /* Ignore latch edges. */
115 if (e->dest->loop_father->header == e->dest
116 && dominated_by_p (CDI_DOMINATORS, act, e->dest))
117 continue;
118
119 /* Edges inside a single loop should be left where they are. Edges
120 to subloop headers should lead to representative of the subloop,
121 but from the same place.
122
123 Edges exiting loops should lead from representative
124 of the son of nearest common ancestor of the loops in that
125 act lays. */
126
127 if (e->dest->loop_father->header == e->dest)
128 dest = LOOP_REPR (e->dest->loop_father);
129
130 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
131 {
132 depth = 1 + loop_depth (find_common_loop (act->loop_father,
133 e->dest->loop_father));
134 if (depth == loop_depth (act->loop_father))
135 cloop = act->loop_father;
136 else
137 cloop = (*act->loop_father->superloops)[depth];
138
139 src = LOOP_REPR (cloop);
140 }
141
142 add_edge (g, src, dest)->data = e;
143 }
144
145 /* Find the strongly connected components. */
146 graphds_scc (g, NULL);
147
148 /* Mark the irreducible loops. */
149 for (i = 0; i < g->n_vertices; i++)
150 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
151 {
152 edge real = (edge) ge->data;
153 /* edge E in graph G is irreducible if it connects two vertices in the
154 same scc. */
155
156 /* All edges should lead from a component with higher number to the
157 one with lower one. */
158 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
159
160 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
161 continue;
162
163 real->flags |= EDGE_IRREDUCIBLE_LOOP;
164 irred_loop_found = true;
165 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
166 real->src->flags |= BB_IRREDUCIBLE_LOOP;
167 }
168
169 free_graph (g);
170
171 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
172 return irred_loop_found;
173 }
174
175 /* Counts number of insns inside LOOP. */
176 int
177 num_loop_insns (const class loop *loop)
178 {
179 basic_block *bbs, bb;
180 unsigned i, ninsns = 0;
181 rtx_insn *insn;
182
183 bbs = get_loop_body (loop);
184 for (i = 0; i < loop->num_nodes; i++)
185 {
186 bb = bbs[i];
187 FOR_BB_INSNS (bb, insn)
188 if (NONDEBUG_INSN_P (insn))
189 ninsns++;
190 }
191 free (bbs);
192
193 if (!ninsns)
194 ninsns = 1; /* To avoid division by zero. */
195
196 return ninsns;
197 }
198
199 /* Counts number of insns executed on average per iteration LOOP. */
200 int
201 average_num_loop_insns (const class loop *loop)
202 {
203 basic_block *bbs, bb;
204 unsigned i, binsns;
205 sreal ninsns;
206 rtx_insn *insn;
207
208 ninsns = 0;
209 bbs = get_loop_body (loop);
210 for (i = 0; i < loop->num_nodes; i++)
211 {
212 bb = bbs[i];
213
214 binsns = 0;
215 FOR_BB_INSNS (bb, insn)
216 if (NONDEBUG_INSN_P (insn))
217 binsns++;
218
219 ninsns += (sreal)binsns * bb->count.to_sreal_scale (loop->header->count);
220 /* Avoid overflows. */
221 if (ninsns > 1000000)
222 {
223 free (bbs);
224 return 1000000;
225 }
226 }
227 free (bbs);
228
229 int64_t ret = ninsns.to_int ();
230 if (!ret)
231 ret = 1; /* To avoid division by zero. */
232
233 return ret;
234 }
235
236 /* Return true if BB profile can be used to determine the expected number of
237 iterations (that is number of executions of latch edge(s) for each
238 entry of the loop. If this is the case initialize RET with the number
239 of iterations.
240
241 RELIABLE is set if profile indiates that the returned value should be
242 realistic estimate. (This is the case if we read profile and did not
243 messed it up yet and not the case of guessed profiles.)
244
245 This function uses only CFG profile. We track more reliable info in
246 loop_info structure and for loop optimization heuristics more relevant
247 is get_estimated_loop_iterations API. */
248
249 bool
250 expected_loop_iterations_by_profile (const class loop *loop, sreal *ret,
251 bool *reliable)
252 {
253 profile_count header_count = loop->header->count;
254 if (reliable)
255 *reliable = false;
256
257 /* TODO: For single exit loops we can use loop exit edge probability.
258 It also may be reliable while loop itself was adjusted. */
259 if (!header_count.initialized_p ()
260 || !header_count.nonzero_p ())
261 return false;
262
263 profile_count count_in = profile_count::zero ();
264 edge e;
265 edge_iterator ei;
266
267 /* For single-latch loops avoid querying dominators. */
268 if (loop->latch)
269 {
270 bool found = false;
271 FOR_EACH_EDGE (e, ei, loop->header->preds)
272 if (e->src != loop->latch)
273 count_in += e->count ();
274 else
275 found = true;
276 /* If latch is not found, loop is inconsistent. */
277 gcc_checking_assert (found);
278 }
279 else
280 FOR_EACH_EDGE (e, ei, loop->header->preds)
281 if (!dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
282 count_in += e->count ();
283
284 bool known;
285 /* Number of iterations is number of executions of latch edge. */
286 *ret = (header_count - count_in).to_sreal_scale (count_in, &known);
287 if (!known)
288 return false;
289 if (reliable)
290 {
291 /* Header should have at least count_in many executions.
292 Give up on clearly inconsistent profile. */
293 if (header_count < count_in && header_count.differs_from_p (count_in))
294 {
295 if (dump_file && (dump_flags & TDF_DETAILS))
296 fprintf (dump_file, "Inconsistent bb profile of loop %i\n",
297 loop->num);
298 *reliable = false;
299 }
300 else
301 *reliable = count_in.reliable_p () && header_count.reliable_p ();
302 }
303 return true;
304 }
305
306 /* Return true if loop CFG profile may be unrealistically flat.
307 This is a common case, since average loops iterate only about 5 times.
308 In the case we do not have profile feedback or do not know real number of
309 iterations during profile estimation, we are likely going to predict it with
310 similar low iteration count. For static loop profiles we also artificially
311 cap profile of loops with known large iteration count so they do not appear
312 significantly more hot than other loops with unknown iteration counts.
313
314 For loop optimization heuristics we ignore CFG profile and instead
315 use get_estimated_loop_iterations API which returns estimate
316 only when it is realistic. For unknown counts some optimizations,
317 like vectorizer or unroller make guess that iteration count will
318 be large. In this case we need to avoid scaling down the profile
319 after the loop transform. */
320
321 bool
322 maybe_flat_loop_profile (const class loop *loop)
323 {
324 bool reliable;
325 sreal ret;
326
327 if (!expected_loop_iterations_by_profile (loop, &ret, &reliable))
328 return true;
329
330 /* Reliable CFG estimates ought never be flat. Sanity check with
331 nb_iterations_estimate. If those differ, it is a but in profile
332 updating code */
333 if (reliable)
334 {
335 int64_t intret = ret.to_nearest_int ();
336 if (loop->any_estimate
337 && (wi::ltu_p (intret * 2, loop->nb_iterations_estimate)
338 || wi::gtu_p (intret, loop->nb_iterations_estimate * 2)))
339 {
340 if (dump_file && (dump_flags & TDF_DETAILS))
341 fprintf (dump_file,
342 "Loop %i has inconsistent iterations estimates: "
343 "reliable CFG based iteration estimate is %f "
344 "while nb_iterations_estimate is %i\n",
345 loop->num,
346 ret.to_double (),
347 (int)loop->nb_iterations_estimate.to_shwi ());
348 return true;
349 }
350 return false;
351 }
352
353 /* Allow some margin of error and see if we are close to known bounds.
354 sreal (9,-3) is 9/8 */
355 int64_t intret = (ret * sreal (9, -3)).to_nearest_int ();
356 if (loop->any_upper_bound && wi::geu_p (intret, loop->nb_iterations_upper_bound))
357 return false;
358 if (loop->any_likely_upper_bound
359 && wi::geu_p (intret, loop->nb_iterations_likely_upper_bound))
360 return false;
361 if (loop->any_estimate
362 && wi::geu_p (intret, loop->nb_iterations_estimate))
363 return false;
364 return true;
365 }
366
367 /* Returns expected number of iterations of LOOP, according to
368 measured or guessed profile.
369
370 This functions attempts to return "sane" value even if profile
371 information is not good enough to derive osmething. */
372
373 gcov_type
374 expected_loop_iterations_unbounded (const class loop *loop,
375 bool *read_profile_p)
376 {
377 gcov_type expected = -1;
378
379 if (read_profile_p)
380 *read_profile_p = false;
381
382 sreal sreal_expected;
383 if (expected_loop_iterations_by_profile
384 (loop, &sreal_expected, read_profile_p))
385 expected = sreal_expected.to_nearest_int ();
386 else
387 expected = param_avg_loop_niter;
388
389 HOST_WIDE_INT max = get_max_loop_iterations_int (loop);
390 if (max != -1 && max < expected)
391 return max;
392
393 return expected;
394 }
395
396 /* Returns expected number of LOOP iterations. The returned value is bounded
397 by REG_BR_PROB_BASE. */
398
399 unsigned
400 expected_loop_iterations (class loop *loop)
401 {
402 gcov_type expected = expected_loop_iterations_unbounded (loop);
403 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
404 }
405
406 /* Returns the maximum level of nesting of subloops of LOOP. */
407
408 unsigned
409 get_loop_level (const class loop *loop)
410 {
411 const class loop *ploop;
412 unsigned mx = 0, l;
413
414 for (ploop = loop->inner; ploop; ploop = ploop->next)
415 {
416 l = get_loop_level (ploop);
417 if (l >= mx)
418 mx = l + 1;
419 }
420 return mx;
421 }
422
423 /* Initialize the constants for computing set costs. */
424
425 void
426 init_set_costs (void)
427 {
428 int speed;
429 rtx_insn *seq;
430 rtx reg1 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 1);
431 rtx reg2 = gen_raw_REG (SImode, LAST_VIRTUAL_REGISTER + 2);
432 rtx addr = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 3);
433 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
434 unsigned i;
435
436 target_avail_regs = 0;
437 target_clobbered_regs = 0;
438 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
439 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
440 && !fixed_regs[i])
441 {
442 target_avail_regs++;
443 /* ??? This is only a rough heuristic. It doesn't cope well
444 with alternative ABIs, but that's an optimization rather than
445 correctness issue. */
446 if (default_function_abi.clobbers_full_reg_p (i))
447 target_clobbered_regs++;
448 }
449
450 target_res_regs = 3;
451
452 for (speed = 0; speed < 2; speed++)
453 {
454 crtl->maybe_hot_insn_p = speed;
455 /* Set up the costs for using extra registers:
456
457 1) If not many free registers remain, we should prefer having an
458 additional move to decreasing the number of available registers.
459 (TARGET_REG_COST).
460 2) If no registers are available, we need to spill, which may require
461 storing the old value to memory and loading it back
462 (TARGET_SPILL_COST). */
463
464 start_sequence ();
465 emit_move_insn (reg1, reg2);
466 seq = get_insns ();
467 end_sequence ();
468 target_reg_cost [speed] = seq_cost (seq, speed);
469
470 start_sequence ();
471 emit_move_insn (mem, reg1);
472 emit_move_insn (reg2, mem);
473 seq = get_insns ();
474 end_sequence ();
475 target_spill_cost [speed] = seq_cost (seq, speed);
476 }
477 default_rtl_profile ();
478 }
479
480 /* Estimates cost of increased register pressure caused by making N_NEW new
481 registers live around the loop. N_OLD is the number of registers live
482 around the loop. If CALL_P is true, also take into account that
483 call-used registers may be clobbered in the loop body, reducing the
484 number of available registers before we spill. */
485
486 unsigned
487 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
488 bool call_p)
489 {
490 unsigned cost;
491 unsigned regs_needed = n_new + n_old;
492 unsigned available_regs = target_avail_regs;
493
494 /* If there is a call in the loop body, the call-clobbered registers
495 are not available for loop invariants. */
496 if (call_p)
497 available_regs = available_regs - target_clobbered_regs;
498
499 /* If we have enough registers, we should use them and not restrict
500 the transformations unnecessarily. */
501 if (regs_needed + target_res_regs <= available_regs)
502 return 0;
503
504 if (regs_needed <= available_regs)
505 /* If we are close to running out of registers, try to preserve
506 them. */
507 cost = target_reg_cost [speed] * n_new;
508 else
509 /* If we run out of registers, it is very expensive to add another
510 one. */
511 cost = target_spill_cost [speed] * n_new;
512
513 if (optimize && (flag_ira_region == IRA_REGION_ALL
514 || flag_ira_region == IRA_REGION_MIXED)
515 && number_of_loops (cfun) <= (unsigned) param_ira_max_loops_num)
516 /* IRA regional allocation deals with high register pressure
517 better. So decrease the cost (to do more accurate the cost
518 calculation for IRA, we need to know how many registers lives
519 through the loop transparently). */
520 cost /= 2;
521
522 return cost;
523 }
524
525 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
526
527 void
528 mark_loop_exit_edges (void)
529 {
530 basic_block bb;
531 edge e;
532
533 if (number_of_loops (cfun) <= 1)
534 return;
535
536 FOR_EACH_BB_FN (bb, cfun)
537 {
538 edge_iterator ei;
539
540 FOR_EACH_EDGE (e, ei, bb->succs)
541 {
542 if (loop_outer (bb->loop_father)
543 && loop_exit_edge_p (bb->loop_father, e))
544 e->flags |= EDGE_LOOP_EXIT;
545 else
546 e->flags &= ~EDGE_LOOP_EXIT;
547 }
548 }
549 }
550
551 /* Return exit edge if loop has only one exit that is likely
552 to be executed on runtime (i.e. it is not EH or leading
553 to noreturn call. */
554
555 edge
556 single_likely_exit (class loop *loop, const vec<edge> &exits)
557 {
558 edge found = single_exit (loop);
559 unsigned i;
560 edge ex;
561
562 if (found)
563 return found;
564 FOR_EACH_VEC_ELT (exits, i, ex)
565 {
566 if (probably_never_executed_edge_p (cfun, ex)
567 /* We want to rule out paths to noreturns but not low probabilities
568 resulting from adjustments or combining.
569 FIXME: once we have better quality tracking, make this more
570 robust. */
571 || ex->probability <= profile_probability::very_unlikely ())
572 continue;
573 if (!found)
574 found = ex;
575 else
576 return NULL;
577 }
578 return found;
579 }
580
581
582 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
583 order against direction of edges from latch. Specially, if
584 header != latch, latch is the 1-st block. */
585
586 auto_vec<basic_block>
587 get_loop_hot_path (const class loop *loop)
588 {
589 basic_block bb = loop->header;
590 auto_vec<basic_block> path;
591 bitmap visited = BITMAP_ALLOC (NULL);
592
593 while (true)
594 {
595 edge_iterator ei;
596 edge e;
597 edge best = NULL;
598
599 path.safe_push (bb);
600 bitmap_set_bit (visited, bb->index);
601 FOR_EACH_EDGE (e, ei, bb->succs)
602 if ((!best || e->probability > best->probability)
603 && !loop_exit_edge_p (loop, e)
604 && !bitmap_bit_p (visited, e->dest->index))
605 best = e;
606 if (!best || best->dest == loop->header)
607 break;
608 bb = best->dest;
609 }
610 BITMAP_FREE (visited);
611 return path;
612 }