]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopmanip.c
backport: basic-block.h: Include vec.h, errors.h.
[thirdparty/gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "cfglayout.h"
30 #include "output.h"
31
32 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
33 static void copy_loops_to (struct loops *, struct loop **, int,
34 struct loop *);
35 static void loop_redirect_edge (edge, basic_block);
36 static bool loop_delete_branch_edge (edge, int);
37 static void remove_bbs (basic_block *, int);
38 static bool rpe_enum_p (basic_block, void *);
39 static int find_path (edge, basic_block **);
40 static bool alp_enum_p (basic_block, void *);
41 static void add_loop (struct loops *, struct loop *);
42 static void fix_loop_placements (struct loops *, struct loop *);
43 static bool fix_bb_placement (struct loops *, basic_block);
44 static void fix_bb_placements (struct loops *, basic_block);
45 static void place_new_loop (struct loops *, struct loop *);
46 static void scale_loop_frequencies (struct loop *, int, int);
47 static void scale_bbs_frequencies (basic_block *, int, int, int);
48 static basic_block create_preheader (struct loop *, int);
49 static void fix_irreducible_loops (basic_block);
50
51 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
52
53 /* Splits basic block BB after INSN, returns created edge. Updates loops
54 and dominators. */
55 edge
56 split_loop_bb (basic_block bb, void *insn)
57 {
58 edge e;
59
60 /* Split the block. */
61 e = split_block (bb, insn);
62
63 /* Add dest to loop. */
64 add_bb_to_loop (e->dest, e->src->loop_father);
65
66 return e;
67 }
68
69 /* Checks whether basic block BB is dominated by DATA. */
70 static bool
71 rpe_enum_p (basic_block bb, void *data)
72 {
73 return dominated_by_p (CDI_DOMINATORS, bb, data);
74 }
75
76 /* Remove basic blocks BBS from loop structure and dominance info,
77 and delete them afterwards. */
78 static void
79 remove_bbs (basic_block *bbs, int nbbs)
80 {
81 int i;
82
83 for (i = 0; i < nbbs; i++)
84 {
85 remove_bb_from_loops (bbs[i]);
86 delete_basic_block (bbs[i]);
87 }
88 }
89
90 /* Find path -- i.e. the basic blocks dominated by edge E and put them
91 into array BBS, that will be allocated large enough to contain them.
92 E->dest must have exactly one predecessor for this to work (it is
93 easy to achieve and we do not put it here because we do not want to
94 alter anything by this function). The number of basic blocks in the
95 path is returned. */
96 static int
97 find_path (edge e, basic_block **bbs)
98 {
99 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
100
101 /* Find bbs in the path. */
102 *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
103 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
104 n_basic_blocks, e->dest);
105 }
106
107 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
108 Let L be a loop to that BB belongs. Then every successor of BB must either
109 1) belong to some superloop of loop L, or
110 2) be a header of loop K such that K->outer is superloop of L
111 Returns true if we had to move BB into other loop to enforce this condition,
112 false if the placement of BB was already correct (provided that placements
113 of its successors are correct). */
114 static bool
115 fix_bb_placement (struct loops *loops, basic_block bb)
116 {
117 edge e;
118 edge_iterator ei;
119 struct loop *loop = loops->tree_root, *act;
120
121 FOR_EACH_EDGE (e, ei, bb->succs)
122 {
123 if (e->dest == EXIT_BLOCK_PTR)
124 continue;
125
126 act = e->dest->loop_father;
127 if (act->header == e->dest)
128 act = act->outer;
129
130 if (flow_loop_nested_p (loop, act))
131 loop = act;
132 }
133
134 if (loop == bb->loop_father)
135 return false;
136
137 remove_bb_from_loops (bb);
138 add_bb_to_loop (bb, loop);
139
140 return true;
141 }
142
143 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
144 enforce condition condition stated in description of fix_bb_placement. We
145 start from basic block FROM that had some of its successors removed, so that
146 his placement no longer has to be correct, and iteratively fix placement of
147 its predecessors that may change if placement of FROM changed. Also fix
148 placement of subloops of FROM->loop_father, that might also be altered due
149 to this change; the condition for them is similar, except that instead of
150 successors we consider edges coming out of the loops. */
151 static void
152 fix_bb_placements (struct loops *loops, basic_block from)
153 {
154 sbitmap in_queue;
155 basic_block *queue, *qtop, *qbeg, *qend;
156 struct loop *base_loop;
157 edge e;
158
159 /* We pass through blocks back-reachable from FROM, testing whether some
160 of their successors moved to outer loop. It may be necessary to
161 iterate several times, but it is finite, as we stop unless we move
162 the basic block up the loop structure. The whole story is a bit
163 more complicated due to presence of subloops, those are moved using
164 fix_loop_placement. */
165
166 base_loop = from->loop_father;
167 if (base_loop == loops->tree_root)
168 return;
169
170 in_queue = sbitmap_alloc (last_basic_block);
171 sbitmap_zero (in_queue);
172 SET_BIT (in_queue, from->index);
173 /* Prevent us from going out of the base_loop. */
174 SET_BIT (in_queue, base_loop->header->index);
175
176 queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
177 qtop = queue + base_loop->num_nodes + 1;
178 qbeg = queue;
179 qend = queue + 1;
180 *qbeg = from;
181
182 while (qbeg != qend)
183 {
184 edge_iterator ei;
185 from = *qbeg;
186 qbeg++;
187 if (qbeg == qtop)
188 qbeg = queue;
189 RESET_BIT (in_queue, from->index);
190
191 if (from->loop_father->header == from)
192 {
193 /* Subloop header, maybe move the loop upward. */
194 if (!fix_loop_placement (from->loop_father))
195 continue;
196 }
197 else
198 {
199 /* Ordinary basic block. */
200 if (!fix_bb_placement (loops, from))
201 continue;
202 }
203
204 /* Something has changed, insert predecessors into queue. */
205 FOR_EACH_EDGE (e, ei, from->preds)
206 {
207 basic_block pred = e->src;
208 struct loop *nca;
209
210 if (TEST_BIT (in_queue, pred->index))
211 continue;
212
213 /* If it is subloop, then it either was not moved, or
214 the path up the loop tree from base_loop do not contain
215 it. */
216 nca = find_common_loop (pred->loop_father, base_loop);
217 if (pred->loop_father != base_loop
218 && (nca == base_loop
219 || nca != pred->loop_father))
220 pred = pred->loop_father->header;
221 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
222 {
223 /* No point in processing it. */
224 continue;
225 }
226
227 if (TEST_BIT (in_queue, pred->index))
228 continue;
229
230 /* Schedule the basic block. */
231 *qend = pred;
232 qend++;
233 if (qend == qtop)
234 qend = queue;
235 SET_BIT (in_queue, pred->index);
236 }
237 }
238 free (in_queue);
239 free (queue);
240 }
241
242 /* Basic block from has lost one or more of its predecessors, so it might
243 mo longer be part irreducible loop. Fix it and proceed recursively
244 for its successors if needed. */
245 static void
246 fix_irreducible_loops (basic_block from)
247 {
248 basic_block bb;
249 basic_block *stack;
250 int stack_top;
251 sbitmap on_stack;
252 edge *edges, e;
253 unsigned n_edges, i;
254
255 if (!(from->flags & BB_IRREDUCIBLE_LOOP))
256 return;
257
258 on_stack = sbitmap_alloc (last_basic_block);
259 sbitmap_zero (on_stack);
260 SET_BIT (on_stack, from->index);
261 stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
262 stack[0] = from;
263 stack_top = 1;
264
265 while (stack_top)
266 {
267 edge_iterator ei;
268 bb = stack[--stack_top];
269 RESET_BIT (on_stack, bb->index);
270
271 FOR_EACH_EDGE (e, ei, bb->preds)
272 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
273 break;
274 if (e)
275 continue;
276
277 bb->flags &= ~BB_IRREDUCIBLE_LOOP;
278 if (bb->loop_father->header == bb)
279 edges = get_loop_exit_edges (bb->loop_father, &n_edges);
280 else
281 {
282 n_edges = EDGE_COUNT (bb->succs);
283 edges = xmalloc (n_edges * sizeof (edge));
284 FOR_EACH_EDGE (e, ei, bb->succs)
285 edges[ei.index] = e;
286 }
287
288 for (i = 0; i < n_edges; i++)
289 {
290 e = edges[i];
291
292 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
293 {
294 if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
295 continue;
296
297 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
298 if (TEST_BIT (on_stack, e->dest->index))
299 continue;
300
301 SET_BIT (on_stack, e->dest->index);
302 stack[stack_top++] = e->dest;
303 }
304 }
305 free (edges);
306 }
307
308 free (on_stack);
309 free (stack);
310 }
311
312 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
313 and update loop structure stored in LOOPS and dominators. Return true if
314 we were able to remove the path, false otherwise (and nothing is affected
315 then). */
316 bool
317 remove_path (struct loops *loops, edge e)
318 {
319 edge ae;
320 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
321 int i, nrem, n_bord_bbs, n_dom_bbs;
322 sbitmap seen;
323 bool deleted;
324
325 if (!loop_delete_branch_edge (e, 0))
326 return false;
327
328 /* We need to check whether basic blocks are dominated by the edge
329 e, but we only have basic block dominators. This is easy to
330 fix -- when e->dest has exactly one predecessor, this corresponds
331 to blocks dominated by e->dest, if not, split the edge. */
332 if (EDGE_COUNT (e->dest->preds) > 1)
333 e = EDGE_PRED (loop_split_edge_with (e, NULL_RTX), 0);
334
335 /* It may happen that by removing path we remove one or more loops
336 we belong to. In this case first unloop the loops, then proceed
337 normally. We may assume that e->dest is not a header of any loop,
338 as it now has exactly one predecessor. */
339 while (e->src->loop_father->outer
340 && dominated_by_p (CDI_DOMINATORS,
341 e->src->loop_father->latch, e->dest))
342 unloop (loops, e->src->loop_father);
343
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
346
347 n_bord_bbs = 0;
348 bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
349 seen = sbitmap_alloc (last_basic_block);
350 sbitmap_zero (seen);
351
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 SET_BIT (seen, rem_bbs[i]->index);
355 for (i = 0; i < nrem; i++)
356 {
357 edge_iterator ei;
358 bb = rem_bbs[i];
359 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
360 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
361 {
362 SET_BIT (seen, ae->dest->index);
363 bord_bbs[n_bord_bbs++] = ae->dest;
364 }
365 }
366
367 /* Remove the path. */
368 from = e->src;
369 deleted = loop_delete_branch_edge (e, 1);
370 gcc_assert (deleted);
371 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
372
373 /* Cancel loops contained in the path. */
374 for (i = 0; i < nrem; i++)
375 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
376 cancel_loop_tree (loops, rem_bbs[i]->loop_father);
377
378 remove_bbs (rem_bbs, nrem);
379 free (rem_bbs);
380
381 /* Find blocks whose dominators may be affected. */
382 n_dom_bbs = 0;
383 sbitmap_zero (seen);
384 for (i = 0; i < n_bord_bbs; i++)
385 {
386 basic_block ldom;
387
388 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
389 if (TEST_BIT (seen, bb->index))
390 continue;
391 SET_BIT (seen, bb->index);
392
393 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
394 ldom;
395 ldom = next_dom_son (CDI_DOMINATORS, ldom))
396 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
397 dom_bbs[n_dom_bbs++] = ldom;
398 }
399
400 free (seen);
401
402 /* Recount dominators. */
403 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
404 free (dom_bbs);
405
406 /* These blocks have lost some predecessor(s), thus their irreducible
407 status could be changed. */
408 for (i = 0; i < n_bord_bbs; i++)
409 fix_irreducible_loops (bord_bbs[i]);
410 free (bord_bbs);
411
412 /* Fix placements of basic blocks inside loops and the placement of
413 loops in the loop tree. */
414 fix_bb_placements (loops, from);
415 fix_loop_placements (loops, from->loop_father);
416
417 return true;
418 }
419
420 /* Predicate for enumeration in add_loop. */
421 static bool
422 alp_enum_p (basic_block bb, void *alp_header)
423 {
424 return bb != (basic_block) alp_header;
425 }
426
427 /* Given LOOP structure with filled header and latch, find the body of the
428 corresponding loop and add it to LOOPS tree. */
429 static void
430 add_loop (struct loops *loops, struct loop *loop)
431 {
432 basic_block *bbs;
433 int i, n;
434
435 /* Add it to loop structure. */
436 place_new_loop (loops, loop);
437 loop->level = 1;
438
439 /* Find its nodes. */
440 bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
441 n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
442 bbs, n_basic_blocks, loop->header);
443
444 for (i = 0; i < n; i++)
445 add_bb_to_loop (bbs[i], loop);
446 add_bb_to_loop (loop->header, loop);
447
448 free (bbs);
449 }
450
451 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
452 by NUM/DEN. */
453 static void
454 scale_bbs_frequencies (basic_block *bbs, int nbbs, int num, int den)
455 {
456 int i;
457 edge e;
458
459 for (i = 0; i < nbbs; i++)
460 {
461 edge_iterator ei;
462 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
463 bbs[i]->count = RDIV (bbs[i]->count * num, den);
464 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
465 e->count = (e->count * num) /den;
466 }
467 }
468
469 /* Multiply all frequencies in LOOP by NUM/DEN. */
470 static void
471 scale_loop_frequencies (struct loop *loop, int num, int den)
472 {
473 basic_block *bbs;
474
475 bbs = get_loop_body (loop);
476 scale_bbs_frequencies (bbs, loop->num_nodes, num, den);
477 free (bbs);
478 }
479
480 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
481 latch to header and update loop tree stored in LOOPS and dominators
482 accordingly. Everything between them plus LATCH_EDGE destination must
483 be dominated by HEADER_EDGE destination, and back-reachable from
484 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
485 FALLTHRU_EDGE (SWITCH_BB) to original destination of HEADER_EDGE and
486 BRANCH_EDGE (SWITCH_BB) to original destination of LATCH_EDGE.
487 Returns newly created loop. */
488
489 struct loop *
490 loopify (struct loops *loops, edge latch_edge, edge header_edge,
491 basic_block switch_bb, bool redirect_all_edges)
492 {
493 basic_block succ_bb = latch_edge->dest;
494 basic_block pred_bb = header_edge->src;
495 basic_block *dom_bbs, *body;
496 unsigned n_dom_bbs, i;
497 sbitmap seen;
498 struct loop *loop = xcalloc (1, sizeof (struct loop));
499 struct loop *outer = succ_bb->loop_father->outer;
500 int freq, prob, tot_prob;
501 gcov_type cnt;
502 edge e;
503 edge_iterator ei;
504
505 loop->header = header_edge->dest;
506 loop->latch = latch_edge->src;
507
508 freq = EDGE_FREQUENCY (header_edge);
509 cnt = header_edge->count;
510 prob = EDGE_SUCC (switch_bb, 0)->probability;
511 tot_prob = prob + EDGE_SUCC (switch_bb, 1)->probability;
512 if (tot_prob == 0)
513 tot_prob = 1;
514
515 /* Redirect edges. */
516 loop_redirect_edge (latch_edge, loop->header);
517 loop_redirect_edge (BRANCH_EDGE (switch_bb), succ_bb);
518
519 /* During loop versioning, one of the switch_bb edge is already properly
520 set. Do not redirect it again unless redirect_all_edges is true. */
521 if (redirect_all_edges)
522 {
523 loop_redirect_edge (header_edge, switch_bb);
524 loop_redirect_edge (FALLTHRU_EDGE (switch_bb), loop->header);
525
526 /* Update dominators. */
527 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
528 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
529 }
530
531 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
532
533 /* Compute new loop. */
534 add_loop (loops, loop);
535 flow_loop_tree_node_add (outer, loop);
536
537 /* Add switch_bb to appropriate loop. */
538 add_bb_to_loop (switch_bb, outer);
539
540 /* Fix frequencies. */
541 switch_bb->frequency = freq;
542 switch_bb->count = cnt;
543 FOR_EACH_EDGE (e, ei, switch_bb->succs)
544 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
545 scale_loop_frequencies (loop, prob, tot_prob);
546 scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
547
548 /* Update dominators of blocks outside of LOOP. */
549 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
550 n_dom_bbs = 0;
551 seen = sbitmap_alloc (last_basic_block);
552 sbitmap_zero (seen);
553 body = get_loop_body (loop);
554
555 for (i = 0; i < loop->num_nodes; i++)
556 SET_BIT (seen, body[i]->index);
557
558 for (i = 0; i < loop->num_nodes; i++)
559 {
560 basic_block ldom;
561
562 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
563 ldom;
564 ldom = next_dom_son (CDI_DOMINATORS, ldom))
565 if (!TEST_BIT (seen, ldom->index))
566 {
567 SET_BIT (seen, ldom->index);
568 dom_bbs[n_dom_bbs++] = ldom;
569 }
570 }
571
572 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
573
574 free (body);
575 free (seen);
576 free (dom_bbs);
577
578 return loop;
579 }
580
581 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
582 the LOOP was removed. After this function, original loop latch will
583 have no successor, which caller is expected to fix somehow. */
584 void
585 unloop (struct loops *loops, struct loop *loop)
586 {
587 basic_block *body;
588 struct loop *ploop;
589 unsigned i, n;
590 basic_block latch = loop->latch;
591 edge *edges;
592 unsigned n_edges;
593
594 /* This is relatively straightforward. The dominators are unchanged, as
595 loop header dominates loop latch, so the only thing we have to care of
596 is the placement of loops and basic blocks inside the loop tree. We
597 move them all to the loop->outer, and then let fix_bb_placements do
598 its work. */
599
600 body = get_loop_body (loop);
601 edges = get_loop_exit_edges (loop, &n_edges);
602 n = loop->num_nodes;
603 for (i = 0; i < n; i++)
604 if (body[i]->loop_father == loop)
605 {
606 remove_bb_from_loops (body[i]);
607 add_bb_to_loop (body[i], loop->outer);
608 }
609 free(body);
610
611 while (loop->inner)
612 {
613 ploop = loop->inner;
614 flow_loop_tree_node_remove (ploop);
615 flow_loop_tree_node_add (loop->outer, ploop);
616 }
617
618 /* Remove the loop and free its data. */
619 flow_loop_tree_node_remove (loop);
620 loops->parray[loop->num] = NULL;
621 flow_loop_free (loop);
622
623 remove_edge (EDGE_SUCC (latch, 0));
624 fix_bb_placements (loops, latch);
625
626 /* If the loop was inside an irreducible region, we would have to somehow
627 update the irreducible marks inside its body. While it is certainly
628 possible to do, it is a bit complicated and this situation should be
629 very rare, so we just remark all loops in this case. */
630 for (i = 0; i < n_edges; i++)
631 if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
632 break;
633 if (i != n_edges)
634 mark_irreducible_loops (loops);
635 free (edges);
636 }
637
638 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
639 FATHER of LOOP such that all of the edges coming out of LOOP belong to
640 FATHER, and set it as outer loop of LOOP. Return 1 if placement of
641 LOOP changed. */
642 int
643 fix_loop_placement (struct loop *loop)
644 {
645 basic_block *body;
646 unsigned i;
647 edge e;
648 edge_iterator ei;
649 struct loop *father = loop->pred[0], *act;
650
651 body = get_loop_body (loop);
652 for (i = 0; i < loop->num_nodes; i++)
653 FOR_EACH_EDGE (e, ei, body[i]->succs)
654 if (!flow_bb_inside_loop_p (loop, e->dest))
655 {
656 act = find_common_loop (loop, e->dest->loop_father);
657 if (flow_loop_nested_p (father, act))
658 father = act;
659 }
660 free (body);
661
662 if (father != loop->outer)
663 {
664 for (act = loop->outer; act != father; act = act->outer)
665 act->num_nodes -= loop->num_nodes;
666 flow_loop_tree_node_remove (loop);
667 flow_loop_tree_node_add (father, loop);
668 return 1;
669 }
670 return 0;
671 }
672
673 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
674 condition stated in description of fix_loop_placement holds for them.
675 It is used in case when we removed some edges coming out of LOOP, which
676 may cause the right placement of LOOP inside loop tree to change. */
677 static void
678 fix_loop_placements (struct loops *loops, struct loop *loop)
679 {
680 struct loop *outer;
681
682 while (loop->outer)
683 {
684 outer = loop->outer;
685 if (!fix_loop_placement (loop))
686 break;
687
688 /* Changing the placement of a loop in the loop tree may alter the
689 validity of condition 2) of the description of fix_bb_placement
690 for its preheader, because the successor is the header and belongs
691 to the loop. So call fix_bb_placements to fix up the placement
692 of the preheader and (possibly) of its predecessors. */
693 fix_bb_placements (loops, loop_preheader_edge (loop)->src);
694 loop = outer;
695 }
696 }
697
698 /* Creates place for a new LOOP in LOOPS structure. */
699 static void
700 place_new_loop (struct loops *loops, struct loop *loop)
701 {
702 loops->parray =
703 xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
704 loops->parray[loops->num] = loop;
705
706 loop->num = loops->num++;
707 }
708
709 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
710 created loop into LOOPS structure. */
711 struct loop *
712 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
713 {
714 struct loop *cloop;
715 cloop = xcalloc (1, sizeof (struct loop));
716 place_new_loop (loops, cloop);
717
718 /* Initialize copied loop. */
719 cloop->level = loop->level;
720
721 /* Set it as copy of loop. */
722 loop->copy = cloop;
723
724 /* Add it to target. */
725 flow_loop_tree_node_add (target, cloop);
726
727 return cloop;
728 }
729
730 /* Copies structure of subloops of LOOP into TARGET loop, placing
731 newly created loops into loop tree stored in LOOPS. */
732 static void
733 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
734 {
735 struct loop *aloop, *cloop;
736
737 for (aloop = loop->inner; aloop; aloop = aloop->next)
738 {
739 cloop = duplicate_loop (loops, aloop, target);
740 duplicate_subloops (loops, aloop, cloop);
741 }
742 }
743
744 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
745 into TARGET loop, placing newly created loops into loop tree LOOPS. */
746 static void
747 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
748 {
749 struct loop *aloop;
750 int i;
751
752 for (i = 0; i < n; i++)
753 {
754 aloop = duplicate_loop (loops, copied_loops[i], target);
755 duplicate_subloops (loops, copied_loops[i], aloop);
756 }
757 }
758
759 /* Redirects edge E to basic block DEST. */
760 static void
761 loop_redirect_edge (edge e, basic_block dest)
762 {
763 if (e->dest == dest)
764 return;
765
766 redirect_edge_and_branch_force (e, dest);
767 }
768
769 /* Deletes edge E from a branch if possible. Unless REALLY_DELETE is set,
770 just test whether it is possible to remove the edge. */
771 static bool
772 loop_delete_branch_edge (edge e, int really_delete)
773 {
774 basic_block src = e->src;
775 basic_block newdest;
776 int irr;
777 edge snd;
778
779 gcc_assert (EDGE_COUNT (src->succs) > 1);
780
781 /* Cannot handle more than two exit edges. */
782 if (EDGE_COUNT (src->succs) > 2)
783 return false;
784 /* And it must be just a simple branch. */
785 if (!any_condjump_p (BB_END (src)))
786 return false;
787
788 snd = e == EDGE_SUCC (src, 0) ? EDGE_SUCC (src, 1) : EDGE_SUCC (src, 0);
789 newdest = snd->dest;
790 if (newdest == EXIT_BLOCK_PTR)
791 return false;
792
793 /* Hopefully the above conditions should suffice. */
794 if (!really_delete)
795 return true;
796
797 /* Redirecting behaves wrongly wrto this flag. */
798 irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
799
800 if (!redirect_edge_and_branch (e, newdest))
801 return false;
802 EDGE_SUCC (src, 0)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
803 EDGE_SUCC (src, 0)->flags |= irr;
804
805 return true;
806 }
807
808 /* Check whether LOOP's body can be duplicated. */
809 bool
810 can_duplicate_loop_p (struct loop *loop)
811 {
812 int ret;
813 basic_block *bbs = get_loop_body (loop);
814
815 ret = can_copy_bbs_p (bbs, loop->num_nodes);
816 free (bbs);
817
818 return ret;
819 }
820
821 /* The NBBS blocks in BBS will get duplicated and the copies will be placed
822 to LOOP. Update the single_exit information in superloops of LOOP. */
823
824 void
825 update_single_exits_after_duplication (basic_block *bbs, unsigned nbbs,
826 struct loop *loop)
827 {
828 unsigned i;
829
830 for (i = 0; i < nbbs; i++)
831 bbs[i]->rbi->duplicated = 1;
832
833 for (; loop->outer; loop = loop->outer)
834 {
835 if (!loop->single_exit)
836 continue;
837
838 if (loop->single_exit->src->rbi->duplicated)
839 loop->single_exit = NULL;
840 }
841
842 for (i = 0; i < nbbs; i++)
843 bbs[i]->rbi->duplicated = 0;
844 }
845
846 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
847 LOOPS structure and dominators. E's destination must be LOOP header for
848 this to work, i.e. it must be entry or latch edge of this loop; these are
849 unique, as the loops must have preheaders for this function to work
850 correctly (in case E is latch, the function unrolls the loop, if E is entry
851 edge, it peels the loop). Store edges created by copying ORIG edge from
852 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
853 original LOOP body, the other copies are numbered in order given by control
854 flow through them) into TO_REMOVE array. Returns false if duplication is
855 impossible. */
856 int
857 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
858 unsigned int ndupl, sbitmap wont_exit,
859 edge orig, edge *to_remove,
860 unsigned int *n_to_remove, int flags)
861 {
862 struct loop *target, *aloop;
863 struct loop **orig_loops;
864 unsigned n_orig_loops;
865 basic_block header = loop->header, latch = loop->latch;
866 basic_block *new_bbs, *bbs, *first_active;
867 basic_block new_bb, bb, first_active_latch = NULL;
868 edge ae, latch_edge;
869 edge spec_edges[2], new_spec_edges[2];
870 #define SE_LATCH 0
871 #define SE_ORIG 1
872 unsigned i, j, n;
873 int is_latch = (latch == e->src);
874 int scale_act = 0, *scale_step = NULL, scale_main = 0;
875 int p, freq_in, freq_le, freq_out_orig;
876 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
877 int add_irreducible_flag;
878
879 gcc_assert (e->dest == loop->header);
880 gcc_assert (ndupl > 0);
881
882 if (orig)
883 {
884 /* Orig must be edge out of the loop. */
885 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
886 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
887 }
888
889 bbs = get_loop_body (loop);
890
891 /* Check whether duplication is possible. */
892 if (!can_copy_bbs_p (bbs, loop->num_nodes))
893 {
894 free (bbs);
895 return false;
896 }
897 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
898
899 /* In case we are doing loop peeling and the loop is in the middle of
900 irreducible region, the peeled copies will be inside it too. */
901 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
902 gcc_assert (!is_latch || !add_irreducible_flag);
903
904 /* Find edge from latch. */
905 latch_edge = loop_latch_edge (loop);
906
907 if (flags & DLTHE_FLAG_UPDATE_FREQ)
908 {
909 /* Calculate coefficients by that we have to scale frequencies
910 of duplicated loop bodies. */
911 freq_in = header->frequency;
912 freq_le = EDGE_FREQUENCY (latch_edge);
913 if (freq_in == 0)
914 freq_in = 1;
915 if (freq_in < freq_le)
916 freq_in = freq_le;
917 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
918 if (freq_out_orig > freq_in - freq_le)
919 freq_out_orig = freq_in - freq_le;
920 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
921 prob_pass_wont_exit =
922 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
923
924 scale_step = xmalloc (ndupl * sizeof (int));
925
926 for (i = 1; i <= ndupl; i++)
927 scale_step[i - 1] = TEST_BIT (wont_exit, i)
928 ? prob_pass_wont_exit
929 : prob_pass_thru;
930
931 if (is_latch)
932 {
933 prob_pass_main = TEST_BIT (wont_exit, 0)
934 ? prob_pass_wont_exit
935 : prob_pass_thru;
936 p = prob_pass_main;
937 scale_main = REG_BR_PROB_BASE;
938 for (i = 0; i < ndupl; i++)
939 {
940 scale_main += p;
941 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
942 }
943 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
944 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
945 }
946 else
947 {
948 scale_main = REG_BR_PROB_BASE;
949 for (i = 0; i < ndupl; i++)
950 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
951 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
952 }
953 for (i = 0; i < ndupl; i++)
954 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
955 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
956 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
957 }
958
959 /* Loop the new bbs will belong to. */
960 target = e->src->loop_father;
961
962 /* Original loops. */
963 n_orig_loops = 0;
964 for (aloop = loop->inner; aloop; aloop = aloop->next)
965 n_orig_loops++;
966 orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
967 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
968 orig_loops[i] = aloop;
969
970 loop->copy = target;
971
972 n = loop->num_nodes;
973
974 first_active = xmalloc (n * sizeof (basic_block));
975 if (is_latch)
976 {
977 memcpy (first_active, bbs, n * sizeof (basic_block));
978 first_active_latch = latch;
979 }
980
981 /* Update the information about single exits. */
982 if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
983 update_single_exits_after_duplication (bbs, n, target);
984
985 /* Record exit edge in original loop body. */
986 if (orig && TEST_BIT (wont_exit, 0))
987 to_remove[(*n_to_remove)++] = orig;
988
989 spec_edges[SE_ORIG] = orig;
990 spec_edges[SE_LATCH] = latch_edge;
991
992 for (j = 0; j < ndupl; j++)
993 {
994 /* Copy loops. */
995 copy_loops_to (loops, orig_loops, n_orig_loops, target);
996
997 /* Copy bbs. */
998 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop);
999
1000 for (i = 0; i < n; i++)
1001 new_bbs[i]->rbi->copy_number = j + 1;
1002
1003 /* Note whether the blocks and edges belong to an irreducible loop. */
1004 if (add_irreducible_flag)
1005 {
1006 for (i = 0; i < n; i++)
1007 new_bbs[i]->rbi->duplicated = 1;
1008 for (i = 0; i < n; i++)
1009 {
1010 edge_iterator ei;
1011 new_bb = new_bbs[i];
1012 if (new_bb->loop_father == target)
1013 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1014
1015 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1016 if (ae->dest->rbi->duplicated
1017 && (ae->src->loop_father == target
1018 || ae->dest->loop_father == target))
1019 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1020 }
1021 for (i = 0; i < n; i++)
1022 new_bbs[i]->rbi->duplicated = 0;
1023 }
1024
1025 /* Redirect the special edges. */
1026 if (is_latch)
1027 {
1028 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1029 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1030 loop->header);
1031 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1032 latch = loop->latch = new_bbs[1];
1033 e = latch_edge = new_spec_edges[SE_LATCH];
1034 }
1035 else
1036 {
1037 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1038 loop->header);
1039 redirect_edge_and_branch_force (e, new_bbs[0]);
1040 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1041 e = new_spec_edges[SE_LATCH];
1042 }
1043
1044 /* Record exit edge in this copy. */
1045 if (orig && TEST_BIT (wont_exit, j + 1))
1046 to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1047
1048 /* Record the first copy in the control flow order if it is not
1049 the original loop (i.e. in case of peeling). */
1050 if (!first_active_latch)
1051 {
1052 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1053 first_active_latch = new_bbs[1];
1054 }
1055
1056 /* Set counts and frequencies. */
1057 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1058 {
1059 scale_bbs_frequencies (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1060 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1061 }
1062 }
1063 free (new_bbs);
1064 free (orig_loops);
1065
1066 /* Update the original loop. */
1067 if (!is_latch)
1068 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1069 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1070 {
1071 scale_bbs_frequencies (bbs, n, scale_main, REG_BR_PROB_BASE);
1072 free (scale_step);
1073 }
1074
1075 /* Update dominators of outer blocks if affected. */
1076 for (i = 0; i < n; i++)
1077 {
1078 basic_block dominated, dom_bb, *dom_bbs;
1079 int n_dom_bbs,j;
1080
1081 bb = bbs[i];
1082 bb->rbi->copy_number = 0;
1083
1084 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1085 for (j = 0; j < n_dom_bbs; j++)
1086 {
1087 dominated = dom_bbs[j];
1088 if (flow_bb_inside_loop_p (loop, dominated))
1089 continue;
1090 dom_bb = nearest_common_dominator (
1091 CDI_DOMINATORS, first_active[i], first_active_latch);
1092 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1093 }
1094 free (dom_bbs);
1095 }
1096 free (first_active);
1097
1098 free (bbs);
1099
1100 return true;
1101 }
1102
1103 /* A callback for make_forwarder block, to redirect all edges except for
1104 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1105 whether to redirect it. */
1106
1107 static edge mfb_kj_edge;
1108 static bool
1109 mfb_keep_just (edge e)
1110 {
1111 return e != mfb_kj_edge;
1112 }
1113
1114 /* A callback for make_forwarder block, to update data structures for a basic
1115 block JUMP created by redirecting an edge (only the latch edge is being
1116 redirected). */
1117
1118 static void
1119 mfb_update_loops (basic_block jump)
1120 {
1121 struct loop *loop = EDGE_SUCC (jump, 0)->dest->loop_father;
1122
1123 if (dom_computed[CDI_DOMINATORS])
1124 set_immediate_dominator (CDI_DOMINATORS, jump, EDGE_PRED (jump, 0)->src);
1125 add_bb_to_loop (jump, loop);
1126 loop->latch = jump;
1127 }
1128
1129 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1130 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1131 entry; otherwise we also force preheader block to have only one successor.
1132 The function also updates dominators. */
1133
1134 static basic_block
1135 create_preheader (struct loop *loop, int flags)
1136 {
1137 edge e, fallthru;
1138 basic_block dummy;
1139 struct loop *cloop, *ploop;
1140 int nentry = 0;
1141 bool irred = false;
1142 edge_iterator ei;
1143
1144 cloop = loop->outer;
1145
1146 FOR_EACH_EDGE (e, ei, loop->header->preds)
1147 {
1148 if (e->src == loop->latch)
1149 continue;
1150 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1151 nentry++;
1152 }
1153 gcc_assert (nentry);
1154 if (nentry == 1)
1155 {
1156 FOR_EACH_EDGE (e, ei, loop->header->preds)
1157 if (e->src != loop->latch)
1158 break;
1159
1160 if (!(flags & CP_SIMPLE_PREHEADERS) || EDGE_COUNT (e->src->succs) == 1)
1161 return NULL;
1162 }
1163
1164 mfb_kj_edge = loop_latch_edge (loop);
1165 fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1166 mfb_update_loops);
1167 dummy = fallthru->src;
1168 loop->header = fallthru->dest;
1169
1170 /* The header could be a latch of some superloop(s); due to design of
1171 split_block, it would now move to fallthru->dest. */
1172 for (ploop = loop; ploop; ploop = ploop->outer)
1173 if (ploop->latch == dummy)
1174 ploop->latch = fallthru->dest;
1175
1176 /* Reorganize blocks so that the preheader is not stuck in the middle of the
1177 loop. */
1178 FOR_EACH_EDGE (e, ei, dummy->preds)
1179 if (e->src != loop->latch)
1180 break;
1181 move_block_after (dummy, e->src);
1182
1183 loop->header->loop_father = loop;
1184 add_bb_to_loop (dummy, cloop);
1185
1186 if (irred)
1187 {
1188 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1189 EDGE_SUCC (dummy, 0)->flags |= EDGE_IRREDUCIBLE_LOOP;
1190 }
1191
1192 if (dump_file)
1193 fprintf (dump_file, "Created preheader block for loop %i\n",
1194 loop->num);
1195
1196 return dummy;
1197 }
1198
1199 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1200 of FLAGS see create_preheader. */
1201 void
1202 create_preheaders (struct loops *loops, int flags)
1203 {
1204 unsigned i;
1205 for (i = 1; i < loops->num; i++)
1206 create_preheader (loops->parray[i], flags);
1207 loops->state |= LOOPS_HAVE_PREHEADERS;
1208 }
1209
1210 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1211 successor. */
1212 void
1213 force_single_succ_latches (struct loops *loops)
1214 {
1215 unsigned i;
1216 struct loop *loop;
1217 edge e;
1218
1219 for (i = 1; i < loops->num; i++)
1220 {
1221 edge_iterator ei;
1222 loop = loops->parray[i];
1223 if (loop->latch != loop->header && EDGE_COUNT (loop->latch->succs) == 1)
1224 continue;
1225
1226 FOR_EACH_EDGE (e, ei, loop->header->preds)
1227 if (e->src == loop->latch)
1228 break;
1229
1230 loop_split_edge_with (e, NULL_RTX);
1231 }
1232 loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1233 }
1234
1235 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1236 just one basic block. Jumps in INSNS are not handled, so cfg do not have to
1237 be ok after this function. The created block is placed on correct place
1238 in LOOPS structure and its dominator is set. */
1239 basic_block
1240 loop_split_edge_with (edge e, rtx insns)
1241 {
1242 basic_block src, dest, new_bb;
1243 struct loop *loop_c;
1244 edge new_e;
1245
1246 src = e->src;
1247 dest = e->dest;
1248
1249 loop_c = find_common_loop (src->loop_father, dest->loop_father);
1250
1251 /* Create basic block for it. */
1252
1253 new_bb = split_edge (e);
1254 add_bb_to_loop (new_bb, loop_c);
1255 new_bb->flags = insns ? BB_SUPERBLOCK : 0;
1256
1257 new_e = EDGE_SUCC (new_bb, 0);
1258 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1259 {
1260 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1261 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1262 }
1263
1264 if (insns)
1265 emit_insn_after (insns, BB_END (new_bb));
1266
1267 if (dest->loop_father->latch == src)
1268 dest->loop_father->latch = new_bb;
1269
1270 return new_bb;
1271 }
1272
1273 /* Uses the natural loop discovery to recreate loop notes. */
1274 void
1275 create_loop_notes (void)
1276 {
1277 rtx insn, head, end;
1278 struct loops loops;
1279 struct loop *loop;
1280 basic_block *first, *last, bb, pbb;
1281 struct loop **stack, **top;
1282
1283 #ifdef ENABLE_CHECKING
1284 /* Verify that there really are no loop notes. */
1285 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1286 gcc_assert (!NOTE_P (insn) ||
1287 NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
1288 #endif
1289
1290 flow_loops_find (&loops, LOOP_TREE);
1291 free_dominance_info (CDI_DOMINATORS);
1292 if (loops.num > 1)
1293 {
1294 last = xcalloc (loops.num, sizeof (basic_block));
1295
1296 FOR_EACH_BB (bb)
1297 {
1298 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1299 last[loop->num] = bb;
1300 }
1301
1302 first = xcalloc (loops.num, sizeof (basic_block));
1303 stack = xcalloc (loops.num, sizeof (struct loop *));
1304 top = stack;
1305
1306 FOR_EACH_BB (bb)
1307 {
1308 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1309 {
1310 if (!first[loop->num])
1311 {
1312 *top++ = loop;
1313 first[loop->num] = bb;
1314 }
1315
1316 if (bb == last[loop->num])
1317 {
1318 /* Prevent loops from overlapping. */
1319 while (*--top != loop)
1320 last[(*top)->num] = EXIT_BLOCK_PTR;
1321
1322 /* If loop starts with jump into it, place the note in
1323 front of the jump. */
1324 insn = PREV_INSN (BB_HEAD (first[loop->num]));
1325 if (insn
1326 && BARRIER_P (insn))
1327 insn = PREV_INSN (insn);
1328
1329 if (insn
1330 && JUMP_P (insn)
1331 && any_uncondjump_p (insn)
1332 && onlyjump_p (insn))
1333 {
1334 pbb = BLOCK_FOR_INSN (insn);
1335 gcc_assert (pbb && EDGE_COUNT (pbb->succs) == 1);
1336
1337 if (!flow_bb_inside_loop_p (loop, EDGE_SUCC (pbb, 0)->dest))
1338 insn = BB_HEAD (first[loop->num]);
1339 }
1340 else
1341 insn = BB_HEAD (first[loop->num]);
1342
1343 head = BB_HEAD (first[loop->num]);
1344 emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1345 BB_HEAD (first[loop->num]) = head;
1346
1347 /* Position the note correctly wrto barrier. */
1348 insn = BB_END (last[loop->num]);
1349 if (NEXT_INSN (insn)
1350 && BARRIER_P (NEXT_INSN (insn)))
1351 insn = NEXT_INSN (insn);
1352
1353 end = BB_END (last[loop->num]);
1354 emit_note_after (NOTE_INSN_LOOP_END, insn);
1355 BB_END (last[loop->num]) = end;
1356 }
1357 }
1358 }
1359
1360 free (first);
1361 free (last);
1362 free (stack);
1363 }
1364 flow_loops_free (&loops);
1365 }