]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopmanip.cc
Do not clear bb->aux in duplicate_loop_body_to_header_edge
[thirdparty/gcc.git] / gcc / cfgloopmanip.cc
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34
35 static void copy_loops_to (class loop **, int,
36 class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57 int i;
58
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
61 }
62
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
71 {
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
78 }
79
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
89 {
90 edge e;
91 edge_iterator ei;
92 class loop *loop = current_loops->tree_root, *act;
93
94 FOR_EACH_EDGE (e, ei, bb->succs)
95 {
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
98
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
102
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
105 }
106
107 if (loop == bb->loop_father)
108 return false;
109
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
112
113 return true;
114 }
115
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
120
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
123
124 static bool
125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
126 {
127 unsigned i;
128 edge e;
129 auto_vec<edge> exits = get_loop_exit_edges (loop);
130 class loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 FOR_EACH_VEC_ELT (exits, i, e)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
150 {
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
155 }
156
157 ret = true;
158 }
159
160 return ret;
161 }
162
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164 enforce condition stated in description of fix_bb_placement. We
165 start from basic block FROM that had some of its successors removed, so that
166 his placement no longer has to be correct, and iteratively fix placement of
167 its predecessors that may change if placement of FROM changed. Also fix
168 placement of subloops of FROM->loop_father, that might also be altered due
169 to this change; the condition for them is similar, except that instead of
170 successors we consider edges coming out of the loops.
171
172 If the changes may invalidate the information about irreducible regions,
173 IRRED_INVALIDATED is set to true.
174
175 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176 changed loop_father are collected there. */
177
178 static void
179 fix_bb_placements (basic_block from,
180 bool *irred_invalidated,
181 bitmap loop_closed_ssa_invalidated)
182 {
183 basic_block *queue, *qtop, *qbeg, *qend;
184 class loop *base_loop, *target_loop;
185 edge e;
186
187 /* We pass through blocks back-reachable from FROM, testing whether some
188 of their successors moved to outer loop. It may be necessary to
189 iterate several times, but it is finite, as we stop unless we move
190 the basic block up the loop structure. The whole story is a bit
191 more complicated due to presence of subloops, those are moved using
192 fix_loop_placement. */
193
194 base_loop = from->loop_father;
195 /* If we are already in the outermost loop, the basic blocks cannot be moved
196 outside of it. If FROM is the header of the base loop, it cannot be moved
197 outside of it, either. In both cases, we can end now. */
198 if (base_loop == current_loops->tree_root
199 || from == base_loop->header)
200 return;
201
202 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
203 bitmap_clear (in_queue);
204 bitmap_set_bit (in_queue, from->index);
205 /* Prevent us from going out of the base_loop. */
206 bitmap_set_bit (in_queue, base_loop->header->index);
207
208 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209 qtop = queue + base_loop->num_nodes + 1;
210 qbeg = queue;
211 qend = queue + 1;
212 *qbeg = from;
213
214 while (qbeg != qend)
215 {
216 edge_iterator ei;
217 from = *qbeg;
218 qbeg++;
219 if (qbeg == qtop)
220 qbeg = queue;
221 bitmap_clear_bit (in_queue, from->index);
222
223 if (from->loop_father->header == from)
224 {
225 /* Subloop header, maybe move the loop upward. */
226 if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 continue;
228 target_loop = loop_outer (from->loop_father);
229 if (loop_closed_ssa_invalidated)
230 {
231 basic_block *bbs = get_loop_body (from->loop_father);
232 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 free (bbs);
235 }
236 }
237 else
238 {
239 /* Ordinary basic block. */
240 if (!fix_bb_placement (from))
241 continue;
242 target_loop = from->loop_father;
243 if (loop_closed_ssa_invalidated)
244 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
245 }
246
247 FOR_EACH_EDGE (e, ei, from->succs)
248 {
249 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 *irred_invalidated = true;
251 }
252
253 /* Something has changed, insert predecessors into queue. */
254 FOR_EACH_EDGE (e, ei, from->preds)
255 {
256 basic_block pred = e->src;
257 class loop *nca;
258
259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 *irred_invalidated = true;
261
262 if (bitmap_bit_p (in_queue, pred->index))
263 continue;
264
265 /* If it is subloop, then it either was not moved, or
266 the path up the loop tree from base_loop do not contain
267 it. */
268 nca = find_common_loop (pred->loop_father, base_loop);
269 if (pred->loop_father != base_loop
270 && (nca == base_loop
271 || nca != pred->loop_father))
272 pred = pred->loop_father->header;
273 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 {
275 /* If PRED is already higher in the loop hierarchy than the
276 TARGET_LOOP to that we moved FROM, the change of the position
277 of FROM does not affect the position of PRED, so there is no
278 point in processing it. */
279 continue;
280 }
281
282 if (bitmap_bit_p (in_queue, pred->index))
283 continue;
284
285 /* Schedule the basic block. */
286 *qend = pred;
287 qend++;
288 if (qend == qtop)
289 qend = queue;
290 bitmap_set_bit (in_queue, pred->index);
291 }
292 }
293 free (queue);
294 }
295
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297 and update loop structures and dominators. Return true if we were able
298 to remove the path, false otherwise (and nothing is affected then). */
299 bool
300 remove_path (edge e, bool *irred_invalidated,
301 bitmap loop_closed_ssa_invalidated)
302 {
303 edge ae;
304 basic_block *rem_bbs, *bord_bbs, from, bb;
305 vec<basic_block> dom_bbs;
306 int i, nrem, n_bord_bbs;
307 bool local_irred_invalidated = false;
308 edge_iterator ei;
309 class loop *l, *f;
310
311 if (! irred_invalidated)
312 irred_invalidated = &local_irred_invalidated;
313
314 if (!can_remove_branch_p (e))
315 return false;
316
317 /* Keep track of whether we need to update information about irreducible
318 regions. This is the case if the removed area is a part of the
319 irreducible region, or if the set of basic blocks that belong to a loop
320 that is inside an irreducible region is changed, or if such a loop is
321 removed. */
322 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323 *irred_invalidated = true;
324
325 /* We need to check whether basic blocks are dominated by the edge
326 e, but we only have basic block dominators. This is easy to
327 fix -- when e->dest has exactly one predecessor, this corresponds
328 to blocks dominated by e->dest, if not, split the edge. */
329 if (!single_pred_p (e->dest))
330 e = single_pred_edge (split_edge (e));
331
332 /* It may happen that by removing path we remove one or more loops
333 we belong to. In this case first unloop the loops, then proceed
334 normally. We may assume that e->dest is not a header of any loop,
335 as it now has exactly one predecessor. */
336 for (l = e->src->loop_father; loop_outer (l); l = f)
337 {
338 f = loop_outer (l);
339 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
341 }
342
343 /* Identify the path. */
344 nrem = find_path (e, &rem_bbs);
345
346 n_bord_bbs = 0;
347 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348 auto_sbitmap seen (last_basic_block_for_fn (cfun));
349 bitmap_clear (seen);
350
351 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
352 for (i = 0; i < nrem; i++)
353 bitmap_set_bit (seen, rem_bbs[i]->index);
354 if (!*irred_invalidated)
355 FOR_EACH_EDGE (ae, ei, e->src->succs)
356 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 && !bitmap_bit_p (seen, ae->dest->index)
358 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
359 {
360 *irred_invalidated = true;
361 break;
362 }
363
364 for (i = 0; i < nrem; i++)
365 {
366 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
367 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
368 && !bitmap_bit_p (seen, ae->dest->index))
369 {
370 bitmap_set_bit (seen, ae->dest->index);
371 bord_bbs[n_bord_bbs++] = ae->dest;
372
373 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 *irred_invalidated = true;
375 }
376 }
377
378 /* Remove the path. */
379 from = e->src;
380 remove_branch (e);
381 dom_bbs.create (0);
382
383 /* Cancel loops contained in the path. */
384 for (i = 0; i < nrem; i++)
385 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386 cancel_loop_tree (rem_bbs[i]->loop_father);
387
388 remove_bbs (rem_bbs, nrem);
389 free (rem_bbs);
390
391 /* Find blocks whose dominators may be affected. */
392 bitmap_clear (seen);
393 for (i = 0; i < n_bord_bbs; i++)
394 {
395 basic_block ldom;
396
397 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398 if (bitmap_bit_p (seen, bb->index))
399 continue;
400 bitmap_set_bit (seen, bb->index);
401
402 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 ldom;
404 ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 dom_bbs.safe_push (ldom);
407 }
408
409 /* Recount dominators. */
410 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411 dom_bbs.release ();
412 free (bord_bbs);
413
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417 fix_loop_placements (from->loop_father, irred_invalidated);
418
419 if (local_irred_invalidated
420 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421 mark_irreducible_loops ();
422
423 return true;
424 }
425
426 /* Creates place for a new LOOP in loops structure of FN. */
427
428 void
429 place_new_loop (struct function *fn, class loop *loop)
430 {
431 loop->num = number_of_loops (fn);
432 vec_safe_push (loops_for_fn (fn)->larray, loop);
433 }
434
435 /* Given LOOP structure with filled header and latch, find the body of the
436 corresponding loop and add it to loops tree. Insert the LOOP as a son of
437 outer. */
438
439 void
440 add_loop (class loop *loop, class loop *outer)
441 {
442 basic_block *bbs;
443 int i, n;
444 class loop *subloop;
445 edge e;
446 edge_iterator ei;
447
448 /* Add it to loop structure. */
449 place_new_loop (cfun, loop);
450 flow_loop_tree_node_add (outer, loop);
451
452 /* Find its nodes. */
453 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
455
456 for (i = 0; i < n; i++)
457 {
458 if (bbs[i]->loop_father == outer)
459 {
460 remove_bb_from_loops (bbs[i]);
461 add_bb_to_loop (bbs[i], loop);
462 continue;
463 }
464
465 loop->num_nodes++;
466
467 /* If we find a direct subloop of OUTER, move it to LOOP. */
468 subloop = bbs[i]->loop_father;
469 if (loop_outer (subloop) == outer
470 && subloop->header == bbs[i])
471 {
472 flow_loop_tree_node_remove (subloop);
473 flow_loop_tree_node_add (loop, subloop);
474 }
475 }
476
477 /* Update the information about loop exit edges. */
478 for (i = 0; i < n; i++)
479 {
480 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
481 {
482 rescan_loop_exit (e, false, false);
483 }
484 }
485
486 free (bbs);
487 }
488
489 /* Scale profile of loop by P. */
490
491 void
492 scale_loop_frequencies (class loop *loop, profile_probability p)
493 {
494 basic_block *bbs;
495
496 bbs = get_loop_body (loop);
497 scale_bbs_frequencies (bbs, loop->num_nodes, p);
498 free (bbs);
499 }
500
501 /* Scale profile in LOOP by P.
502 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503 to iterate too many times.
504 Before caling this function, preheader block profile should be already
505 scaled to final count. This is necessary because loop iterations are
506 determined by comparing header edge count to latch ege count and thus
507 they need to be scaled synchronously. */
508
509 void
510 scale_loop_profile (class loop *loop, profile_probability p,
511 gcov_type iteration_bound)
512 {
513 edge e, preheader_e;
514 edge_iterator ei;
515
516 if (dump_file && (dump_flags & TDF_DETAILS))
517 {
518 fprintf (dump_file, ";; Scaling loop %i with scale ",
519 loop->num);
520 p.dump (dump_file);
521 fprintf (dump_file, " bounding iterations to %i\n",
522 (int)iteration_bound);
523 }
524
525 /* Scale the probabilities. */
526 scale_loop_frequencies (loop, p);
527
528 if (iteration_bound == 0)
529 return;
530
531 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
532
533 if (dump_file && (dump_flags & TDF_DETAILS))
534 {
535 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
536 (int)iterations);
537 }
538
539 /* See if loop is predicted to iterate too many times. */
540 if (iterations <= iteration_bound)
541 return;
542
543 preheader_e = loop_preheader_edge (loop);
544
545 /* We could handle also loops without preheaders, but bounding is
546 currently used only by optimizers that have preheaders constructed. */
547 gcc_checking_assert (preheader_e);
548 profile_count count_in = preheader_e->count ();
549
550 if (count_in > profile_count::zero ()
551 && loop->header->count.initialized_p ())
552 {
553 profile_count count_delta = profile_count::zero ();
554
555 e = single_exit (loop);
556 if (e)
557 {
558 edge other_e;
559 FOR_EACH_EDGE (other_e, ei, e->src->succs)
560 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
561 && e != other_e)
562 break;
563
564 /* Probability of exit must be 1/iterations. */
565 count_delta = e->count ();
566 e->probability = profile_probability::always ()
567 .apply_scale (1, iteration_bound);
568 other_e->probability = e->probability.invert ();
569
570 /* In code below we only handle the following two updates. */
571 if (other_e->dest != loop->header
572 && other_e->dest != loop->latch
573 && (dump_file && (dump_flags & TDF_DETAILS)))
574 {
575 fprintf (dump_file, ";; giving up on update of paths from "
576 "exit condition to latch\n");
577 }
578 }
579 else
580 if (dump_file && (dump_flags & TDF_DETAILS))
581 fprintf (dump_file, ";; Loop has multiple exit edges; "
582 "giving up on exit condition update\n");
583
584 /* Roughly speaking we want to reduce the loop body profile by the
585 difference of loop iterations. We however can do better if
586 we look at the actual profile, if it is available. */
587 p = profile_probability::always ();
588
589 count_in = count_in.apply_scale (iteration_bound, 1);
590 p = count_in.probability_in (loop->header->count);
591 if (!(p > profile_probability::never ()))
592 p = profile_probability::very_unlikely ();
593
594 if (p == profile_probability::always ()
595 || !p.initialized_p ())
596 return;
597
598 /* If latch exists, change its count, since we changed
599 probability of exit. Theoretically we should update everything from
600 source of exit edge to latch, but for vectorizer this is enough. */
601 if (loop->latch && loop->latch != e->src)
602 loop->latch->count += count_delta;
603
604 /* Scale the probabilities. */
605 scale_loop_frequencies (loop, p);
606
607 /* Change latch's count back. */
608 if (loop->latch && loop->latch != e->src)
609 loop->latch->count -= count_delta;
610
611 if (dump_file && (dump_flags & TDF_DETAILS))
612 fprintf (dump_file, ";; guessed iterations are now %i\n",
613 (int)expected_loop_iterations_unbounded (loop, NULL, true));
614 }
615 }
616
617 /* Recompute dominance information for basic blocks outside LOOP. */
618
619 static void
620 update_dominators_in_loop (class loop *loop)
621 {
622 vec<basic_block> dom_bbs = vNULL;
623 basic_block *body;
624 unsigned i;
625
626 auto_sbitmap seen (last_basic_block_for_fn (cfun));
627 bitmap_clear (seen);
628 body = get_loop_body (loop);
629
630 for (i = 0; i < loop->num_nodes; i++)
631 bitmap_set_bit (seen, body[i]->index);
632
633 for (i = 0; i < loop->num_nodes; i++)
634 {
635 basic_block ldom;
636
637 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
638 ldom;
639 ldom = next_dom_son (CDI_DOMINATORS, ldom))
640 if (!bitmap_bit_p (seen, ldom->index))
641 {
642 bitmap_set_bit (seen, ldom->index);
643 dom_bbs.safe_push (ldom);
644 }
645 }
646
647 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
648 free (body);
649 dom_bbs.release ();
650 }
651
652 /* Creates an if region as shown above. CONDITION is used to create
653 the test for the if.
654
655 |
656 | ------------- -------------
657 | | pred_bb | | pred_bb |
658 | ------------- -------------
659 | | |
660 | | | ENTRY_EDGE
661 | | ENTRY_EDGE V
662 | | ====> -------------
663 | | | cond_bb |
664 | | | CONDITION |
665 | | -------------
666 | V / \
667 | ------------- e_false / \ e_true
668 | | succ_bb | V V
669 | ------------- ----------- -----------
670 | | false_bb | | true_bb |
671 | ----------- -----------
672 | \ /
673 | \ /
674 | V V
675 | -------------
676 | | join_bb |
677 | -------------
678 | | exit_edge (result)
679 | V
680 | -----------
681 | | succ_bb |
682 | -----------
683 |
684 */
685
686 edge
687 create_empty_if_region_on_edge (edge entry_edge, tree condition)
688 {
689
690 basic_block cond_bb, true_bb, false_bb, join_bb;
691 edge e_true, e_false, exit_edge;
692 gcond *cond_stmt;
693 tree simple_cond;
694 gimple_stmt_iterator gsi;
695
696 cond_bb = split_edge (entry_edge);
697
698 /* Insert condition in cond_bb. */
699 gsi = gsi_last_bb (cond_bb);
700 simple_cond =
701 force_gimple_operand_gsi (&gsi, condition, true, NULL,
702 false, GSI_NEW_STMT);
703 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
704 gsi = gsi_last_bb (cond_bb);
705 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
706
707 join_bb = split_edge (single_succ_edge (cond_bb));
708
709 e_true = single_succ_edge (cond_bb);
710 true_bb = split_edge (e_true);
711
712 e_false = make_edge (cond_bb, join_bb, 0);
713 false_bb = split_edge (e_false);
714
715 e_true->flags &= ~EDGE_FALLTHRU;
716 e_true->flags |= EDGE_TRUE_VALUE;
717 e_false->flags &= ~EDGE_FALLTHRU;
718 e_false->flags |= EDGE_FALSE_VALUE;
719
720 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
721 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
722 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
723 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
724
725 exit_edge = single_succ_edge (join_bb);
726
727 if (single_pred_p (exit_edge->dest))
728 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
729
730 return exit_edge;
731 }
732
733 /* create_empty_loop_on_edge
734 |
735 | - pred_bb - ------ pred_bb ------
736 | | | | iv0 = initial_value |
737 | -----|----- ---------|-----------
738 | | ______ | entry_edge
739 | | entry_edge / | |
740 | | ====> | -V---V- loop_header -------------
741 | V | | iv_before = phi (iv0, iv_after) |
742 | - succ_bb - | ---|-----------------------------
743 | | | | |
744 | ----------- | ---V--- loop_body ---------------
745 | | | iv_after = iv_before + stride |
746 | | | if (iv_before < upper_bound) |
747 | | ---|--------------\--------------
748 | | | \ exit_e
749 | | V \
750 | | - loop_latch - V- succ_bb -
751 | | | | | |
752 | | /------------- -----------
753 | \ ___ /
754
755 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
756 that is used before the increment of IV. IV_BEFORE should be used for
757 adding code to the body that uses the IV. OUTER is the outer loop in
758 which the new loop should be inserted.
759
760 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
761 inserted on the loop entry edge. This implies that this function
762 should be used only when the UPPER_BOUND expression is a loop
763 invariant. */
764
765 class loop *
766 create_empty_loop_on_edge (edge entry_edge,
767 tree initial_value,
768 tree stride, tree upper_bound,
769 tree iv,
770 tree *iv_before,
771 tree *iv_after,
772 class loop *outer)
773 {
774 basic_block loop_header, loop_latch, succ_bb, pred_bb;
775 class loop *loop;
776 gimple_stmt_iterator gsi;
777 gimple_seq stmts;
778 gcond *cond_expr;
779 tree exit_test;
780 edge exit_e;
781
782 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
783
784 /* Create header, latch and wire up the loop. */
785 pred_bb = entry_edge->src;
786 loop_header = split_edge (entry_edge);
787 loop_latch = split_edge (single_succ_edge (loop_header));
788 succ_bb = single_succ (loop_latch);
789 make_edge (loop_header, succ_bb, 0);
790 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
791
792 /* Set immediate dominator information. */
793 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
794 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
795 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
796
797 /* Initialize a loop structure and put it in a loop hierarchy. */
798 loop = alloc_loop ();
799 loop->header = loop_header;
800 loop->latch = loop_latch;
801 add_loop (loop, outer);
802
803 /* TODO: Fix counts. */
804 scale_loop_frequencies (loop, profile_probability::even ());
805
806 /* Update dominators. */
807 update_dominators_in_loop (loop);
808
809 /* Modify edge flags. */
810 exit_e = single_exit (loop);
811 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
812 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
813
814 /* Construct IV code in loop. */
815 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
816 if (stmts)
817 {
818 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
819 gsi_commit_edge_inserts ();
820 }
821
822 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
823 if (stmts)
824 {
825 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
826 gsi_commit_edge_inserts ();
827 }
828
829 gsi = gsi_last_bb (loop_header);
830 create_iv (initial_value, stride, iv, loop, &gsi, false,
831 iv_before, iv_after);
832
833 /* Insert loop exit condition. */
834 cond_expr = gimple_build_cond
835 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
836
837 exit_test = gimple_cond_lhs (cond_expr);
838 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
839 false, GSI_NEW_STMT);
840 gimple_cond_set_lhs (cond_expr, exit_test);
841 gsi = gsi_last_bb (exit_e->src);
842 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
843
844 split_block_after_labels (loop_header);
845
846 return loop;
847 }
848
849 /* Remove the latch edge of a LOOP and update loops to indicate that
850 the LOOP was removed. After this function, original loop latch will
851 have no successor, which caller is expected to fix somehow.
852
853 If this may cause the information about irreducible regions to become
854 invalid, IRRED_INVALIDATED is set to true.
855
856 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
857 basic blocks that had non-trivial update on their loop_father.*/
858
859 void
860 unloop (class loop *loop, bool *irred_invalidated,
861 bitmap loop_closed_ssa_invalidated)
862 {
863 basic_block *body;
864 class loop *ploop;
865 unsigned i, n;
866 basic_block latch = loop->latch;
867 bool dummy = false;
868
869 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
870 *irred_invalidated = true;
871
872 /* This is relatively straightforward. The dominators are unchanged, as
873 loop header dominates loop latch, so the only thing we have to care of
874 is the placement of loops and basic blocks inside the loop tree. We
875 move them all to the loop->outer, and then let fix_bb_placements do
876 its work. */
877
878 body = get_loop_body (loop);
879 n = loop->num_nodes;
880 for (i = 0; i < n; i++)
881 if (body[i]->loop_father == loop)
882 {
883 remove_bb_from_loops (body[i]);
884 add_bb_to_loop (body[i], loop_outer (loop));
885 }
886 free (body);
887
888 while (loop->inner)
889 {
890 ploop = loop->inner;
891 flow_loop_tree_node_remove (ploop);
892 flow_loop_tree_node_add (loop_outer (loop), ploop);
893 }
894
895 /* Remove the loop and free its data. */
896 delete_loop (loop);
897
898 remove_edge (single_succ_edge (latch));
899
900 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
901 there is an irreducible region inside the cancelled loop, the flags will
902 be still correct. */
903 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
904 }
905
906 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
907 condition stated in description of fix_loop_placement holds for them.
908 It is used in case when we removed some edges coming out of LOOP, which
909 may cause the right placement of LOOP inside loop tree to change.
910
911 IRRED_INVALIDATED is set to true if a change in the loop structures might
912 invalidate the information about irreducible regions. */
913
914 static void
915 fix_loop_placements (class loop *loop, bool *irred_invalidated)
916 {
917 class loop *outer;
918
919 while (loop_outer (loop))
920 {
921 outer = loop_outer (loop);
922 if (!fix_loop_placement (loop, irred_invalidated))
923 break;
924
925 /* Changing the placement of a loop in the loop tree may alter the
926 validity of condition 2) of the description of fix_bb_placement
927 for its preheader, because the successor is the header and belongs
928 to the loop. So call fix_bb_placements to fix up the placement
929 of the preheader and (possibly) of its predecessors. */
930 fix_bb_placements (loop_preheader_edge (loop)->src,
931 irred_invalidated, NULL);
932 loop = outer;
933 }
934 }
935
936 /* Duplicate loop bounds and other information we store about
937 the loop into its duplicate. */
938
939 void
940 copy_loop_info (class loop *loop, class loop *target)
941 {
942 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
943 target->any_upper_bound = loop->any_upper_bound;
944 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
945 target->any_likely_upper_bound = loop->any_likely_upper_bound;
946 target->nb_iterations_likely_upper_bound
947 = loop->nb_iterations_likely_upper_bound;
948 target->any_estimate = loop->any_estimate;
949 target->nb_iterations_estimate = loop->nb_iterations_estimate;
950 target->estimate_state = loop->estimate_state;
951 target->safelen = loop->safelen;
952 target->simdlen = loop->simdlen;
953 target->constraints = loop->constraints;
954 target->can_be_parallel = loop->can_be_parallel;
955 target->warned_aggressive_loop_optimizations
956 |= loop->warned_aggressive_loop_optimizations;
957 target->dont_vectorize = loop->dont_vectorize;
958 target->force_vectorize = loop->force_vectorize;
959 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
960 target->finite_p = loop->finite_p;
961 target->unroll = loop->unroll;
962 target->owned_clique = loop->owned_clique;
963 }
964
965 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
966 created loop into loops structure. If AFTER is non-null
967 the new loop is added at AFTER->next, otherwise in front of TARGETs
968 sibling list. */
969 class loop *
970 duplicate_loop (class loop *loop, class loop *target, class loop *after)
971 {
972 class loop *cloop;
973 cloop = alloc_loop ();
974 place_new_loop (cfun, cloop);
975
976 copy_loop_info (loop, cloop);
977
978 /* Mark the new loop as copy of LOOP. */
979 set_loop_copy (loop, cloop);
980
981 /* Add it to target. */
982 flow_loop_tree_node_add (target, cloop, after);
983
984 return cloop;
985 }
986
987 /* Copies structure of subloops of LOOP into TARGET loop, placing
988 newly created loops into loop tree at the end of TARGETs sibling
989 list in the original order. */
990 void
991 duplicate_subloops (class loop *loop, class loop *target)
992 {
993 class loop *aloop, *cloop, *tail;
994
995 for (tail = target->inner; tail && tail->next; tail = tail->next)
996 ;
997 for (aloop = loop->inner; aloop; aloop = aloop->next)
998 {
999 cloop = duplicate_loop (aloop, target, tail);
1000 tail = cloop;
1001 gcc_assert(!tail->next);
1002 duplicate_subloops (aloop, cloop);
1003 }
1004 }
1005
1006 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1007 into TARGET loop, placing newly created loops into loop tree adding
1008 them to TARGETs sibling list at the end in order. */
1009 static void
1010 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1011 {
1012 class loop *aloop, *tail;
1013 int i;
1014
1015 for (tail = target->inner; tail && tail->next; tail = tail->next)
1016 ;
1017 for (i = 0; i < n; i++)
1018 {
1019 aloop = duplicate_loop (copied_loops[i], target, tail);
1020 tail = aloop;
1021 gcc_assert(!tail->next);
1022 duplicate_subloops (copied_loops[i], aloop);
1023 }
1024 }
1025
1026 /* Redirects edge E to basic block DEST. */
1027 static void
1028 loop_redirect_edge (edge e, basic_block dest)
1029 {
1030 if (e->dest == dest)
1031 return;
1032
1033 redirect_edge_and_branch_force (e, dest);
1034 }
1035
1036 /* Check whether LOOP's body can be duplicated. */
1037 bool
1038 can_duplicate_loop_p (const class loop *loop)
1039 {
1040 int ret;
1041 basic_block *bbs = get_loop_body (loop);
1042
1043 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1044 free (bbs);
1045
1046 return ret;
1047 }
1048
1049 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1050 loop structure and dominators (order of inner subloops is retained).
1051 E's destination must be LOOP header for this to work, i.e. it must be entry
1052 or latch edge of this loop; these are unique, as the loops must have
1053 preheaders for this function to work correctly (in case E is latch, the
1054 function unrolls the loop, if E is entry edge, it peels the loop). Store
1055 edges created by copying ORIG edge from copies corresponding to set bits in
1056 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1057 are numbered in order given by control flow through them) into TO_REMOVE
1058 array. Returns false if duplication is
1059 impossible. */
1060
1061 bool
1062 duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1063 unsigned int ndupl, sbitmap wont_exit,
1064 edge orig, vec<edge> *to_remove, int flags)
1065 {
1066 class loop *target, *aloop;
1067 class loop **orig_loops;
1068 unsigned n_orig_loops;
1069 basic_block header = loop->header, latch = loop->latch;
1070 basic_block *new_bbs, *bbs, *first_active;
1071 basic_block new_bb, bb, first_active_latch = NULL;
1072 edge ae, latch_edge;
1073 edge spec_edges[2], new_spec_edges[2];
1074 const int SE_LATCH = 0;
1075 const int SE_ORIG = 1;
1076 unsigned i, j, n;
1077 int is_latch = (latch == e->src);
1078 profile_probability *scale_step = NULL;
1079 profile_probability scale_main = profile_probability::always ();
1080 profile_probability scale_act = profile_probability::always ();
1081 profile_count after_exit_num = profile_count::zero (),
1082 after_exit_den = profile_count::zero ();
1083 bool scale_after_exit = false;
1084 int add_irreducible_flag;
1085 basic_block place_after;
1086 bitmap bbs_to_scale = NULL;
1087 bitmap_iterator bi;
1088
1089 gcc_assert (e->dest == loop->header);
1090 gcc_assert (ndupl > 0);
1091
1092 if (orig)
1093 {
1094 /* Orig must be edge out of the loop. */
1095 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1096 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1097 }
1098
1099 n = loop->num_nodes;
1100 bbs = get_loop_body_in_dom_order (loop);
1101 gcc_assert (bbs[0] == loop->header);
1102 gcc_assert (bbs[n - 1] == loop->latch);
1103
1104 /* Check whether duplication is possible. */
1105 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1106 {
1107 free (bbs);
1108 return false;
1109 }
1110 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1111
1112 /* In case we are doing loop peeling and the loop is in the middle of
1113 irreducible region, the peeled copies will be inside it too. */
1114 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1115 gcc_assert (!is_latch || !add_irreducible_flag);
1116
1117 /* Find edge from latch. */
1118 latch_edge = loop_latch_edge (loop);
1119
1120 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1121 {
1122 /* Calculate coefficients by that we have to scale counts
1123 of duplicated loop bodies. */
1124 profile_count count_in = header->count;
1125 profile_count count_le = latch_edge->count ();
1126 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1127 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1128 profile_probability prob_pass_wont_exit =
1129 (count_le + count_out_orig).probability_in (count_in);
1130
1131 if (orig && orig->probability.initialized_p ()
1132 && !(orig->probability == profile_probability::always ()))
1133 {
1134 /* The blocks that are dominated by a removed exit edge ORIG have
1135 frequencies scaled by this. */
1136 if (orig->count ().initialized_p ())
1137 {
1138 after_exit_num = orig->src->count;
1139 after_exit_den = after_exit_num - orig->count ();
1140 scale_after_exit = true;
1141 }
1142 bbs_to_scale = BITMAP_ALLOC (NULL);
1143 for (i = 0; i < n; i++)
1144 {
1145 if (bbs[i] != orig->src
1146 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1147 bitmap_set_bit (bbs_to_scale, i);
1148 }
1149 }
1150
1151 scale_step = XNEWVEC (profile_probability, ndupl);
1152
1153 for (i = 1; i <= ndupl; i++)
1154 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1155 ? prob_pass_wont_exit
1156 : prob_pass_thru;
1157
1158 /* Complete peeling is special as the probability of exit in last
1159 copy becomes 1. */
1160 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1161 {
1162 profile_count wanted_count = e->count ();
1163
1164 gcc_assert (!is_latch);
1165 /* First copy has count of incoming edge. Each subsequent
1166 count should be reduced by prob_pass_wont_exit. Caller
1167 should've managed the flags so all except for original loop
1168 has won't exist set. */
1169 scale_act = wanted_count.probability_in (count_in);
1170 /* Now simulate the duplication adjustments and compute header
1171 frequency of the last copy. */
1172 for (i = 0; i < ndupl; i++)
1173 wanted_count = wanted_count.apply_probability (scale_step [i]);
1174 scale_main = wanted_count.probability_in (count_in);
1175 }
1176 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1177 First iteration will be original loop followed by duplicated bodies.
1178 It is necessary to scale down the original so we get right overall
1179 number of iterations. */
1180 else if (is_latch)
1181 {
1182 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1183 ? prob_pass_wont_exit
1184 : prob_pass_thru;
1185 profile_probability p = prob_pass_main;
1186 profile_count scale_main_den = count_in;
1187 for (i = 0; i < ndupl; i++)
1188 {
1189 scale_main_den += count_in.apply_probability (p);
1190 p = p * scale_step[i];
1191 }
1192 /* If original loop is executed COUNT_IN times, the unrolled
1193 loop will account SCALE_MAIN_DEN times. */
1194 scale_main = count_in.probability_in (scale_main_den);
1195 scale_act = scale_main * prob_pass_main;
1196 }
1197 else
1198 {
1199 profile_count preheader_count = e->count ();
1200 for (i = 0; i < ndupl; i++)
1201 scale_main = scale_main * scale_step[i];
1202 scale_act = preheader_count.probability_in (count_in);
1203 }
1204 }
1205
1206 /* Loop the new bbs will belong to. */
1207 target = e->src->loop_father;
1208
1209 /* Original loops. */
1210 n_orig_loops = 0;
1211 for (aloop = loop->inner; aloop; aloop = aloop->next)
1212 n_orig_loops++;
1213 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1214 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1215 orig_loops[i] = aloop;
1216
1217 set_loop_copy (loop, target);
1218
1219 first_active = XNEWVEC (basic_block, n);
1220 if (is_latch)
1221 {
1222 memcpy (first_active, bbs, n * sizeof (basic_block));
1223 first_active_latch = latch;
1224 }
1225
1226 spec_edges[SE_ORIG] = orig;
1227 spec_edges[SE_LATCH] = latch_edge;
1228
1229 place_after = e->src;
1230 for (j = 0; j < ndupl; j++)
1231 {
1232 /* Copy loops. */
1233 copy_loops_to (orig_loops, n_orig_loops, target);
1234
1235 /* Copy bbs. */
1236 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1237 place_after, true);
1238 place_after = new_spec_edges[SE_LATCH]->src;
1239
1240 if (flags & DLTHE_RECORD_COPY_NUMBER)
1241 for (i = 0; i < n; i++)
1242 {
1243 gcc_assert (!new_bbs[i]->aux);
1244 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1245 }
1246
1247 /* Note whether the blocks and edges belong to an irreducible loop. */
1248 if (add_irreducible_flag)
1249 {
1250 for (i = 0; i < n; i++)
1251 new_bbs[i]->flags |= BB_DUPLICATED;
1252 for (i = 0; i < n; i++)
1253 {
1254 edge_iterator ei;
1255 new_bb = new_bbs[i];
1256 if (new_bb->loop_father == target)
1257 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1258
1259 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1260 if ((ae->dest->flags & BB_DUPLICATED)
1261 && (ae->src->loop_father == target
1262 || ae->dest->loop_father == target))
1263 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1264 }
1265 for (i = 0; i < n; i++)
1266 new_bbs[i]->flags &= ~BB_DUPLICATED;
1267 }
1268
1269 /* Redirect the special edges. */
1270 if (is_latch)
1271 {
1272 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1273 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1274 loop->header);
1275 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1276 latch = loop->latch = new_bbs[n - 1];
1277 e = latch_edge = new_spec_edges[SE_LATCH];
1278 }
1279 else
1280 {
1281 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1282 loop->header);
1283 redirect_edge_and_branch_force (e, new_bbs[0]);
1284 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1285 e = new_spec_edges[SE_LATCH];
1286 }
1287
1288 /* Record exit edge in this copy. */
1289 if (orig && bitmap_bit_p (wont_exit, j + 1))
1290 {
1291 if (to_remove)
1292 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1293 force_edge_cold (new_spec_edges[SE_ORIG], true);
1294
1295 /* Scale the frequencies of the blocks dominated by the exit. */
1296 if (bbs_to_scale && scale_after_exit)
1297 {
1298 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1299 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1300 after_exit_den);
1301 }
1302 }
1303
1304 /* Record the first copy in the control flow order if it is not
1305 the original loop (i.e. in case of peeling). */
1306 if (!first_active_latch)
1307 {
1308 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1309 first_active_latch = new_bbs[n - 1];
1310 }
1311
1312 /* Set counts and frequencies. */
1313 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1314 {
1315 scale_bbs_frequencies (new_bbs, n, scale_act);
1316 scale_act = scale_act * scale_step[j];
1317 }
1318 }
1319 free (new_bbs);
1320 free (orig_loops);
1321
1322 /* Record the exit edge in the original loop body, and update the frequencies. */
1323 if (orig && bitmap_bit_p (wont_exit, 0))
1324 {
1325 if (to_remove)
1326 to_remove->safe_push (orig);
1327 force_edge_cold (orig, true);
1328
1329 /* Scale the frequencies of the blocks dominated by the exit. */
1330 if (bbs_to_scale && scale_after_exit)
1331 {
1332 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1333 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1334 after_exit_den);
1335 }
1336 }
1337
1338 /* Update the original loop. */
1339 if (!is_latch)
1340 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1341 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1342 {
1343 scale_bbs_frequencies (bbs, n, scale_main);
1344 free (scale_step);
1345 }
1346
1347 /* Update dominators of outer blocks if affected. */
1348 for (i = 0; i < n; i++)
1349 {
1350 basic_block dominated, dom_bb;
1351 unsigned j;
1352
1353 bb = bbs[i];
1354
1355 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1356 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1357 {
1358 if (flow_bb_inside_loop_p (loop, dominated))
1359 continue;
1360 dom_bb = nearest_common_dominator (
1361 CDI_DOMINATORS, first_active[i], first_active_latch);
1362 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1363 }
1364 }
1365 free (first_active);
1366
1367 free (bbs);
1368 BITMAP_FREE (bbs_to_scale);
1369
1370 return true;
1371 }
1372
1373 /* A callback for make_forwarder block, to redirect all edges except for
1374 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1375 whether to redirect it. */
1376
1377 edge mfb_kj_edge;
1378 bool
1379 mfb_keep_just (edge e)
1380 {
1381 return e != mfb_kj_edge;
1382 }
1383
1384 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1385
1386 static bool
1387 has_preds_from_loop (basic_block block, class loop *loop)
1388 {
1389 edge e;
1390 edge_iterator ei;
1391
1392 FOR_EACH_EDGE (e, ei, block->preds)
1393 if (e->src->loop_father == loop)
1394 return true;
1395 return false;
1396 }
1397
1398 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1399 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1400 entry; otherwise we also force preheader block to have only one successor.
1401 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1402 to be a fallthru predecessor to the loop header and to have only
1403 predecessors from outside of the loop.
1404 The function also updates dominators. */
1405
1406 basic_block
1407 create_preheader (class loop *loop, int flags)
1408 {
1409 edge e;
1410 basic_block dummy;
1411 int nentry = 0;
1412 bool irred = false;
1413 bool latch_edge_was_fallthru;
1414 edge one_succ_pred = NULL, single_entry = NULL;
1415 edge_iterator ei;
1416
1417 FOR_EACH_EDGE (e, ei, loop->header->preds)
1418 {
1419 if (e->src == loop->latch)
1420 continue;
1421 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1422 nentry++;
1423 single_entry = e;
1424 if (single_succ_p (e->src))
1425 one_succ_pred = e;
1426 }
1427 gcc_assert (nentry);
1428 if (nentry == 1)
1429 {
1430 bool need_forwarder_block = false;
1431
1432 /* We do not allow entry block to be the loop preheader, since we
1433 cannot emit code there. */
1434 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1435 need_forwarder_block = true;
1436 else
1437 {
1438 /* If we want simple preheaders, also force the preheader to have
1439 just a single successor and a normal edge. */
1440 if ((flags & CP_SIMPLE_PREHEADERS)
1441 && ((single_entry->flags & EDGE_COMPLEX)
1442 || !single_succ_p (single_entry->src)))
1443 need_forwarder_block = true;
1444 /* If we want fallthru preheaders, also create forwarder block when
1445 preheader ends with a jump or has predecessors from loop. */
1446 else if ((flags & CP_FALLTHRU_PREHEADERS)
1447 && (JUMP_P (BB_END (single_entry->src))
1448 || has_preds_from_loop (single_entry->src, loop)))
1449 need_forwarder_block = true;
1450 }
1451 if (! need_forwarder_block)
1452 return NULL;
1453 }
1454
1455 mfb_kj_edge = loop_latch_edge (loop);
1456 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1457 if (nentry == 1
1458 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1459 || (single_entry->flags & EDGE_CROSSING) == 0))
1460 dummy = split_edge (single_entry);
1461 else
1462 {
1463 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1464 dummy = fallthru->src;
1465 loop->header = fallthru->dest;
1466 }
1467
1468 /* Try to be clever in placing the newly created preheader. The idea is to
1469 avoid breaking any "fallthruness" relationship between blocks.
1470
1471 The preheader was created just before the header and all incoming edges
1472 to the header were redirected to the preheader, except the latch edge.
1473 So the only problematic case is when this latch edge was a fallthru
1474 edge: it is not anymore after the preheader creation so we have broken
1475 the fallthruness. We're therefore going to look for a better place. */
1476 if (latch_edge_was_fallthru)
1477 {
1478 if (one_succ_pred)
1479 e = one_succ_pred;
1480 else
1481 e = EDGE_PRED (dummy, 0);
1482
1483 move_block_after (dummy, e->src);
1484 }
1485
1486 if (irred)
1487 {
1488 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1489 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1490 }
1491
1492 if (dump_file)
1493 fprintf (dump_file, "Created preheader block for loop %i\n",
1494 loop->num);
1495
1496 if (flags & CP_FALLTHRU_PREHEADERS)
1497 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1498 && !JUMP_P (BB_END (dummy)));
1499
1500 return dummy;
1501 }
1502
1503 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1504
1505 void
1506 create_preheaders (int flags)
1507 {
1508 if (!current_loops)
1509 return;
1510
1511 for (auto loop : loops_list (cfun, 0))
1512 create_preheader (loop, flags);
1513 loops_state_set (LOOPS_HAVE_PREHEADERS);
1514 }
1515
1516 /* Forces all loop latches to have only single successor. */
1517
1518 void
1519 force_single_succ_latches (void)
1520 {
1521 edge e;
1522
1523 for (auto loop : loops_list (cfun, 0))
1524 {
1525 if (loop->latch != loop->header && single_succ_p (loop->latch))
1526 continue;
1527
1528 e = find_edge (loop->latch, loop->header);
1529 gcc_checking_assert (e != NULL);
1530
1531 split_edge (e);
1532 }
1533 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1534 }
1535
1536 /* This function is called from loop_version. It splits the entry edge
1537 of the loop we want to version, adds the versioning condition, and
1538 adjust the edges to the two versions of the loop appropriately.
1539 e is an incoming edge. Returns the basic block containing the
1540 condition.
1541
1542 --- edge e ---- > [second_head]
1543
1544 Split it and insert new conditional expression and adjust edges.
1545
1546 --- edge e ---> [cond expr] ---> [first_head]
1547 |
1548 +---------> [second_head]
1549
1550 THEN_PROB is the probability of then branch of the condition.
1551 ELSE_PROB is the probability of else branch. Note that they may be both
1552 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1553 IFN_LOOP_DIST_ALIAS. */
1554
1555 static basic_block
1556 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1557 edge e, void *cond_expr,
1558 profile_probability then_prob,
1559 profile_probability else_prob)
1560 {
1561 basic_block new_head = NULL;
1562 edge e1;
1563
1564 gcc_assert (e->dest == second_head);
1565
1566 /* Split edge 'e'. This will create a new basic block, where we can
1567 insert conditional expr. */
1568 new_head = split_edge (e);
1569
1570 lv_add_condition_to_bb (first_head, second_head, new_head,
1571 cond_expr);
1572
1573 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1574 e = single_succ_edge (new_head);
1575 e1 = make_edge (new_head, first_head,
1576 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1577 e1->probability = then_prob;
1578 e->probability = else_prob;
1579
1580 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1581 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1582
1583 /* Adjust loop header phi nodes. */
1584 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1585
1586 return new_head;
1587 }
1588
1589 /* Main entry point for Loop Versioning transformation.
1590
1591 This transformation given a condition and a loop, creates
1592 -if (condition) { loop_copy1 } else { loop_copy2 },
1593 where loop_copy1 is the loop transformed in one way, and loop_copy2
1594 is the loop transformed in another way (or unchanged). COND_EXPR
1595 may be a run time test for things that were not resolved by static
1596 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1597
1598 If non-NULL, CONDITION_BB is set to the basic block containing the
1599 condition.
1600
1601 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1602 is the ratio by that the frequencies in the original loop should
1603 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1604 new loop should be scaled.
1605
1606 If PLACE_AFTER is true, we place the new loop after LOOP in the
1607 instruction stream, otherwise it is placed before LOOP. */
1608
1609 class loop *
1610 loop_version (class loop *loop,
1611 void *cond_expr, basic_block *condition_bb,
1612 profile_probability then_prob, profile_probability else_prob,
1613 profile_probability then_scale, profile_probability else_scale,
1614 bool place_after)
1615 {
1616 basic_block first_head, second_head;
1617 edge entry, latch_edge;
1618 int irred_flag;
1619 class loop *nloop;
1620 basic_block cond_bb;
1621
1622 /* Record entry and latch edges for the loop */
1623 entry = loop_preheader_edge (loop);
1624 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1625 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1626
1627 /* Note down head of loop as first_head. */
1628 first_head = entry->dest;
1629
1630 /* 1) Duplicate loop on the entry edge. */
1631 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULL, NULL,
1632 NULL, 0))
1633 {
1634 entry->flags |= irred_flag;
1635 return NULL;
1636 }
1637
1638 /* 2) loopify the duplicated new loop. */
1639 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1640 nloop = alloc_loop ();
1641 class loop *outer = loop_outer (latch_edge->dest->loop_father);
1642 edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1643 nloop->header = new_header_edge->dest;
1644 nloop->latch = latch_edge->src;
1645 loop_redirect_edge (latch_edge, nloop->header);
1646
1647 /* Compute new loop. */
1648 add_loop (nloop, outer);
1649 copy_loop_info (loop, nloop);
1650 set_loop_copy (loop, nloop);
1651
1652 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1653 lv_flush_pending_stmts (latch_edge);
1654
1655 /* After duplication entry edge now points to new loop head block.
1656 Note down new head as second_head. */
1657 second_head = entry->dest;
1658
1659 /* 3) Split loop entry edge and insert new block with cond expr. */
1660 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1661 entry, cond_expr, then_prob, else_prob);
1662 if (condition_bb)
1663 *condition_bb = cond_bb;
1664
1665 if (!cond_bb)
1666 {
1667 entry->flags |= irred_flag;
1668 return NULL;
1669 }
1670
1671 /* Add cond_bb to appropriate loop. */
1672 if (cond_bb->loop_father)
1673 remove_bb_from_loops (cond_bb);
1674 add_bb_to_loop (cond_bb, outer);
1675
1676 /* 4) Scale the original loop and new loop frequency. */
1677 scale_loop_frequencies (loop, then_scale);
1678 scale_loop_frequencies (nloop, else_scale);
1679 update_dominators_in_loop (loop);
1680 update_dominators_in_loop (nloop);
1681
1682 /* Adjust irreducible flag. */
1683 if (irred_flag)
1684 {
1685 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1686 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1687 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1688 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1689 }
1690
1691 if (place_after)
1692 {
1693 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1694 unsigned i;
1695
1696 after = loop->latch;
1697
1698 for (i = 0; i < nloop->num_nodes; i++)
1699 {
1700 move_block_after (bbs[i], after);
1701 after = bbs[i];
1702 }
1703 free (bbs);
1704 }
1705
1706 /* At this point condition_bb is loop preheader with two successors,
1707 first_head and second_head. Make sure that loop preheader has only
1708 one successor. */
1709 split_edge (loop_preheader_edge (loop));
1710 split_edge (loop_preheader_edge (nloop));
1711
1712 return nloop;
1713 }