]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopmanip.cc
Cleanup expected_loop_iterations
[thirdparty/gcc.git] / gcc / cfgloopmanip.cc
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34 #include "sreal.h"
35
36 static void copy_loops_to (class loop **, int,
37 class loop *);
38 static void loop_redirect_edge (edge, basic_block);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (const_basic_block, const void *);
41 static int find_path (edge, basic_block **);
42 static void fix_loop_placements (class loop *, bool *);
43 static bool fix_bb_placement (basic_block);
44 static void fix_bb_placements (basic_block, bool *, bitmap);
45
46 /* Checks whether basic block BB is dominated by DATA. */
47 static bool
48 rpe_enum_p (const_basic_block bb, const void *data)
49 {
50 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
51 }
52
53 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54
55 static void
56 remove_bbs (basic_block *bbs, int nbbs)
57 {
58 int i;
59
60 for (i = 0; i < nbbs; i++)
61 delete_basic_block (bbs[i]);
62 }
63
64 /* Find path -- i.e. the basic blocks dominated by edge E and put them
65 into array BBS, that will be allocated large enough to contain them.
66 E->dest must have exactly one predecessor for this to work (it is
67 easy to achieve and we do not put it here because we do not want to
68 alter anything by this function). The number of basic blocks in the
69 path is returned. */
70 static int
71 find_path (edge e, basic_block **bbs)
72 {
73 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74
75 /* Find bbs in the path. */
76 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
77 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
78 n_basic_blocks_for_fn (cfun), e->dest);
79 }
80
81 /* Fix placement of basic block BB inside loop hierarchy --
82 Let L be a loop to that BB belongs. Then every successor of BB must either
83 1) belong to some superloop of loop L, or
84 2) be a header of loop K such that K->outer is superloop of L
85 Returns true if we had to move BB into other loop to enforce this condition,
86 false if the placement of BB was already correct (provided that placements
87 of its successors are correct). */
88 static bool
89 fix_bb_placement (basic_block bb)
90 {
91 edge e;
92 edge_iterator ei;
93 class loop *loop = current_loops->tree_root, *act;
94
95 FOR_EACH_EDGE (e, ei, bb->succs)
96 {
97 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
98 continue;
99
100 act = e->dest->loop_father;
101 if (act->header == e->dest)
102 act = loop_outer (act);
103
104 if (flow_loop_nested_p (loop, act))
105 loop = act;
106 }
107
108 if (loop == bb->loop_father)
109 return false;
110
111 remove_bb_from_loops (bb);
112 add_bb_to_loop (bb, loop);
113
114 return true;
115 }
116
117 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
118 of LOOP to that leads at least one exit edge of LOOP, and set it
119 as the immediate superloop of LOOP. Return true if the immediate superloop
120 of LOOP changed.
121
122 IRRED_INVALIDATED is set to true if a change in the loop structures might
123 invalidate the information about irreducible regions. */
124
125 static bool
126 fix_loop_placement (class loop *loop, bool *irred_invalidated)
127 {
128 unsigned i;
129 edge e;
130 auto_vec<edge> exits = get_loop_exit_edges (loop);
131 class loop *father = current_loops->tree_root, *act;
132 bool ret = false;
133
134 FOR_EACH_VEC_ELT (exits, i, e)
135 {
136 act = find_common_loop (loop, e->dest->loop_father);
137 if (flow_loop_nested_p (father, act))
138 father = act;
139 }
140
141 if (father != loop_outer (loop))
142 {
143 for (act = loop_outer (loop); act != father; act = loop_outer (act))
144 act->num_nodes -= loop->num_nodes;
145 flow_loop_tree_node_remove (loop);
146 flow_loop_tree_node_add (father, loop);
147
148 /* The exit edges of LOOP no longer exits its original immediate
149 superloops; remove them from the appropriate exit lists. */
150 FOR_EACH_VEC_ELT (exits, i, e)
151 {
152 /* We may need to recompute irreducible loops. */
153 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
154 *irred_invalidated = true;
155 rescan_loop_exit (e, false, false);
156 }
157
158 ret = true;
159 }
160
161 return ret;
162 }
163
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
172
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
175
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
178
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
183 {
184 basic_block *queue, *qtop, *qbeg, *qend;
185 class loop *base_loop, *target_loop;
186 edge e;
187
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
194
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
202
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
208
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
214
215 while (qbeg != qend)
216 {
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
223
224 if (from->loop_father->header == from)
225 {
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
231 {
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
236 }
237 }
238 else
239 {
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
246 }
247
248 FOR_EACH_EDGE (e, ei, from->succs)
249 {
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
252 }
253
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
256 {
257 basic_block pred = e->src;
258 class loop *nca;
259
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
262
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
265
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
275 {
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
281 }
282
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
285
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
292 }
293 }
294 free (queue);
295 }
296
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
303 {
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 class loop *l, *f;
311
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
314
315 if (!can_remove_branch_p (e))
316 return false;
317
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
325
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (e->dest))
331 e = single_pred_edge (split_edge (e));
332
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (l); l = f)
338 {
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
342 }
343
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
346
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
351
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (seen, rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 {
361 *irred_invalidated = true;
362 break;
363 }
364
365 for (i = 0; i < nrem; i++)
366 {
367 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
368 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 && !bitmap_bit_p (seen, ae->dest->index))
370 {
371 bitmap_set_bit (seen, ae->dest->index);
372 bord_bbs[n_bord_bbs++] = ae->dest;
373
374 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
375 *irred_invalidated = true;
376 }
377 }
378
379 /* Remove the path. */
380 from = e->src;
381 remove_branch (e);
382 dom_bbs.create (0);
383
384 /* Cancel loops contained in the path. */
385 for (i = 0; i < nrem; i++)
386 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
387 cancel_loop_tree (rem_bbs[i]->loop_father);
388
389 remove_bbs (rem_bbs, nrem);
390 free (rem_bbs);
391
392 /* Find blocks whose dominators may be affected. */
393 bitmap_clear (seen);
394 for (i = 0; i < n_bord_bbs; i++)
395 {
396 basic_block ldom;
397
398 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
399 if (bitmap_bit_p (seen, bb->index))
400 continue;
401 bitmap_set_bit (seen, bb->index);
402
403 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
404 ldom;
405 ldom = next_dom_son (CDI_DOMINATORS, ldom))
406 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
407 dom_bbs.safe_push (ldom);
408 }
409
410 /* Recount dominators. */
411 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
412 dom_bbs.release ();
413 free (bord_bbs);
414
415 /* Fix placements of basic blocks inside loops and the placement of
416 loops in the loop tree. */
417 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
418 fix_loop_placements (from->loop_father, irred_invalidated);
419
420 if (local_irred_invalidated
421 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
422 mark_irreducible_loops ();
423
424 return true;
425 }
426
427 /* Creates place for a new LOOP in loops structure of FN. */
428
429 void
430 place_new_loop (struct function *fn, class loop *loop)
431 {
432 loop->num = number_of_loops (fn);
433 vec_safe_push (loops_for_fn (fn)->larray, loop);
434 }
435
436 /* Given LOOP structure with filled header and latch, find the body of the
437 corresponding loop and add it to loops tree. Insert the LOOP as a son of
438 outer. */
439
440 void
441 add_loop (class loop *loop, class loop *outer)
442 {
443 basic_block *bbs;
444 int i, n;
445 class loop *subloop;
446 edge e;
447 edge_iterator ei;
448
449 /* Add it to loop structure. */
450 place_new_loop (cfun, loop);
451 flow_loop_tree_node_add (outer, loop);
452
453 /* Find its nodes. */
454 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
455 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
456
457 for (i = 0; i < n; i++)
458 {
459 if (bbs[i]->loop_father == outer)
460 {
461 remove_bb_from_loops (bbs[i]);
462 add_bb_to_loop (bbs[i], loop);
463 continue;
464 }
465
466 loop->num_nodes++;
467
468 /* If we find a direct subloop of OUTER, move it to LOOP. */
469 subloop = bbs[i]->loop_father;
470 if (loop_outer (subloop) == outer
471 && subloop->header == bbs[i])
472 {
473 flow_loop_tree_node_remove (subloop);
474 flow_loop_tree_node_add (loop, subloop);
475 }
476 }
477
478 /* Update the information about loop exit edges. */
479 for (i = 0; i < n; i++)
480 {
481 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
482 {
483 rescan_loop_exit (e, false, false);
484 }
485 }
486
487 free (bbs);
488 }
489
490 /* Scale profile of loop by P. */
491
492 void
493 scale_loop_frequencies (class loop *loop, profile_probability p)
494 {
495 basic_block *bbs;
496
497 bbs = get_loop_body (loop);
498 scale_bbs_frequencies (bbs, loop->num_nodes, p);
499 free (bbs);
500 }
501
502 /* Scale profile in LOOP by P.
503 If ITERATION_BOUND is not -1, scale even further if loop is predicted
504 to iterate too many times.
505 Before caling this function, preheader block profile should be already
506 scaled to final count. This is necessary because loop iterations are
507 determined by comparing header edge count to latch ege count and thus
508 they need to be scaled synchronously. */
509
510 void
511 scale_loop_profile (class loop *loop, profile_probability p,
512 gcov_type iteration_bound)
513 {
514 if (!(p == profile_probability::always ()))
515 {
516 if (dump_file && (dump_flags & TDF_DETAILS))
517 {
518 fprintf (dump_file, ";; Scaling loop %i with scale ",
519 loop->num);
520 p.dump (dump_file);
521 fprintf (dump_file, "\n");
522 }
523
524 /* Scale the probabilities. */
525 scale_loop_frequencies (loop, p);
526 }
527
528 if (iteration_bound == -1)
529 return;
530
531 sreal iterations;
532 if (!expected_loop_iterations_by_profile (loop, &iterations))
533 return;
534
535 if (dump_file && (dump_flags & TDF_DETAILS))
536 {
537 fprintf (dump_file,
538 ";; guessed iterations of loop %i:%f new upper bound %i:\n",
539 loop->num,
540 iterations.to_double (),
541 (int)iteration_bound);
542 }
543
544 /* See if loop is predicted to iterate too many times. */
545 if (iterations <= iteration_bound)
546 return;
547
548 /* Compute number of invocations of the loop. */
549 profile_count count_in = profile_count::zero ();
550 edge e;
551 edge_iterator ei;
552 bool found_latch = false;
553 FOR_EACH_EDGE (e, ei, loop->header->preds)
554 if (e->src != loop->latch)
555 count_in += e->count ();
556 else
557 found_latch = true;
558 gcc_checking_assert (found_latch);
559
560 /* Now scale the loop body so header count is
561 count_in * (iteration_bound + 1) */
562 profile_probability scale_prob
563 = (count_in * (iteration_bound + 1)).probability_in (loop->header->count);
564 if (dump_file && (dump_flags & TDF_DETAILS))
565 {
566 fprintf (dump_file, ";; Scaling loop %i with scale ",
567 loop->num);
568 scale_prob.dump (dump_file);
569 fprintf (dump_file, " to reach upper bound %i\n",
570 (int)iteration_bound);
571 }
572 /* Finally attempt to fix exit edge probability. */
573 auto_vec<edge> exits = get_loop_exit_edges (loop);
574 edge exit_edge = single_likely_exit (loop, exits);
575
576 /* In a consistent profile unadjusted_exit_count should be same as count_in,
577 however to preserve as much of the original info, avoid recomputing
578 it. */
579 profile_count unadjusted_exit_count;
580 if (exit_edge)
581 unadjusted_exit_count = exit_edge->count ();
582 scale_loop_frequencies (loop, scale_prob);
583
584 if (exit_edge && exit_edge->src->loop_father != loop)
585 {
586 if (dump_file && (dump_flags & TDF_DETAILS))
587 fprintf (dump_file,
588 ";; Loop exit is in inner loop;"
589 " will leave exit probabilities inconsistent\n");
590 }
591 else if (exit_edge)
592 {
593 profile_count old_exit_count = exit_edge->count ();
594 profile_probability new_probability;
595 if (iteration_bound > 0)
596 {
597 /* It may happen that the source basic block of the exit edge is
598 inside in-loop condition:
599
600 +-> header
601 | |
602 | B1
603 | / \
604 | | B2--exit_edge-->
605 | \ /
606 | B3
607 +__/
608
609 If B2 count is smaller than desired exit edge count
610 the profile was inconsistent with the newly discovered upper bound.
611 Probablity of edge B1->B2 is too low. We do not attempt to fix
612 that (as it is hard in general) but we want to avoid dropping
613 count of edge B2->B3 to zero may confuse later optimizations. */
614 if (unadjusted_exit_count.apply_scale (7, 8) > exit_edge->src->count)
615 {
616 if (dump_file && (dump_flags & TDF_DETAILS))
617 fprintf (dump_file,
618 ";; Source basic block of loop exit count is too small;"
619 " will leave exit probabilities inconsistent\n");
620 exit_edge->probability = exit_edge->probability.guessed ();
621 return;
622 }
623 new_probability
624 = unadjusted_exit_count.probability_in (exit_edge->src->count);
625 }
626 else
627 new_probability = profile_probability::always ();
628 set_edge_probability_and_rescale_others (exit_edge, new_probability);
629 profile_count new_exit_count = exit_edge->count ();
630
631 /* Rescale the remaining edge probabilities and see if there is only
632 one. */
633 edge other_edge = NULL;
634 bool found = false;
635 FOR_EACH_EDGE (e, ei, exit_edge->src->succs)
636 if (!(e->flags & EDGE_FAKE)
637 && !loop_exit_edge_p (loop, e))
638 {
639 if (found)
640 {
641 other_edge = NULL;
642 break;
643 }
644 other_edge = e;
645 found = true;
646 }
647 /* If there is only loop latch after other edge,
648 update its profile. */
649 if (other_edge && other_edge->dest == loop->latch)
650 loop->latch->count -= new_exit_count - old_exit_count;
651 else
652 {
653 basic_block *body = get_loop_body (loop);
654 profile_count new_count = exit_edge->src->count - new_exit_count;
655 profile_count old_count = exit_edge->src->count - old_exit_count;
656
657 for (unsigned int i = 0; i < loop->num_nodes; i++)
658 if (body[i] != exit_edge->src
659 && dominated_by_p (CDI_DOMINATORS, body[i], exit_edge->src))
660 body[i]->count = body[i]->count.apply_scale (new_count,
661 old_count);
662
663 free (body);
664 }
665 }
666 else if (dump_file && (dump_flags & TDF_DETAILS))
667 {
668 fprintf (dump_file,
669 ";; Loop has mulitple exits;"
670 " will leave exit probabilities inconsistent\n");
671 }
672 }
673
674 /* Recompute dominance information for basic blocks outside LOOP. */
675
676 static void
677 update_dominators_in_loop (class loop *loop)
678 {
679 vec<basic_block> dom_bbs = vNULL;
680 basic_block *body;
681 unsigned i;
682
683 auto_sbitmap seen (last_basic_block_for_fn (cfun));
684 bitmap_clear (seen);
685 body = get_loop_body (loop);
686
687 for (i = 0; i < loop->num_nodes; i++)
688 bitmap_set_bit (seen, body[i]->index);
689
690 for (i = 0; i < loop->num_nodes; i++)
691 {
692 basic_block ldom;
693
694 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
695 ldom;
696 ldom = next_dom_son (CDI_DOMINATORS, ldom))
697 if (!bitmap_bit_p (seen, ldom->index))
698 {
699 bitmap_set_bit (seen, ldom->index);
700 dom_bbs.safe_push (ldom);
701 }
702 }
703
704 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
705 free (body);
706 dom_bbs.release ();
707 }
708
709 /* Creates an if region as shown above. CONDITION is used to create
710 the test for the if.
711
712 |
713 | ------------- -------------
714 | | pred_bb | | pred_bb |
715 | ------------- -------------
716 | | |
717 | | | ENTRY_EDGE
718 | | ENTRY_EDGE V
719 | | ====> -------------
720 | | | cond_bb |
721 | | | CONDITION |
722 | | -------------
723 | V / \
724 | ------------- e_false / \ e_true
725 | | succ_bb | V V
726 | ------------- ----------- -----------
727 | | false_bb | | true_bb |
728 | ----------- -----------
729 | \ /
730 | \ /
731 | V V
732 | -------------
733 | | join_bb |
734 | -------------
735 | | exit_edge (result)
736 | V
737 | -----------
738 | | succ_bb |
739 | -----------
740 |
741 */
742
743 edge
744 create_empty_if_region_on_edge (edge entry_edge, tree condition)
745 {
746
747 basic_block cond_bb, true_bb, false_bb, join_bb;
748 edge e_true, e_false, exit_edge;
749 gcond *cond_stmt;
750 tree simple_cond;
751 gimple_stmt_iterator gsi;
752
753 cond_bb = split_edge (entry_edge);
754
755 /* Insert condition in cond_bb. */
756 gsi = gsi_last_bb (cond_bb);
757 simple_cond =
758 force_gimple_operand_gsi (&gsi, condition, true, NULL,
759 false, GSI_NEW_STMT);
760 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
761 gsi = gsi_last_bb (cond_bb);
762 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
763
764 join_bb = split_edge (single_succ_edge (cond_bb));
765
766 e_true = single_succ_edge (cond_bb);
767 true_bb = split_edge (e_true);
768
769 e_false = make_edge (cond_bb, join_bb, 0);
770 false_bb = split_edge (e_false);
771
772 e_true->flags &= ~EDGE_FALLTHRU;
773 e_true->flags |= EDGE_TRUE_VALUE;
774 e_false->flags &= ~EDGE_FALLTHRU;
775 e_false->flags |= EDGE_FALSE_VALUE;
776
777 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
778 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
779 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
780 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
781
782 exit_edge = single_succ_edge (join_bb);
783
784 if (single_pred_p (exit_edge->dest))
785 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
786
787 return exit_edge;
788 }
789
790 /* create_empty_loop_on_edge
791 |
792 | - pred_bb - ------ pred_bb ------
793 | | | | iv0 = initial_value |
794 | -----|----- ---------|-----------
795 | | ______ | entry_edge
796 | | entry_edge / | |
797 | | ====> | -V---V- loop_header -------------
798 | V | | iv_before = phi (iv0, iv_after) |
799 | - succ_bb - | ---|-----------------------------
800 | | | | |
801 | ----------- | ---V--- loop_body ---------------
802 | | | iv_after = iv_before + stride |
803 | | | if (iv_before < upper_bound) |
804 | | ---|--------------\--------------
805 | | | \ exit_e
806 | | V \
807 | | - loop_latch - V- succ_bb -
808 | | | | | |
809 | | /------------- -----------
810 | \ ___ /
811
812 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
813 that is used before the increment of IV. IV_BEFORE should be used for
814 adding code to the body that uses the IV. OUTER is the outer loop in
815 which the new loop should be inserted.
816
817 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
818 inserted on the loop entry edge. This implies that this function
819 should be used only when the UPPER_BOUND expression is a loop
820 invariant. */
821
822 class loop *
823 create_empty_loop_on_edge (edge entry_edge,
824 tree initial_value,
825 tree stride, tree upper_bound,
826 tree iv,
827 tree *iv_before,
828 tree *iv_after,
829 class loop *outer)
830 {
831 basic_block loop_header, loop_latch, succ_bb, pred_bb;
832 class loop *loop;
833 gimple_stmt_iterator gsi;
834 gimple_seq stmts;
835 gcond *cond_expr;
836 tree exit_test;
837 edge exit_e;
838
839 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
840
841 /* Create header, latch and wire up the loop. */
842 pred_bb = entry_edge->src;
843 loop_header = split_edge (entry_edge);
844 loop_latch = split_edge (single_succ_edge (loop_header));
845 succ_bb = single_succ (loop_latch);
846 make_edge (loop_header, succ_bb, 0);
847 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
848
849 /* Set immediate dominator information. */
850 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
851 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
852 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
853
854 /* Initialize a loop structure and put it in a loop hierarchy. */
855 loop = alloc_loop ();
856 loop->header = loop_header;
857 loop->latch = loop_latch;
858 add_loop (loop, outer);
859
860 /* TODO: Fix counts. */
861 scale_loop_frequencies (loop, profile_probability::even ());
862
863 /* Update dominators. */
864 update_dominators_in_loop (loop);
865
866 /* Modify edge flags. */
867 exit_e = single_exit (loop);
868 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
869 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
870
871 /* Construct IV code in loop. */
872 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
873 if (stmts)
874 {
875 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
876 gsi_commit_edge_inserts ();
877 }
878
879 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
880 if (stmts)
881 {
882 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
883 gsi_commit_edge_inserts ();
884 }
885
886 gsi = gsi_last_bb (loop_header);
887 create_iv (initial_value, PLUS_EXPR, stride, iv, loop, &gsi, false,
888 iv_before, iv_after);
889
890 /* Insert loop exit condition. */
891 cond_expr = gimple_build_cond
892 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
893
894 exit_test = gimple_cond_lhs (cond_expr);
895 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
896 false, GSI_NEW_STMT);
897 gimple_cond_set_lhs (cond_expr, exit_test);
898 gsi = gsi_last_bb (exit_e->src);
899 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
900
901 split_block_after_labels (loop_header);
902
903 return loop;
904 }
905
906 /* Remove the latch edge of a LOOP and update loops to indicate that
907 the LOOP was removed. After this function, original loop latch will
908 have no successor, which caller is expected to fix somehow.
909
910 If this may cause the information about irreducible regions to become
911 invalid, IRRED_INVALIDATED is set to true.
912
913 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
914 basic blocks that had non-trivial update on their loop_father.*/
915
916 void
917 unloop (class loop *loop, bool *irred_invalidated,
918 bitmap loop_closed_ssa_invalidated)
919 {
920 basic_block *body;
921 class loop *ploop;
922 unsigned i, n;
923 basic_block latch = loop->latch;
924 bool dummy = false;
925
926 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
927 *irred_invalidated = true;
928
929 /* This is relatively straightforward. The dominators are unchanged, as
930 loop header dominates loop latch, so the only thing we have to care of
931 is the placement of loops and basic blocks inside the loop tree. We
932 move them all to the loop->outer, and then let fix_bb_placements do
933 its work. */
934
935 body = get_loop_body (loop);
936 n = loop->num_nodes;
937 for (i = 0; i < n; i++)
938 if (body[i]->loop_father == loop)
939 {
940 remove_bb_from_loops (body[i]);
941 add_bb_to_loop (body[i], loop_outer (loop));
942 }
943 free (body);
944
945 while (loop->inner)
946 {
947 ploop = loop->inner;
948 flow_loop_tree_node_remove (ploop);
949 flow_loop_tree_node_add (loop_outer (loop), ploop);
950 }
951
952 /* Remove the loop and free its data. */
953 delete_loop (loop);
954
955 remove_edge (single_succ_edge (latch));
956
957 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
958 there is an irreducible region inside the cancelled loop, the flags will
959 be still correct. */
960 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
961 }
962
963 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
964 condition stated in description of fix_loop_placement holds for them.
965 It is used in case when we removed some edges coming out of LOOP, which
966 may cause the right placement of LOOP inside loop tree to change.
967
968 IRRED_INVALIDATED is set to true if a change in the loop structures might
969 invalidate the information about irreducible regions. */
970
971 static void
972 fix_loop_placements (class loop *loop, bool *irred_invalidated)
973 {
974 class loop *outer;
975
976 while (loop_outer (loop))
977 {
978 outer = loop_outer (loop);
979 if (!fix_loop_placement (loop, irred_invalidated))
980 break;
981
982 /* Changing the placement of a loop in the loop tree may alter the
983 validity of condition 2) of the description of fix_bb_placement
984 for its preheader, because the successor is the header and belongs
985 to the loop. So call fix_bb_placements to fix up the placement
986 of the preheader and (possibly) of its predecessors. */
987 fix_bb_placements (loop_preheader_edge (loop)->src,
988 irred_invalidated, NULL);
989 loop = outer;
990 }
991 }
992
993 /* Duplicate loop bounds and other information we store about
994 the loop into its duplicate. */
995
996 void
997 copy_loop_info (class loop *loop, class loop *target)
998 {
999 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1000 target->any_upper_bound = loop->any_upper_bound;
1001 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1002 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1003 target->nb_iterations_likely_upper_bound
1004 = loop->nb_iterations_likely_upper_bound;
1005 target->any_estimate = loop->any_estimate;
1006 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1007 target->estimate_state = loop->estimate_state;
1008 target->safelen = loop->safelen;
1009 target->simdlen = loop->simdlen;
1010 target->constraints = loop->constraints;
1011 target->can_be_parallel = loop->can_be_parallel;
1012 target->warned_aggressive_loop_optimizations
1013 |= loop->warned_aggressive_loop_optimizations;
1014 target->dont_vectorize = loop->dont_vectorize;
1015 target->force_vectorize = loop->force_vectorize;
1016 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1017 target->finite_p = loop->finite_p;
1018 target->unroll = loop->unroll;
1019 target->owned_clique = loop->owned_clique;
1020 }
1021
1022 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1023 created loop into loops structure. If AFTER is non-null
1024 the new loop is added at AFTER->next, otherwise in front of TARGETs
1025 sibling list. */
1026 class loop *
1027 duplicate_loop (class loop *loop, class loop *target, class loop *after)
1028 {
1029 class loop *cloop;
1030 cloop = alloc_loop ();
1031 place_new_loop (cfun, cloop);
1032
1033 copy_loop_info (loop, cloop);
1034
1035 /* Mark the new loop as copy of LOOP. */
1036 set_loop_copy (loop, cloop);
1037
1038 /* Add it to target. */
1039 flow_loop_tree_node_add (target, cloop, after);
1040
1041 return cloop;
1042 }
1043
1044 /* Copies structure of subloops of LOOP into TARGET loop, placing
1045 newly created loops into loop tree at the end of TARGETs sibling
1046 list in the original order. */
1047 void
1048 duplicate_subloops (class loop *loop, class loop *target)
1049 {
1050 class loop *aloop, *cloop, *tail;
1051
1052 for (tail = target->inner; tail && tail->next; tail = tail->next)
1053 ;
1054 for (aloop = loop->inner; aloop; aloop = aloop->next)
1055 {
1056 cloop = duplicate_loop (aloop, target, tail);
1057 tail = cloop;
1058 gcc_assert(!tail->next);
1059 duplicate_subloops (aloop, cloop);
1060 }
1061 }
1062
1063 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1064 into TARGET loop, placing newly created loops into loop tree adding
1065 them to TARGETs sibling list at the end in order. */
1066 static void
1067 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1068 {
1069 class loop *aloop, *tail;
1070 int i;
1071
1072 for (tail = target->inner; tail && tail->next; tail = tail->next)
1073 ;
1074 for (i = 0; i < n; i++)
1075 {
1076 aloop = duplicate_loop (copied_loops[i], target, tail);
1077 tail = aloop;
1078 gcc_assert(!tail->next);
1079 duplicate_subloops (copied_loops[i], aloop);
1080 }
1081 }
1082
1083 /* Redirects edge E to basic block DEST. */
1084 static void
1085 loop_redirect_edge (edge e, basic_block dest)
1086 {
1087 if (e->dest == dest)
1088 return;
1089
1090 redirect_edge_and_branch_force (e, dest);
1091 }
1092
1093 /* Check whether LOOP's body can be duplicated. */
1094 bool
1095 can_duplicate_loop_p (const class loop *loop)
1096 {
1097 int ret;
1098 basic_block *bbs = get_loop_body (loop);
1099
1100 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1101 free (bbs);
1102
1103 return ret;
1104 }
1105
1106 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1107 loop structure and dominators (order of inner subloops is retained).
1108 E's destination must be LOOP header for this to work, i.e. it must be entry
1109 or latch edge of this loop; these are unique, as the loops must have
1110 preheaders for this function to work correctly (in case E is latch, the
1111 function unrolls the loop, if E is entry edge, it peels the loop). Store
1112 edges created by copying ORIG edge from copies corresponding to set bits in
1113 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1114 are numbered in order given by control flow through them) into TO_REMOVE
1115 array. Returns false if duplication is
1116 impossible. */
1117
1118 bool
1119 duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1120 unsigned int ndupl, sbitmap wont_exit,
1121 edge orig, vec<edge> *to_remove, int flags)
1122 {
1123 class loop *target, *aloop;
1124 class loop **orig_loops;
1125 unsigned n_orig_loops;
1126 basic_block header = loop->header, latch = loop->latch;
1127 basic_block *new_bbs, *bbs, *first_active;
1128 basic_block new_bb, bb, first_active_latch = NULL;
1129 edge ae, latch_edge;
1130 edge spec_edges[2], new_spec_edges[2];
1131 const int SE_LATCH = 0;
1132 const int SE_ORIG = 1;
1133 unsigned i, j, n;
1134 int is_latch = (latch == e->src);
1135 profile_probability *scale_step = NULL;
1136 profile_probability scale_main = profile_probability::always ();
1137 profile_probability scale_act = profile_probability::always ();
1138 profile_count after_exit_num = profile_count::zero (),
1139 after_exit_den = profile_count::zero ();
1140 bool scale_after_exit = false;
1141 int add_irreducible_flag;
1142 basic_block place_after;
1143 bitmap bbs_to_scale = NULL;
1144 bitmap_iterator bi;
1145
1146 gcc_assert (e->dest == loop->header);
1147 gcc_assert (ndupl > 0);
1148
1149 if (orig)
1150 {
1151 /* Orig must be edge out of the loop. */
1152 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1153 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1154 }
1155
1156 n = loop->num_nodes;
1157 bbs = get_loop_body_in_dom_order (loop);
1158 gcc_assert (bbs[0] == loop->header);
1159 gcc_assert (bbs[n - 1] == loop->latch);
1160
1161 /* Check whether duplication is possible. */
1162 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1163 {
1164 free (bbs);
1165 return false;
1166 }
1167 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1168
1169 /* In case we are doing loop peeling and the loop is in the middle of
1170 irreducible region, the peeled copies will be inside it too. */
1171 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1172 gcc_assert (!is_latch || !add_irreducible_flag);
1173
1174 /* Find edge from latch. */
1175 latch_edge = loop_latch_edge (loop);
1176
1177 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1178 {
1179 /* Calculate coefficients by that we have to scale counts
1180 of duplicated loop bodies. */
1181 profile_count count_in = header->count;
1182 profile_count count_le = latch_edge->count ();
1183 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1184 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1185 profile_count new_count_le = count_le + count_out_orig;
1186
1187 if (orig && orig->probability.initialized_p ()
1188 && !(orig->probability == profile_probability::always ()))
1189 {
1190 /* The blocks that are dominated by a removed exit edge ORIG have
1191 frequencies scaled by this. */
1192 if (orig->count ().initialized_p ())
1193 {
1194 after_exit_num = orig->src->count;
1195 after_exit_den = after_exit_num - orig->count ();
1196 scale_after_exit = true;
1197 }
1198 bbs_to_scale = BITMAP_ALLOC (NULL);
1199 for (i = 0; i < n; i++)
1200 {
1201 if (bbs[i] != orig->src
1202 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1203 bitmap_set_bit (bbs_to_scale, i);
1204 }
1205 /* Since we will scale up all basic blocks dominated by orig, exits
1206 will become more likely; compensate for that. */
1207 if (after_exit_den.nonzero_p ())
1208 {
1209 auto_vec<edge> exits = get_loop_exit_edges (loop);
1210 for (edge ex : exits)
1211 if (ex != orig
1212 && dominated_by_p (CDI_DOMINATORS, ex->src, orig->src))
1213 new_count_le -= ex->count ().apply_scale (after_exit_num
1214 - after_exit_den,
1215 after_exit_den);
1216 }
1217 }
1218 profile_probability prob_pass_wont_exit =
1219 new_count_le.probability_in (count_in);
1220
1221 scale_step = XNEWVEC (profile_probability, ndupl);
1222
1223 for (i = 1; i <= ndupl; i++)
1224 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1225 ? prob_pass_wont_exit
1226 : prob_pass_thru;
1227
1228 /* Complete peeling is special as the probability of exit in last
1229 copy becomes 1. */
1230 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1231 {
1232 profile_count wanted_count = e->count ();
1233
1234 gcc_assert (!is_latch);
1235 /* First copy has count of incoming edge. Each subsequent
1236 count should be reduced by prob_pass_wont_exit. Caller
1237 should've managed the flags so all except for original loop
1238 has won't exist set. */
1239 scale_act = wanted_count.probability_in (count_in);
1240 /* Now simulate the duplication adjustments and compute header
1241 frequency of the last copy. */
1242 for (i = 0; i < ndupl; i++)
1243 wanted_count = wanted_count.apply_probability (scale_step [i]);
1244 scale_main = wanted_count.probability_in (count_in);
1245 }
1246 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1247 First iteration will be original loop followed by duplicated bodies.
1248 It is necessary to scale down the original so we get right overall
1249 number of iterations. */
1250 else if (is_latch)
1251 {
1252 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1253 ? prob_pass_wont_exit
1254 : prob_pass_thru;
1255 profile_probability p = prob_pass_main;
1256 profile_count scale_main_den = count_in;
1257 for (i = 0; i < ndupl; i++)
1258 {
1259 scale_main_den += count_in.apply_probability (p);
1260 p = p * scale_step[i];
1261 }
1262 /* If original loop is executed COUNT_IN times, the unrolled
1263 loop will account SCALE_MAIN_DEN times. */
1264 scale_main = count_in.probability_in (scale_main_den);
1265 scale_act = scale_main * prob_pass_main;
1266 }
1267 else
1268 {
1269 profile_count preheader_count = e->count ();
1270 for (i = 0; i < ndupl; i++)
1271 scale_main = scale_main * scale_step[i];
1272 scale_act = preheader_count.probability_in (count_in);
1273 }
1274 }
1275
1276 /* Loop the new bbs will belong to. */
1277 target = e->src->loop_father;
1278
1279 /* Original loops. */
1280 n_orig_loops = 0;
1281 for (aloop = loop->inner; aloop; aloop = aloop->next)
1282 n_orig_loops++;
1283 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1284 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1285 orig_loops[i] = aloop;
1286
1287 set_loop_copy (loop, target);
1288
1289 first_active = XNEWVEC (basic_block, n);
1290 if (is_latch)
1291 {
1292 memcpy (first_active, bbs, n * sizeof (basic_block));
1293 first_active_latch = latch;
1294 }
1295
1296 spec_edges[SE_ORIG] = orig;
1297 spec_edges[SE_LATCH] = latch_edge;
1298
1299 place_after = e->src;
1300 for (j = 0; j < ndupl; j++)
1301 {
1302 /* Copy loops. */
1303 copy_loops_to (orig_loops, n_orig_loops, target);
1304
1305 /* Copy bbs. */
1306 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1307 place_after, true);
1308 place_after = new_spec_edges[SE_LATCH]->src;
1309
1310 if (flags & DLTHE_RECORD_COPY_NUMBER)
1311 for (i = 0; i < n; i++)
1312 {
1313 gcc_assert (!new_bbs[i]->aux);
1314 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1315 }
1316
1317 /* Note whether the blocks and edges belong to an irreducible loop. */
1318 if (add_irreducible_flag)
1319 {
1320 for (i = 0; i < n; i++)
1321 new_bbs[i]->flags |= BB_DUPLICATED;
1322 for (i = 0; i < n; i++)
1323 {
1324 edge_iterator ei;
1325 new_bb = new_bbs[i];
1326 if (new_bb->loop_father == target)
1327 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1328
1329 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1330 if ((ae->dest->flags & BB_DUPLICATED)
1331 && (ae->src->loop_father == target
1332 || ae->dest->loop_father == target))
1333 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1334 }
1335 for (i = 0; i < n; i++)
1336 new_bbs[i]->flags &= ~BB_DUPLICATED;
1337 }
1338
1339 /* Redirect the special edges. */
1340 if (is_latch)
1341 {
1342 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1343 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1344 loop->header);
1345 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1346 latch = loop->latch = new_bbs[n - 1];
1347 e = latch_edge = new_spec_edges[SE_LATCH];
1348 }
1349 else
1350 {
1351 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1352 loop->header);
1353 redirect_edge_and_branch_force (e, new_bbs[0]);
1354 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1355 e = new_spec_edges[SE_LATCH];
1356 }
1357
1358 /* Record exit edge in this copy. */
1359 if (orig && bitmap_bit_p (wont_exit, j + 1))
1360 {
1361 if (to_remove)
1362 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1363 force_edge_cold (new_spec_edges[SE_ORIG], true);
1364
1365 /* Scale the frequencies of the blocks dominated by the exit. */
1366 if (bbs_to_scale && scale_after_exit)
1367 {
1368 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1369 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1370 after_exit_den);
1371 }
1372 }
1373
1374 /* Record the first copy in the control flow order if it is not
1375 the original loop (i.e. in case of peeling). */
1376 if (!first_active_latch)
1377 {
1378 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1379 first_active_latch = new_bbs[n - 1];
1380 }
1381
1382 /* Set counts and frequencies. */
1383 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1384 {
1385 scale_bbs_frequencies (new_bbs, n, scale_act);
1386 scale_act = scale_act * scale_step[j];
1387 }
1388 }
1389 free (new_bbs);
1390 free (orig_loops);
1391
1392 /* Record the exit edge in the original loop body, and update the frequencies. */
1393 if (orig && bitmap_bit_p (wont_exit, 0))
1394 {
1395 if (to_remove)
1396 to_remove->safe_push (orig);
1397 force_edge_cold (orig, true);
1398
1399 /* Scale the frequencies of the blocks dominated by the exit. */
1400 if (bbs_to_scale && scale_after_exit)
1401 {
1402 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1403 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1404 after_exit_den);
1405 }
1406 }
1407
1408 /* Update the original loop. */
1409 if (!is_latch)
1410 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1411 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1412 {
1413 scale_bbs_frequencies (bbs, n, scale_main);
1414 free (scale_step);
1415 }
1416
1417 /* Update dominators of outer blocks if affected. */
1418 for (i = 0; i < n; i++)
1419 {
1420 basic_block dominated, dom_bb;
1421 unsigned j;
1422
1423 bb = bbs[i];
1424
1425 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1426 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1427 {
1428 if (flow_bb_inside_loop_p (loop, dominated))
1429 continue;
1430 dom_bb = nearest_common_dominator (
1431 CDI_DOMINATORS, first_active[i], first_active_latch);
1432 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1433 }
1434 }
1435 free (first_active);
1436
1437 free (bbs);
1438 BITMAP_FREE (bbs_to_scale);
1439
1440 return true;
1441 }
1442
1443 /* A callback for make_forwarder block, to redirect all edges except for
1444 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1445 whether to redirect it. */
1446
1447 edge mfb_kj_edge;
1448 bool
1449 mfb_keep_just (edge e)
1450 {
1451 return e != mfb_kj_edge;
1452 }
1453
1454 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1455
1456 static bool
1457 has_preds_from_loop (basic_block block, class loop *loop)
1458 {
1459 edge e;
1460 edge_iterator ei;
1461
1462 FOR_EACH_EDGE (e, ei, block->preds)
1463 if (e->src->loop_father == loop)
1464 return true;
1465 return false;
1466 }
1467
1468 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1469 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1470 entry; otherwise we also force preheader block to have only one successor.
1471 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1472 to be a fallthru predecessor to the loop header and to have only
1473 predecessors from outside of the loop.
1474 The function also updates dominators. */
1475
1476 basic_block
1477 create_preheader (class loop *loop, int flags)
1478 {
1479 edge e;
1480 basic_block dummy;
1481 int nentry = 0;
1482 bool irred = false;
1483 bool latch_edge_was_fallthru;
1484 edge one_succ_pred = NULL, single_entry = NULL;
1485 edge_iterator ei;
1486
1487 FOR_EACH_EDGE (e, ei, loop->header->preds)
1488 {
1489 if (e->src == loop->latch)
1490 continue;
1491 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1492 nentry++;
1493 single_entry = e;
1494 if (single_succ_p (e->src))
1495 one_succ_pred = e;
1496 }
1497 gcc_assert (nentry);
1498 if (nentry == 1)
1499 {
1500 bool need_forwarder_block = false;
1501
1502 /* We do not allow entry block to be the loop preheader, since we
1503 cannot emit code there. */
1504 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1505 need_forwarder_block = true;
1506 else
1507 {
1508 /* If we want simple preheaders, also force the preheader to have
1509 just a single successor and a normal edge. */
1510 if ((flags & CP_SIMPLE_PREHEADERS)
1511 && ((single_entry->flags & EDGE_COMPLEX)
1512 || !single_succ_p (single_entry->src)))
1513 need_forwarder_block = true;
1514 /* If we want fallthru preheaders, also create forwarder block when
1515 preheader ends with a jump or has predecessors from loop. */
1516 else if ((flags & CP_FALLTHRU_PREHEADERS)
1517 && (JUMP_P (BB_END (single_entry->src))
1518 || has_preds_from_loop (single_entry->src, loop)))
1519 need_forwarder_block = true;
1520 }
1521 if (! need_forwarder_block)
1522 return NULL;
1523 }
1524
1525 mfb_kj_edge = loop_latch_edge (loop);
1526 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1527 if (nentry == 1
1528 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1529 || (single_entry->flags & EDGE_CROSSING) == 0))
1530 dummy = split_edge (single_entry);
1531 else
1532 {
1533 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1534 dummy = fallthru->src;
1535 loop->header = fallthru->dest;
1536 }
1537
1538 /* Try to be clever in placing the newly created preheader. The idea is to
1539 avoid breaking any "fallthruness" relationship between blocks.
1540
1541 The preheader was created just before the header and all incoming edges
1542 to the header were redirected to the preheader, except the latch edge.
1543 So the only problematic case is when this latch edge was a fallthru
1544 edge: it is not anymore after the preheader creation so we have broken
1545 the fallthruness. We're therefore going to look for a better place. */
1546 if (latch_edge_was_fallthru)
1547 {
1548 if (one_succ_pred)
1549 e = one_succ_pred;
1550 else
1551 e = EDGE_PRED (dummy, 0);
1552
1553 move_block_after (dummy, e->src);
1554 }
1555
1556 if (irred)
1557 {
1558 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1559 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1560 }
1561
1562 if (dump_file)
1563 fprintf (dump_file, "Created preheader block for loop %i\n",
1564 loop->num);
1565
1566 if (flags & CP_FALLTHRU_PREHEADERS)
1567 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1568 && !JUMP_P (BB_END (dummy)));
1569
1570 return dummy;
1571 }
1572
1573 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1574
1575 void
1576 create_preheaders (int flags)
1577 {
1578 if (!current_loops)
1579 return;
1580
1581 for (auto loop : loops_list (cfun, 0))
1582 create_preheader (loop, flags);
1583 loops_state_set (LOOPS_HAVE_PREHEADERS);
1584 }
1585
1586 /* Forces all loop latches to have only single successor. */
1587
1588 void
1589 force_single_succ_latches (void)
1590 {
1591 edge e;
1592
1593 for (auto loop : loops_list (cfun, 0))
1594 {
1595 if (loop->latch != loop->header && single_succ_p (loop->latch))
1596 continue;
1597
1598 e = find_edge (loop->latch, loop->header);
1599 gcc_checking_assert (e != NULL);
1600
1601 split_edge (e);
1602 }
1603 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1604 }
1605
1606 /* This function is called from loop_version. It splits the entry edge
1607 of the loop we want to version, adds the versioning condition, and
1608 adjust the edges to the two versions of the loop appropriately.
1609 e is an incoming edge. Returns the basic block containing the
1610 condition.
1611
1612 --- edge e ---- > [second_head]
1613
1614 Split it and insert new conditional expression and adjust edges.
1615
1616 --- edge e ---> [cond expr] ---> [first_head]
1617 |
1618 +---------> [second_head]
1619
1620 THEN_PROB is the probability of then branch of the condition.
1621 ELSE_PROB is the probability of else branch. Note that they may be both
1622 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1623 IFN_LOOP_DIST_ALIAS. */
1624
1625 static basic_block
1626 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1627 edge e, void *cond_expr,
1628 profile_probability then_prob,
1629 profile_probability else_prob)
1630 {
1631 basic_block new_head = NULL;
1632 edge e1;
1633
1634 gcc_assert (e->dest == second_head);
1635
1636 /* Split edge 'e'. This will create a new basic block, where we can
1637 insert conditional expr. */
1638 new_head = split_edge (e);
1639
1640 lv_add_condition_to_bb (first_head, second_head, new_head,
1641 cond_expr);
1642
1643 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1644 e = single_succ_edge (new_head);
1645 e1 = make_edge (new_head, first_head,
1646 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1647 e1->probability = then_prob;
1648 e->probability = else_prob;
1649
1650 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1651 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1652
1653 /* Adjust loop header phi nodes. */
1654 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1655
1656 return new_head;
1657 }
1658
1659 /* Main entry point for Loop Versioning transformation.
1660
1661 This transformation given a condition and a loop, creates
1662 -if (condition) { loop_copy1 } else { loop_copy2 },
1663 where loop_copy1 is the loop transformed in one way, and loop_copy2
1664 is the loop transformed in another way (or unchanged). COND_EXPR
1665 may be a run time test for things that were not resolved by static
1666 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1667
1668 If non-NULL, CONDITION_BB is set to the basic block containing the
1669 condition.
1670
1671 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1672 is the ratio by that the frequencies in the original loop should
1673 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1674 new loop should be scaled.
1675
1676 If PLACE_AFTER is true, we place the new loop after LOOP in the
1677 instruction stream, otherwise it is placed before LOOP. */
1678
1679 class loop *
1680 loop_version (class loop *loop,
1681 void *cond_expr, basic_block *condition_bb,
1682 profile_probability then_prob, profile_probability else_prob,
1683 profile_probability then_scale, profile_probability else_scale,
1684 bool place_after)
1685 {
1686 basic_block first_head, second_head;
1687 edge entry, latch_edge;
1688 int irred_flag;
1689 class loop *nloop;
1690 basic_block cond_bb;
1691
1692 /* Record entry and latch edges for the loop */
1693 entry = loop_preheader_edge (loop);
1694 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1695 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1696
1697 /* Note down head of loop as first_head. */
1698 first_head = entry->dest;
1699
1700 /* 1) Duplicate loop on the entry edge. */
1701 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULL, NULL,
1702 NULL, 0))
1703 {
1704 entry->flags |= irred_flag;
1705 return NULL;
1706 }
1707
1708 /* 2) loopify the duplicated new loop. */
1709 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1710 nloop = alloc_loop ();
1711 class loop *outer = loop_outer (latch_edge->dest->loop_father);
1712 edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1713 nloop->header = new_header_edge->dest;
1714 nloop->latch = latch_edge->src;
1715 loop_redirect_edge (latch_edge, nloop->header);
1716
1717 /* Compute new loop. */
1718 add_loop (nloop, outer);
1719 copy_loop_info (loop, nloop);
1720 set_loop_copy (loop, nloop);
1721
1722 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1723 lv_flush_pending_stmts (latch_edge);
1724
1725 /* After duplication entry edge now points to new loop head block.
1726 Note down new head as second_head. */
1727 second_head = entry->dest;
1728
1729 /* 3) Split loop entry edge and insert new block with cond expr. */
1730 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1731 entry, cond_expr, then_prob, else_prob);
1732 if (condition_bb)
1733 *condition_bb = cond_bb;
1734
1735 if (!cond_bb)
1736 {
1737 entry->flags |= irred_flag;
1738 return NULL;
1739 }
1740
1741 /* Add cond_bb to appropriate loop. */
1742 if (cond_bb->loop_father)
1743 remove_bb_from_loops (cond_bb);
1744 add_bb_to_loop (cond_bb, outer);
1745
1746 /* 4) Scale the original loop and new loop frequency. */
1747 scale_loop_frequencies (loop, then_scale);
1748 scale_loop_frequencies (nloop, else_scale);
1749 update_dominators_in_loop (loop);
1750 update_dominators_in_loop (nloop);
1751
1752 /* Adjust irreducible flag. */
1753 if (irred_flag)
1754 {
1755 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1756 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1757 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1758 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1759 }
1760
1761 if (place_after)
1762 {
1763 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1764 unsigned i;
1765
1766 after = loop->latch;
1767
1768 for (i = 0; i < nloop->num_nodes; i++)
1769 {
1770 move_block_after (bbs[i], after);
1771 after = bbs[i];
1772 }
1773 free (bbs);
1774 }
1775
1776 /* At this point condition_bb is loop preheader with two successors,
1777 first_head and second_head. Make sure that loop preheader has only
1778 one successor. */
1779 split_edge (loop_preheader_edge (loop));
1780 split_edge (loop_preheader_edge (nloop));
1781
1782 return nloop;
1783 }