]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopmanip.c
gimple-walk.h: New File.
[thirdparty/gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "basic-block.h"
26 #include "cfgloop.h"
27 #include "tree.h"
28 #include "gimplify.h"
29 #include "gimple-iterator.h"
30 #include "tree-ssa-loop-manip.h"
31 #include "dumpfile.h"
32
33 static void copy_loops_to (struct loop **, int,
34 struct loop *);
35 static void loop_redirect_edge (edge, basic_block);
36 static void remove_bbs (basic_block *, int);
37 static bool rpe_enum_p (const_basic_block, const void *);
38 static int find_path (edge, basic_block **);
39 static void fix_loop_placements (struct loop *, bool *);
40 static bool fix_bb_placement (basic_block);
41 static void fix_bb_placements (basic_block, bool *, bitmap);
42
43 /* Checks whether basic block BB is dominated by DATA. */
44 static bool
45 rpe_enum_p (const_basic_block bb, const void *data)
46 {
47 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
48 }
49
50 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
51
52 static void
53 remove_bbs (basic_block *bbs, int nbbs)
54 {
55 int i;
56
57 for (i = 0; i < nbbs; i++)
58 delete_basic_block (bbs[i]);
59 }
60
61 /* Find path -- i.e. the basic blocks dominated by edge E and put them
62 into array BBS, that will be allocated large enough to contain them.
63 E->dest must have exactly one predecessor for this to work (it is
64 easy to achieve and we do not put it here because we do not want to
65 alter anything by this function). The number of basic blocks in the
66 path is returned. */
67 static int
68 find_path (edge e, basic_block **bbs)
69 {
70 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
71
72 /* Find bbs in the path. */
73 *bbs = XNEWVEC (basic_block, n_basic_blocks);
74 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
75 n_basic_blocks, e->dest);
76 }
77
78 /* Fix placement of basic block BB inside loop hierarchy --
79 Let L be a loop to that BB belongs. Then every successor of BB must either
80 1) belong to some superloop of loop L, or
81 2) be a header of loop K such that K->outer is superloop of L
82 Returns true if we had to move BB into other loop to enforce this condition,
83 false if the placement of BB was already correct (provided that placements
84 of its successors are correct). */
85 static bool
86 fix_bb_placement (basic_block bb)
87 {
88 edge e;
89 edge_iterator ei;
90 struct loop *loop = current_loops->tree_root, *act;
91
92 FOR_EACH_EDGE (e, ei, bb->succs)
93 {
94 if (e->dest == EXIT_BLOCK_PTR)
95 continue;
96
97 act = e->dest->loop_father;
98 if (act->header == e->dest)
99 act = loop_outer (act);
100
101 if (flow_loop_nested_p (loop, act))
102 loop = act;
103 }
104
105 if (loop == bb->loop_father)
106 return false;
107
108 remove_bb_from_loops (bb);
109 add_bb_to_loop (bb, loop);
110
111 return true;
112 }
113
114 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
115 of LOOP to that leads at least one exit edge of LOOP, and set it
116 as the immediate superloop of LOOP. Return true if the immediate superloop
117 of LOOP changed.
118
119 IRRED_INVALIDATED is set to true if a change in the loop structures might
120 invalidate the information about irreducible regions. */
121
122 static bool
123 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
124 {
125 unsigned i;
126 edge e;
127 vec<edge> exits = get_loop_exit_edges (loop);
128 struct loop *father = current_loops->tree_root, *act;
129 bool ret = false;
130
131 FOR_EACH_VEC_ELT (exits, i, e)
132 {
133 act = find_common_loop (loop, e->dest->loop_father);
134 if (flow_loop_nested_p (father, act))
135 father = act;
136 }
137
138 if (father != loop_outer (loop))
139 {
140 for (act = loop_outer (loop); act != father; act = loop_outer (act))
141 act->num_nodes -= loop->num_nodes;
142 flow_loop_tree_node_remove (loop);
143 flow_loop_tree_node_add (father, loop);
144
145 /* The exit edges of LOOP no longer exits its original immediate
146 superloops; remove them from the appropriate exit lists. */
147 FOR_EACH_VEC_ELT (exits, i, e)
148 {
149 /* We may need to recompute irreducible loops. */
150 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
151 *irred_invalidated = true;
152 rescan_loop_exit (e, false, false);
153 }
154
155 ret = true;
156 }
157
158 exits.release ();
159 return ret;
160 }
161
162 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
163 enforce condition condition stated in description of fix_bb_placement. We
164 start from basic block FROM that had some of its successors removed, so that
165 his placement no longer has to be correct, and iteratively fix placement of
166 its predecessors that may change if placement of FROM changed. Also fix
167 placement of subloops of FROM->loop_father, that might also be altered due
168 to this change; the condition for them is similar, except that instead of
169 successors we consider edges coming out of the loops.
170
171 If the changes may invalidate the information about irreducible regions,
172 IRRED_INVALIDATED is set to true.
173
174 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
175 changed loop_father are collected there. */
176
177 static void
178 fix_bb_placements (basic_block from,
179 bool *irred_invalidated,
180 bitmap loop_closed_ssa_invalidated)
181 {
182 sbitmap in_queue;
183 basic_block *queue, *qtop, *qbeg, *qend;
184 struct loop *base_loop, *target_loop;
185 edge e;
186
187 /* We pass through blocks back-reachable from FROM, testing whether some
188 of their successors moved to outer loop. It may be necessary to
189 iterate several times, but it is finite, as we stop unless we move
190 the basic block up the loop structure. The whole story is a bit
191 more complicated due to presence of subloops, those are moved using
192 fix_loop_placement. */
193
194 base_loop = from->loop_father;
195 /* If we are already in the outermost loop, the basic blocks cannot be moved
196 outside of it. If FROM is the header of the base loop, it cannot be moved
197 outside of it, either. In both cases, we can end now. */
198 if (base_loop == current_loops->tree_root
199 || from == base_loop->header)
200 return;
201
202 in_queue = sbitmap_alloc (last_basic_block);
203 bitmap_clear (in_queue);
204 bitmap_set_bit (in_queue, from->index);
205 /* Prevent us from going out of the base_loop. */
206 bitmap_set_bit (in_queue, base_loop->header->index);
207
208 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209 qtop = queue + base_loop->num_nodes + 1;
210 qbeg = queue;
211 qend = queue + 1;
212 *qbeg = from;
213
214 while (qbeg != qend)
215 {
216 edge_iterator ei;
217 from = *qbeg;
218 qbeg++;
219 if (qbeg == qtop)
220 qbeg = queue;
221 bitmap_clear_bit (in_queue, from->index);
222
223 if (from->loop_father->header == from)
224 {
225 /* Subloop header, maybe move the loop upward. */
226 if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 continue;
228 target_loop = loop_outer (from->loop_father);
229 if (loop_closed_ssa_invalidated)
230 {
231 basic_block *bbs = get_loop_body (from->loop_father);
232 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 free (bbs);
235 }
236 }
237 else
238 {
239 /* Ordinary basic block. */
240 if (!fix_bb_placement (from))
241 continue;
242 target_loop = from->loop_father;
243 if (loop_closed_ssa_invalidated)
244 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
245 }
246
247 FOR_EACH_EDGE (e, ei, from->succs)
248 {
249 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 *irred_invalidated = true;
251 }
252
253 /* Something has changed, insert predecessors into queue. */
254 FOR_EACH_EDGE (e, ei, from->preds)
255 {
256 basic_block pred = e->src;
257 struct loop *nca;
258
259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 *irred_invalidated = true;
261
262 if (bitmap_bit_p (in_queue, pred->index))
263 continue;
264
265 /* If it is subloop, then it either was not moved, or
266 the path up the loop tree from base_loop do not contain
267 it. */
268 nca = find_common_loop (pred->loop_father, base_loop);
269 if (pred->loop_father != base_loop
270 && (nca == base_loop
271 || nca != pred->loop_father))
272 pred = pred->loop_father->header;
273 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 {
275 /* If PRED is already higher in the loop hierarchy than the
276 TARGET_LOOP to that we moved FROM, the change of the position
277 of FROM does not affect the position of PRED, so there is no
278 point in processing it. */
279 continue;
280 }
281
282 if (bitmap_bit_p (in_queue, pred->index))
283 continue;
284
285 /* Schedule the basic block. */
286 *qend = pred;
287 qend++;
288 if (qend == qtop)
289 qend = queue;
290 bitmap_set_bit (in_queue, pred->index);
291 }
292 }
293 free (in_queue);
294 free (queue);
295 }
296
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e)
302 {
303 edge ae;
304 basic_block *rem_bbs, *bord_bbs, from, bb;
305 vec<basic_block> dom_bbs;
306 int i, nrem, n_bord_bbs;
307 sbitmap seen;
308 bool irred_invalidated = false;
309 edge_iterator ei;
310 struct loop *l, *f;
311
312 if (!can_remove_branch_p (e))
313 return false;
314
315 /* Keep track of whether we need to update information about irreducible
316 regions. This is the case if the removed area is a part of the
317 irreducible region, or if the set of basic blocks that belong to a loop
318 that is inside an irreducible region is changed, or if such a loop is
319 removed. */
320 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
321 irred_invalidated = true;
322
323 /* We need to check whether basic blocks are dominated by the edge
324 e, but we only have basic block dominators. This is easy to
325 fix -- when e->dest has exactly one predecessor, this corresponds
326 to blocks dominated by e->dest, if not, split the edge. */
327 if (!single_pred_p (e->dest))
328 e = single_pred_edge (split_edge (e));
329
330 /* It may happen that by removing path we remove one or more loops
331 we belong to. In this case first unloop the loops, then proceed
332 normally. We may assume that e->dest is not a header of any loop,
333 as it now has exactly one predecessor. */
334 for (l = e->src->loop_father; loop_outer (l); l = f)
335 {
336 f = loop_outer (l);
337 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
338 unloop (l, &irred_invalidated, NULL);
339 }
340
341 /* Identify the path. */
342 nrem = find_path (e, &rem_bbs);
343
344 n_bord_bbs = 0;
345 bord_bbs = XNEWVEC (basic_block, n_basic_blocks);
346 seen = sbitmap_alloc (last_basic_block);
347 bitmap_clear (seen);
348
349 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
350 for (i = 0; i < nrem; i++)
351 bitmap_set_bit (seen, rem_bbs[i]->index);
352 if (!irred_invalidated)
353 FOR_EACH_EDGE (ae, ei, e->src->succs)
354 if (ae != e && ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index)
355 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
356 {
357 irred_invalidated = true;
358 break;
359 }
360
361 for (i = 0; i < nrem; i++)
362 {
363 bb = rem_bbs[i];
364 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
365 if (ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index))
366 {
367 bitmap_set_bit (seen, ae->dest->index);
368 bord_bbs[n_bord_bbs++] = ae->dest;
369
370 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
371 irred_invalidated = true;
372 }
373 }
374
375 /* Remove the path. */
376 from = e->src;
377 remove_branch (e);
378 dom_bbs.create (0);
379
380 /* Cancel loops contained in the path. */
381 for (i = 0; i < nrem; i++)
382 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
383 cancel_loop_tree (rem_bbs[i]->loop_father);
384
385 remove_bbs (rem_bbs, nrem);
386 free (rem_bbs);
387
388 /* Find blocks whose dominators may be affected. */
389 bitmap_clear (seen);
390 for (i = 0; i < n_bord_bbs; i++)
391 {
392 basic_block ldom;
393
394 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
395 if (bitmap_bit_p (seen, bb->index))
396 continue;
397 bitmap_set_bit (seen, bb->index);
398
399 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
400 ldom;
401 ldom = next_dom_son (CDI_DOMINATORS, ldom))
402 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
403 dom_bbs.safe_push (ldom);
404 }
405
406 free (seen);
407
408 /* Recount dominators. */
409 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
410 dom_bbs.release ();
411 free (bord_bbs);
412
413 /* Fix placements of basic blocks inside loops and the placement of
414 loops in the loop tree. */
415 fix_bb_placements (from, &irred_invalidated, NULL);
416 fix_loop_placements (from->loop_father, &irred_invalidated);
417
418 if (irred_invalidated
419 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
420 mark_irreducible_loops ();
421
422 return true;
423 }
424
425 /* Creates place for a new LOOP in loops structure of FN. */
426
427 void
428 place_new_loop (struct function *fn, struct loop *loop)
429 {
430 loop->num = number_of_loops (fn);
431 vec_safe_push (loops_for_fn (fn)->larray, loop);
432 }
433
434 /* Given LOOP structure with filled header and latch, find the body of the
435 corresponding loop and add it to loops tree. Insert the LOOP as a son of
436 outer. */
437
438 void
439 add_loop (struct loop *loop, struct loop *outer)
440 {
441 basic_block *bbs;
442 int i, n;
443 struct loop *subloop;
444 edge e;
445 edge_iterator ei;
446
447 /* Add it to loop structure. */
448 place_new_loop (cfun, loop);
449 flow_loop_tree_node_add (outer, loop);
450
451 /* Find its nodes. */
452 bbs = XNEWVEC (basic_block, n_basic_blocks);
453 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
454
455 for (i = 0; i < n; i++)
456 {
457 if (bbs[i]->loop_father == outer)
458 {
459 remove_bb_from_loops (bbs[i]);
460 add_bb_to_loop (bbs[i], loop);
461 continue;
462 }
463
464 loop->num_nodes++;
465
466 /* If we find a direct subloop of OUTER, move it to LOOP. */
467 subloop = bbs[i]->loop_father;
468 if (loop_outer (subloop) == outer
469 && subloop->header == bbs[i])
470 {
471 flow_loop_tree_node_remove (subloop);
472 flow_loop_tree_node_add (loop, subloop);
473 }
474 }
475
476 /* Update the information about loop exit edges. */
477 for (i = 0; i < n; i++)
478 {
479 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
480 {
481 rescan_loop_exit (e, false, false);
482 }
483 }
484
485 free (bbs);
486 }
487
488 /* Multiply all frequencies in LOOP by NUM/DEN. */
489
490 void
491 scale_loop_frequencies (struct loop *loop, int num, int den)
492 {
493 basic_block *bbs;
494
495 bbs = get_loop_body (loop);
496 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
497 free (bbs);
498 }
499
500 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
501 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
502 to iterate too many times. */
503
504 void
505 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
506 {
507 gcov_type iterations = expected_loop_iterations_unbounded (loop);
508 edge e;
509 edge_iterator ei;
510
511 if (dump_file && (dump_flags & TDF_DETAILS))
512 fprintf (dump_file, ";; Scaling loop %i with scale %f, "
513 "bounding iterations to %i from guessed %i\n",
514 loop->num, (double)scale / REG_BR_PROB_BASE,
515 (int)iteration_bound, (int)iterations);
516
517 /* See if loop is predicted to iterate too many times. */
518 if (iteration_bound && iterations > 0
519 && apply_probability (iterations, scale) > iteration_bound)
520 {
521 /* Fixing loop profile for different trip count is not trivial; the exit
522 probabilities has to be updated to match and frequencies propagated down
523 to the loop body.
524
525 We fully update only the simple case of loop with single exit that is
526 either from the latch or BB just before latch and leads from BB with
527 simple conditional jump. This is OK for use in vectorizer. */
528 e = single_exit (loop);
529 if (e)
530 {
531 edge other_e;
532 int freq_delta;
533 gcov_type count_delta;
534
535 FOR_EACH_EDGE (other_e, ei, e->src->succs)
536 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
537 && e != other_e)
538 break;
539
540 /* Probability of exit must be 1/iterations. */
541 freq_delta = EDGE_FREQUENCY (e);
542 e->probability = REG_BR_PROB_BASE / iteration_bound;
543 other_e->probability = inverse_probability (e->probability);
544 freq_delta -= EDGE_FREQUENCY (e);
545
546 /* Adjust counts accordingly. */
547 count_delta = e->count;
548 e->count = apply_probability (e->src->count, e->probability);
549 other_e->count = apply_probability (e->src->count, other_e->probability);
550 count_delta -= e->count;
551
552 /* If latch exists, change its frequency and count, since we changed
553 probability of exit. Theoretically we should update everything from
554 source of exit edge to latch, but for vectorizer this is enough. */
555 if (loop->latch
556 && loop->latch != e->src)
557 {
558 loop->latch->frequency += freq_delta;
559 if (loop->latch->frequency < 0)
560 loop->latch->frequency = 0;
561 loop->latch->count += count_delta;
562 if (loop->latch->count < 0)
563 loop->latch->count = 0;
564 }
565 }
566
567 /* Roughly speaking we want to reduce the loop body profile by the
568 the difference of loop iterations. We however can do better if
569 we look at the actual profile, if it is available. */
570 scale = RDIV (iteration_bound * scale, iterations);
571 if (loop->header->count)
572 {
573 gcov_type count_in = 0;
574
575 FOR_EACH_EDGE (e, ei, loop->header->preds)
576 if (e->src != loop->latch)
577 count_in += e->count;
578
579 if (count_in != 0)
580 scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
581 loop->header->count);
582 }
583 else if (loop->header->frequency)
584 {
585 int freq_in = 0;
586
587 FOR_EACH_EDGE (e, ei, loop->header->preds)
588 if (e->src != loop->latch)
589 freq_in += EDGE_FREQUENCY (e);
590
591 if (freq_in != 0)
592 scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
593 loop->header->frequency);
594 }
595 if (!scale)
596 scale = 1;
597 }
598
599 if (scale == REG_BR_PROB_BASE)
600 return;
601
602 /* Scale the actual probabilities. */
603 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
604 if (dump_file && (dump_flags & TDF_DETAILS))
605 fprintf (dump_file, ";; guessed iterations are now %i\n",
606 (int)expected_loop_iterations_unbounded (loop));
607 }
608
609 /* Recompute dominance information for basic blocks outside LOOP. */
610
611 static void
612 update_dominators_in_loop (struct loop *loop)
613 {
614 vec<basic_block> dom_bbs = vNULL;
615 sbitmap seen;
616 basic_block *body;
617 unsigned i;
618
619 seen = sbitmap_alloc (last_basic_block);
620 bitmap_clear (seen);
621 body = get_loop_body (loop);
622
623 for (i = 0; i < loop->num_nodes; i++)
624 bitmap_set_bit (seen, body[i]->index);
625
626 for (i = 0; i < loop->num_nodes; i++)
627 {
628 basic_block ldom;
629
630 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
631 ldom;
632 ldom = next_dom_son (CDI_DOMINATORS, ldom))
633 if (!bitmap_bit_p (seen, ldom->index))
634 {
635 bitmap_set_bit (seen, ldom->index);
636 dom_bbs.safe_push (ldom);
637 }
638 }
639
640 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
641 free (body);
642 free (seen);
643 dom_bbs.release ();
644 }
645
646 /* Creates an if region as shown above. CONDITION is used to create
647 the test for the if.
648
649 |
650 | ------------- -------------
651 | | pred_bb | | pred_bb |
652 | ------------- -------------
653 | | |
654 | | | ENTRY_EDGE
655 | | ENTRY_EDGE V
656 | | ====> -------------
657 | | | cond_bb |
658 | | | CONDITION |
659 | | -------------
660 | V / \
661 | ------------- e_false / \ e_true
662 | | succ_bb | V V
663 | ------------- ----------- -----------
664 | | false_bb | | true_bb |
665 | ----------- -----------
666 | \ /
667 | \ /
668 | V V
669 | -------------
670 | | join_bb |
671 | -------------
672 | | exit_edge (result)
673 | V
674 | -----------
675 | | succ_bb |
676 | -----------
677 |
678 */
679
680 edge
681 create_empty_if_region_on_edge (edge entry_edge, tree condition)
682 {
683
684 basic_block cond_bb, true_bb, false_bb, join_bb;
685 edge e_true, e_false, exit_edge;
686 gimple cond_stmt;
687 tree simple_cond;
688 gimple_stmt_iterator gsi;
689
690 cond_bb = split_edge (entry_edge);
691
692 /* Insert condition in cond_bb. */
693 gsi = gsi_last_bb (cond_bb);
694 simple_cond =
695 force_gimple_operand_gsi (&gsi, condition, true, NULL,
696 false, GSI_NEW_STMT);
697 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
698 gsi = gsi_last_bb (cond_bb);
699 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
700
701 join_bb = split_edge (single_succ_edge (cond_bb));
702
703 e_true = single_succ_edge (cond_bb);
704 true_bb = split_edge (e_true);
705
706 e_false = make_edge (cond_bb, join_bb, 0);
707 false_bb = split_edge (e_false);
708
709 e_true->flags &= ~EDGE_FALLTHRU;
710 e_true->flags |= EDGE_TRUE_VALUE;
711 e_false->flags &= ~EDGE_FALLTHRU;
712 e_false->flags |= EDGE_FALSE_VALUE;
713
714 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
715 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
716 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
717 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
718
719 exit_edge = single_succ_edge (join_bb);
720
721 if (single_pred_p (exit_edge->dest))
722 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
723
724 return exit_edge;
725 }
726
727 /* create_empty_loop_on_edge
728 |
729 | - pred_bb - ------ pred_bb ------
730 | | | | iv0 = initial_value |
731 | -----|----- ---------|-----------
732 | | ______ | entry_edge
733 | | entry_edge / | |
734 | | ====> | -V---V- loop_header -------------
735 | V | | iv_before = phi (iv0, iv_after) |
736 | - succ_bb - | ---|-----------------------------
737 | | | | |
738 | ----------- | ---V--- loop_body ---------------
739 | | | iv_after = iv_before + stride |
740 | | | if (iv_before < upper_bound) |
741 | | ---|--------------\--------------
742 | | | \ exit_e
743 | | V \
744 | | - loop_latch - V- succ_bb -
745 | | | | | |
746 | | /------------- -----------
747 | \ ___ /
748
749 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
750 that is used before the increment of IV. IV_BEFORE should be used for
751 adding code to the body that uses the IV. OUTER is the outer loop in
752 which the new loop should be inserted.
753
754 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
755 inserted on the loop entry edge. This implies that this function
756 should be used only when the UPPER_BOUND expression is a loop
757 invariant. */
758
759 struct loop *
760 create_empty_loop_on_edge (edge entry_edge,
761 tree initial_value,
762 tree stride, tree upper_bound,
763 tree iv,
764 tree *iv_before,
765 tree *iv_after,
766 struct loop *outer)
767 {
768 basic_block loop_header, loop_latch, succ_bb, pred_bb;
769 struct loop *loop;
770 gimple_stmt_iterator gsi;
771 gimple_seq stmts;
772 gimple cond_expr;
773 tree exit_test;
774 edge exit_e;
775 int prob;
776
777 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
778
779 /* Create header, latch and wire up the loop. */
780 pred_bb = entry_edge->src;
781 loop_header = split_edge (entry_edge);
782 loop_latch = split_edge (single_succ_edge (loop_header));
783 succ_bb = single_succ (loop_latch);
784 make_edge (loop_header, succ_bb, 0);
785 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
786
787 /* Set immediate dominator information. */
788 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
789 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
790 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
791
792 /* Initialize a loop structure and put it in a loop hierarchy. */
793 loop = alloc_loop ();
794 loop->header = loop_header;
795 loop->latch = loop_latch;
796 add_loop (loop, outer);
797
798 /* TODO: Fix frequencies and counts. */
799 prob = REG_BR_PROB_BASE / 2;
800
801 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
802
803 /* Update dominators. */
804 update_dominators_in_loop (loop);
805
806 /* Modify edge flags. */
807 exit_e = single_exit (loop);
808 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
809 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
810
811 /* Construct IV code in loop. */
812 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
813 if (stmts)
814 {
815 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
816 gsi_commit_edge_inserts ();
817 }
818
819 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
820 if (stmts)
821 {
822 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
823 gsi_commit_edge_inserts ();
824 }
825
826 gsi = gsi_last_bb (loop_header);
827 create_iv (initial_value, stride, iv, loop, &gsi, false,
828 iv_before, iv_after);
829
830 /* Insert loop exit condition. */
831 cond_expr = gimple_build_cond
832 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
833
834 exit_test = gimple_cond_lhs (cond_expr);
835 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
836 false, GSI_NEW_STMT);
837 gimple_cond_set_lhs (cond_expr, exit_test);
838 gsi = gsi_last_bb (exit_e->src);
839 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
840
841 split_block_after_labels (loop_header);
842
843 return loop;
844 }
845
846 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
847 latch to header and update loop tree and dominators
848 accordingly. Everything between them plus LATCH_EDGE destination must
849 be dominated by HEADER_EDGE destination, and back-reachable from
850 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
851 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
852 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
853 Returns the newly created loop. Frequencies and counts in the new loop
854 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
855
856 struct loop *
857 loopify (edge latch_edge, edge header_edge,
858 basic_block switch_bb, edge true_edge, edge false_edge,
859 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
860 {
861 basic_block succ_bb = latch_edge->dest;
862 basic_block pred_bb = header_edge->src;
863 struct loop *loop = alloc_loop ();
864 struct loop *outer = loop_outer (succ_bb->loop_father);
865 int freq;
866 gcov_type cnt;
867 edge e;
868 edge_iterator ei;
869
870 loop->header = header_edge->dest;
871 loop->latch = latch_edge->src;
872
873 freq = EDGE_FREQUENCY (header_edge);
874 cnt = header_edge->count;
875
876 /* Redirect edges. */
877 loop_redirect_edge (latch_edge, loop->header);
878 loop_redirect_edge (true_edge, succ_bb);
879
880 /* During loop versioning, one of the switch_bb edge is already properly
881 set. Do not redirect it again unless redirect_all_edges is true. */
882 if (redirect_all_edges)
883 {
884 loop_redirect_edge (header_edge, switch_bb);
885 loop_redirect_edge (false_edge, loop->header);
886
887 /* Update dominators. */
888 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
889 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
890 }
891
892 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
893
894 /* Compute new loop. */
895 add_loop (loop, outer);
896
897 /* Add switch_bb to appropriate loop. */
898 if (switch_bb->loop_father)
899 remove_bb_from_loops (switch_bb);
900 add_bb_to_loop (switch_bb, outer);
901
902 /* Fix frequencies. */
903 if (redirect_all_edges)
904 {
905 switch_bb->frequency = freq;
906 switch_bb->count = cnt;
907 FOR_EACH_EDGE (e, ei, switch_bb->succs)
908 {
909 e->count = apply_probability (switch_bb->count, e->probability);
910 }
911 }
912 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
913 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
914 update_dominators_in_loop (loop);
915
916 return loop;
917 }
918
919 /* Remove the latch edge of a LOOP and update loops to indicate that
920 the LOOP was removed. After this function, original loop latch will
921 have no successor, which caller is expected to fix somehow.
922
923 If this may cause the information about irreducible regions to become
924 invalid, IRRED_INVALIDATED is set to true.
925
926 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
927 basic blocks that had non-trivial update on their loop_father.*/
928
929 void
930 unloop (struct loop *loop, bool *irred_invalidated,
931 bitmap loop_closed_ssa_invalidated)
932 {
933 basic_block *body;
934 struct loop *ploop;
935 unsigned i, n;
936 basic_block latch = loop->latch;
937 bool dummy = false;
938
939 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
940 *irred_invalidated = true;
941
942 /* This is relatively straightforward. The dominators are unchanged, as
943 loop header dominates loop latch, so the only thing we have to care of
944 is the placement of loops and basic blocks inside the loop tree. We
945 move them all to the loop->outer, and then let fix_bb_placements do
946 its work. */
947
948 body = get_loop_body (loop);
949 n = loop->num_nodes;
950 for (i = 0; i < n; i++)
951 if (body[i]->loop_father == loop)
952 {
953 remove_bb_from_loops (body[i]);
954 add_bb_to_loop (body[i], loop_outer (loop));
955 }
956 free (body);
957
958 while (loop->inner)
959 {
960 ploop = loop->inner;
961 flow_loop_tree_node_remove (ploop);
962 flow_loop_tree_node_add (loop_outer (loop), ploop);
963 }
964
965 /* Remove the loop and free its data. */
966 delete_loop (loop);
967
968 remove_edge (single_succ_edge (latch));
969
970 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
971 there is an irreducible region inside the cancelled loop, the flags will
972 be still correct. */
973 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
974 }
975
976 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
977 condition stated in description of fix_loop_placement holds for them.
978 It is used in case when we removed some edges coming out of LOOP, which
979 may cause the right placement of LOOP inside loop tree to change.
980
981 IRRED_INVALIDATED is set to true if a change in the loop structures might
982 invalidate the information about irreducible regions. */
983
984 static void
985 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
986 {
987 struct loop *outer;
988
989 while (loop_outer (loop))
990 {
991 outer = loop_outer (loop);
992 if (!fix_loop_placement (loop, irred_invalidated))
993 break;
994
995 /* Changing the placement of a loop in the loop tree may alter the
996 validity of condition 2) of the description of fix_bb_placement
997 for its preheader, because the successor is the header and belongs
998 to the loop. So call fix_bb_placements to fix up the placement
999 of the preheader and (possibly) of its predecessors. */
1000 fix_bb_placements (loop_preheader_edge (loop)->src,
1001 irred_invalidated, NULL);
1002 loop = outer;
1003 }
1004 }
1005
1006 /* Duplicate loop bounds and other information we store about
1007 the loop into its duplicate. */
1008
1009 void
1010 copy_loop_info (struct loop *loop, struct loop *target)
1011 {
1012 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1013 target->any_upper_bound = loop->any_upper_bound;
1014 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1015 target->any_estimate = loop->any_estimate;
1016 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1017 target->estimate_state = loop->estimate_state;
1018 }
1019
1020 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1021 created loop into loops structure. */
1022 struct loop *
1023 duplicate_loop (struct loop *loop, struct loop *target)
1024 {
1025 struct loop *cloop;
1026 cloop = alloc_loop ();
1027 place_new_loop (cfun, cloop);
1028
1029 copy_loop_info (loop, cloop);
1030
1031 /* Mark the new loop as copy of LOOP. */
1032 set_loop_copy (loop, cloop);
1033
1034 /* Add it to target. */
1035 flow_loop_tree_node_add (target, cloop);
1036
1037 return cloop;
1038 }
1039
1040 /* Copies structure of subloops of LOOP into TARGET loop, placing
1041 newly created loops into loop tree. */
1042 void
1043 duplicate_subloops (struct loop *loop, struct loop *target)
1044 {
1045 struct loop *aloop, *cloop;
1046
1047 for (aloop = loop->inner; aloop; aloop = aloop->next)
1048 {
1049 cloop = duplicate_loop (aloop, target);
1050 duplicate_subloops (aloop, cloop);
1051 }
1052 }
1053
1054 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1055 into TARGET loop, placing newly created loops into loop tree. */
1056 static void
1057 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1058 {
1059 struct loop *aloop;
1060 int i;
1061
1062 for (i = 0; i < n; i++)
1063 {
1064 aloop = duplicate_loop (copied_loops[i], target);
1065 duplicate_subloops (copied_loops[i], aloop);
1066 }
1067 }
1068
1069 /* Redirects edge E to basic block DEST. */
1070 static void
1071 loop_redirect_edge (edge e, basic_block dest)
1072 {
1073 if (e->dest == dest)
1074 return;
1075
1076 redirect_edge_and_branch_force (e, dest);
1077 }
1078
1079 /* Check whether LOOP's body can be duplicated. */
1080 bool
1081 can_duplicate_loop_p (const struct loop *loop)
1082 {
1083 int ret;
1084 basic_block *bbs = get_loop_body (loop);
1085
1086 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1087 free (bbs);
1088
1089 return ret;
1090 }
1091
1092 /* Sets probability and count of edge E to zero. The probability and count
1093 is redistributed evenly to the remaining edges coming from E->src. */
1094
1095 static void
1096 set_zero_probability (edge e)
1097 {
1098 basic_block bb = e->src;
1099 edge_iterator ei;
1100 edge ae, last = NULL;
1101 unsigned n = EDGE_COUNT (bb->succs);
1102 gcov_type cnt = e->count, cnt1;
1103 unsigned prob = e->probability, prob1;
1104
1105 gcc_assert (n > 1);
1106 cnt1 = cnt / (n - 1);
1107 prob1 = prob / (n - 1);
1108
1109 FOR_EACH_EDGE (ae, ei, bb->succs)
1110 {
1111 if (ae == e)
1112 continue;
1113
1114 ae->probability += prob1;
1115 ae->count += cnt1;
1116 last = ae;
1117 }
1118
1119 /* Move the rest to one of the edges. */
1120 last->probability += prob % (n - 1);
1121 last->count += cnt % (n - 1);
1122
1123 e->probability = 0;
1124 e->count = 0;
1125 }
1126
1127 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1128 loop structure and dominators. E's destination must be LOOP header for
1129 this to work, i.e. it must be entry or latch edge of this loop; these are
1130 unique, as the loops must have preheaders for this function to work
1131 correctly (in case E is latch, the function unrolls the loop, if E is entry
1132 edge, it peels the loop). Store edges created by copying ORIG edge from
1133 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1134 original LOOP body, the other copies are numbered in order given by control
1135 flow through them) into TO_REMOVE array. Returns false if duplication is
1136 impossible. */
1137
1138 bool
1139 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1140 unsigned int ndupl, sbitmap wont_exit,
1141 edge orig, vec<edge> *to_remove,
1142 int flags)
1143 {
1144 struct loop *target, *aloop;
1145 struct loop **orig_loops;
1146 unsigned n_orig_loops;
1147 basic_block header = loop->header, latch = loop->latch;
1148 basic_block *new_bbs, *bbs, *first_active;
1149 basic_block new_bb, bb, first_active_latch = NULL;
1150 edge ae, latch_edge;
1151 edge spec_edges[2], new_spec_edges[2];
1152 #define SE_LATCH 0
1153 #define SE_ORIG 1
1154 unsigned i, j, n;
1155 int is_latch = (latch == e->src);
1156 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1157 int scale_after_exit = 0;
1158 int p, freq_in, freq_le, freq_out_orig;
1159 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1160 int add_irreducible_flag;
1161 basic_block place_after;
1162 bitmap bbs_to_scale = NULL;
1163 bitmap_iterator bi;
1164
1165 gcc_assert (e->dest == loop->header);
1166 gcc_assert (ndupl > 0);
1167
1168 if (orig)
1169 {
1170 /* Orig must be edge out of the loop. */
1171 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1172 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1173 }
1174
1175 n = loop->num_nodes;
1176 bbs = get_loop_body_in_dom_order (loop);
1177 gcc_assert (bbs[0] == loop->header);
1178 gcc_assert (bbs[n - 1] == loop->latch);
1179
1180 /* Check whether duplication is possible. */
1181 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1182 {
1183 free (bbs);
1184 return false;
1185 }
1186 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1187
1188 /* In case we are doing loop peeling and the loop is in the middle of
1189 irreducible region, the peeled copies will be inside it too. */
1190 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1191 gcc_assert (!is_latch || !add_irreducible_flag);
1192
1193 /* Find edge from latch. */
1194 latch_edge = loop_latch_edge (loop);
1195
1196 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1197 {
1198 /* Calculate coefficients by that we have to scale frequencies
1199 of duplicated loop bodies. */
1200 freq_in = header->frequency;
1201 freq_le = EDGE_FREQUENCY (latch_edge);
1202 if (freq_in == 0)
1203 freq_in = 1;
1204 if (freq_in < freq_le)
1205 freq_in = freq_le;
1206 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1207 if (freq_out_orig > freq_in - freq_le)
1208 freq_out_orig = freq_in - freq_le;
1209 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1210 prob_pass_wont_exit =
1211 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1212
1213 if (orig
1214 && REG_BR_PROB_BASE - orig->probability != 0)
1215 {
1216 /* The blocks that are dominated by a removed exit edge ORIG have
1217 frequencies scaled by this. */
1218 scale_after_exit
1219 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1220 REG_BR_PROB_BASE - orig->probability);
1221 bbs_to_scale = BITMAP_ALLOC (NULL);
1222 for (i = 0; i < n; i++)
1223 {
1224 if (bbs[i] != orig->src
1225 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1226 bitmap_set_bit (bbs_to_scale, i);
1227 }
1228 }
1229
1230 scale_step = XNEWVEC (int, ndupl);
1231
1232 for (i = 1; i <= ndupl; i++)
1233 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1234 ? prob_pass_wont_exit
1235 : prob_pass_thru;
1236
1237 /* Complete peeling is special as the probability of exit in last
1238 copy becomes 1. */
1239 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1240 {
1241 int wanted_freq = EDGE_FREQUENCY (e);
1242
1243 if (wanted_freq > freq_in)
1244 wanted_freq = freq_in;
1245
1246 gcc_assert (!is_latch);
1247 /* First copy has frequency of incoming edge. Each subsequent
1248 frequency should be reduced by prob_pass_wont_exit. Caller
1249 should've managed the flags so all except for original loop
1250 has won't exist set. */
1251 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1252 /* Now simulate the duplication adjustments and compute header
1253 frequency of the last copy. */
1254 for (i = 0; i < ndupl; i++)
1255 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1256 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1257 }
1258 else if (is_latch)
1259 {
1260 prob_pass_main = bitmap_bit_p (wont_exit, 0)
1261 ? prob_pass_wont_exit
1262 : prob_pass_thru;
1263 p = prob_pass_main;
1264 scale_main = REG_BR_PROB_BASE;
1265 for (i = 0; i < ndupl; i++)
1266 {
1267 scale_main += p;
1268 p = combine_probabilities (p, scale_step[i]);
1269 }
1270 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1271 scale_act = combine_probabilities (scale_main, prob_pass_main);
1272 }
1273 else
1274 {
1275 scale_main = REG_BR_PROB_BASE;
1276 for (i = 0; i < ndupl; i++)
1277 scale_main = combine_probabilities (scale_main, scale_step[i]);
1278 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1279 }
1280 for (i = 0; i < ndupl; i++)
1281 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1282 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1283 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1284 }
1285
1286 /* Loop the new bbs will belong to. */
1287 target = e->src->loop_father;
1288
1289 /* Original loops. */
1290 n_orig_loops = 0;
1291 for (aloop = loop->inner; aloop; aloop = aloop->next)
1292 n_orig_loops++;
1293 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1294 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1295 orig_loops[i] = aloop;
1296
1297 set_loop_copy (loop, target);
1298
1299 first_active = XNEWVEC (basic_block, n);
1300 if (is_latch)
1301 {
1302 memcpy (first_active, bbs, n * sizeof (basic_block));
1303 first_active_latch = latch;
1304 }
1305
1306 spec_edges[SE_ORIG] = orig;
1307 spec_edges[SE_LATCH] = latch_edge;
1308
1309 place_after = e->src;
1310 for (j = 0; j < ndupl; j++)
1311 {
1312 /* Copy loops. */
1313 copy_loops_to (orig_loops, n_orig_loops, target);
1314
1315 /* Copy bbs. */
1316 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1317 place_after, true);
1318 place_after = new_spec_edges[SE_LATCH]->src;
1319
1320 if (flags & DLTHE_RECORD_COPY_NUMBER)
1321 for (i = 0; i < n; i++)
1322 {
1323 gcc_assert (!new_bbs[i]->aux);
1324 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1325 }
1326
1327 /* Note whether the blocks and edges belong to an irreducible loop. */
1328 if (add_irreducible_flag)
1329 {
1330 for (i = 0; i < n; i++)
1331 new_bbs[i]->flags |= BB_DUPLICATED;
1332 for (i = 0; i < n; i++)
1333 {
1334 edge_iterator ei;
1335 new_bb = new_bbs[i];
1336 if (new_bb->loop_father == target)
1337 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1338
1339 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1340 if ((ae->dest->flags & BB_DUPLICATED)
1341 && (ae->src->loop_father == target
1342 || ae->dest->loop_father == target))
1343 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1344 }
1345 for (i = 0; i < n; i++)
1346 new_bbs[i]->flags &= ~BB_DUPLICATED;
1347 }
1348
1349 /* Redirect the special edges. */
1350 if (is_latch)
1351 {
1352 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1353 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1354 loop->header);
1355 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1356 latch = loop->latch = new_bbs[n - 1];
1357 e = latch_edge = new_spec_edges[SE_LATCH];
1358 }
1359 else
1360 {
1361 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1362 loop->header);
1363 redirect_edge_and_branch_force (e, new_bbs[0]);
1364 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1365 e = new_spec_edges[SE_LATCH];
1366 }
1367
1368 /* Record exit edge in this copy. */
1369 if (orig && bitmap_bit_p (wont_exit, j + 1))
1370 {
1371 if (to_remove)
1372 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1373 set_zero_probability (new_spec_edges[SE_ORIG]);
1374
1375 /* Scale the frequencies of the blocks dominated by the exit. */
1376 if (bbs_to_scale)
1377 {
1378 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1379 {
1380 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1381 REG_BR_PROB_BASE);
1382 }
1383 }
1384 }
1385
1386 /* Record the first copy in the control flow order if it is not
1387 the original loop (i.e. in case of peeling). */
1388 if (!first_active_latch)
1389 {
1390 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1391 first_active_latch = new_bbs[n - 1];
1392 }
1393
1394 /* Set counts and frequencies. */
1395 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1396 {
1397 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1398 scale_act = combine_probabilities (scale_act, scale_step[j]);
1399 }
1400 }
1401 free (new_bbs);
1402 free (orig_loops);
1403
1404 /* Record the exit edge in the original loop body, and update the frequencies. */
1405 if (orig && bitmap_bit_p (wont_exit, 0))
1406 {
1407 if (to_remove)
1408 to_remove->safe_push (orig);
1409 set_zero_probability (orig);
1410
1411 /* Scale the frequencies of the blocks dominated by the exit. */
1412 if (bbs_to_scale)
1413 {
1414 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1415 {
1416 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1417 REG_BR_PROB_BASE);
1418 }
1419 }
1420 }
1421
1422 /* Update the original loop. */
1423 if (!is_latch)
1424 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1425 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1426 {
1427 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1428 free (scale_step);
1429 }
1430
1431 /* Update dominators of outer blocks if affected. */
1432 for (i = 0; i < n; i++)
1433 {
1434 basic_block dominated, dom_bb;
1435 vec<basic_block> dom_bbs;
1436 unsigned j;
1437
1438 bb = bbs[i];
1439 bb->aux = 0;
1440
1441 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1442 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1443 {
1444 if (flow_bb_inside_loop_p (loop, dominated))
1445 continue;
1446 dom_bb = nearest_common_dominator (
1447 CDI_DOMINATORS, first_active[i], first_active_latch);
1448 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1449 }
1450 dom_bbs.release ();
1451 }
1452 free (first_active);
1453
1454 free (bbs);
1455 BITMAP_FREE (bbs_to_scale);
1456
1457 return true;
1458 }
1459
1460 /* A callback for make_forwarder block, to redirect all edges except for
1461 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1462 whether to redirect it. */
1463
1464 edge mfb_kj_edge;
1465 bool
1466 mfb_keep_just (edge e)
1467 {
1468 return e != mfb_kj_edge;
1469 }
1470
1471 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1472
1473 static bool
1474 has_preds_from_loop (basic_block block, struct loop *loop)
1475 {
1476 edge e;
1477 edge_iterator ei;
1478
1479 FOR_EACH_EDGE (e, ei, block->preds)
1480 if (e->src->loop_father == loop)
1481 return true;
1482 return false;
1483 }
1484
1485 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1486 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1487 entry; otherwise we also force preheader block to have only one successor.
1488 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1489 to be a fallthru predecessor to the loop header and to have only
1490 predecessors from outside of the loop.
1491 The function also updates dominators. */
1492
1493 basic_block
1494 create_preheader (struct loop *loop, int flags)
1495 {
1496 edge e, fallthru;
1497 basic_block dummy;
1498 int nentry = 0;
1499 bool irred = false;
1500 bool latch_edge_was_fallthru;
1501 edge one_succ_pred = NULL, single_entry = NULL;
1502 edge_iterator ei;
1503
1504 FOR_EACH_EDGE (e, ei, loop->header->preds)
1505 {
1506 if (e->src == loop->latch)
1507 continue;
1508 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1509 nentry++;
1510 single_entry = e;
1511 if (single_succ_p (e->src))
1512 one_succ_pred = e;
1513 }
1514 gcc_assert (nentry);
1515 if (nentry == 1)
1516 {
1517 bool need_forwarder_block = false;
1518
1519 /* We do not allow entry block to be the loop preheader, since we
1520 cannot emit code there. */
1521 if (single_entry->src == ENTRY_BLOCK_PTR)
1522 need_forwarder_block = true;
1523 else
1524 {
1525 /* If we want simple preheaders, also force the preheader to have
1526 just a single successor. */
1527 if ((flags & CP_SIMPLE_PREHEADERS)
1528 && !single_succ_p (single_entry->src))
1529 need_forwarder_block = true;
1530 /* If we want fallthru preheaders, also create forwarder block when
1531 preheader ends with a jump or has predecessors from loop. */
1532 else if ((flags & CP_FALLTHRU_PREHEADERS)
1533 && (JUMP_P (BB_END (single_entry->src))
1534 || has_preds_from_loop (single_entry->src, loop)))
1535 need_forwarder_block = true;
1536 }
1537 if (! need_forwarder_block)
1538 return NULL;
1539 }
1540
1541 mfb_kj_edge = loop_latch_edge (loop);
1542 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1543 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1544 dummy = fallthru->src;
1545 loop->header = fallthru->dest;
1546
1547 /* Try to be clever in placing the newly created preheader. The idea is to
1548 avoid breaking any "fallthruness" relationship between blocks.
1549
1550 The preheader was created just before the header and all incoming edges
1551 to the header were redirected to the preheader, except the latch edge.
1552 So the only problematic case is when this latch edge was a fallthru
1553 edge: it is not anymore after the preheader creation so we have broken
1554 the fallthruness. We're therefore going to look for a better place. */
1555 if (latch_edge_was_fallthru)
1556 {
1557 if (one_succ_pred)
1558 e = one_succ_pred;
1559 else
1560 e = EDGE_PRED (dummy, 0);
1561
1562 move_block_after (dummy, e->src);
1563 }
1564
1565 if (irred)
1566 {
1567 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1568 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1569 }
1570
1571 if (dump_file)
1572 fprintf (dump_file, "Created preheader block for loop %i\n",
1573 loop->num);
1574
1575 if (flags & CP_FALLTHRU_PREHEADERS)
1576 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1577 && !JUMP_P (BB_END (dummy)));
1578
1579 return dummy;
1580 }
1581
1582 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1583
1584 void
1585 create_preheaders (int flags)
1586 {
1587 loop_iterator li;
1588 struct loop *loop;
1589
1590 if (!current_loops)
1591 return;
1592
1593 FOR_EACH_LOOP (li, loop, 0)
1594 create_preheader (loop, flags);
1595 loops_state_set (LOOPS_HAVE_PREHEADERS);
1596 }
1597
1598 /* Forces all loop latches to have only single successor. */
1599
1600 void
1601 force_single_succ_latches (void)
1602 {
1603 loop_iterator li;
1604 struct loop *loop;
1605 edge e;
1606
1607 FOR_EACH_LOOP (li, loop, 0)
1608 {
1609 if (loop->latch != loop->header && single_succ_p (loop->latch))
1610 continue;
1611
1612 e = find_edge (loop->latch, loop->header);
1613 gcc_checking_assert (e != NULL);
1614
1615 split_edge (e);
1616 }
1617 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1618 }
1619
1620 /* This function is called from loop_version. It splits the entry edge
1621 of the loop we want to version, adds the versioning condition, and
1622 adjust the edges to the two versions of the loop appropriately.
1623 e is an incoming edge. Returns the basic block containing the
1624 condition.
1625
1626 --- edge e ---- > [second_head]
1627
1628 Split it and insert new conditional expression and adjust edges.
1629
1630 --- edge e ---> [cond expr] ---> [first_head]
1631 |
1632 +---------> [second_head]
1633
1634 THEN_PROB is the probability of then branch of the condition. */
1635
1636 static basic_block
1637 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1638 edge e, void *cond_expr, unsigned then_prob)
1639 {
1640 basic_block new_head = NULL;
1641 edge e1;
1642
1643 gcc_assert (e->dest == second_head);
1644
1645 /* Split edge 'e'. This will create a new basic block, where we can
1646 insert conditional expr. */
1647 new_head = split_edge (e);
1648
1649 lv_add_condition_to_bb (first_head, second_head, new_head,
1650 cond_expr);
1651
1652 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1653 e = single_succ_edge (new_head);
1654 e1 = make_edge (new_head, first_head,
1655 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1656 e1->probability = then_prob;
1657 e->probability = REG_BR_PROB_BASE - then_prob;
1658 e1->count = apply_probability (e->count, e1->probability);
1659 e->count = apply_probability (e->count, e->probability);
1660
1661 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1662 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1663
1664 /* Adjust loop header phi nodes. */
1665 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1666
1667 return new_head;
1668 }
1669
1670 /* Main entry point for Loop Versioning transformation.
1671
1672 This transformation given a condition and a loop, creates
1673 -if (condition) { loop_copy1 } else { loop_copy2 },
1674 where loop_copy1 is the loop transformed in one way, and loop_copy2
1675 is the loop transformed in another way (or unchanged). 'condition'
1676 may be a run time test for things that were not resolved by static
1677 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1678
1679 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1680 is the ratio by that the frequencies in the original loop should
1681 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1682 new loop should be scaled.
1683
1684 If PLACE_AFTER is true, we place the new loop after LOOP in the
1685 instruction stream, otherwise it is placed before LOOP. */
1686
1687 struct loop *
1688 loop_version (struct loop *loop,
1689 void *cond_expr, basic_block *condition_bb,
1690 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1691 bool place_after)
1692 {
1693 basic_block first_head, second_head;
1694 edge entry, latch_edge, true_edge, false_edge;
1695 int irred_flag;
1696 struct loop *nloop;
1697 basic_block cond_bb;
1698
1699 /* Record entry and latch edges for the loop */
1700 entry = loop_preheader_edge (loop);
1701 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1702 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1703
1704 /* Note down head of loop as first_head. */
1705 first_head = entry->dest;
1706
1707 /* Duplicate loop. */
1708 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1709 NULL, NULL, NULL, 0))
1710 {
1711 entry->flags |= irred_flag;
1712 return NULL;
1713 }
1714
1715 /* After duplication entry edge now points to new loop head block.
1716 Note down new head as second_head. */
1717 second_head = entry->dest;
1718
1719 /* Split loop entry edge and insert new block with cond expr. */
1720 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1721 entry, cond_expr, then_prob);
1722 if (condition_bb)
1723 *condition_bb = cond_bb;
1724
1725 if (!cond_bb)
1726 {
1727 entry->flags |= irred_flag;
1728 return NULL;
1729 }
1730
1731 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1732
1733 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1734 nloop = loopify (latch_edge,
1735 single_pred_edge (get_bb_copy (loop->header)),
1736 cond_bb, true_edge, false_edge,
1737 false /* Do not redirect all edges. */,
1738 then_scale, else_scale);
1739
1740 copy_loop_info (loop, nloop);
1741
1742 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1743 lv_flush_pending_stmts (latch_edge);
1744
1745 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1746 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1747 lv_flush_pending_stmts (false_edge);
1748 /* Adjust irreducible flag. */
1749 if (irred_flag)
1750 {
1751 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1752 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1753 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1754 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1755 }
1756
1757 if (place_after)
1758 {
1759 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1760 unsigned i;
1761
1762 after = loop->latch;
1763
1764 for (i = 0; i < nloop->num_nodes; i++)
1765 {
1766 move_block_after (bbs[i], after);
1767 after = bbs[i];
1768 }
1769 free (bbs);
1770 }
1771
1772 /* At this point condition_bb is loop preheader with two successors,
1773 first_head and second_head. Make sure that loop preheader has only
1774 one successor. */
1775 split_edge (loop_preheader_edge (loop));
1776 split_edge (loop_preheader_edge (nloop));
1777
1778 return nloop;
1779 }