]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopmanip.cc
Add missing profile_dump check
[thirdparty/gcc.git] / gcc / cfgloopmanip.cc
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34
35 static void copy_loops_to (class loop **, int,
36 class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57 int i;
58
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
61 }
62
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
71 {
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
78 }
79
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
89 {
90 edge e;
91 edge_iterator ei;
92 class loop *loop = current_loops->tree_root, *act;
93
94 FOR_EACH_EDGE (e, ei, bb->succs)
95 {
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
98
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
102
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
105 }
106
107 if (loop == bb->loop_father)
108 return false;
109
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
112
113 return true;
114 }
115
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
120
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
123
124 static bool
125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
126 {
127 unsigned i;
128 edge e;
129 auto_vec<edge> exits = get_loop_exit_edges (loop);
130 class loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 FOR_EACH_VEC_ELT (exits, i, e)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
150 {
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
155 }
156
157 ret = true;
158 }
159
160 return ret;
161 }
162
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164 enforce condition stated in description of fix_bb_placement. We
165 start from basic block FROM that had some of its successors removed, so that
166 his placement no longer has to be correct, and iteratively fix placement of
167 its predecessors that may change if placement of FROM changed. Also fix
168 placement of subloops of FROM->loop_father, that might also be altered due
169 to this change; the condition for them is similar, except that instead of
170 successors we consider edges coming out of the loops.
171
172 If the changes may invalidate the information about irreducible regions,
173 IRRED_INVALIDATED is set to true.
174
175 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176 changed loop_father are collected there. */
177
178 static void
179 fix_bb_placements (basic_block from,
180 bool *irred_invalidated,
181 bitmap loop_closed_ssa_invalidated)
182 {
183 basic_block *queue, *qtop, *qbeg, *qend;
184 class loop *base_loop, *target_loop;
185 edge e;
186
187 /* We pass through blocks back-reachable from FROM, testing whether some
188 of their successors moved to outer loop. It may be necessary to
189 iterate several times, but it is finite, as we stop unless we move
190 the basic block up the loop structure. The whole story is a bit
191 more complicated due to presence of subloops, those are moved using
192 fix_loop_placement. */
193
194 base_loop = from->loop_father;
195 /* If we are already in the outermost loop, the basic blocks cannot be moved
196 outside of it. If FROM is the header of the base loop, it cannot be moved
197 outside of it, either. In both cases, we can end now. */
198 if (base_loop == current_loops->tree_root
199 || from == base_loop->header)
200 return;
201
202 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
203 bitmap_clear (in_queue);
204 bitmap_set_bit (in_queue, from->index);
205 /* Prevent us from going out of the base_loop. */
206 bitmap_set_bit (in_queue, base_loop->header->index);
207
208 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209 qtop = queue + base_loop->num_nodes + 1;
210 qbeg = queue;
211 qend = queue + 1;
212 *qbeg = from;
213
214 while (qbeg != qend)
215 {
216 edge_iterator ei;
217 from = *qbeg;
218 qbeg++;
219 if (qbeg == qtop)
220 qbeg = queue;
221 bitmap_clear_bit (in_queue, from->index);
222
223 if (from->loop_father->header == from)
224 {
225 /* Subloop header, maybe move the loop upward. */
226 if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 continue;
228 target_loop = loop_outer (from->loop_father);
229 if (loop_closed_ssa_invalidated)
230 {
231 basic_block *bbs = get_loop_body (from->loop_father);
232 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 free (bbs);
235 }
236 }
237 else
238 {
239 /* Ordinary basic block. */
240 if (!fix_bb_placement (from))
241 continue;
242 target_loop = from->loop_father;
243 if (loop_closed_ssa_invalidated)
244 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
245 }
246
247 FOR_EACH_EDGE (e, ei, from->succs)
248 {
249 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 *irred_invalidated = true;
251 }
252
253 /* Something has changed, insert predecessors into queue. */
254 FOR_EACH_EDGE (e, ei, from->preds)
255 {
256 basic_block pred = e->src;
257 class loop *nca;
258
259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 *irred_invalidated = true;
261
262 if (bitmap_bit_p (in_queue, pred->index))
263 continue;
264
265 /* If it is subloop, then it either was not moved, or
266 the path up the loop tree from base_loop do not contain
267 it. */
268 nca = find_common_loop (pred->loop_father, base_loop);
269 if (pred->loop_father != base_loop
270 && (nca == base_loop
271 || nca != pred->loop_father))
272 pred = pred->loop_father->header;
273 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 {
275 /* If PRED is already higher in the loop hierarchy than the
276 TARGET_LOOP to that we moved FROM, the change of the position
277 of FROM does not affect the position of PRED, so there is no
278 point in processing it. */
279 continue;
280 }
281
282 if (bitmap_bit_p (in_queue, pred->index))
283 continue;
284
285 /* Schedule the basic block. */
286 *qend = pred;
287 qend++;
288 if (qend == qtop)
289 qend = queue;
290 bitmap_set_bit (in_queue, pred->index);
291 }
292 }
293 free (queue);
294 }
295
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297 and update loop structures and dominators. Return true if we were able
298 to remove the path, false otherwise (and nothing is affected then). */
299 bool
300 remove_path (edge e, bool *irred_invalidated,
301 bitmap loop_closed_ssa_invalidated)
302 {
303 edge ae;
304 basic_block *rem_bbs, *bord_bbs, from, bb;
305 vec<basic_block> dom_bbs;
306 int i, nrem, n_bord_bbs;
307 bool local_irred_invalidated = false;
308 edge_iterator ei;
309 class loop *l, *f;
310
311 if (! irred_invalidated)
312 irred_invalidated = &local_irred_invalidated;
313
314 if (!can_remove_branch_p (e))
315 return false;
316
317 /* Keep track of whether we need to update information about irreducible
318 regions. This is the case if the removed area is a part of the
319 irreducible region, or if the set of basic blocks that belong to a loop
320 that is inside an irreducible region is changed, or if such a loop is
321 removed. */
322 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323 *irred_invalidated = true;
324
325 /* We need to check whether basic blocks are dominated by the edge
326 e, but we only have basic block dominators. This is easy to
327 fix -- when e->dest has exactly one predecessor, this corresponds
328 to blocks dominated by e->dest, if not, split the edge. */
329 if (!single_pred_p (e->dest))
330 e = single_pred_edge (split_edge (e));
331
332 /* It may happen that by removing path we remove one or more loops
333 we belong to. In this case first unloop the loops, then proceed
334 normally. We may assume that e->dest is not a header of any loop,
335 as it now has exactly one predecessor. */
336 for (l = e->src->loop_father; loop_outer (l); l = f)
337 {
338 f = loop_outer (l);
339 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
341 }
342
343 /* Identify the path. */
344 nrem = find_path (e, &rem_bbs);
345
346 n_bord_bbs = 0;
347 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348 auto_sbitmap seen (last_basic_block_for_fn (cfun));
349 bitmap_clear (seen);
350
351 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
352 for (i = 0; i < nrem; i++)
353 bitmap_set_bit (seen, rem_bbs[i]->index);
354 if (!*irred_invalidated)
355 FOR_EACH_EDGE (ae, ei, e->src->succs)
356 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 && !bitmap_bit_p (seen, ae->dest->index)
358 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
359 {
360 *irred_invalidated = true;
361 break;
362 }
363
364 for (i = 0; i < nrem; i++)
365 {
366 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
367 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
368 && !bitmap_bit_p (seen, ae->dest->index))
369 {
370 bitmap_set_bit (seen, ae->dest->index);
371 bord_bbs[n_bord_bbs++] = ae->dest;
372
373 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 *irred_invalidated = true;
375 }
376 }
377
378 /* Remove the path. */
379 from = e->src;
380 remove_branch (e);
381 dom_bbs.create (0);
382
383 /* Cancel loops contained in the path. */
384 for (i = 0; i < nrem; i++)
385 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386 cancel_loop_tree (rem_bbs[i]->loop_father);
387
388 remove_bbs (rem_bbs, nrem);
389 free (rem_bbs);
390
391 /* Find blocks whose dominators may be affected. */
392 bitmap_clear (seen);
393 for (i = 0; i < n_bord_bbs; i++)
394 {
395 basic_block ldom;
396
397 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398 if (bitmap_bit_p (seen, bb->index))
399 continue;
400 bitmap_set_bit (seen, bb->index);
401
402 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 ldom;
404 ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 dom_bbs.safe_push (ldom);
407 }
408
409 /* Recount dominators. */
410 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411 dom_bbs.release ();
412 free (bord_bbs);
413
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417 fix_loop_placements (from->loop_father, irred_invalidated);
418
419 if (local_irred_invalidated
420 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421 mark_irreducible_loops ();
422
423 return true;
424 }
425
426 /* Creates place for a new LOOP in loops structure of FN. */
427
428 void
429 place_new_loop (struct function *fn, class loop *loop)
430 {
431 loop->num = number_of_loops (fn);
432 vec_safe_push (loops_for_fn (fn)->larray, loop);
433 }
434
435 /* Given LOOP structure with filled header and latch, find the body of the
436 corresponding loop and add it to loops tree. Insert the LOOP as a son of
437 outer. */
438
439 void
440 add_loop (class loop *loop, class loop *outer)
441 {
442 basic_block *bbs;
443 int i, n;
444 class loop *subloop;
445 edge e;
446 edge_iterator ei;
447
448 /* Add it to loop structure. */
449 place_new_loop (cfun, loop);
450 flow_loop_tree_node_add (outer, loop);
451
452 /* Find its nodes. */
453 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
455
456 for (i = 0; i < n; i++)
457 {
458 if (bbs[i]->loop_father == outer)
459 {
460 remove_bb_from_loops (bbs[i]);
461 add_bb_to_loop (bbs[i], loop);
462 continue;
463 }
464
465 loop->num_nodes++;
466
467 /* If we find a direct subloop of OUTER, move it to LOOP. */
468 subloop = bbs[i]->loop_father;
469 if (loop_outer (subloop) == outer
470 && subloop->header == bbs[i])
471 {
472 flow_loop_tree_node_remove (subloop);
473 flow_loop_tree_node_add (loop, subloop);
474 }
475 }
476
477 /* Update the information about loop exit edges. */
478 for (i = 0; i < n; i++)
479 {
480 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
481 {
482 rescan_loop_exit (e, false, false);
483 }
484 }
485
486 free (bbs);
487 }
488
489 /* Scale profile of loop by P. */
490
491 void
492 scale_loop_frequencies (class loop *loop, profile_probability p)
493 {
494 basic_block *bbs;
495
496 bbs = get_loop_body (loop);
497 scale_bbs_frequencies (bbs, loop->num_nodes, p);
498 free (bbs);
499 }
500
501 /* Scale profile in LOOP by P.
502 If ITERATION_BOUND is not -1, scale even further if loop is predicted
503 to iterate too many times.
504 Before caling this function, preheader block profile should be already
505 scaled to final count. This is necessary because loop iterations are
506 determined by comparing header edge count to latch ege count and thus
507 they need to be scaled synchronously. */
508
509 void
510 scale_loop_profile (class loop *loop, profile_probability p,
511 gcov_type iteration_bound)
512 {
513 if (!(p == profile_probability::always ()))
514 {
515 if (dump_file && (dump_flags & TDF_DETAILS))
516 {
517 fprintf (dump_file, ";; Scaling loop %i with scale ",
518 loop->num);
519 p.dump (dump_file);
520 fprintf (dump_file, "\n");
521 }
522
523 /* Scale the probabilities. */
524 scale_loop_frequencies (loop, p);
525 }
526
527 if (iteration_bound == -1)
528 return;
529
530 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
531 if (iterations == -1)
532 return;
533
534 if (dump_file && (dump_flags & TDF_DETAILS))
535 {
536 fprintf (dump_file,
537 ";; guessed iterations of loop %i:%i new upper bound %i:\n",
538 loop->num,
539 (int)iterations,
540 (int)iteration_bound);
541 }
542
543 /* See if loop is predicted to iterate too many times. */
544 if (iterations <= iteration_bound)
545 return;
546
547 /* Compute number of invocations of the loop. */
548 profile_count count_in = profile_count::zero ();
549 edge e;
550 edge_iterator ei;
551 bool found_latch = false;
552 FOR_EACH_EDGE (e, ei, loop->header->preds)
553 if (e->src != loop->latch)
554 count_in += e->count ();
555 else
556 found_latch = true;
557 gcc_checking_assert (found_latch);
558
559 /* Now scale the loop body so header count is
560 count_in * (iteration_bound + 1) */
561 profile_probability scale_prob
562 = (count_in * (iteration_bound + 1)).probability_in (loop->header->count);
563 if (dump_file && (dump_flags & TDF_DETAILS))
564 {
565 fprintf (dump_file, ";; Scaling loop %i with scale ",
566 loop->num);
567 scale_prob.dump (dump_file);
568 fprintf (dump_file, " to reach upper bound %i\n",
569 (int)iteration_bound);
570 }
571 /* Finally attempt to fix exit edge probability. */
572 auto_vec<edge> exits = get_loop_exit_edges (loop);
573 edge exit_edge = single_likely_exit (loop, exits);
574
575 /* In a consistent profile unadjusted_exit_count should be same as count_in,
576 however to preserve as much of the original info, avoid recomputing
577 it. */
578 profile_count unadjusted_exit_count;
579 if (exit_edge)
580 unadjusted_exit_count = exit_edge->count ();
581 scale_loop_frequencies (loop, scale_prob);
582
583 if (exit_edge && exit_edge->src->loop_father != loop)
584 {
585 if (dump_file && (dump_flags & TDF_DETAILS))
586 fprintf (dump_file,
587 ";; Loop exit is in inner loop;"
588 " will leave exit probabilities inconsistent\n");
589 }
590 else if (exit_edge)
591 {
592 profile_count old_exit_count = exit_edge->count ();
593 profile_probability new_probability;
594 if (iteration_bound > 0)
595 {
596 /* It may happen that the source basic block of the exit edge is
597 inside in-loop condition:
598
599 +-> header
600 | |
601 | B1
602 | / \
603 | | B2--exit_edge-->
604 | \ /
605 | B3
606 +__/
607
608 If B2 count is smaller than desired exit edge count
609 the profile was inconsistent with the newly discovered upper bound.
610 Probablity of edge B1->B2 is too low. We do not attempt to fix
611 that (as it is hard in general) but we want to avoid dropping
612 count of edge B2->B3 to zero may confuse later optimizations. */
613 if (unadjusted_exit_count.apply_scale (7, 8) > exit_edge->src->count)
614 {
615 if (dump_file && (dump_flags & TDF_DETAILS))
616 fprintf (dump_file,
617 ";; Source basic block of loop exit count is too small;"
618 " will leave exit probabilities inconsistent\n");
619 exit_edge->probability = exit_edge->probability.guessed ();
620 return;
621 }
622 new_probability
623 = unadjusted_exit_count.probability_in (exit_edge->src->count);
624 }
625 else
626 new_probability = profile_probability::always ();
627 set_edge_probability_and_rescale_others (exit_edge, new_probability);
628 profile_count new_exit_count = exit_edge->count ();
629
630 /* Rescale the remaining edge probabilities and see if there is only
631 one. */
632 edge other_edge = NULL;
633 bool found = false;
634 FOR_EACH_EDGE (e, ei, exit_edge->src->succs)
635 if (!(e->flags & EDGE_FAKE)
636 && !loop_exit_edge_p (loop, e))
637 {
638 if (found)
639 {
640 other_edge = NULL;
641 break;
642 }
643 other_edge = e;
644 found = true;
645 }
646 /* If there is only loop latch after other edge,
647 update its profile. */
648 if (other_edge && other_edge->dest == loop->latch)
649 loop->latch->count -= new_exit_count - old_exit_count;
650 else
651 {
652 basic_block *body = get_loop_body (loop);
653 profile_count new_count = exit_edge->src->count - new_exit_count;
654 profile_count old_count = exit_edge->src->count - old_exit_count;
655
656 for (unsigned int i = 0; i < loop->num_nodes; i++)
657 if (body[i] != exit_edge->src
658 && dominated_by_p (CDI_DOMINATORS, body[i], exit_edge->src))
659 body[i]->count = body[i]->count.apply_scale (new_count,
660 old_count);
661
662 free (body);
663 }
664 }
665 else if (dump_file && (dump_flags & TDF_DETAILS))
666 {
667 fprintf (dump_file,
668 ";; Loop has mulitple exits;"
669 " will leave exit probabilities inconsistent\n");
670 }
671 }
672
673 /* Recompute dominance information for basic blocks outside LOOP. */
674
675 static void
676 update_dominators_in_loop (class loop *loop)
677 {
678 vec<basic_block> dom_bbs = vNULL;
679 basic_block *body;
680 unsigned i;
681
682 auto_sbitmap seen (last_basic_block_for_fn (cfun));
683 bitmap_clear (seen);
684 body = get_loop_body (loop);
685
686 for (i = 0; i < loop->num_nodes; i++)
687 bitmap_set_bit (seen, body[i]->index);
688
689 for (i = 0; i < loop->num_nodes; i++)
690 {
691 basic_block ldom;
692
693 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
694 ldom;
695 ldom = next_dom_son (CDI_DOMINATORS, ldom))
696 if (!bitmap_bit_p (seen, ldom->index))
697 {
698 bitmap_set_bit (seen, ldom->index);
699 dom_bbs.safe_push (ldom);
700 }
701 }
702
703 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
704 free (body);
705 dom_bbs.release ();
706 }
707
708 /* Creates an if region as shown above. CONDITION is used to create
709 the test for the if.
710
711 |
712 | ------------- -------------
713 | | pred_bb | | pred_bb |
714 | ------------- -------------
715 | | |
716 | | | ENTRY_EDGE
717 | | ENTRY_EDGE V
718 | | ====> -------------
719 | | | cond_bb |
720 | | | CONDITION |
721 | | -------------
722 | V / \
723 | ------------- e_false / \ e_true
724 | | succ_bb | V V
725 | ------------- ----------- -----------
726 | | false_bb | | true_bb |
727 | ----------- -----------
728 | \ /
729 | \ /
730 | V V
731 | -------------
732 | | join_bb |
733 | -------------
734 | | exit_edge (result)
735 | V
736 | -----------
737 | | succ_bb |
738 | -----------
739 |
740 */
741
742 edge
743 create_empty_if_region_on_edge (edge entry_edge, tree condition)
744 {
745
746 basic_block cond_bb, true_bb, false_bb, join_bb;
747 edge e_true, e_false, exit_edge;
748 gcond *cond_stmt;
749 tree simple_cond;
750 gimple_stmt_iterator gsi;
751
752 cond_bb = split_edge (entry_edge);
753
754 /* Insert condition in cond_bb. */
755 gsi = gsi_last_bb (cond_bb);
756 simple_cond =
757 force_gimple_operand_gsi (&gsi, condition, true, NULL,
758 false, GSI_NEW_STMT);
759 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
760 gsi = gsi_last_bb (cond_bb);
761 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
762
763 join_bb = split_edge (single_succ_edge (cond_bb));
764
765 e_true = single_succ_edge (cond_bb);
766 true_bb = split_edge (e_true);
767
768 e_false = make_edge (cond_bb, join_bb, 0);
769 false_bb = split_edge (e_false);
770
771 e_true->flags &= ~EDGE_FALLTHRU;
772 e_true->flags |= EDGE_TRUE_VALUE;
773 e_false->flags &= ~EDGE_FALLTHRU;
774 e_false->flags |= EDGE_FALSE_VALUE;
775
776 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
777 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
778 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
779 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
780
781 exit_edge = single_succ_edge (join_bb);
782
783 if (single_pred_p (exit_edge->dest))
784 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
785
786 return exit_edge;
787 }
788
789 /* create_empty_loop_on_edge
790 |
791 | - pred_bb - ------ pred_bb ------
792 | | | | iv0 = initial_value |
793 | -----|----- ---------|-----------
794 | | ______ | entry_edge
795 | | entry_edge / | |
796 | | ====> | -V---V- loop_header -------------
797 | V | | iv_before = phi (iv0, iv_after) |
798 | - succ_bb - | ---|-----------------------------
799 | | | | |
800 | ----------- | ---V--- loop_body ---------------
801 | | | iv_after = iv_before + stride |
802 | | | if (iv_before < upper_bound) |
803 | | ---|--------------\--------------
804 | | | \ exit_e
805 | | V \
806 | | - loop_latch - V- succ_bb -
807 | | | | | |
808 | | /------------- -----------
809 | \ ___ /
810
811 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
812 that is used before the increment of IV. IV_BEFORE should be used for
813 adding code to the body that uses the IV. OUTER is the outer loop in
814 which the new loop should be inserted.
815
816 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
817 inserted on the loop entry edge. This implies that this function
818 should be used only when the UPPER_BOUND expression is a loop
819 invariant. */
820
821 class loop *
822 create_empty_loop_on_edge (edge entry_edge,
823 tree initial_value,
824 tree stride, tree upper_bound,
825 tree iv,
826 tree *iv_before,
827 tree *iv_after,
828 class loop *outer)
829 {
830 basic_block loop_header, loop_latch, succ_bb, pred_bb;
831 class loop *loop;
832 gimple_stmt_iterator gsi;
833 gimple_seq stmts;
834 gcond *cond_expr;
835 tree exit_test;
836 edge exit_e;
837
838 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
839
840 /* Create header, latch and wire up the loop. */
841 pred_bb = entry_edge->src;
842 loop_header = split_edge (entry_edge);
843 loop_latch = split_edge (single_succ_edge (loop_header));
844 succ_bb = single_succ (loop_latch);
845 make_edge (loop_header, succ_bb, 0);
846 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
847
848 /* Set immediate dominator information. */
849 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
850 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
851 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
852
853 /* Initialize a loop structure and put it in a loop hierarchy. */
854 loop = alloc_loop ();
855 loop->header = loop_header;
856 loop->latch = loop_latch;
857 add_loop (loop, outer);
858
859 /* TODO: Fix counts. */
860 scale_loop_frequencies (loop, profile_probability::even ());
861
862 /* Update dominators. */
863 update_dominators_in_loop (loop);
864
865 /* Modify edge flags. */
866 exit_e = single_exit (loop);
867 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
868 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
869
870 /* Construct IV code in loop. */
871 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
872 if (stmts)
873 {
874 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
875 gsi_commit_edge_inserts ();
876 }
877
878 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
879 if (stmts)
880 {
881 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
882 gsi_commit_edge_inserts ();
883 }
884
885 gsi = gsi_last_bb (loop_header);
886 create_iv (initial_value, PLUS_EXPR, stride, iv, loop, &gsi, false,
887 iv_before, iv_after);
888
889 /* Insert loop exit condition. */
890 cond_expr = gimple_build_cond
891 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
892
893 exit_test = gimple_cond_lhs (cond_expr);
894 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
895 false, GSI_NEW_STMT);
896 gimple_cond_set_lhs (cond_expr, exit_test);
897 gsi = gsi_last_bb (exit_e->src);
898 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
899
900 split_block_after_labels (loop_header);
901
902 return loop;
903 }
904
905 /* Remove the latch edge of a LOOP and update loops to indicate that
906 the LOOP was removed. After this function, original loop latch will
907 have no successor, which caller is expected to fix somehow.
908
909 If this may cause the information about irreducible regions to become
910 invalid, IRRED_INVALIDATED is set to true.
911
912 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
913 basic blocks that had non-trivial update on their loop_father.*/
914
915 void
916 unloop (class loop *loop, bool *irred_invalidated,
917 bitmap loop_closed_ssa_invalidated)
918 {
919 basic_block *body;
920 class loop *ploop;
921 unsigned i, n;
922 basic_block latch = loop->latch;
923 bool dummy = false;
924
925 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
926 *irred_invalidated = true;
927
928 /* This is relatively straightforward. The dominators are unchanged, as
929 loop header dominates loop latch, so the only thing we have to care of
930 is the placement of loops and basic blocks inside the loop tree. We
931 move them all to the loop->outer, and then let fix_bb_placements do
932 its work. */
933
934 body = get_loop_body (loop);
935 n = loop->num_nodes;
936 for (i = 0; i < n; i++)
937 if (body[i]->loop_father == loop)
938 {
939 remove_bb_from_loops (body[i]);
940 add_bb_to_loop (body[i], loop_outer (loop));
941 }
942 free (body);
943
944 while (loop->inner)
945 {
946 ploop = loop->inner;
947 flow_loop_tree_node_remove (ploop);
948 flow_loop_tree_node_add (loop_outer (loop), ploop);
949 }
950
951 /* Remove the loop and free its data. */
952 delete_loop (loop);
953
954 remove_edge (single_succ_edge (latch));
955
956 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
957 there is an irreducible region inside the cancelled loop, the flags will
958 be still correct. */
959 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
960 }
961
962 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
963 condition stated in description of fix_loop_placement holds for them.
964 It is used in case when we removed some edges coming out of LOOP, which
965 may cause the right placement of LOOP inside loop tree to change.
966
967 IRRED_INVALIDATED is set to true if a change in the loop structures might
968 invalidate the information about irreducible regions. */
969
970 static void
971 fix_loop_placements (class loop *loop, bool *irred_invalidated)
972 {
973 class loop *outer;
974
975 while (loop_outer (loop))
976 {
977 outer = loop_outer (loop);
978 if (!fix_loop_placement (loop, irred_invalidated))
979 break;
980
981 /* Changing the placement of a loop in the loop tree may alter the
982 validity of condition 2) of the description of fix_bb_placement
983 for its preheader, because the successor is the header and belongs
984 to the loop. So call fix_bb_placements to fix up the placement
985 of the preheader and (possibly) of its predecessors. */
986 fix_bb_placements (loop_preheader_edge (loop)->src,
987 irred_invalidated, NULL);
988 loop = outer;
989 }
990 }
991
992 /* Duplicate loop bounds and other information we store about
993 the loop into its duplicate. */
994
995 void
996 copy_loop_info (class loop *loop, class loop *target)
997 {
998 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
999 target->any_upper_bound = loop->any_upper_bound;
1000 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1001 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1002 target->nb_iterations_likely_upper_bound
1003 = loop->nb_iterations_likely_upper_bound;
1004 target->any_estimate = loop->any_estimate;
1005 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1006 target->estimate_state = loop->estimate_state;
1007 target->safelen = loop->safelen;
1008 target->simdlen = loop->simdlen;
1009 target->constraints = loop->constraints;
1010 target->can_be_parallel = loop->can_be_parallel;
1011 target->warned_aggressive_loop_optimizations
1012 |= loop->warned_aggressive_loop_optimizations;
1013 target->dont_vectorize = loop->dont_vectorize;
1014 target->force_vectorize = loop->force_vectorize;
1015 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1016 target->finite_p = loop->finite_p;
1017 target->unroll = loop->unroll;
1018 target->owned_clique = loop->owned_clique;
1019 }
1020
1021 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1022 created loop into loops structure. If AFTER is non-null
1023 the new loop is added at AFTER->next, otherwise in front of TARGETs
1024 sibling list. */
1025 class loop *
1026 duplicate_loop (class loop *loop, class loop *target, class loop *after)
1027 {
1028 class loop *cloop;
1029 cloop = alloc_loop ();
1030 place_new_loop (cfun, cloop);
1031
1032 copy_loop_info (loop, cloop);
1033
1034 /* Mark the new loop as copy of LOOP. */
1035 set_loop_copy (loop, cloop);
1036
1037 /* Add it to target. */
1038 flow_loop_tree_node_add (target, cloop, after);
1039
1040 return cloop;
1041 }
1042
1043 /* Copies structure of subloops of LOOP into TARGET loop, placing
1044 newly created loops into loop tree at the end of TARGETs sibling
1045 list in the original order. */
1046 void
1047 duplicate_subloops (class loop *loop, class loop *target)
1048 {
1049 class loop *aloop, *cloop, *tail;
1050
1051 for (tail = target->inner; tail && tail->next; tail = tail->next)
1052 ;
1053 for (aloop = loop->inner; aloop; aloop = aloop->next)
1054 {
1055 cloop = duplicate_loop (aloop, target, tail);
1056 tail = cloop;
1057 gcc_assert(!tail->next);
1058 duplicate_subloops (aloop, cloop);
1059 }
1060 }
1061
1062 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1063 into TARGET loop, placing newly created loops into loop tree adding
1064 them to TARGETs sibling list at the end in order. */
1065 static void
1066 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1067 {
1068 class loop *aloop, *tail;
1069 int i;
1070
1071 for (tail = target->inner; tail && tail->next; tail = tail->next)
1072 ;
1073 for (i = 0; i < n; i++)
1074 {
1075 aloop = duplicate_loop (copied_loops[i], target, tail);
1076 tail = aloop;
1077 gcc_assert(!tail->next);
1078 duplicate_subloops (copied_loops[i], aloop);
1079 }
1080 }
1081
1082 /* Redirects edge E to basic block DEST. */
1083 static void
1084 loop_redirect_edge (edge e, basic_block dest)
1085 {
1086 if (e->dest == dest)
1087 return;
1088
1089 redirect_edge_and_branch_force (e, dest);
1090 }
1091
1092 /* Check whether LOOP's body can be duplicated. */
1093 bool
1094 can_duplicate_loop_p (const class loop *loop)
1095 {
1096 int ret;
1097 basic_block *bbs = get_loop_body (loop);
1098
1099 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1100 free (bbs);
1101
1102 return ret;
1103 }
1104
1105 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1106 loop structure and dominators (order of inner subloops is retained).
1107 E's destination must be LOOP header for this to work, i.e. it must be entry
1108 or latch edge of this loop; these are unique, as the loops must have
1109 preheaders for this function to work correctly (in case E is latch, the
1110 function unrolls the loop, if E is entry edge, it peels the loop). Store
1111 edges created by copying ORIG edge from copies corresponding to set bits in
1112 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1113 are numbered in order given by control flow through them) into TO_REMOVE
1114 array. Returns false if duplication is
1115 impossible. */
1116
1117 bool
1118 duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1119 unsigned int ndupl, sbitmap wont_exit,
1120 edge orig, vec<edge> *to_remove, int flags)
1121 {
1122 class loop *target, *aloop;
1123 class loop **orig_loops;
1124 unsigned n_orig_loops;
1125 basic_block header = loop->header, latch = loop->latch;
1126 basic_block *new_bbs, *bbs, *first_active;
1127 basic_block new_bb, bb, first_active_latch = NULL;
1128 edge ae, latch_edge;
1129 edge spec_edges[2], new_spec_edges[2];
1130 const int SE_LATCH = 0;
1131 const int SE_ORIG = 1;
1132 unsigned i, j, n;
1133 int is_latch = (latch == e->src);
1134 profile_probability *scale_step = NULL;
1135 profile_probability scale_main = profile_probability::always ();
1136 profile_probability scale_act = profile_probability::always ();
1137 profile_count after_exit_num = profile_count::zero (),
1138 after_exit_den = profile_count::zero ();
1139 bool scale_after_exit = false;
1140 int add_irreducible_flag;
1141 basic_block place_after;
1142 bitmap bbs_to_scale = NULL;
1143 bitmap_iterator bi;
1144
1145 gcc_assert (e->dest == loop->header);
1146 gcc_assert (ndupl > 0);
1147
1148 if (orig)
1149 {
1150 /* Orig must be edge out of the loop. */
1151 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1152 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1153 }
1154
1155 n = loop->num_nodes;
1156 bbs = get_loop_body_in_dom_order (loop);
1157 gcc_assert (bbs[0] == loop->header);
1158 gcc_assert (bbs[n - 1] == loop->latch);
1159
1160 /* Check whether duplication is possible. */
1161 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1162 {
1163 free (bbs);
1164 return false;
1165 }
1166 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1167
1168 /* In case we are doing loop peeling and the loop is in the middle of
1169 irreducible region, the peeled copies will be inside it too. */
1170 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1171 gcc_assert (!is_latch || !add_irreducible_flag);
1172
1173 /* Find edge from latch. */
1174 latch_edge = loop_latch_edge (loop);
1175
1176 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1177 {
1178 /* Calculate coefficients by that we have to scale counts
1179 of duplicated loop bodies. */
1180 profile_count count_in = header->count;
1181 profile_count count_le = latch_edge->count ();
1182 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1183 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1184 profile_count new_count_le = count_le + count_out_orig;
1185
1186 if (orig && orig->probability.initialized_p ()
1187 && !(orig->probability == profile_probability::always ()))
1188 {
1189 /* The blocks that are dominated by a removed exit edge ORIG have
1190 frequencies scaled by this. */
1191 if (orig->count ().initialized_p ())
1192 {
1193 after_exit_num = orig->src->count;
1194 after_exit_den = after_exit_num - orig->count ();
1195 scale_after_exit = true;
1196 }
1197 bbs_to_scale = BITMAP_ALLOC (NULL);
1198 for (i = 0; i < n; i++)
1199 {
1200 if (bbs[i] != orig->src
1201 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1202 bitmap_set_bit (bbs_to_scale, i);
1203 }
1204 /* Since we will scale up all basic blocks dominated by orig, exits
1205 will become more likely; compensate for that. */
1206 if (after_exit_den.nonzero_p ())
1207 {
1208 auto_vec<edge> exits = get_loop_exit_edges (loop);
1209 for (edge ex : exits)
1210 if (ex != orig
1211 && dominated_by_p (CDI_DOMINATORS, ex->src, orig->src))
1212 new_count_le -= ex->count ().apply_scale (after_exit_num
1213 - after_exit_den,
1214 after_exit_den);
1215 }
1216 }
1217 profile_probability prob_pass_wont_exit =
1218 new_count_le.probability_in (count_in);
1219
1220 scale_step = XNEWVEC (profile_probability, ndupl);
1221
1222 for (i = 1; i <= ndupl; i++)
1223 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1224 ? prob_pass_wont_exit
1225 : prob_pass_thru;
1226
1227 /* Complete peeling is special as the probability of exit in last
1228 copy becomes 1. */
1229 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1230 {
1231 profile_count wanted_count = e->count ();
1232
1233 gcc_assert (!is_latch);
1234 /* First copy has count of incoming edge. Each subsequent
1235 count should be reduced by prob_pass_wont_exit. Caller
1236 should've managed the flags so all except for original loop
1237 has won't exist set. */
1238 scale_act = wanted_count.probability_in (count_in);
1239 /* Now simulate the duplication adjustments and compute header
1240 frequency of the last copy. */
1241 for (i = 0; i < ndupl; i++)
1242 wanted_count = wanted_count.apply_probability (scale_step [i]);
1243 scale_main = wanted_count.probability_in (count_in);
1244 }
1245 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1246 First iteration will be original loop followed by duplicated bodies.
1247 It is necessary to scale down the original so we get right overall
1248 number of iterations. */
1249 else if (is_latch)
1250 {
1251 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1252 ? prob_pass_wont_exit
1253 : prob_pass_thru;
1254 profile_probability p = prob_pass_main;
1255 profile_count scale_main_den = count_in;
1256 for (i = 0; i < ndupl; i++)
1257 {
1258 scale_main_den += count_in.apply_probability (p);
1259 p = p * scale_step[i];
1260 }
1261 /* If original loop is executed COUNT_IN times, the unrolled
1262 loop will account SCALE_MAIN_DEN times. */
1263 scale_main = count_in.probability_in (scale_main_den);
1264 scale_act = scale_main * prob_pass_main;
1265 }
1266 else
1267 {
1268 profile_count preheader_count = e->count ();
1269 for (i = 0; i < ndupl; i++)
1270 scale_main = scale_main * scale_step[i];
1271 scale_act = preheader_count.probability_in (count_in);
1272 }
1273 }
1274
1275 /* Loop the new bbs will belong to. */
1276 target = e->src->loop_father;
1277
1278 /* Original loops. */
1279 n_orig_loops = 0;
1280 for (aloop = loop->inner; aloop; aloop = aloop->next)
1281 n_orig_loops++;
1282 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1283 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1284 orig_loops[i] = aloop;
1285
1286 set_loop_copy (loop, target);
1287
1288 first_active = XNEWVEC (basic_block, n);
1289 if (is_latch)
1290 {
1291 memcpy (first_active, bbs, n * sizeof (basic_block));
1292 first_active_latch = latch;
1293 }
1294
1295 spec_edges[SE_ORIG] = orig;
1296 spec_edges[SE_LATCH] = latch_edge;
1297
1298 place_after = e->src;
1299 for (j = 0; j < ndupl; j++)
1300 {
1301 /* Copy loops. */
1302 copy_loops_to (orig_loops, n_orig_loops, target);
1303
1304 /* Copy bbs. */
1305 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1306 place_after, true);
1307 place_after = new_spec_edges[SE_LATCH]->src;
1308
1309 if (flags & DLTHE_RECORD_COPY_NUMBER)
1310 for (i = 0; i < n; i++)
1311 {
1312 gcc_assert (!new_bbs[i]->aux);
1313 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1314 }
1315
1316 /* Note whether the blocks and edges belong to an irreducible loop. */
1317 if (add_irreducible_flag)
1318 {
1319 for (i = 0; i < n; i++)
1320 new_bbs[i]->flags |= BB_DUPLICATED;
1321 for (i = 0; i < n; i++)
1322 {
1323 edge_iterator ei;
1324 new_bb = new_bbs[i];
1325 if (new_bb->loop_father == target)
1326 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1327
1328 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1329 if ((ae->dest->flags & BB_DUPLICATED)
1330 && (ae->src->loop_father == target
1331 || ae->dest->loop_father == target))
1332 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1333 }
1334 for (i = 0; i < n; i++)
1335 new_bbs[i]->flags &= ~BB_DUPLICATED;
1336 }
1337
1338 /* Redirect the special edges. */
1339 if (is_latch)
1340 {
1341 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1342 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1343 loop->header);
1344 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1345 latch = loop->latch = new_bbs[n - 1];
1346 e = latch_edge = new_spec_edges[SE_LATCH];
1347 }
1348 else
1349 {
1350 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1351 loop->header);
1352 redirect_edge_and_branch_force (e, new_bbs[0]);
1353 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1354 e = new_spec_edges[SE_LATCH];
1355 }
1356
1357 /* Record exit edge in this copy. */
1358 if (orig && bitmap_bit_p (wont_exit, j + 1))
1359 {
1360 if (to_remove)
1361 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1362 force_edge_cold (new_spec_edges[SE_ORIG], true);
1363
1364 /* Scale the frequencies of the blocks dominated by the exit. */
1365 if (bbs_to_scale && scale_after_exit)
1366 {
1367 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1368 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1369 after_exit_den);
1370 }
1371 }
1372
1373 /* Record the first copy in the control flow order if it is not
1374 the original loop (i.e. in case of peeling). */
1375 if (!first_active_latch)
1376 {
1377 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1378 first_active_latch = new_bbs[n - 1];
1379 }
1380
1381 /* Set counts and frequencies. */
1382 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1383 {
1384 scale_bbs_frequencies (new_bbs, n, scale_act);
1385 scale_act = scale_act * scale_step[j];
1386 }
1387 }
1388 free (new_bbs);
1389 free (orig_loops);
1390
1391 /* Record the exit edge in the original loop body, and update the frequencies. */
1392 if (orig && bitmap_bit_p (wont_exit, 0))
1393 {
1394 if (to_remove)
1395 to_remove->safe_push (orig);
1396 force_edge_cold (orig, true);
1397
1398 /* Scale the frequencies of the blocks dominated by the exit. */
1399 if (bbs_to_scale && scale_after_exit)
1400 {
1401 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1402 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1403 after_exit_den);
1404 }
1405 }
1406
1407 /* Update the original loop. */
1408 if (!is_latch)
1409 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1410 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1411 {
1412 scale_bbs_frequencies (bbs, n, scale_main);
1413 free (scale_step);
1414 }
1415
1416 /* Update dominators of outer blocks if affected. */
1417 for (i = 0; i < n; i++)
1418 {
1419 basic_block dominated, dom_bb;
1420 unsigned j;
1421
1422 bb = bbs[i];
1423
1424 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1425 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1426 {
1427 if (flow_bb_inside_loop_p (loop, dominated))
1428 continue;
1429 dom_bb = nearest_common_dominator (
1430 CDI_DOMINATORS, first_active[i], first_active_latch);
1431 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1432 }
1433 }
1434 free (first_active);
1435
1436 free (bbs);
1437 BITMAP_FREE (bbs_to_scale);
1438
1439 return true;
1440 }
1441
1442 /* A callback for make_forwarder block, to redirect all edges except for
1443 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1444 whether to redirect it. */
1445
1446 edge mfb_kj_edge;
1447 bool
1448 mfb_keep_just (edge e)
1449 {
1450 return e != mfb_kj_edge;
1451 }
1452
1453 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1454
1455 static bool
1456 has_preds_from_loop (basic_block block, class loop *loop)
1457 {
1458 edge e;
1459 edge_iterator ei;
1460
1461 FOR_EACH_EDGE (e, ei, block->preds)
1462 if (e->src->loop_father == loop)
1463 return true;
1464 return false;
1465 }
1466
1467 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1468 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1469 entry; otherwise we also force preheader block to have only one successor.
1470 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1471 to be a fallthru predecessor to the loop header and to have only
1472 predecessors from outside of the loop.
1473 The function also updates dominators. */
1474
1475 basic_block
1476 create_preheader (class loop *loop, int flags)
1477 {
1478 edge e;
1479 basic_block dummy;
1480 int nentry = 0;
1481 bool irred = false;
1482 bool latch_edge_was_fallthru;
1483 edge one_succ_pred = NULL, single_entry = NULL;
1484 edge_iterator ei;
1485
1486 FOR_EACH_EDGE (e, ei, loop->header->preds)
1487 {
1488 if (e->src == loop->latch)
1489 continue;
1490 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1491 nentry++;
1492 single_entry = e;
1493 if (single_succ_p (e->src))
1494 one_succ_pred = e;
1495 }
1496 gcc_assert (nentry);
1497 if (nentry == 1)
1498 {
1499 bool need_forwarder_block = false;
1500
1501 /* We do not allow entry block to be the loop preheader, since we
1502 cannot emit code there. */
1503 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1504 need_forwarder_block = true;
1505 else
1506 {
1507 /* If we want simple preheaders, also force the preheader to have
1508 just a single successor and a normal edge. */
1509 if ((flags & CP_SIMPLE_PREHEADERS)
1510 && ((single_entry->flags & EDGE_COMPLEX)
1511 || !single_succ_p (single_entry->src)))
1512 need_forwarder_block = true;
1513 /* If we want fallthru preheaders, also create forwarder block when
1514 preheader ends with a jump or has predecessors from loop. */
1515 else if ((flags & CP_FALLTHRU_PREHEADERS)
1516 && (JUMP_P (BB_END (single_entry->src))
1517 || has_preds_from_loop (single_entry->src, loop)))
1518 need_forwarder_block = true;
1519 }
1520 if (! need_forwarder_block)
1521 return NULL;
1522 }
1523
1524 mfb_kj_edge = loop_latch_edge (loop);
1525 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1526 if (nentry == 1
1527 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1528 || (single_entry->flags & EDGE_CROSSING) == 0))
1529 dummy = split_edge (single_entry);
1530 else
1531 {
1532 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1533 dummy = fallthru->src;
1534 loop->header = fallthru->dest;
1535 }
1536
1537 /* Try to be clever in placing the newly created preheader. The idea is to
1538 avoid breaking any "fallthruness" relationship between blocks.
1539
1540 The preheader was created just before the header and all incoming edges
1541 to the header were redirected to the preheader, except the latch edge.
1542 So the only problematic case is when this latch edge was a fallthru
1543 edge: it is not anymore after the preheader creation so we have broken
1544 the fallthruness. We're therefore going to look for a better place. */
1545 if (latch_edge_was_fallthru)
1546 {
1547 if (one_succ_pred)
1548 e = one_succ_pred;
1549 else
1550 e = EDGE_PRED (dummy, 0);
1551
1552 move_block_after (dummy, e->src);
1553 }
1554
1555 if (irred)
1556 {
1557 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1558 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1559 }
1560
1561 if (dump_file)
1562 fprintf (dump_file, "Created preheader block for loop %i\n",
1563 loop->num);
1564
1565 if (flags & CP_FALLTHRU_PREHEADERS)
1566 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1567 && !JUMP_P (BB_END (dummy)));
1568
1569 return dummy;
1570 }
1571
1572 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1573
1574 void
1575 create_preheaders (int flags)
1576 {
1577 if (!current_loops)
1578 return;
1579
1580 for (auto loop : loops_list (cfun, 0))
1581 create_preheader (loop, flags);
1582 loops_state_set (LOOPS_HAVE_PREHEADERS);
1583 }
1584
1585 /* Forces all loop latches to have only single successor. */
1586
1587 void
1588 force_single_succ_latches (void)
1589 {
1590 edge e;
1591
1592 for (auto loop : loops_list (cfun, 0))
1593 {
1594 if (loop->latch != loop->header && single_succ_p (loop->latch))
1595 continue;
1596
1597 e = find_edge (loop->latch, loop->header);
1598 gcc_checking_assert (e != NULL);
1599
1600 split_edge (e);
1601 }
1602 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1603 }
1604
1605 /* This function is called from loop_version. It splits the entry edge
1606 of the loop we want to version, adds the versioning condition, and
1607 adjust the edges to the two versions of the loop appropriately.
1608 e is an incoming edge. Returns the basic block containing the
1609 condition.
1610
1611 --- edge e ---- > [second_head]
1612
1613 Split it and insert new conditional expression and adjust edges.
1614
1615 --- edge e ---> [cond expr] ---> [first_head]
1616 |
1617 +---------> [second_head]
1618
1619 THEN_PROB is the probability of then branch of the condition.
1620 ELSE_PROB is the probability of else branch. Note that they may be both
1621 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1622 IFN_LOOP_DIST_ALIAS. */
1623
1624 static basic_block
1625 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1626 edge e, void *cond_expr,
1627 profile_probability then_prob,
1628 profile_probability else_prob)
1629 {
1630 basic_block new_head = NULL;
1631 edge e1;
1632
1633 gcc_assert (e->dest == second_head);
1634
1635 /* Split edge 'e'. This will create a new basic block, where we can
1636 insert conditional expr. */
1637 new_head = split_edge (e);
1638
1639 lv_add_condition_to_bb (first_head, second_head, new_head,
1640 cond_expr);
1641
1642 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1643 e = single_succ_edge (new_head);
1644 e1 = make_edge (new_head, first_head,
1645 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1646 e1->probability = then_prob;
1647 e->probability = else_prob;
1648
1649 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1650 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1651
1652 /* Adjust loop header phi nodes. */
1653 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1654
1655 return new_head;
1656 }
1657
1658 /* Main entry point for Loop Versioning transformation.
1659
1660 This transformation given a condition and a loop, creates
1661 -if (condition) { loop_copy1 } else { loop_copy2 },
1662 where loop_copy1 is the loop transformed in one way, and loop_copy2
1663 is the loop transformed in another way (or unchanged). COND_EXPR
1664 may be a run time test for things that were not resolved by static
1665 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1666
1667 If non-NULL, CONDITION_BB is set to the basic block containing the
1668 condition.
1669
1670 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1671 is the ratio by that the frequencies in the original loop should
1672 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1673 new loop should be scaled.
1674
1675 If PLACE_AFTER is true, we place the new loop after LOOP in the
1676 instruction stream, otherwise it is placed before LOOP. */
1677
1678 class loop *
1679 loop_version (class loop *loop,
1680 void *cond_expr, basic_block *condition_bb,
1681 profile_probability then_prob, profile_probability else_prob,
1682 profile_probability then_scale, profile_probability else_scale,
1683 bool place_after)
1684 {
1685 basic_block first_head, second_head;
1686 edge entry, latch_edge;
1687 int irred_flag;
1688 class loop *nloop;
1689 basic_block cond_bb;
1690
1691 /* Record entry and latch edges for the loop */
1692 entry = loop_preheader_edge (loop);
1693 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1694 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1695
1696 /* Note down head of loop as first_head. */
1697 first_head = entry->dest;
1698
1699 /* 1) Duplicate loop on the entry edge. */
1700 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULL, NULL,
1701 NULL, 0))
1702 {
1703 entry->flags |= irred_flag;
1704 return NULL;
1705 }
1706
1707 /* 2) loopify the duplicated new loop. */
1708 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1709 nloop = alloc_loop ();
1710 class loop *outer = loop_outer (latch_edge->dest->loop_father);
1711 edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1712 nloop->header = new_header_edge->dest;
1713 nloop->latch = latch_edge->src;
1714 loop_redirect_edge (latch_edge, nloop->header);
1715
1716 /* Compute new loop. */
1717 add_loop (nloop, outer);
1718 copy_loop_info (loop, nloop);
1719 set_loop_copy (loop, nloop);
1720
1721 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1722 lv_flush_pending_stmts (latch_edge);
1723
1724 /* After duplication entry edge now points to new loop head block.
1725 Note down new head as second_head. */
1726 second_head = entry->dest;
1727
1728 /* 3) Split loop entry edge and insert new block with cond expr. */
1729 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1730 entry, cond_expr, then_prob, else_prob);
1731 if (condition_bb)
1732 *condition_bb = cond_bb;
1733
1734 if (!cond_bb)
1735 {
1736 entry->flags |= irred_flag;
1737 return NULL;
1738 }
1739
1740 /* Add cond_bb to appropriate loop. */
1741 if (cond_bb->loop_father)
1742 remove_bb_from_loops (cond_bb);
1743 add_bb_to_loop (cond_bb, outer);
1744
1745 /* 4) Scale the original loop and new loop frequency. */
1746 scale_loop_frequencies (loop, then_scale);
1747 scale_loop_frequencies (nloop, else_scale);
1748 update_dominators_in_loop (loop);
1749 update_dominators_in_loop (nloop);
1750
1751 /* Adjust irreducible flag. */
1752 if (irred_flag)
1753 {
1754 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1755 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1756 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1757 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1758 }
1759
1760 if (place_after)
1761 {
1762 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1763 unsigned i;
1764
1765 after = loop->latch;
1766
1767 for (i = 0; i < nloop->num_nodes; i++)
1768 {
1769 move_block_after (bbs[i], after);
1770 after = bbs[i];
1771 }
1772 free (bbs);
1773 }
1774
1775 /* At this point condition_bb is loop preheader with two successors,
1776 first_head and second_head. Make sure that loop preheader has only
1777 one successor. */
1778 split_edge (loop_preheader_edge (loop));
1779 split_edge (loop_preheader_edge (nloop));
1780
1781 return nloop;
1782 }