]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
cfgrtl.c (cfg_layout_initialize): Check crtl->has_bb_partition instead of flag_reorde...
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "insn-config.h"
50 #include "memmodel.h"
51 #include "emit-rtl.h"
52 #include "cfgrtl.h"
53 #include "cfganal.h"
54 #include "cfgbuild.h"
55 #include "cfgcleanup.h"
56 #include "bb-reorder.h"
57 #include "rtl-error.h"
58 #include "insn-attr.h"
59 #include "dojump.h"
60 #include "expr.h"
61 #include "cfgloop.h"
62 #include "tree-pass.h"
63 #include "print-rtl.h"
64
65 /* Holds the interesting leading and trailing notes for the function.
66 Only applicable if the CFG is in cfglayout mode. */
67 static GTY(()) rtx_insn *cfg_layout_function_footer;
68 static GTY(()) rtx_insn *cfg_layout_function_header;
69
70 static rtx_insn *skip_insns_after_block (basic_block);
71 static void record_effective_endpoints (void);
72 static void fixup_reorder_chain (void);
73
74 void verify_insn_chain (void);
75 static void fixup_fallthru_exit_predecessor (void);
76 static int can_delete_note_p (const rtx_note *);
77 static int can_delete_label_p (const rtx_code_label *);
78 static basic_block rtl_split_edge (edge);
79 static bool rtl_move_block_after (basic_block, basic_block);
80 static int rtl_verify_flow_info (void);
81 static basic_block cfg_layout_split_block (basic_block, void *);
82 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
83 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
84 static void cfg_layout_delete_block (basic_block);
85 static void rtl_delete_block (basic_block);
86 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
87 static edge rtl_redirect_edge_and_branch (edge, basic_block);
88 static basic_block rtl_split_block (basic_block, void *);
89 static void rtl_dump_bb (FILE *, basic_block, int, dump_flags_t);
90 static int rtl_verify_flow_info_1 (void);
91 static void rtl_make_forwarder_block (edge);
92 \f
93 /* Return true if NOTE is not one of the ones that must be kept paired,
94 so that we may simply delete it. */
95
96 static int
97 can_delete_note_p (const rtx_note *note)
98 {
99 switch (NOTE_KIND (note))
100 {
101 case NOTE_INSN_DELETED:
102 case NOTE_INSN_BASIC_BLOCK:
103 case NOTE_INSN_EPILOGUE_BEG:
104 return true;
105
106 default:
107 return false;
108 }
109 }
110
111 /* True if a given label can be deleted. */
112
113 static int
114 can_delete_label_p (const rtx_code_label *label)
115 {
116 return (!LABEL_PRESERVE_P (label)
117 /* User declared labels must be preserved. */
118 && LABEL_NAME (label) == 0
119 && !vec_safe_contains<rtx_insn *> (forced_labels,
120 const_cast<rtx_code_label *> (label)));
121 }
122
123 /* Delete INSN by patching it out. */
124
125 void
126 delete_insn (rtx_insn *insn)
127 {
128 rtx note;
129 bool really_delete = true;
130
131 if (LABEL_P (insn))
132 {
133 /* Some labels can't be directly removed from the INSN chain, as they
134 might be references via variables, constant pool etc.
135 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
136 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
137 {
138 const char *name = LABEL_NAME (insn);
139 basic_block bb = BLOCK_FOR_INSN (insn);
140 rtx_insn *bb_note = NEXT_INSN (insn);
141
142 really_delete = false;
143 PUT_CODE (insn, NOTE);
144 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
145 NOTE_DELETED_LABEL_NAME (insn) = name;
146
147 /* If the note following the label starts a basic block, and the
148 label is a member of the same basic block, interchange the two. */
149 if (bb_note != NULL_RTX
150 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
151 && bb != NULL
152 && bb == BLOCK_FOR_INSN (bb_note))
153 {
154 reorder_insns_nobb (insn, insn, bb_note);
155 BB_HEAD (bb) = bb_note;
156 if (BB_END (bb) == bb_note)
157 BB_END (bb) = insn;
158 }
159 }
160
161 remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
162 }
163
164 if (really_delete)
165 {
166 /* If this insn has already been deleted, something is very wrong. */
167 gcc_assert (!insn->deleted ());
168 if (INSN_P (insn))
169 df_insn_delete (insn);
170 remove_insn (insn);
171 insn->set_deleted ();
172 }
173
174 /* If deleting a jump, decrement the use count of the label. Deleting
175 the label itself should happen in the normal course of block merging. */
176 if (JUMP_P (insn))
177 {
178 if (JUMP_LABEL (insn)
179 && LABEL_P (JUMP_LABEL (insn)))
180 LABEL_NUSES (JUMP_LABEL (insn))--;
181
182 /* If there are more targets, remove them too. */
183 while ((note
184 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
185 && LABEL_P (XEXP (note, 0)))
186 {
187 LABEL_NUSES (XEXP (note, 0))--;
188 remove_note (insn, note);
189 }
190 }
191
192 /* Also if deleting any insn that references a label as an operand. */
193 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
194 && LABEL_P (XEXP (note, 0)))
195 {
196 LABEL_NUSES (XEXP (note, 0))--;
197 remove_note (insn, note);
198 }
199
200 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
201 {
202 rtvec vec = table->get_labels ();
203 int len = GET_NUM_ELEM (vec);
204 int i;
205
206 for (i = 0; i < len; i++)
207 {
208 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
209
210 /* When deleting code in bulk (e.g. removing many unreachable
211 blocks) we can delete a label that's a target of the vector
212 before deleting the vector itself. */
213 if (!NOTE_P (label))
214 LABEL_NUSES (label)--;
215 }
216 }
217 }
218
219 /* Like delete_insn but also purge dead edges from BB.
220 Return true if any edges are eliminated. */
221
222 bool
223 delete_insn_and_edges (rtx_insn *insn)
224 {
225 bool purge = false;
226
227 if (INSN_P (insn)
228 && BLOCK_FOR_INSN (insn)
229 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
230 purge = true;
231 delete_insn (insn);
232 if (purge)
233 return purge_dead_edges (BLOCK_FOR_INSN (insn));
234 return false;
235 }
236
237 /* Unlink a chain of insns between START and FINISH, leaving notes
238 that must be paired. If CLEAR_BB is true, we set bb field for
239 insns that cannot be removed to NULL. */
240
241 void
242 delete_insn_chain (rtx start, rtx_insn *finish, bool clear_bb)
243 {
244 /* Unchain the insns one by one. It would be quicker to delete all of these
245 with a single unchaining, rather than one at a time, but we need to keep
246 the NOTE's. */
247 rtx_insn *current = finish;
248 while (1)
249 {
250 rtx_insn *prev = PREV_INSN (current);
251 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
252 ;
253 else
254 delete_insn (current);
255
256 if (clear_bb && !current->deleted ())
257 set_block_for_insn (current, NULL);
258
259 if (current == start)
260 break;
261 current = prev;
262 }
263 }
264 \f
265 /* Create a new basic block consisting of the instructions between HEAD and END
266 inclusive. This function is designed to allow fast BB construction - reuses
267 the note and basic block struct in BB_NOTE, if any and do not grow
268 BASIC_BLOCK chain and should be used directly only by CFG construction code.
269 END can be NULL in to create new empty basic block before HEAD. Both END
270 and HEAD can be NULL to create basic block at the end of INSN chain.
271 AFTER is the basic block we should be put after. */
272
273 basic_block
274 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
275 basic_block after)
276 {
277 basic_block bb;
278
279 if (bb_note
280 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
281 && bb->aux == NULL)
282 {
283 /* If we found an existing note, thread it back onto the chain. */
284
285 rtx_insn *after;
286
287 if (LABEL_P (head))
288 after = head;
289 else
290 {
291 after = PREV_INSN (head);
292 head = bb_note;
293 }
294
295 if (after != bb_note && NEXT_INSN (after) != bb_note)
296 reorder_insns_nobb (bb_note, bb_note, after);
297 }
298 else
299 {
300 /* Otherwise we must create a note and a basic block structure. */
301
302 bb = alloc_block ();
303
304 init_rtl_bb_info (bb);
305 if (!head && !end)
306 head = end = bb_note
307 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
308 else if (LABEL_P (head) && end)
309 {
310 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
311 if (head == end)
312 end = bb_note;
313 }
314 else
315 {
316 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
317 head = bb_note;
318 if (!end)
319 end = head;
320 }
321
322 NOTE_BASIC_BLOCK (bb_note) = bb;
323 }
324
325 /* Always include the bb note in the block. */
326 if (NEXT_INSN (end) == bb_note)
327 end = bb_note;
328
329 BB_HEAD (bb) = head;
330 BB_END (bb) = end;
331 bb->index = last_basic_block_for_fn (cfun)++;
332 bb->flags = BB_NEW | BB_RTL;
333 link_block (bb, after);
334 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
335 df_bb_refs_record (bb->index, false);
336 update_bb_for_insn (bb);
337 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
338
339 /* Tag the block so that we know it has been used when considering
340 other basic block notes. */
341 bb->aux = bb;
342
343 return bb;
344 }
345
346 /* Create new basic block consisting of instructions in between HEAD and END
347 and place it to the BB chain after block AFTER. END can be NULL to
348 create a new empty basic block before HEAD. Both END and HEAD can be
349 NULL to create basic block at the end of INSN chain. */
350
351 static basic_block
352 rtl_create_basic_block (void *headp, void *endp, basic_block after)
353 {
354 rtx_insn *head = (rtx_insn *) headp;
355 rtx_insn *end = (rtx_insn *) endp;
356 basic_block bb;
357
358 /* Grow the basic block array if needed. */
359 if ((size_t) last_basic_block_for_fn (cfun)
360 >= basic_block_info_for_fn (cfun)->length ())
361 {
362 size_t new_size =
363 (last_basic_block_for_fn (cfun)
364 + (last_basic_block_for_fn (cfun) + 3) / 4);
365 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
366 }
367
368 n_basic_blocks_for_fn (cfun)++;
369
370 bb = create_basic_block_structure (head, end, NULL, after);
371 bb->aux = NULL;
372 return bb;
373 }
374
375 static basic_block
376 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
377 {
378 basic_block newbb = rtl_create_basic_block (head, end, after);
379
380 return newbb;
381 }
382 \f
383 /* Delete the insns in a (non-live) block. We physically delete every
384 non-deleted-note insn, and update the flow graph appropriately.
385
386 Return nonzero if we deleted an exception handler. */
387
388 /* ??? Preserving all such notes strikes me as wrong. It would be nice
389 to post-process the stream to remove empty blocks, loops, ranges, etc. */
390
391 static void
392 rtl_delete_block (basic_block b)
393 {
394 rtx_insn *insn, *end;
395
396 /* If the head of this block is a CODE_LABEL, then it might be the
397 label for an exception handler which can't be reached. We need
398 to remove the label from the exception_handler_label list. */
399 insn = BB_HEAD (b);
400
401 end = get_last_bb_insn (b);
402
403 /* Selectively delete the entire chain. */
404 BB_HEAD (b) = NULL;
405 delete_insn_chain (insn, end, true);
406
407
408 if (dump_file)
409 fprintf (dump_file, "deleting block %d\n", b->index);
410 df_bb_delete (b->index);
411 }
412 \f
413 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
414
415 void
416 compute_bb_for_insn (void)
417 {
418 basic_block bb;
419
420 FOR_EACH_BB_FN (bb, cfun)
421 {
422 rtx_insn *end = BB_END (bb);
423 rtx_insn *insn;
424
425 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
426 {
427 BLOCK_FOR_INSN (insn) = bb;
428 if (insn == end)
429 break;
430 }
431 }
432 }
433
434 /* Release the basic_block_for_insn array. */
435
436 unsigned int
437 free_bb_for_insn (void)
438 {
439 rtx_insn *insn;
440 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
441 if (!BARRIER_P (insn))
442 BLOCK_FOR_INSN (insn) = NULL;
443 return 0;
444 }
445
446 namespace {
447
448 const pass_data pass_data_free_cfg =
449 {
450 RTL_PASS, /* type */
451 "*free_cfg", /* name */
452 OPTGROUP_NONE, /* optinfo_flags */
453 TV_NONE, /* tv_id */
454 0, /* properties_required */
455 0, /* properties_provided */
456 PROP_cfg, /* properties_destroyed */
457 0, /* todo_flags_start */
458 0, /* todo_flags_finish */
459 };
460
461 class pass_free_cfg : public rtl_opt_pass
462 {
463 public:
464 pass_free_cfg (gcc::context *ctxt)
465 : rtl_opt_pass (pass_data_free_cfg, ctxt)
466 {}
467
468 /* opt_pass methods: */
469 virtual unsigned int execute (function *);
470
471 }; // class pass_free_cfg
472
473 unsigned int
474 pass_free_cfg::execute (function *)
475 {
476 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
477 valid at that point so it would be too late to call df_analyze. */
478 if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
479 {
480 df_note_add_problem ();
481 df_analyze ();
482 }
483
484 if (crtl->has_bb_partition)
485 insert_section_boundary_note ();
486
487 free_bb_for_insn ();
488 return 0;
489 }
490
491 } // anon namespace
492
493 rtl_opt_pass *
494 make_pass_free_cfg (gcc::context *ctxt)
495 {
496 return new pass_free_cfg (ctxt);
497 }
498
499 /* Return RTX to emit after when we want to emit code on the entry of function. */
500 rtx_insn *
501 entry_of_function (void)
502 {
503 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
504 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
505 }
506
507 /* Emit INSN at the entry point of the function, ensuring that it is only
508 executed once per function. */
509 void
510 emit_insn_at_entry (rtx insn)
511 {
512 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
513 edge e = ei_safe_edge (ei);
514 gcc_assert (e->flags & EDGE_FALLTHRU);
515
516 insert_insn_on_edge (insn, e);
517 commit_edge_insertions ();
518 }
519
520 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
521 (or BARRIER if found) and notify df of the bb change.
522 The insn chain range is inclusive
523 (i.e. both BEGIN and END will be updated. */
524
525 static void
526 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
527 {
528 rtx_insn *insn;
529
530 end = NEXT_INSN (end);
531 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
532 if (!BARRIER_P (insn))
533 df_insn_change_bb (insn, bb);
534 }
535
536 /* Update BLOCK_FOR_INSN of insns in BB to BB,
537 and notify df of the change. */
538
539 void
540 update_bb_for_insn (basic_block bb)
541 {
542 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
543 }
544
545 \f
546 /* Like active_insn_p, except keep the return value clobber around
547 even after reload. */
548
549 static bool
550 flow_active_insn_p (const rtx_insn *insn)
551 {
552 if (active_insn_p (insn))
553 return true;
554
555 /* A clobber of the function return value exists for buggy
556 programs that fail to return a value. Its effect is to
557 keep the return value from being live across the entire
558 function. If we allow it to be skipped, we introduce the
559 possibility for register lifetime confusion. */
560 if (GET_CODE (PATTERN (insn)) == CLOBBER
561 && REG_P (XEXP (PATTERN (insn), 0))
562 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
563 return true;
564
565 return false;
566 }
567
568 /* Return true if the block has no effect and only forwards control flow to
569 its single destination. */
570
571 bool
572 contains_no_active_insn_p (const_basic_block bb)
573 {
574 rtx_insn *insn;
575
576 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
577 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
578 || !single_succ_p (bb)
579 || (single_succ_edge (bb)->flags & EDGE_FAKE) != 0)
580 return false;
581
582 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
583 if (INSN_P (insn) && flow_active_insn_p (insn))
584 return false;
585
586 return (!INSN_P (insn)
587 || (JUMP_P (insn) && simplejump_p (insn))
588 || !flow_active_insn_p (insn));
589 }
590
591 /* Likewise, but protect loop latches, headers and preheaders. */
592 /* FIXME: Make this a cfg hook. */
593
594 bool
595 forwarder_block_p (const_basic_block bb)
596 {
597 if (!contains_no_active_insn_p (bb))
598 return false;
599
600 /* Protect loop latches, headers and preheaders. */
601 if (current_loops)
602 {
603 basic_block dest;
604 if (bb->loop_father->header == bb)
605 return false;
606 dest = EDGE_SUCC (bb, 0)->dest;
607 if (dest->loop_father->header == dest)
608 return false;
609 }
610
611 return true;
612 }
613
614 /* Return nonzero if we can reach target from src by falling through. */
615 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
616
617 bool
618 can_fallthru (basic_block src, basic_block target)
619 {
620 rtx_insn *insn = BB_END (src);
621 rtx_insn *insn2;
622 edge e;
623 edge_iterator ei;
624
625 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
626 return true;
627 if (src->next_bb != target)
628 return false;
629
630 /* ??? Later we may add code to move jump tables offline. */
631 if (tablejump_p (insn, NULL, NULL))
632 return false;
633
634 FOR_EACH_EDGE (e, ei, src->succs)
635 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
636 && e->flags & EDGE_FALLTHRU)
637 return false;
638
639 insn2 = BB_HEAD (target);
640 if (!active_insn_p (insn2))
641 insn2 = next_active_insn (insn2);
642
643 return next_active_insn (insn) == insn2;
644 }
645
646 /* Return nonzero if we could reach target from src by falling through,
647 if the target was made adjacent. If we already have a fall-through
648 edge to the exit block, we can't do that. */
649 static bool
650 could_fall_through (basic_block src, basic_block target)
651 {
652 edge e;
653 edge_iterator ei;
654
655 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
656 return true;
657 FOR_EACH_EDGE (e, ei, src->succs)
658 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
659 && e->flags & EDGE_FALLTHRU)
660 return 0;
661 return true;
662 }
663 \f
664 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
665 rtx_note *
666 bb_note (basic_block bb)
667 {
668 rtx_insn *note;
669
670 note = BB_HEAD (bb);
671 if (LABEL_P (note))
672 note = NEXT_INSN (note);
673
674 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
675 return as_a <rtx_note *> (note);
676 }
677
678 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
679 note associated with the BLOCK. */
680
681 static rtx_insn *
682 first_insn_after_basic_block_note (basic_block block)
683 {
684 rtx_insn *insn;
685
686 /* Get the first instruction in the block. */
687 insn = BB_HEAD (block);
688
689 if (insn == NULL_RTX)
690 return NULL;
691 if (LABEL_P (insn))
692 insn = NEXT_INSN (insn);
693 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
694
695 return NEXT_INSN (insn);
696 }
697
698 /* Creates a new basic block just after basic block BB by splitting
699 everything after specified instruction INSNP. */
700
701 static basic_block
702 rtl_split_block (basic_block bb, void *insnp)
703 {
704 basic_block new_bb;
705 rtx_insn *insn = (rtx_insn *) insnp;
706 edge e;
707 edge_iterator ei;
708
709 if (!insn)
710 {
711 insn = first_insn_after_basic_block_note (bb);
712
713 if (insn)
714 {
715 rtx_insn *next = insn;
716
717 insn = PREV_INSN (insn);
718
719 /* If the block contains only debug insns, insn would have
720 been NULL in a non-debug compilation, and then we'd end
721 up emitting a DELETED note. For -fcompare-debug
722 stability, emit the note too. */
723 if (insn != BB_END (bb)
724 && DEBUG_INSN_P (next)
725 && DEBUG_INSN_P (BB_END (bb)))
726 {
727 while (next != BB_END (bb) && DEBUG_INSN_P (next))
728 next = NEXT_INSN (next);
729
730 if (next == BB_END (bb))
731 emit_note_after (NOTE_INSN_DELETED, next);
732 }
733 }
734 else
735 insn = get_last_insn ();
736 }
737
738 /* We probably should check type of the insn so that we do not create
739 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
740 bother. */
741 if (insn == BB_END (bb))
742 emit_note_after (NOTE_INSN_DELETED, insn);
743
744 /* Create the new basic block. */
745 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
746 BB_COPY_PARTITION (new_bb, bb);
747 BB_END (bb) = insn;
748
749 /* Redirect the outgoing edges. */
750 new_bb->succs = bb->succs;
751 bb->succs = NULL;
752 FOR_EACH_EDGE (e, ei, new_bb->succs)
753 e->src = new_bb;
754
755 /* The new block starts off being dirty. */
756 df_set_bb_dirty (bb);
757 return new_bb;
758 }
759
760 /* Return true if the single edge between blocks A and B is the only place
761 in RTL which holds some unique locus. */
762
763 static bool
764 unique_locus_on_edge_between_p (basic_block a, basic_block b)
765 {
766 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
767 rtx_insn *insn, *end;
768
769 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
770 return false;
771
772 /* First scan block A backward. */
773 insn = BB_END (a);
774 end = PREV_INSN (BB_HEAD (a));
775 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
776 insn = PREV_INSN (insn);
777
778 if (insn != end && INSN_LOCATION (insn) == goto_locus)
779 return false;
780
781 /* Then scan block B forward. */
782 insn = BB_HEAD (b);
783 if (insn)
784 {
785 end = NEXT_INSN (BB_END (b));
786 while (insn != end && !NONDEBUG_INSN_P (insn))
787 insn = NEXT_INSN (insn);
788
789 if (insn != end && INSN_HAS_LOCATION (insn)
790 && INSN_LOCATION (insn) == goto_locus)
791 return false;
792 }
793
794 return true;
795 }
796
797 /* If the single edge between blocks A and B is the only place in RTL which
798 holds some unique locus, emit a nop with that locus between the blocks. */
799
800 static void
801 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
802 {
803 if (!unique_locus_on_edge_between_p (a, b))
804 return;
805
806 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
807 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
808 }
809
810 /* Blocks A and B are to be merged into a single block A. The insns
811 are already contiguous. */
812
813 static void
814 rtl_merge_blocks (basic_block a, basic_block b)
815 {
816 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
817 rtx_insn *del_first = NULL, *del_last = NULL;
818 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
819 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
820 int b_empty = 0;
821
822 if (dump_file)
823 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
824 a->index);
825
826 while (DEBUG_INSN_P (b_end))
827 b_end = PREV_INSN (b_debug_start = b_end);
828
829 /* If there was a CODE_LABEL beginning B, delete it. */
830 if (LABEL_P (b_head))
831 {
832 /* Detect basic blocks with nothing but a label. This can happen
833 in particular at the end of a function. */
834 if (b_head == b_end)
835 b_empty = 1;
836
837 del_first = del_last = b_head;
838 b_head = NEXT_INSN (b_head);
839 }
840
841 /* Delete the basic block note and handle blocks containing just that
842 note. */
843 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
844 {
845 if (b_head == b_end)
846 b_empty = 1;
847 if (! del_last)
848 del_first = b_head;
849
850 del_last = b_head;
851 b_head = NEXT_INSN (b_head);
852 }
853
854 /* If there was a jump out of A, delete it. */
855 if (JUMP_P (a_end))
856 {
857 rtx_insn *prev;
858
859 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
860 if (!NOTE_P (prev)
861 || NOTE_INSN_BASIC_BLOCK_P (prev)
862 || prev == BB_HEAD (a))
863 break;
864
865 del_first = a_end;
866
867 /* If this was a conditional jump, we need to also delete
868 the insn that set cc0. */
869 if (HAVE_cc0 && only_sets_cc0_p (prev))
870 {
871 rtx_insn *tmp = prev;
872
873 prev = prev_nonnote_insn (prev);
874 if (!prev)
875 prev = BB_HEAD (a);
876 del_first = tmp;
877 }
878
879 a_end = PREV_INSN (del_first);
880 }
881 else if (BARRIER_P (NEXT_INSN (a_end)))
882 del_first = NEXT_INSN (a_end);
883
884 /* Delete everything marked above as well as crap that might be
885 hanging out between the two blocks. */
886 BB_END (a) = a_end;
887 BB_HEAD (b) = b_empty ? NULL : b_head;
888 delete_insn_chain (del_first, del_last, true);
889
890 /* When not optimizing and the edge is the only place in RTL which holds
891 some unique locus, emit a nop with that locus in between. */
892 if (!optimize)
893 {
894 emit_nop_for_unique_locus_between (a, b);
895 a_end = BB_END (a);
896 }
897
898 /* Reassociate the insns of B with A. */
899 if (!b_empty)
900 {
901 update_bb_for_insn_chain (a_end, b_debug_end, a);
902
903 BB_END (a) = b_debug_end;
904 BB_HEAD (b) = NULL;
905 }
906 else if (b_end != b_debug_end)
907 {
908 /* Move any deleted labels and other notes between the end of A
909 and the debug insns that make up B after the debug insns,
910 bringing the debug insns into A while keeping the notes after
911 the end of A. */
912 if (NEXT_INSN (a_end) != b_debug_start)
913 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
914 b_debug_end);
915 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
916 BB_END (a) = b_debug_end;
917 }
918
919 df_bb_delete (b->index);
920
921 /* If B was a forwarder block, propagate the locus on the edge. */
922 if (forwarder_p
923 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
924 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
925
926 if (dump_file)
927 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
928 }
929
930
931 /* Return true when block A and B can be merged. */
932
933 static bool
934 rtl_can_merge_blocks (basic_block a, basic_block b)
935 {
936 /* If we are partitioning hot/cold basic blocks, we don't want to
937 mess up unconditional or indirect jumps that cross between hot
938 and cold sections.
939
940 Basic block partitioning may result in some jumps that appear to
941 be optimizable (or blocks that appear to be mergeable), but which really
942 must be left untouched (they are required to make it safely across
943 partition boundaries). See the comments at the top of
944 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
945
946 if (BB_PARTITION (a) != BB_PARTITION (b))
947 return false;
948
949 /* Protect the loop latches. */
950 if (current_loops && b->loop_father->latch == b)
951 return false;
952
953 /* There must be exactly one edge in between the blocks. */
954 return (single_succ_p (a)
955 && single_succ (a) == b
956 && single_pred_p (b)
957 && a != b
958 /* Must be simple edge. */
959 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
960 && a->next_bb == b
961 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
962 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
963 /* If the jump insn has side effects,
964 we can't kill the edge. */
965 && (!JUMP_P (BB_END (a))
966 || (reload_completed
967 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
968 }
969 \f
970 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
971 exist. */
972
973 rtx_code_label *
974 block_label (basic_block block)
975 {
976 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
977 return NULL;
978
979 if (!LABEL_P (BB_HEAD (block)))
980 {
981 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
982 }
983
984 return as_a <rtx_code_label *> (BB_HEAD (block));
985 }
986
987 /* Attempt to perform edge redirection by replacing possibly complex jump
988 instruction by unconditional jump or removing jump completely. This can
989 apply only if all edges now point to the same block. The parameters and
990 return values are equivalent to redirect_edge_and_branch. */
991
992 edge
993 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
994 {
995 basic_block src = e->src;
996 rtx_insn *insn = BB_END (src), *kill_from;
997 rtx set;
998 int fallthru = 0;
999
1000 /* If we are partitioning hot/cold basic blocks, we don't want to
1001 mess up unconditional or indirect jumps that cross between hot
1002 and cold sections.
1003
1004 Basic block partitioning may result in some jumps that appear to
1005 be optimizable (or blocks that appear to be mergeable), but which really
1006 must be left untouched (they are required to make it safely across
1007 partition boundaries). See the comments at the top of
1008 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1009
1010 if (BB_PARTITION (src) != BB_PARTITION (target))
1011 return NULL;
1012
1013 /* We can replace or remove a complex jump only when we have exactly
1014 two edges. Also, if we have exactly one outgoing edge, we can
1015 redirect that. */
1016 if (EDGE_COUNT (src->succs) >= 3
1017 /* Verify that all targets will be TARGET. Specifically, the
1018 edge that is not E must also go to TARGET. */
1019 || (EDGE_COUNT (src->succs) == 2
1020 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1021 return NULL;
1022
1023 if (!onlyjump_p (insn))
1024 return NULL;
1025 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1026 return NULL;
1027
1028 /* Avoid removing branch with side effects. */
1029 set = single_set (insn);
1030 if (!set || side_effects_p (set))
1031 return NULL;
1032
1033 /* In case we zap a conditional jump, we'll need to kill
1034 the cc0 setter too. */
1035 kill_from = insn;
1036 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1037 && only_sets_cc0_p (PREV_INSN (insn)))
1038 kill_from = PREV_INSN (insn);
1039
1040 /* See if we can create the fallthru edge. */
1041 if (in_cfglayout || can_fallthru (src, target))
1042 {
1043 if (dump_file)
1044 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1045 fallthru = 1;
1046
1047 /* Selectively unlink whole insn chain. */
1048 if (in_cfglayout)
1049 {
1050 rtx_insn *insn = BB_FOOTER (src);
1051
1052 delete_insn_chain (kill_from, BB_END (src), false);
1053
1054 /* Remove barriers but keep jumptables. */
1055 while (insn)
1056 {
1057 if (BARRIER_P (insn))
1058 {
1059 if (PREV_INSN (insn))
1060 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1061 else
1062 BB_FOOTER (src) = NEXT_INSN (insn);
1063 if (NEXT_INSN (insn))
1064 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1065 }
1066 if (LABEL_P (insn))
1067 break;
1068 insn = NEXT_INSN (insn);
1069 }
1070 }
1071 else
1072 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1073 false);
1074 }
1075
1076 /* If this already is simplejump, redirect it. */
1077 else if (simplejump_p (insn))
1078 {
1079 if (e->dest == target)
1080 return NULL;
1081 if (dump_file)
1082 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1083 INSN_UID (insn), e->dest->index, target->index);
1084 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1085 block_label (target), 0))
1086 {
1087 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1088 return NULL;
1089 }
1090 }
1091
1092 /* Cannot do anything for target exit block. */
1093 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1094 return NULL;
1095
1096 /* Or replace possibly complicated jump insn by simple jump insn. */
1097 else
1098 {
1099 rtx_code_label *target_label = block_label (target);
1100 rtx_insn *barrier;
1101 rtx_insn *label;
1102 rtx_jump_table_data *table;
1103
1104 emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1105 JUMP_LABEL (BB_END (src)) = target_label;
1106 LABEL_NUSES (target_label)++;
1107 if (dump_file)
1108 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1109 INSN_UID (insn), INSN_UID (BB_END (src)));
1110
1111
1112 delete_insn_chain (kill_from, insn, false);
1113
1114 /* Recognize a tablejump that we are converting to a
1115 simple jump and remove its associated CODE_LABEL
1116 and ADDR_VEC or ADDR_DIFF_VEC. */
1117 if (tablejump_p (insn, &label, &table))
1118 delete_insn_chain (label, table, false);
1119
1120 barrier = next_nonnote_insn (BB_END (src));
1121 if (!barrier || !BARRIER_P (barrier))
1122 emit_barrier_after (BB_END (src));
1123 else
1124 {
1125 if (barrier != NEXT_INSN (BB_END (src)))
1126 {
1127 /* Move the jump before barrier so that the notes
1128 which originally were or were created before jump table are
1129 inside the basic block. */
1130 rtx_insn *new_insn = BB_END (src);
1131
1132 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1133 PREV_INSN (barrier), src);
1134
1135 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1136 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1137
1138 SET_NEXT_INSN (new_insn) = barrier;
1139 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1140
1141 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1142 SET_PREV_INSN (barrier) = new_insn;
1143 }
1144 }
1145 }
1146
1147 /* Keep only one edge out and set proper flags. */
1148 if (!single_succ_p (src))
1149 remove_edge (e);
1150 gcc_assert (single_succ_p (src));
1151
1152 e = single_succ_edge (src);
1153 if (fallthru)
1154 e->flags = EDGE_FALLTHRU;
1155 else
1156 e->flags = 0;
1157
1158 e->probability = REG_BR_PROB_BASE;
1159 e->count = src->count;
1160
1161 if (e->dest != target)
1162 redirect_edge_succ (e, target);
1163 return e;
1164 }
1165
1166 /* Subroutine of redirect_branch_edge that tries to patch the jump
1167 instruction INSN so that it reaches block NEW. Do this
1168 only when it originally reached block OLD. Return true if this
1169 worked or the original target wasn't OLD, return false if redirection
1170 doesn't work. */
1171
1172 static bool
1173 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1174 {
1175 rtx_jump_table_data *table;
1176 rtx tmp;
1177 /* Recognize a tablejump and adjust all matching cases. */
1178 if (tablejump_p (insn, NULL, &table))
1179 {
1180 rtvec vec;
1181 int j;
1182 rtx_code_label *new_label = block_label (new_bb);
1183
1184 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1185 return false;
1186 vec = table->get_labels ();
1187
1188 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1189 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1190 {
1191 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1192 --LABEL_NUSES (old_label);
1193 ++LABEL_NUSES (new_label);
1194 }
1195
1196 /* Handle casesi dispatch insns. */
1197 if ((tmp = single_set (insn)) != NULL
1198 && SET_DEST (tmp) == pc_rtx
1199 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1200 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1201 && label_ref_label (XEXP (SET_SRC (tmp), 2)) == old_label)
1202 {
1203 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1204 new_label);
1205 --LABEL_NUSES (old_label);
1206 ++LABEL_NUSES (new_label);
1207 }
1208 }
1209 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1210 {
1211 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1212 rtx note;
1213
1214 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1215 return false;
1216 rtx_code_label *new_label = block_label (new_bb);
1217
1218 for (i = 0; i < n; ++i)
1219 {
1220 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1221 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1222 if (XEXP (old_ref, 0) == old_label)
1223 {
1224 ASM_OPERANDS_LABEL (tmp, i)
1225 = gen_rtx_LABEL_REF (Pmode, new_label);
1226 --LABEL_NUSES (old_label);
1227 ++LABEL_NUSES (new_label);
1228 }
1229 }
1230
1231 if (JUMP_LABEL (insn) == old_label)
1232 {
1233 JUMP_LABEL (insn) = new_label;
1234 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1235 if (note)
1236 remove_note (insn, note);
1237 }
1238 else
1239 {
1240 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1241 if (note)
1242 remove_note (insn, note);
1243 if (JUMP_LABEL (insn) != new_label
1244 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1245 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1246 }
1247 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1248 != NULL_RTX)
1249 XEXP (note, 0) = new_label;
1250 }
1251 else
1252 {
1253 /* ?? We may play the games with moving the named labels from
1254 one basic block to the other in case only one computed_jump is
1255 available. */
1256 if (computed_jump_p (insn)
1257 /* A return instruction can't be redirected. */
1258 || returnjump_p (insn))
1259 return false;
1260
1261 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1262 {
1263 /* If the insn doesn't go where we think, we're confused. */
1264 gcc_assert (JUMP_LABEL (insn) == old_label);
1265
1266 /* If the substitution doesn't succeed, die. This can happen
1267 if the back end emitted unrecognizable instructions or if
1268 target is exit block on some arches. */
1269 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1270 block_label (new_bb), 0))
1271 {
1272 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
1273 return false;
1274 }
1275 }
1276 }
1277 return true;
1278 }
1279
1280
1281 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1282 NULL on failure */
1283 static edge
1284 redirect_branch_edge (edge e, basic_block target)
1285 {
1286 rtx_insn *old_label = BB_HEAD (e->dest);
1287 basic_block src = e->src;
1288 rtx_insn *insn = BB_END (src);
1289
1290 /* We can only redirect non-fallthru edges of jump insn. */
1291 if (e->flags & EDGE_FALLTHRU)
1292 return NULL;
1293 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1294 return NULL;
1295
1296 if (!currently_expanding_to_rtl)
1297 {
1298 if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1299 return NULL;
1300 }
1301 else
1302 /* When expanding this BB might actually contain multiple
1303 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1304 Redirect all of those that match our label. */
1305 FOR_BB_INSNS (src, insn)
1306 if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1307 old_label, target))
1308 return NULL;
1309
1310 if (dump_file)
1311 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1312 e->src->index, e->dest->index, target->index);
1313
1314 if (e->dest != target)
1315 e = redirect_edge_succ_nodup (e, target);
1316
1317 return e;
1318 }
1319
1320 /* Called when edge E has been redirected to a new destination,
1321 in order to update the region crossing flag on the edge and
1322 jump. */
1323
1324 static void
1325 fixup_partition_crossing (edge e)
1326 {
1327 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1328 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1329 return;
1330 /* If we redirected an existing edge, it may already be marked
1331 crossing, even though the new src is missing a reg crossing note.
1332 But make sure reg crossing note doesn't already exist before
1333 inserting. */
1334 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1335 {
1336 e->flags |= EDGE_CROSSING;
1337 if (JUMP_P (BB_END (e->src))
1338 && !CROSSING_JUMP_P (BB_END (e->src)))
1339 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1340 }
1341 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1342 {
1343 e->flags &= ~EDGE_CROSSING;
1344 /* Remove the section crossing note from jump at end of
1345 src if it exists, and if no other successors are
1346 still crossing. */
1347 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1348 {
1349 bool has_crossing_succ = false;
1350 edge e2;
1351 edge_iterator ei;
1352 FOR_EACH_EDGE (e2, ei, e->src->succs)
1353 {
1354 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1355 if (has_crossing_succ)
1356 break;
1357 }
1358 if (!has_crossing_succ)
1359 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1360 }
1361 }
1362 }
1363
1364 /* Called when block BB has been reassigned to the cold partition,
1365 because it is now dominated by another cold block,
1366 to ensure that the region crossing attributes are updated. */
1367
1368 static void
1369 fixup_new_cold_bb (basic_block bb)
1370 {
1371 edge e;
1372 edge_iterator ei;
1373
1374 /* This is called when a hot bb is found to now be dominated
1375 by a cold bb and therefore needs to become cold. Therefore,
1376 its preds will no longer be region crossing. Any non-dominating
1377 preds that were previously hot would also have become cold
1378 in the caller for the same region. Any preds that were previously
1379 region-crossing will be adjusted in fixup_partition_crossing. */
1380 FOR_EACH_EDGE (e, ei, bb->preds)
1381 {
1382 fixup_partition_crossing (e);
1383 }
1384
1385 /* Possibly need to make bb's successor edges region crossing,
1386 or remove stale region crossing. */
1387 FOR_EACH_EDGE (e, ei, bb->succs)
1388 {
1389 /* We can't have fall-through edges across partition boundaries.
1390 Note that force_nonfallthru will do any necessary partition
1391 boundary fixup by calling fixup_partition_crossing itself. */
1392 if ((e->flags & EDGE_FALLTHRU)
1393 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1394 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1395 force_nonfallthru (e);
1396 else
1397 fixup_partition_crossing (e);
1398 }
1399 }
1400
1401 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1402 expense of adding new instructions or reordering basic blocks.
1403
1404 Function can be also called with edge destination equivalent to the TARGET.
1405 Then it should try the simplifications and do nothing if none is possible.
1406
1407 Return edge representing the branch if transformation succeeded. Return NULL
1408 on failure.
1409 We still return NULL in case E already destinated TARGET and we didn't
1410 managed to simplify instruction stream. */
1411
1412 static edge
1413 rtl_redirect_edge_and_branch (edge e, basic_block target)
1414 {
1415 edge ret;
1416 basic_block src = e->src;
1417 basic_block dest = e->dest;
1418
1419 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1420 return NULL;
1421
1422 if (dest == target)
1423 return e;
1424
1425 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1426 {
1427 df_set_bb_dirty (src);
1428 fixup_partition_crossing (ret);
1429 return ret;
1430 }
1431
1432 ret = redirect_branch_edge (e, target);
1433 if (!ret)
1434 return NULL;
1435
1436 df_set_bb_dirty (src);
1437 fixup_partition_crossing (ret);
1438 return ret;
1439 }
1440
1441 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1442
1443 void
1444 emit_barrier_after_bb (basic_block bb)
1445 {
1446 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1447 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1448 || current_ir_type () == IR_RTL_CFGLAYOUT);
1449 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1450 {
1451 rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1452
1453 if (BB_FOOTER (bb))
1454 {
1455 rtx_insn *footer_tail = BB_FOOTER (bb);
1456
1457 while (NEXT_INSN (footer_tail))
1458 footer_tail = NEXT_INSN (footer_tail);
1459 if (!BARRIER_P (footer_tail))
1460 {
1461 SET_NEXT_INSN (footer_tail) = insn;
1462 SET_PREV_INSN (insn) = footer_tail;
1463 }
1464 }
1465 else
1466 BB_FOOTER (bb) = insn;
1467 }
1468 }
1469
1470 /* Like force_nonfallthru below, but additionally performs redirection
1471 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1472 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1473 simple_return_rtx, indicating which kind of returnjump to create.
1474 It should be NULL otherwise. */
1475
1476 basic_block
1477 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1478 {
1479 basic_block jump_block, new_bb = NULL, src = e->src;
1480 rtx note;
1481 edge new_edge;
1482 int abnormal_edge_flags = 0;
1483 bool asm_goto_edge = false;
1484 int loc;
1485
1486 /* In the case the last instruction is conditional jump to the next
1487 instruction, first redirect the jump itself and then continue
1488 by creating a basic block afterwards to redirect fallthru edge. */
1489 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1490 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1491 && any_condjump_p (BB_END (e->src))
1492 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1493 {
1494 rtx note;
1495 edge b = unchecked_make_edge (e->src, target, 0);
1496 bool redirected;
1497
1498 redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1499 block_label (target), 0);
1500 gcc_assert (redirected);
1501
1502 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1503 if (note)
1504 {
1505 int prob = XINT (note, 0);
1506
1507 b->probability = prob;
1508 b->count = e->count.apply_probability (prob);
1509 e->probability -= e->probability;
1510 e->count -= b->count;
1511 if (e->probability < 0)
1512 e->probability = 0;
1513 }
1514 }
1515
1516 if (e->flags & EDGE_ABNORMAL)
1517 {
1518 /* Irritating special case - fallthru edge to the same block as abnormal
1519 edge.
1520 We can't redirect abnormal edge, but we still can split the fallthru
1521 one and create separate abnormal edge to original destination.
1522 This allows bb-reorder to make such edge non-fallthru. */
1523 gcc_assert (e->dest == target);
1524 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1525 e->flags &= EDGE_FALLTHRU;
1526 }
1527 else
1528 {
1529 gcc_assert (e->flags & EDGE_FALLTHRU);
1530 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1531 {
1532 /* We can't redirect the entry block. Create an empty block
1533 at the start of the function which we use to add the new
1534 jump. */
1535 edge tmp;
1536 edge_iterator ei;
1537 bool found = false;
1538
1539 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1540 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1541
1542 /* Change the existing edge's source to be the new block, and add
1543 a new edge from the entry block to the new block. */
1544 e->src = bb;
1545 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1546 (tmp = ei_safe_edge (ei)); )
1547 {
1548 if (tmp == e)
1549 {
1550 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1551 found = true;
1552 break;
1553 }
1554 else
1555 ei_next (&ei);
1556 }
1557
1558 gcc_assert (found);
1559
1560 vec_safe_push (bb->succs, e);
1561 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1562 EDGE_FALLTHRU);
1563 }
1564 }
1565
1566 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1567 don't point to the target or fallthru label. */
1568 if (JUMP_P (BB_END (e->src))
1569 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1570 && (e->flags & EDGE_FALLTHRU)
1571 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1572 {
1573 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1574 bool adjust_jump_target = false;
1575
1576 for (i = 0; i < n; ++i)
1577 {
1578 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1579 {
1580 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1581 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1582 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1583 adjust_jump_target = true;
1584 }
1585 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1586 asm_goto_edge = true;
1587 }
1588 if (adjust_jump_target)
1589 {
1590 rtx_insn *insn = BB_END (e->src);
1591 rtx note;
1592 rtx_insn *old_label = BB_HEAD (e->dest);
1593 rtx_insn *new_label = BB_HEAD (target);
1594
1595 if (JUMP_LABEL (insn) == old_label)
1596 {
1597 JUMP_LABEL (insn) = new_label;
1598 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1599 if (note)
1600 remove_note (insn, note);
1601 }
1602 else
1603 {
1604 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1605 if (note)
1606 remove_note (insn, note);
1607 if (JUMP_LABEL (insn) != new_label
1608 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1609 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1610 }
1611 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1612 != NULL_RTX)
1613 XEXP (note, 0) = new_label;
1614 }
1615 }
1616
1617 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1618 {
1619 rtx_insn *new_head;
1620 profile_count count = e->count;
1621 int probability = e->probability;
1622 /* Create the new structures. */
1623
1624 /* If the old block ended with a tablejump, skip its table
1625 by searching forward from there. Otherwise start searching
1626 forward from the last instruction of the old block. */
1627 rtx_jump_table_data *table;
1628 if (tablejump_p (BB_END (e->src), NULL, &table))
1629 new_head = table;
1630 else
1631 new_head = BB_END (e->src);
1632 new_head = NEXT_INSN (new_head);
1633
1634 jump_block = create_basic_block (new_head, NULL, e->src);
1635 jump_block->count = count;
1636 jump_block->frequency = EDGE_FREQUENCY (e);
1637
1638 /* Make sure new block ends up in correct hot/cold section. */
1639
1640 BB_COPY_PARTITION (jump_block, e->src);
1641
1642 /* Wire edge in. */
1643 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1644 new_edge->probability = probability;
1645 new_edge->count = count;
1646
1647 /* Redirect old edge. */
1648 redirect_edge_pred (e, jump_block);
1649 e->probability = REG_BR_PROB_BASE;
1650
1651 /* If e->src was previously region crossing, it no longer is
1652 and the reg crossing note should be removed. */
1653 fixup_partition_crossing (new_edge);
1654
1655 /* If asm goto has any label refs to target's label,
1656 add also edge from asm goto bb to target. */
1657 if (asm_goto_edge)
1658 {
1659 new_edge->probability /= 2;
1660 new_edge->count = new_edge->count.apply_scale (1, 2);
1661 jump_block->count = jump_block->count.apply_scale (1, 2);
1662 jump_block->frequency /= 2;
1663 edge new_edge2 = make_edge (new_edge->src, target,
1664 e->flags & ~EDGE_FALLTHRU);
1665 new_edge2->probability = probability - new_edge->probability;
1666 new_edge2->count = count - new_edge->count;
1667 }
1668
1669 new_bb = jump_block;
1670 }
1671 else
1672 jump_block = e->src;
1673
1674 loc = e->goto_locus;
1675 e->flags &= ~EDGE_FALLTHRU;
1676 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1677 {
1678 if (jump_label == ret_rtx)
1679 emit_jump_insn_after_setloc (targetm.gen_return (),
1680 BB_END (jump_block), loc);
1681 else
1682 {
1683 gcc_assert (jump_label == simple_return_rtx);
1684 emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1685 BB_END (jump_block), loc);
1686 }
1687 set_return_jump_label (BB_END (jump_block));
1688 }
1689 else
1690 {
1691 rtx_code_label *label = block_label (target);
1692 emit_jump_insn_after_setloc (targetm.gen_jump (label),
1693 BB_END (jump_block), loc);
1694 JUMP_LABEL (BB_END (jump_block)) = label;
1695 LABEL_NUSES (label)++;
1696 }
1697
1698 /* We might be in cfg layout mode, and if so, the following routine will
1699 insert the barrier correctly. */
1700 emit_barrier_after_bb (jump_block);
1701 redirect_edge_succ_nodup (e, target);
1702
1703 if (abnormal_edge_flags)
1704 make_edge (src, target, abnormal_edge_flags);
1705
1706 df_mark_solutions_dirty ();
1707 fixup_partition_crossing (e);
1708 return new_bb;
1709 }
1710
1711 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1712 (and possibly create new basic block) to make edge non-fallthru.
1713 Return newly created BB or NULL if none. */
1714
1715 static basic_block
1716 rtl_force_nonfallthru (edge e)
1717 {
1718 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1719 }
1720
1721 /* Redirect edge even at the expense of creating new jump insn or
1722 basic block. Return new basic block if created, NULL otherwise.
1723 Conversion must be possible. */
1724
1725 static basic_block
1726 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1727 {
1728 if (redirect_edge_and_branch (e, target)
1729 || e->dest == target)
1730 return NULL;
1731
1732 /* In case the edge redirection failed, try to force it to be non-fallthru
1733 and redirect newly created simplejump. */
1734 df_set_bb_dirty (e->src);
1735 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1736 }
1737
1738 /* The given edge should potentially be a fallthru edge. If that is in
1739 fact true, delete the jump and barriers that are in the way. */
1740
1741 static void
1742 rtl_tidy_fallthru_edge (edge e)
1743 {
1744 rtx_insn *q;
1745 basic_block b = e->src, c = b->next_bb;
1746
1747 /* ??? In a late-running flow pass, other folks may have deleted basic
1748 blocks by nopping out blocks, leaving multiple BARRIERs between here
1749 and the target label. They ought to be chastised and fixed.
1750
1751 We can also wind up with a sequence of undeletable labels between
1752 one block and the next.
1753
1754 So search through a sequence of barriers, labels, and notes for
1755 the head of block C and assert that we really do fall through. */
1756
1757 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1758 if (INSN_P (q))
1759 return;
1760
1761 /* Remove what will soon cease being the jump insn from the source block.
1762 If block B consisted only of this single jump, turn it into a deleted
1763 note. */
1764 q = BB_END (b);
1765 if (JUMP_P (q)
1766 && onlyjump_p (q)
1767 && (any_uncondjump_p (q)
1768 || single_succ_p (b)))
1769 {
1770 rtx_insn *label;
1771 rtx_jump_table_data *table;
1772
1773 if (tablejump_p (q, &label, &table))
1774 {
1775 /* The label is likely mentioned in some instruction before
1776 the tablejump and might not be DCEd, so turn it into
1777 a note instead and move before the tablejump that is going to
1778 be deleted. */
1779 const char *name = LABEL_NAME (label);
1780 PUT_CODE (label, NOTE);
1781 NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1782 NOTE_DELETED_LABEL_NAME (label) = name;
1783 reorder_insns (label, label, PREV_INSN (q));
1784 delete_insn (table);
1785 }
1786
1787 /* If this was a conditional jump, we need to also delete
1788 the insn that set cc0. */
1789 if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1790 q = PREV_INSN (q);
1791
1792 q = PREV_INSN (q);
1793 }
1794 /* Unconditional jumps with side-effects (i.e. which we can't just delete
1795 together with the barrier) should never have a fallthru edge. */
1796 else if (JUMP_P (q) && any_uncondjump_p (q))
1797 return;
1798
1799 /* Selectively unlink the sequence. */
1800 if (q != PREV_INSN (BB_HEAD (c)))
1801 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1802
1803 e->flags |= EDGE_FALLTHRU;
1804 }
1805 \f
1806 /* Should move basic block BB after basic block AFTER. NIY. */
1807
1808 static bool
1809 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1810 basic_block after ATTRIBUTE_UNUSED)
1811 {
1812 return false;
1813 }
1814
1815 /* Locate the last bb in the same partition as START_BB. */
1816
1817 static basic_block
1818 last_bb_in_partition (basic_block start_bb)
1819 {
1820 basic_block bb;
1821 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1822 {
1823 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1824 return bb;
1825 }
1826 /* Return bb before the exit block. */
1827 return bb->prev_bb;
1828 }
1829
1830 /* Split a (typically critical) edge. Return the new block.
1831 The edge must not be abnormal.
1832
1833 ??? The code generally expects to be called on critical edges.
1834 The case of a block ending in an unconditional jump to a
1835 block with multiple predecessors is not handled optimally. */
1836
1837 static basic_block
1838 rtl_split_edge (edge edge_in)
1839 {
1840 basic_block bb, new_bb;
1841 rtx_insn *before;
1842
1843 /* Abnormal edges cannot be split. */
1844 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1845
1846 /* We are going to place the new block in front of edge destination.
1847 Avoid existence of fallthru predecessors. */
1848 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1849 {
1850 edge e = find_fallthru_edge (edge_in->dest->preds);
1851
1852 if (e)
1853 force_nonfallthru (e);
1854 }
1855
1856 /* Create the basic block note. */
1857 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1858 before = BB_HEAD (edge_in->dest);
1859 else
1860 before = NULL;
1861
1862 /* If this is a fall through edge to the exit block, the blocks might be
1863 not adjacent, and the right place is after the source. */
1864 if ((edge_in->flags & EDGE_FALLTHRU)
1865 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1866 {
1867 before = NEXT_INSN (BB_END (edge_in->src));
1868 bb = create_basic_block (before, NULL, edge_in->src);
1869 BB_COPY_PARTITION (bb, edge_in->src);
1870 }
1871 else
1872 {
1873 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1874 {
1875 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1876 BB_COPY_PARTITION (bb, edge_in->dest);
1877 }
1878 else
1879 {
1880 basic_block after = edge_in->dest->prev_bb;
1881 /* If this is post-bb reordering, and the edge crosses a partition
1882 boundary, the new block needs to be inserted in the bb chain
1883 at the end of the src partition (since we put the new bb into
1884 that partition, see below). Otherwise we may end up creating
1885 an extra partition crossing in the chain, which is illegal.
1886 It can't go after the src, because src may have a fall-through
1887 to a different block. */
1888 if (crtl->bb_reorder_complete
1889 && (edge_in->flags & EDGE_CROSSING))
1890 {
1891 after = last_bb_in_partition (edge_in->src);
1892 before = get_last_bb_insn (after);
1893 /* The instruction following the last bb in partition should
1894 be a barrier, since it cannot end in a fall-through. */
1895 gcc_checking_assert (BARRIER_P (before));
1896 before = NEXT_INSN (before);
1897 }
1898 bb = create_basic_block (before, NULL, after);
1899 /* Put the split bb into the src partition, to avoid creating
1900 a situation where a cold bb dominates a hot bb, in the case
1901 where src is cold and dest is hot. The src will dominate
1902 the new bb (whereas it might not have dominated dest). */
1903 BB_COPY_PARTITION (bb, edge_in->src);
1904 }
1905 }
1906
1907 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1908
1909 /* Can't allow a region crossing edge to be fallthrough. */
1910 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1911 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1912 {
1913 new_bb = force_nonfallthru (single_succ_edge (bb));
1914 gcc_assert (!new_bb);
1915 }
1916
1917 /* For non-fallthru edges, we must adjust the predecessor's
1918 jump instruction to target our new block. */
1919 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1920 {
1921 edge redirected = redirect_edge_and_branch (edge_in, bb);
1922 gcc_assert (redirected);
1923 }
1924 else
1925 {
1926 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1927 {
1928 /* For asm goto even splitting of fallthru edge might
1929 need insn patching, as other labels might point to the
1930 old label. */
1931 rtx_insn *last = BB_END (edge_in->src);
1932 if (last
1933 && JUMP_P (last)
1934 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1935 && (extract_asm_operands (PATTERN (last))
1936 || JUMP_LABEL (last) == before)
1937 && patch_jump_insn (last, before, bb))
1938 df_set_bb_dirty (edge_in->src);
1939 }
1940 redirect_edge_succ (edge_in, bb);
1941 }
1942
1943 return bb;
1944 }
1945
1946 /* Queue instructions for insertion on an edge between two basic blocks.
1947 The new instructions and basic blocks (if any) will not appear in the
1948 CFG until commit_edge_insertions is called. */
1949
1950 void
1951 insert_insn_on_edge (rtx pattern, edge e)
1952 {
1953 /* We cannot insert instructions on an abnormal critical edge.
1954 It will be easier to find the culprit if we die now. */
1955 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1956
1957 if (e->insns.r == NULL_RTX)
1958 start_sequence ();
1959 else
1960 push_to_sequence (e->insns.r);
1961
1962 emit_insn (pattern);
1963
1964 e->insns.r = get_insns ();
1965 end_sequence ();
1966 }
1967
1968 /* Update the CFG for the instructions queued on edge E. */
1969
1970 void
1971 commit_one_edge_insertion (edge e)
1972 {
1973 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1974 basic_block bb;
1975
1976 /* Pull the insns off the edge now since the edge might go away. */
1977 insns = e->insns.r;
1978 e->insns.r = NULL;
1979
1980 /* Figure out where to put these insns. If the destination has
1981 one predecessor, insert there. Except for the exit block. */
1982 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1983 {
1984 bb = e->dest;
1985
1986 /* Get the location correct wrt a code label, and "nice" wrt
1987 a basic block note, and before everything else. */
1988 tmp = BB_HEAD (bb);
1989 if (LABEL_P (tmp))
1990 tmp = NEXT_INSN (tmp);
1991 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1992 tmp = NEXT_INSN (tmp);
1993 if (tmp == BB_HEAD (bb))
1994 before = tmp;
1995 else if (tmp)
1996 after = PREV_INSN (tmp);
1997 else
1998 after = get_last_insn ();
1999 }
2000
2001 /* If the source has one successor and the edge is not abnormal,
2002 insert there. Except for the entry block.
2003 Don't do this if the predecessor ends in a jump other than
2004 unconditional simple jump. E.g. for asm goto that points all
2005 its labels at the fallthru basic block, we can't insert instructions
2006 before the asm goto, as the asm goto can have various of side effects,
2007 and can't emit instructions after the asm goto, as it must end
2008 the basic block. */
2009 else if ((e->flags & EDGE_ABNORMAL) == 0
2010 && single_succ_p (e->src)
2011 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2012 && (!JUMP_P (BB_END (e->src))
2013 || simplejump_p (BB_END (e->src))))
2014 {
2015 bb = e->src;
2016
2017 /* It is possible to have a non-simple jump here. Consider a target
2018 where some forms of unconditional jumps clobber a register. This
2019 happens on the fr30 for example.
2020
2021 We know this block has a single successor, so we can just emit
2022 the queued insns before the jump. */
2023 if (JUMP_P (BB_END (bb)))
2024 before = BB_END (bb);
2025 else
2026 {
2027 /* We'd better be fallthru, or we've lost track of what's what. */
2028 gcc_assert (e->flags & EDGE_FALLTHRU);
2029
2030 after = BB_END (bb);
2031 }
2032 }
2033
2034 /* Otherwise we must split the edge. */
2035 else
2036 {
2037 bb = split_edge (e);
2038
2039 /* If E crossed a partition boundary, we needed to make bb end in
2040 a region-crossing jump, even though it was originally fallthru. */
2041 if (JUMP_P (BB_END (bb)))
2042 before = BB_END (bb);
2043 else
2044 after = BB_END (bb);
2045 }
2046
2047 /* Now that we've found the spot, do the insertion. */
2048 if (before)
2049 {
2050 emit_insn_before_noloc (insns, before, bb);
2051 last = prev_nonnote_insn (before);
2052 }
2053 else
2054 last = emit_insn_after_noloc (insns, after, bb);
2055
2056 if (returnjump_p (last))
2057 {
2058 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2059 This is not currently a problem because this only happens
2060 for the (single) epilogue, which already has a fallthru edge
2061 to EXIT. */
2062
2063 e = single_succ_edge (bb);
2064 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2065 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2066
2067 e->flags &= ~EDGE_FALLTHRU;
2068 emit_barrier_after (last);
2069
2070 if (before)
2071 delete_insn (before);
2072 }
2073 else
2074 gcc_assert (!JUMP_P (last));
2075 }
2076
2077 /* Update the CFG for all queued instructions. */
2078
2079 void
2080 commit_edge_insertions (void)
2081 {
2082 basic_block bb;
2083
2084 /* Optimization passes that invoke this routine can cause hot blocks
2085 previously reached by both hot and cold blocks to become dominated only
2086 by cold blocks. This will cause the verification below to fail,
2087 and lead to now cold code in the hot section. In some cases this
2088 may only be visible after newly unreachable blocks are deleted,
2089 which will be done by fixup_partitions. */
2090 fixup_partitions ();
2091
2092 checking_verify_flow_info ();
2093
2094 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2095 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2096 {
2097 edge e;
2098 edge_iterator ei;
2099
2100 FOR_EACH_EDGE (e, ei, bb->succs)
2101 if (e->insns.r)
2102 commit_one_edge_insertion (e);
2103 }
2104 }
2105 \f
2106
2107 /* Print out RTL-specific basic block information (live information
2108 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2109 documented in dumpfile.h. */
2110
2111 static void
2112 rtl_dump_bb (FILE *outf, basic_block bb, int indent, dump_flags_t flags)
2113 {
2114 rtx_insn *insn;
2115 rtx_insn *last;
2116 char *s_indent;
2117
2118 s_indent = (char *) alloca ((size_t) indent + 1);
2119 memset (s_indent, ' ', (size_t) indent);
2120 s_indent[indent] = '\0';
2121
2122 if (df && (flags & TDF_DETAILS))
2123 {
2124 df_dump_top (bb, outf);
2125 putc ('\n', outf);
2126 }
2127
2128 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2129 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
2130 insn = NEXT_INSN (insn))
2131 {
2132 if (flags & TDF_DETAILS)
2133 df_dump_insn_top (insn, outf);
2134 if (! (flags & TDF_SLIM))
2135 print_rtl_single (outf, insn);
2136 else
2137 dump_insn_slim (outf, insn);
2138 if (flags & TDF_DETAILS)
2139 df_dump_insn_bottom (insn, outf);
2140 }
2141
2142 if (df && (flags & TDF_DETAILS))
2143 {
2144 df_dump_bottom (bb, outf);
2145 putc ('\n', outf);
2146 }
2147
2148 }
2149 \f
2150 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2151 for the start of each basic block. FLAGS are the TDF_* masks documented
2152 in dumpfile.h. */
2153
2154 void
2155 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, dump_flags_t flags)
2156 {
2157 const rtx_insn *tmp_rtx;
2158 if (rtx_first == 0)
2159 fprintf (outf, "(nil)\n");
2160 else
2161 {
2162 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2163 int max_uid = get_max_uid ();
2164 basic_block *start = XCNEWVEC (basic_block, max_uid);
2165 basic_block *end = XCNEWVEC (basic_block, max_uid);
2166 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2167 basic_block bb;
2168
2169 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2170 insns, but the CFG is not maintained so the basic block info
2171 is not reliable. Therefore it's omitted from the dumps. */
2172 if (! (cfun->curr_properties & PROP_cfg))
2173 flags &= ~TDF_BLOCKS;
2174
2175 if (df)
2176 df_dump_start (outf);
2177
2178 if (flags & TDF_BLOCKS)
2179 {
2180 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2181 {
2182 rtx_insn *x;
2183
2184 start[INSN_UID (BB_HEAD (bb))] = bb;
2185 end[INSN_UID (BB_END (bb))] = bb;
2186 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2187 {
2188 enum bb_state state = IN_MULTIPLE_BB;
2189
2190 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2191 state = IN_ONE_BB;
2192 in_bb_p[INSN_UID (x)] = state;
2193
2194 if (x == BB_END (bb))
2195 break;
2196 }
2197 }
2198 }
2199
2200 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2201 {
2202 if (flags & TDF_BLOCKS)
2203 {
2204 bb = start[INSN_UID (tmp_rtx)];
2205 if (bb != NULL)
2206 {
2207 dump_bb_info (outf, bb, 0, dump_flags, true, false);
2208 if (df && (flags & TDF_DETAILS))
2209 df_dump_top (bb, outf);
2210 }
2211
2212 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2213 && !NOTE_P (tmp_rtx)
2214 && !BARRIER_P (tmp_rtx))
2215 fprintf (outf, ";; Insn is not within a basic block\n");
2216 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2217 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2218 }
2219
2220 if (flags & TDF_DETAILS)
2221 df_dump_insn_top (tmp_rtx, outf);
2222 if (! (flags & TDF_SLIM))
2223 print_rtl_single (outf, tmp_rtx);
2224 else
2225 dump_insn_slim (outf, tmp_rtx);
2226 if (flags & TDF_DETAILS)
2227 df_dump_insn_bottom (tmp_rtx, outf);
2228
2229 if (flags & TDF_BLOCKS)
2230 {
2231 bb = end[INSN_UID (tmp_rtx)];
2232 if (bb != NULL)
2233 {
2234 dump_bb_info (outf, bb, 0, dump_flags, false, true);
2235 if (df && (flags & TDF_DETAILS))
2236 df_dump_bottom (bb, outf);
2237 putc ('\n', outf);
2238 }
2239 }
2240 }
2241
2242 free (start);
2243 free (end);
2244 free (in_bb_p);
2245 }
2246 }
2247 \f
2248 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2249
2250 void
2251 update_br_prob_note (basic_block bb)
2252 {
2253 rtx note;
2254 if (!JUMP_P (BB_END (bb)))
2255 return;
2256 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2257 if (!note || XINT (note, 0) == BRANCH_EDGE (bb)->probability)
2258 return;
2259 XINT (note, 0) = BRANCH_EDGE (bb)->probability;
2260 }
2261
2262 /* Get the last insn associated with block BB (that includes barriers and
2263 tablejumps after BB). */
2264 rtx_insn *
2265 get_last_bb_insn (basic_block bb)
2266 {
2267 rtx_jump_table_data *table;
2268 rtx_insn *tmp;
2269 rtx_insn *end = BB_END (bb);
2270
2271 /* Include any jump table following the basic block. */
2272 if (tablejump_p (end, NULL, &table))
2273 end = table;
2274
2275 /* Include any barriers that may follow the basic block. */
2276 tmp = next_nonnote_insn_bb (end);
2277 while (tmp && BARRIER_P (tmp))
2278 {
2279 end = tmp;
2280 tmp = next_nonnote_insn_bb (end);
2281 }
2282
2283 return end;
2284 }
2285
2286 /* Sanity check partition hotness to ensure that basic blocks in
2287   the cold partition don't dominate basic blocks in the hot partition.
2288 If FLAG_ONLY is true, report violations as errors. Otherwise
2289 re-mark the dominated blocks as cold, since this is run after
2290 cfg optimizations that may make hot blocks previously reached
2291 by both hot and cold blocks now only reachable along cold paths. */
2292
2293 static vec<basic_block>
2294 find_partition_fixes (bool flag_only)
2295 {
2296 basic_block bb;
2297 vec<basic_block> bbs_in_cold_partition = vNULL;
2298 vec<basic_block> bbs_to_fix = vNULL;
2299
2300 /* Callers check this. */
2301 gcc_checking_assert (crtl->has_bb_partition);
2302
2303 FOR_EACH_BB_FN (bb, cfun)
2304 if ((BB_PARTITION (bb) == BB_COLD_PARTITION))
2305 bbs_in_cold_partition.safe_push (bb);
2306
2307 if (bbs_in_cold_partition.is_empty ())
2308 return vNULL;
2309
2310 bool dom_calculated_here = !dom_info_available_p (CDI_DOMINATORS);
2311
2312 if (dom_calculated_here)
2313 calculate_dominance_info (CDI_DOMINATORS);
2314
2315 while (! bbs_in_cold_partition.is_empty ())
2316 {
2317 bb = bbs_in_cold_partition.pop ();
2318 /* Any blocks dominated by a block in the cold section
2319 must also be cold. */
2320 basic_block son;
2321 for (son = first_dom_son (CDI_DOMINATORS, bb);
2322 son;
2323 son = next_dom_son (CDI_DOMINATORS, son))
2324 {
2325 /* If son is not yet cold, then mark it cold here and
2326 enqueue it for further processing. */
2327 if ((BB_PARTITION (son) != BB_COLD_PARTITION))
2328 {
2329 if (flag_only)
2330 error ("non-cold basic block %d dominated "
2331 "by a block in the cold partition (%d)", son->index, bb->index);
2332 else
2333 BB_SET_PARTITION (son, BB_COLD_PARTITION);
2334 bbs_to_fix.safe_push (son);
2335 bbs_in_cold_partition.safe_push (son);
2336 }
2337 }
2338 }
2339
2340 if (dom_calculated_here)
2341 free_dominance_info (CDI_DOMINATORS);
2342
2343 return bbs_to_fix;
2344 }
2345
2346 /* Perform cleanup on the hot/cold bb partitioning after optimization
2347 passes that modify the cfg. */
2348
2349 void
2350 fixup_partitions (void)
2351 {
2352 basic_block bb;
2353
2354 if (!crtl->has_bb_partition)
2355 return;
2356
2357 /* Delete any blocks that became unreachable and weren't
2358 already cleaned up, for example during edge forwarding
2359 and convert_jumps_to_returns. This will expose more
2360 opportunities for fixing the partition boundaries here.
2361 Also, the calculation of the dominance graph during verification
2362 will assert if there are unreachable nodes. */
2363 delete_unreachable_blocks ();
2364
2365 /* If there are partitions, do a sanity check on them: A basic block in
2366   a cold partition cannot dominate a basic block in a hot partition.
2367 Fixup any that now violate this requirement, as a result of edge
2368 forwarding and unreachable block deletion.  */
2369 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2370
2371 /* Do the partition fixup after all necessary blocks have been converted to
2372 cold, so that we only update the region crossings the minimum number of
2373 places, which can require forcing edges to be non fallthru. */
2374 while (! bbs_to_fix.is_empty ())
2375 {
2376 bb = bbs_to_fix.pop ();
2377 fixup_new_cold_bb (bb);
2378 }
2379 }
2380
2381 /* Verify, in the basic block chain, that there is at most one switch
2382 between hot/cold partitions. This condition will not be true until
2383 after reorder_basic_blocks is called. */
2384
2385 static int
2386 verify_hot_cold_block_grouping (void)
2387 {
2388 basic_block bb;
2389 int err = 0;
2390 bool switched_sections = false;
2391 int current_partition = BB_UNPARTITIONED;
2392
2393 /* Even after bb reordering is complete, we go into cfglayout mode
2394 again (in compgoto). Ensure we don't call this before going back
2395 into linearized RTL when any layout fixes would have been committed. */
2396 if (!crtl->bb_reorder_complete
2397 || current_ir_type () != IR_RTL_CFGRTL)
2398 return err;
2399
2400 FOR_EACH_BB_FN (bb, cfun)
2401 {
2402 if (current_partition != BB_UNPARTITIONED
2403 && BB_PARTITION (bb) != current_partition)
2404 {
2405 if (switched_sections)
2406 {
2407 error ("multiple hot/cold transitions found (bb %i)",
2408 bb->index);
2409 err = 1;
2410 }
2411 else
2412 switched_sections = true;
2413
2414 if (!crtl->has_bb_partition)
2415 error ("partition found but function partition flag not set");
2416 }
2417 current_partition = BB_PARTITION (bb);
2418 }
2419
2420 return err;
2421 }
2422 \f
2423
2424 /* Perform several checks on the edges out of each block, such as
2425 the consistency of the branch probabilities, the correctness
2426 of hot/cold partition crossing edges, and the number of expected
2427 successor edges. Also verify that the dominance relationship
2428 between hot/cold blocks is sane. */
2429
2430 static int
2431 rtl_verify_edges (void)
2432 {
2433 int err = 0;
2434 basic_block bb;
2435
2436 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2437 {
2438 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2439 int n_eh = 0, n_abnormal = 0;
2440 edge e, fallthru = NULL;
2441 edge_iterator ei;
2442 rtx note;
2443 bool has_crossing_edge = false;
2444
2445 if (JUMP_P (BB_END (bb))
2446 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2447 && EDGE_COUNT (bb->succs) >= 2
2448 && any_condjump_p (BB_END (bb)))
2449 {
2450 if (XINT (note, 0) != BRANCH_EDGE (bb)->probability
2451 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2452 {
2453 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2454 XINT (note, 0), BRANCH_EDGE (bb)->probability);
2455 err = 1;
2456 }
2457 }
2458
2459 FOR_EACH_EDGE (e, ei, bb->succs)
2460 {
2461 bool is_crossing;
2462
2463 if (e->flags & EDGE_FALLTHRU)
2464 n_fallthru++, fallthru = e;
2465
2466 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2467 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2468 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2469 has_crossing_edge |= is_crossing;
2470 if (e->flags & EDGE_CROSSING)
2471 {
2472 if (!is_crossing)
2473 {
2474 error ("EDGE_CROSSING incorrectly set across same section");
2475 err = 1;
2476 }
2477 if (e->flags & EDGE_FALLTHRU)
2478 {
2479 error ("fallthru edge crosses section boundary in bb %i",
2480 e->src->index);
2481 err = 1;
2482 }
2483 if (e->flags & EDGE_EH)
2484 {
2485 error ("EH edge crosses section boundary in bb %i",
2486 e->src->index);
2487 err = 1;
2488 }
2489 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2490 {
2491 error ("No region crossing jump at section boundary in bb %i",
2492 bb->index);
2493 err = 1;
2494 }
2495 }
2496 else if (is_crossing)
2497 {
2498 error ("EDGE_CROSSING missing across section boundary");
2499 err = 1;
2500 }
2501
2502 if ((e->flags & ~(EDGE_DFS_BACK
2503 | EDGE_CAN_FALLTHRU
2504 | EDGE_IRREDUCIBLE_LOOP
2505 | EDGE_LOOP_EXIT
2506 | EDGE_CROSSING
2507 | EDGE_PRESERVE)) == 0)
2508 n_branch++;
2509
2510 if (e->flags & EDGE_ABNORMAL_CALL)
2511 n_abnormal_call++;
2512
2513 if (e->flags & EDGE_SIBCALL)
2514 n_sibcall++;
2515
2516 if (e->flags & EDGE_EH)
2517 n_eh++;
2518
2519 if (e->flags & EDGE_ABNORMAL)
2520 n_abnormal++;
2521 }
2522
2523 if (!has_crossing_edge
2524 && JUMP_P (BB_END (bb))
2525 && CROSSING_JUMP_P (BB_END (bb)))
2526 {
2527 print_rtl_with_bb (stderr, get_insns (), TDF_BLOCKS | TDF_DETAILS);
2528 error ("Region crossing jump across same section in bb %i",
2529 bb->index);
2530 err = 1;
2531 }
2532
2533 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2534 {
2535 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2536 err = 1;
2537 }
2538 if (n_eh > 1)
2539 {
2540 error ("too many exception handling edges in bb %i", bb->index);
2541 err = 1;
2542 }
2543 if (n_branch
2544 && (!JUMP_P (BB_END (bb))
2545 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2546 || any_condjump_p (BB_END (bb))))))
2547 {
2548 error ("too many outgoing branch edges from bb %i", bb->index);
2549 err = 1;
2550 }
2551 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2552 {
2553 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2554 err = 1;
2555 }
2556 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2557 {
2558 error ("wrong number of branch edges after unconditional jump"
2559 " in bb %i", bb->index);
2560 err = 1;
2561 }
2562 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2563 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2564 {
2565 error ("wrong amount of branch edges after conditional jump"
2566 " in bb %i", bb->index);
2567 err = 1;
2568 }
2569 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2570 {
2571 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2572 err = 1;
2573 }
2574 if (n_sibcall && !CALL_P (BB_END (bb)))
2575 {
2576 error ("sibcall edges for non-call insn in bb %i", bb->index);
2577 err = 1;
2578 }
2579 if (n_abnormal > n_eh
2580 && !(CALL_P (BB_END (bb))
2581 && n_abnormal == n_abnormal_call + n_sibcall)
2582 && (!JUMP_P (BB_END (bb))
2583 || any_condjump_p (BB_END (bb))
2584 || any_uncondjump_p (BB_END (bb))))
2585 {
2586 error ("abnormal edges for no purpose in bb %i", bb->index);
2587 err = 1;
2588 }
2589 }
2590
2591 /* If there are partitions, do a sanity check on them: A basic block in
2592   a cold partition cannot dominate a basic block in a hot partition.  */
2593 if (crtl->has_bb_partition && !err)
2594 {
2595 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2596 err = !bbs_to_fix.is_empty ();
2597 }
2598
2599 /* Clean up. */
2600 return err;
2601 }
2602
2603 /* Checks on the instructions within blocks. Currently checks that each
2604 block starts with a basic block note, and that basic block notes and
2605 control flow jumps are not found in the middle of the block. */
2606
2607 static int
2608 rtl_verify_bb_insns (void)
2609 {
2610 rtx_insn *x;
2611 int err = 0;
2612 basic_block bb;
2613
2614 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2615 {
2616 /* Now check the header of basic
2617 block. It ought to contain optional CODE_LABEL followed
2618 by NOTE_BASIC_BLOCK. */
2619 x = BB_HEAD (bb);
2620 if (LABEL_P (x))
2621 {
2622 if (BB_END (bb) == x)
2623 {
2624 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2625 bb->index);
2626 err = 1;
2627 }
2628
2629 x = NEXT_INSN (x);
2630 }
2631
2632 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2633 {
2634 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2635 bb->index);
2636 err = 1;
2637 }
2638
2639 if (BB_END (bb) == x)
2640 /* Do checks for empty blocks here. */
2641 ;
2642 else
2643 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2644 {
2645 if (NOTE_INSN_BASIC_BLOCK_P (x))
2646 {
2647 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2648 INSN_UID (x), bb->index);
2649 err = 1;
2650 }
2651
2652 if (x == BB_END (bb))
2653 break;
2654
2655 if (control_flow_insn_p (x))
2656 {
2657 error ("in basic block %d:", bb->index);
2658 fatal_insn ("flow control insn inside a basic block", x);
2659 }
2660 }
2661 }
2662
2663 /* Clean up. */
2664 return err;
2665 }
2666
2667 /* Verify that block pointers for instructions in basic blocks, headers and
2668 footers are set appropriately. */
2669
2670 static int
2671 rtl_verify_bb_pointers (void)
2672 {
2673 int err = 0;
2674 basic_block bb;
2675
2676 /* Check the general integrity of the basic blocks. */
2677 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2678 {
2679 rtx_insn *insn;
2680
2681 if (!(bb->flags & BB_RTL))
2682 {
2683 error ("BB_RTL flag not set for block %d", bb->index);
2684 err = 1;
2685 }
2686
2687 FOR_BB_INSNS (bb, insn)
2688 if (BLOCK_FOR_INSN (insn) != bb)
2689 {
2690 error ("insn %d basic block pointer is %d, should be %d",
2691 INSN_UID (insn),
2692 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2693 bb->index);
2694 err = 1;
2695 }
2696
2697 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2698 if (!BARRIER_P (insn)
2699 && BLOCK_FOR_INSN (insn) != NULL)
2700 {
2701 error ("insn %d in header of bb %d has non-NULL basic block",
2702 INSN_UID (insn), bb->index);
2703 err = 1;
2704 }
2705 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2706 if (!BARRIER_P (insn)
2707 && BLOCK_FOR_INSN (insn) != NULL)
2708 {
2709 error ("insn %d in footer of bb %d has non-NULL basic block",
2710 INSN_UID (insn), bb->index);
2711 err = 1;
2712 }
2713 }
2714
2715 /* Clean up. */
2716 return err;
2717 }
2718
2719 /* Verify the CFG and RTL consistency common for both underlying RTL and
2720 cfglayout RTL.
2721
2722 Currently it does following checks:
2723
2724 - overlapping of basic blocks
2725 - insns with wrong BLOCK_FOR_INSN pointers
2726 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2727 - tails of basic blocks (ensure that boundary is necessary)
2728 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2729 and NOTE_INSN_BASIC_BLOCK
2730 - verify that no fall_thru edge crosses hot/cold partition boundaries
2731 - verify that there are no pending RTL branch predictions
2732 - verify that hot blocks are not dominated by cold blocks
2733
2734 In future it can be extended check a lot of other stuff as well
2735 (reachability of basic blocks, life information, etc. etc.). */
2736
2737 static int
2738 rtl_verify_flow_info_1 (void)
2739 {
2740 int err = 0;
2741
2742 err |= rtl_verify_bb_pointers ();
2743
2744 err |= rtl_verify_bb_insns ();
2745
2746 err |= rtl_verify_edges ();
2747
2748 return err;
2749 }
2750
2751 /* Walk the instruction chain and verify that bb head/end pointers
2752 are correct, and that instructions are in exactly one bb and have
2753 correct block pointers. */
2754
2755 static int
2756 rtl_verify_bb_insn_chain (void)
2757 {
2758 basic_block bb;
2759 int err = 0;
2760 rtx_insn *x;
2761 rtx_insn *last_head = get_last_insn ();
2762 basic_block *bb_info;
2763 const int max_uid = get_max_uid ();
2764
2765 bb_info = XCNEWVEC (basic_block, max_uid);
2766
2767 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2768 {
2769 rtx_insn *head = BB_HEAD (bb);
2770 rtx_insn *end = BB_END (bb);
2771
2772 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2773 {
2774 /* Verify the end of the basic block is in the INSN chain. */
2775 if (x == end)
2776 break;
2777
2778 /* And that the code outside of basic blocks has NULL bb field. */
2779 if (!BARRIER_P (x)
2780 && BLOCK_FOR_INSN (x) != NULL)
2781 {
2782 error ("insn %d outside of basic blocks has non-NULL bb field",
2783 INSN_UID (x));
2784 err = 1;
2785 }
2786 }
2787
2788 if (!x)
2789 {
2790 error ("end insn %d for block %d not found in the insn stream",
2791 INSN_UID (end), bb->index);
2792 err = 1;
2793 }
2794
2795 /* Work backwards from the end to the head of the basic block
2796 to verify the head is in the RTL chain. */
2797 for (; x != NULL_RTX; x = PREV_INSN (x))
2798 {
2799 /* While walking over the insn chain, verify insns appear
2800 in only one basic block. */
2801 if (bb_info[INSN_UID (x)] != NULL)
2802 {
2803 error ("insn %d is in multiple basic blocks (%d and %d)",
2804 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2805 err = 1;
2806 }
2807
2808 bb_info[INSN_UID (x)] = bb;
2809
2810 if (x == head)
2811 break;
2812 }
2813 if (!x)
2814 {
2815 error ("head insn %d for block %d not found in the insn stream",
2816 INSN_UID (head), bb->index);
2817 err = 1;
2818 }
2819
2820 last_head = PREV_INSN (x);
2821 }
2822
2823 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2824 {
2825 /* Check that the code before the first basic block has NULL
2826 bb field. */
2827 if (!BARRIER_P (x)
2828 && BLOCK_FOR_INSN (x) != NULL)
2829 {
2830 error ("insn %d outside of basic blocks has non-NULL bb field",
2831 INSN_UID (x));
2832 err = 1;
2833 }
2834 }
2835 free (bb_info);
2836
2837 return err;
2838 }
2839
2840 /* Verify that fallthru edges point to adjacent blocks in layout order and
2841 that barriers exist after non-fallthru blocks. */
2842
2843 static int
2844 rtl_verify_fallthru (void)
2845 {
2846 basic_block bb;
2847 int err = 0;
2848
2849 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2850 {
2851 edge e;
2852
2853 e = find_fallthru_edge (bb->succs);
2854 if (!e)
2855 {
2856 rtx_insn *insn;
2857
2858 /* Ensure existence of barrier in BB with no fallthru edges. */
2859 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2860 {
2861 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2862 {
2863 error ("missing barrier after block %i", bb->index);
2864 err = 1;
2865 break;
2866 }
2867 if (BARRIER_P (insn))
2868 break;
2869 }
2870 }
2871 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2872 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2873 {
2874 rtx_insn *insn;
2875
2876 if (e->src->next_bb != e->dest)
2877 {
2878 error
2879 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2880 e->src->index, e->dest->index);
2881 err = 1;
2882 }
2883 else
2884 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2885 insn = NEXT_INSN (insn))
2886 if (BARRIER_P (insn) || INSN_P (insn))
2887 {
2888 error ("verify_flow_info: Incorrect fallthru %i->%i",
2889 e->src->index, e->dest->index);
2890 fatal_insn ("wrong insn in the fallthru edge", insn);
2891 err = 1;
2892 }
2893 }
2894 }
2895
2896 return err;
2897 }
2898
2899 /* Verify that blocks are laid out in consecutive order. While walking the
2900 instructions, verify that all expected instructions are inside the basic
2901 blocks, and that all returns are followed by barriers. */
2902
2903 static int
2904 rtl_verify_bb_layout (void)
2905 {
2906 basic_block bb;
2907 int err = 0;
2908 rtx_insn *x;
2909 int num_bb_notes;
2910 rtx_insn * const rtx_first = get_insns ();
2911 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2912
2913 num_bb_notes = 0;
2914 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2915
2916 for (x = rtx_first; x; x = NEXT_INSN (x))
2917 {
2918 if (NOTE_INSN_BASIC_BLOCK_P (x))
2919 {
2920 bb = NOTE_BASIC_BLOCK (x);
2921
2922 num_bb_notes++;
2923 if (bb != last_bb_seen->next_bb)
2924 internal_error ("basic blocks not laid down consecutively");
2925
2926 curr_bb = last_bb_seen = bb;
2927 }
2928
2929 if (!curr_bb)
2930 {
2931 switch (GET_CODE (x))
2932 {
2933 case BARRIER:
2934 case NOTE:
2935 break;
2936
2937 case CODE_LABEL:
2938 /* An ADDR_VEC is placed outside any basic block. */
2939 if (NEXT_INSN (x)
2940 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2941 x = NEXT_INSN (x);
2942
2943 /* But in any case, non-deletable labels can appear anywhere. */
2944 break;
2945
2946 default:
2947 fatal_insn ("insn outside basic block", x);
2948 }
2949 }
2950
2951 if (JUMP_P (x)
2952 && returnjump_p (x) && ! condjump_p (x)
2953 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2954 fatal_insn ("return not followed by barrier", x);
2955
2956 if (curr_bb && x == BB_END (curr_bb))
2957 curr_bb = NULL;
2958 }
2959
2960 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
2961 internal_error
2962 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2963 num_bb_notes, n_basic_blocks_for_fn (cfun));
2964
2965 return err;
2966 }
2967
2968 /* Verify the CFG and RTL consistency common for both underlying RTL and
2969 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
2970
2971 Currently it does following checks:
2972 - all checks of rtl_verify_flow_info_1
2973 - test head/end pointers
2974 - check that blocks are laid out in consecutive order
2975 - check that all insns are in the basic blocks
2976 (except the switch handling code, barriers and notes)
2977 - check that all returns are followed by barriers
2978 - check that all fallthru edge points to the adjacent blocks
2979 - verify that there is a single hot/cold partition boundary after bbro */
2980
2981 static int
2982 rtl_verify_flow_info (void)
2983 {
2984 int err = 0;
2985
2986 err |= rtl_verify_flow_info_1 ();
2987
2988 err |= rtl_verify_bb_insn_chain ();
2989
2990 err |= rtl_verify_fallthru ();
2991
2992 err |= rtl_verify_bb_layout ();
2993
2994 err |= verify_hot_cold_block_grouping ();
2995
2996 return err;
2997 }
2998 \f
2999 /* Assume that the preceding pass has possibly eliminated jump instructions
3000 or converted the unconditional jumps. Eliminate the edges from CFG.
3001 Return true if any edges are eliminated. */
3002
3003 bool
3004 purge_dead_edges (basic_block bb)
3005 {
3006 edge e;
3007 rtx_insn *insn = BB_END (bb);
3008 rtx note;
3009 bool purged = false;
3010 bool found;
3011 edge_iterator ei;
3012
3013 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3014 do
3015 insn = PREV_INSN (insn);
3016 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3017
3018 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
3019 if (NONJUMP_INSN_P (insn)
3020 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3021 {
3022 rtx eqnote;
3023
3024 if (! may_trap_p (PATTERN (insn))
3025 || ((eqnote = find_reg_equal_equiv_note (insn))
3026 && ! may_trap_p (XEXP (eqnote, 0))))
3027 remove_note (insn, note);
3028 }
3029
3030 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3031 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3032 {
3033 bool remove = false;
3034
3035 /* There are three types of edges we need to handle correctly here: EH
3036 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3037 latter can appear when nonlocal gotos are used. */
3038 if (e->flags & EDGE_ABNORMAL_CALL)
3039 {
3040 if (!CALL_P (insn))
3041 remove = true;
3042 else if (can_nonlocal_goto (insn))
3043 ;
3044 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3045 ;
3046 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3047 ;
3048 else
3049 remove = true;
3050 }
3051 else if (e->flags & EDGE_EH)
3052 remove = !can_throw_internal (insn);
3053
3054 if (remove)
3055 {
3056 remove_edge (e);
3057 df_set_bb_dirty (bb);
3058 purged = true;
3059 }
3060 else
3061 ei_next (&ei);
3062 }
3063
3064 if (JUMP_P (insn))
3065 {
3066 rtx note;
3067 edge b,f;
3068 edge_iterator ei;
3069
3070 /* We do care only about conditional jumps and simplejumps. */
3071 if (!any_condjump_p (insn)
3072 && !returnjump_p (insn)
3073 && !simplejump_p (insn))
3074 return purged;
3075
3076 /* Branch probability/prediction notes are defined only for
3077 condjumps. We've possibly turned condjump into simplejump. */
3078 if (simplejump_p (insn))
3079 {
3080 note = find_reg_note (insn, REG_BR_PROB, NULL);
3081 if (note)
3082 remove_note (insn, note);
3083 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3084 remove_note (insn, note);
3085 }
3086
3087 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3088 {
3089 /* Avoid abnormal flags to leak from computed jumps turned
3090 into simplejumps. */
3091
3092 e->flags &= ~EDGE_ABNORMAL;
3093
3094 /* See if this edge is one we should keep. */
3095 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3096 /* A conditional jump can fall through into the next
3097 block, so we should keep the edge. */
3098 {
3099 ei_next (&ei);
3100 continue;
3101 }
3102 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3103 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3104 /* If the destination block is the target of the jump,
3105 keep the edge. */
3106 {
3107 ei_next (&ei);
3108 continue;
3109 }
3110 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3111 && returnjump_p (insn))
3112 /* If the destination block is the exit block, and this
3113 instruction is a return, then keep the edge. */
3114 {
3115 ei_next (&ei);
3116 continue;
3117 }
3118 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3119 /* Keep the edges that correspond to exceptions thrown by
3120 this instruction and rematerialize the EDGE_ABNORMAL
3121 flag we just cleared above. */
3122 {
3123 e->flags |= EDGE_ABNORMAL;
3124 ei_next (&ei);
3125 continue;
3126 }
3127
3128 /* We do not need this edge. */
3129 df_set_bb_dirty (bb);
3130 purged = true;
3131 remove_edge (e);
3132 }
3133
3134 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3135 return purged;
3136
3137 if (dump_file)
3138 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3139
3140 if (!optimize)
3141 return purged;
3142
3143 /* Redistribute probabilities. */
3144 if (single_succ_p (bb))
3145 {
3146 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3147 single_succ_edge (bb)->count = bb->count;
3148 }
3149 else
3150 {
3151 note = find_reg_note (insn, REG_BR_PROB, NULL);
3152 if (!note)
3153 return purged;
3154
3155 b = BRANCH_EDGE (bb);
3156 f = FALLTHRU_EDGE (bb);
3157 b->probability = XINT (note, 0);
3158 f->probability = REG_BR_PROB_BASE - b->probability;
3159 b->count = bb->count.apply_probability (b->probability);
3160 f->count = bb->count.apply_probability (f->probability);
3161 }
3162
3163 return purged;
3164 }
3165 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3166 {
3167 /* First, there should not be any EH or ABCALL edges resulting
3168 from non-local gotos and the like. If there were, we shouldn't
3169 have created the sibcall in the first place. Second, there
3170 should of course never have been a fallthru edge. */
3171 gcc_assert (single_succ_p (bb));
3172 gcc_assert (single_succ_edge (bb)->flags
3173 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3174
3175 return 0;
3176 }
3177
3178 /* If we don't see a jump insn, we don't know exactly why the block would
3179 have been broken at this point. Look for a simple, non-fallthru edge,
3180 as these are only created by conditional branches. If we find such an
3181 edge we know that there used to be a jump here and can then safely
3182 remove all non-fallthru edges. */
3183 found = false;
3184 FOR_EACH_EDGE (e, ei, bb->succs)
3185 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3186 {
3187 found = true;
3188 break;
3189 }
3190
3191 if (!found)
3192 return purged;
3193
3194 /* Remove all but the fake and fallthru edges. The fake edge may be
3195 the only successor for this block in the case of noreturn
3196 calls. */
3197 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3198 {
3199 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3200 {
3201 df_set_bb_dirty (bb);
3202 remove_edge (e);
3203 purged = true;
3204 }
3205 else
3206 ei_next (&ei);
3207 }
3208
3209 gcc_assert (single_succ_p (bb));
3210
3211 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3212 single_succ_edge (bb)->count = bb->count;
3213
3214 if (dump_file)
3215 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3216 bb->index);
3217 return purged;
3218 }
3219
3220 /* Search all basic blocks for potentially dead edges and purge them. Return
3221 true if some edge has been eliminated. */
3222
3223 bool
3224 purge_all_dead_edges (void)
3225 {
3226 int purged = false;
3227 basic_block bb;
3228
3229 FOR_EACH_BB_FN (bb, cfun)
3230 {
3231 bool purged_here = purge_dead_edges (bb);
3232
3233 purged |= purged_here;
3234 }
3235
3236 return purged;
3237 }
3238
3239 /* This is used by a few passes that emit some instructions after abnormal
3240 calls, moving the basic block's end, while they in fact do want to emit
3241 them on the fallthru edge. Look for abnormal call edges, find backward
3242 the call in the block and insert the instructions on the edge instead.
3243
3244 Similarly, handle instructions throwing exceptions internally.
3245
3246 Return true when instructions have been found and inserted on edges. */
3247
3248 bool
3249 fixup_abnormal_edges (void)
3250 {
3251 bool inserted = false;
3252 basic_block bb;
3253
3254 FOR_EACH_BB_FN (bb, cfun)
3255 {
3256 edge e;
3257 edge_iterator ei;
3258
3259 /* Look for cases we are interested in - calls or instructions causing
3260 exceptions. */
3261 FOR_EACH_EDGE (e, ei, bb->succs)
3262 if ((e->flags & EDGE_ABNORMAL_CALL)
3263 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3264 == (EDGE_ABNORMAL | EDGE_EH)))
3265 break;
3266
3267 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3268 {
3269 rtx_insn *insn;
3270
3271 /* Get past the new insns generated. Allow notes, as the insns
3272 may be already deleted. */
3273 insn = BB_END (bb);
3274 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3275 && !can_throw_internal (insn)
3276 && insn != BB_HEAD (bb))
3277 insn = PREV_INSN (insn);
3278
3279 if (CALL_P (insn) || can_throw_internal (insn))
3280 {
3281 rtx_insn *stop, *next;
3282
3283 e = find_fallthru_edge (bb->succs);
3284
3285 stop = NEXT_INSN (BB_END (bb));
3286 BB_END (bb) = insn;
3287
3288 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3289 {
3290 next = NEXT_INSN (insn);
3291 if (INSN_P (insn))
3292 {
3293 delete_insn (insn);
3294
3295 /* Sometimes there's still the return value USE.
3296 If it's placed after a trapping call (i.e. that
3297 call is the last insn anyway), we have no fallthru
3298 edge. Simply delete this use and don't try to insert
3299 on the non-existent edge. */
3300 if (GET_CODE (PATTERN (insn)) != USE)
3301 {
3302 /* We're not deleting it, we're moving it. */
3303 insn->set_undeleted ();
3304 SET_PREV_INSN (insn) = NULL_RTX;
3305 SET_NEXT_INSN (insn) = NULL_RTX;
3306
3307 insert_insn_on_edge (insn, e);
3308 inserted = true;
3309 }
3310 }
3311 else if (!BARRIER_P (insn))
3312 set_block_for_insn (insn, NULL);
3313 }
3314 }
3315
3316 /* It may be that we don't find any trapping insn. In this
3317 case we discovered quite late that the insn that had been
3318 marked as can_throw_internal in fact couldn't trap at all.
3319 So we should in fact delete the EH edges out of the block. */
3320 else
3321 purge_dead_edges (bb);
3322 }
3323 }
3324
3325 return inserted;
3326 }
3327 \f
3328 /* Cut the insns from FIRST to LAST out of the insns stream. */
3329
3330 rtx_insn *
3331 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3332 {
3333 rtx_insn *prevfirst = PREV_INSN (first);
3334 rtx_insn *nextlast = NEXT_INSN (last);
3335
3336 SET_PREV_INSN (first) = NULL;
3337 SET_NEXT_INSN (last) = NULL;
3338 if (prevfirst)
3339 SET_NEXT_INSN (prevfirst) = nextlast;
3340 if (nextlast)
3341 SET_PREV_INSN (nextlast) = prevfirst;
3342 else
3343 set_last_insn (prevfirst);
3344 if (!prevfirst)
3345 set_first_insn (nextlast);
3346 return first;
3347 }
3348 \f
3349 /* Skip over inter-block insns occurring after BB which are typically
3350 associated with BB (e.g., barriers). If there are any such insns,
3351 we return the last one. Otherwise, we return the end of BB. */
3352
3353 static rtx_insn *
3354 skip_insns_after_block (basic_block bb)
3355 {
3356 rtx_insn *insn, *last_insn, *next_head, *prev;
3357
3358 next_head = NULL;
3359 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3360 next_head = BB_HEAD (bb->next_bb);
3361
3362 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3363 {
3364 if (insn == next_head)
3365 break;
3366
3367 switch (GET_CODE (insn))
3368 {
3369 case BARRIER:
3370 last_insn = insn;
3371 continue;
3372
3373 case NOTE:
3374 switch (NOTE_KIND (insn))
3375 {
3376 case NOTE_INSN_BLOCK_END:
3377 gcc_unreachable ();
3378 continue;
3379 default:
3380 continue;
3381 break;
3382 }
3383 break;
3384
3385 case CODE_LABEL:
3386 if (NEXT_INSN (insn)
3387 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3388 {
3389 insn = NEXT_INSN (insn);
3390 last_insn = insn;
3391 continue;
3392 }
3393 break;
3394
3395 default:
3396 break;
3397 }
3398
3399 break;
3400 }
3401
3402 /* It is possible to hit contradictory sequence. For instance:
3403
3404 jump_insn
3405 NOTE_INSN_BLOCK_BEG
3406 barrier
3407
3408 Where barrier belongs to jump_insn, but the note does not. This can be
3409 created by removing the basic block originally following
3410 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3411
3412 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3413 {
3414 prev = PREV_INSN (insn);
3415 if (NOTE_P (insn))
3416 switch (NOTE_KIND (insn))
3417 {
3418 case NOTE_INSN_BLOCK_END:
3419 gcc_unreachable ();
3420 break;
3421 case NOTE_INSN_DELETED:
3422 case NOTE_INSN_DELETED_LABEL:
3423 case NOTE_INSN_DELETED_DEBUG_LABEL:
3424 continue;
3425 default:
3426 reorder_insns (insn, insn, last_insn);
3427 }
3428 }
3429
3430 return last_insn;
3431 }
3432
3433 /* Locate or create a label for a given basic block. */
3434
3435 static rtx_insn *
3436 label_for_bb (basic_block bb)
3437 {
3438 rtx_insn *label = BB_HEAD (bb);
3439
3440 if (!LABEL_P (label))
3441 {
3442 if (dump_file)
3443 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3444
3445 label = block_label (bb);
3446 }
3447
3448 return label;
3449 }
3450
3451 /* Locate the effective beginning and end of the insn chain for each
3452 block, as defined by skip_insns_after_block above. */
3453
3454 static void
3455 record_effective_endpoints (void)
3456 {
3457 rtx_insn *next_insn;
3458 basic_block bb;
3459 rtx_insn *insn;
3460
3461 for (insn = get_insns ();
3462 insn
3463 && NOTE_P (insn)
3464 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3465 insn = NEXT_INSN (insn))
3466 continue;
3467 /* No basic blocks at all? */
3468 gcc_assert (insn);
3469
3470 if (PREV_INSN (insn))
3471 cfg_layout_function_header =
3472 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3473 else
3474 cfg_layout_function_header = NULL;
3475
3476 next_insn = get_insns ();
3477 FOR_EACH_BB_FN (bb, cfun)
3478 {
3479 rtx_insn *end;
3480
3481 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3482 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3483 PREV_INSN (BB_HEAD (bb)));
3484 end = skip_insns_after_block (bb);
3485 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3486 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3487 next_insn = NEXT_INSN (BB_END (bb));
3488 }
3489
3490 cfg_layout_function_footer = next_insn;
3491 if (cfg_layout_function_footer)
3492 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3493 }
3494 \f
3495 namespace {
3496
3497 const pass_data pass_data_into_cfg_layout_mode =
3498 {
3499 RTL_PASS, /* type */
3500 "into_cfglayout", /* name */
3501 OPTGROUP_NONE, /* optinfo_flags */
3502 TV_CFG, /* tv_id */
3503 0, /* properties_required */
3504 PROP_cfglayout, /* properties_provided */
3505 0, /* properties_destroyed */
3506 0, /* todo_flags_start */
3507 0, /* todo_flags_finish */
3508 };
3509
3510 class pass_into_cfg_layout_mode : public rtl_opt_pass
3511 {
3512 public:
3513 pass_into_cfg_layout_mode (gcc::context *ctxt)
3514 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3515 {}
3516
3517 /* opt_pass methods: */
3518 virtual unsigned int execute (function *)
3519 {
3520 cfg_layout_initialize (0);
3521 return 0;
3522 }
3523
3524 }; // class pass_into_cfg_layout_mode
3525
3526 } // anon namespace
3527
3528 rtl_opt_pass *
3529 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3530 {
3531 return new pass_into_cfg_layout_mode (ctxt);
3532 }
3533
3534 namespace {
3535
3536 const pass_data pass_data_outof_cfg_layout_mode =
3537 {
3538 RTL_PASS, /* type */
3539 "outof_cfglayout", /* name */
3540 OPTGROUP_NONE, /* optinfo_flags */
3541 TV_CFG, /* tv_id */
3542 0, /* properties_required */
3543 0, /* properties_provided */
3544 PROP_cfglayout, /* properties_destroyed */
3545 0, /* todo_flags_start */
3546 0, /* todo_flags_finish */
3547 };
3548
3549 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3550 {
3551 public:
3552 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3553 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3554 {}
3555
3556 /* opt_pass methods: */
3557 virtual unsigned int execute (function *);
3558
3559 }; // class pass_outof_cfg_layout_mode
3560
3561 unsigned int
3562 pass_outof_cfg_layout_mode::execute (function *fun)
3563 {
3564 basic_block bb;
3565
3566 FOR_EACH_BB_FN (bb, fun)
3567 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3568 bb->aux = bb->next_bb;
3569
3570 cfg_layout_finalize ();
3571
3572 return 0;
3573 }
3574
3575 } // anon namespace
3576
3577 rtl_opt_pass *
3578 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3579 {
3580 return new pass_outof_cfg_layout_mode (ctxt);
3581 }
3582 \f
3583
3584 /* Link the basic blocks in the correct order, compacting the basic
3585 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3586 function also clears the basic block header and footer fields.
3587
3588 This function is usually called after a pass (e.g. tracer) finishes
3589 some transformations while in cfglayout mode. The required sequence
3590 of the basic blocks is in a linked list along the bb->aux field.
3591 This functions re-links the basic block prev_bb and next_bb pointers
3592 accordingly, and it compacts and renumbers the blocks.
3593
3594 FIXME: This currently works only for RTL, but the only RTL-specific
3595 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3596 to GIMPLE a long time ago, but it doesn't relink the basic block
3597 chain. It could do that (to give better initial RTL) if this function
3598 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3599
3600 void
3601 relink_block_chain (bool stay_in_cfglayout_mode)
3602 {
3603 basic_block bb, prev_bb;
3604 int index;
3605
3606 /* Maybe dump the re-ordered sequence. */
3607 if (dump_file)
3608 {
3609 fprintf (dump_file, "Reordered sequence:\n");
3610 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3611 NUM_FIXED_BLOCKS;
3612 bb;
3613 bb = (basic_block) bb->aux, index++)
3614 {
3615 fprintf (dump_file, " %i ", index);
3616 if (get_bb_original (bb))
3617 fprintf (dump_file, "duplicate of %i ",
3618 get_bb_original (bb)->index);
3619 else if (forwarder_block_p (bb)
3620 && !LABEL_P (BB_HEAD (bb)))
3621 fprintf (dump_file, "compensation ");
3622 else
3623 fprintf (dump_file, "bb %i ", bb->index);
3624 fprintf (dump_file, " [%i]\n", bb->frequency);
3625 }
3626 }
3627
3628 /* Now reorder the blocks. */
3629 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3630 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3631 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3632 {
3633 bb->prev_bb = prev_bb;
3634 prev_bb->next_bb = bb;
3635 }
3636 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3637 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3638
3639 /* Then, clean up the aux fields. */
3640 FOR_ALL_BB_FN (bb, cfun)
3641 {
3642 bb->aux = NULL;
3643 if (!stay_in_cfglayout_mode)
3644 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3645 }
3646
3647 /* Maybe reset the original copy tables, they are not valid anymore
3648 when we renumber the basic blocks in compact_blocks. If we are
3649 are going out of cfglayout mode, don't re-allocate the tables. */
3650 if (original_copy_tables_initialized_p ())
3651 free_original_copy_tables ();
3652 if (stay_in_cfglayout_mode)
3653 initialize_original_copy_tables ();
3654
3655 /* Finally, put basic_block_info in the new order. */
3656 compact_blocks ();
3657 }
3658 \f
3659
3660 /* Given a reorder chain, rearrange the code to match. */
3661
3662 static void
3663 fixup_reorder_chain (void)
3664 {
3665 basic_block bb;
3666 rtx_insn *insn = NULL;
3667
3668 if (cfg_layout_function_header)
3669 {
3670 set_first_insn (cfg_layout_function_header);
3671 insn = cfg_layout_function_header;
3672 while (NEXT_INSN (insn))
3673 insn = NEXT_INSN (insn);
3674 }
3675
3676 /* First do the bulk reordering -- rechain the blocks without regard to
3677 the needed changes to jumps and labels. */
3678
3679 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3680 bb->aux)
3681 {
3682 if (BB_HEADER (bb))
3683 {
3684 if (insn)
3685 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3686 else
3687 set_first_insn (BB_HEADER (bb));
3688 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3689 insn = BB_HEADER (bb);
3690 while (NEXT_INSN (insn))
3691 insn = NEXT_INSN (insn);
3692 }
3693 if (insn)
3694 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3695 else
3696 set_first_insn (BB_HEAD (bb));
3697 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3698 insn = BB_END (bb);
3699 if (BB_FOOTER (bb))
3700 {
3701 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3702 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3703 while (NEXT_INSN (insn))
3704 insn = NEXT_INSN (insn);
3705 }
3706 }
3707
3708 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3709 if (cfg_layout_function_footer)
3710 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3711
3712 while (NEXT_INSN (insn))
3713 insn = NEXT_INSN (insn);
3714
3715 set_last_insn (insn);
3716 if (flag_checking)
3717 verify_insn_chain ();
3718
3719 /* Now add jumps and labels as needed to match the blocks new
3720 outgoing edges. */
3721
3722 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3723 bb->aux)
3724 {
3725 edge e_fall, e_taken, e;
3726 rtx_insn *bb_end_insn;
3727 rtx ret_label = NULL_RTX;
3728 basic_block nb;
3729 edge_iterator ei;
3730
3731 if (EDGE_COUNT (bb->succs) == 0)
3732 continue;
3733
3734 /* Find the old fallthru edge, and another non-EH edge for
3735 a taken jump. */
3736 e_taken = e_fall = NULL;
3737
3738 FOR_EACH_EDGE (e, ei, bb->succs)
3739 if (e->flags & EDGE_FALLTHRU)
3740 e_fall = e;
3741 else if (! (e->flags & EDGE_EH))
3742 e_taken = e;
3743
3744 bb_end_insn = BB_END (bb);
3745 if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3746 {
3747 ret_label = JUMP_LABEL (bb_end_jump);
3748 if (any_condjump_p (bb_end_jump))
3749 {
3750 /* This might happen if the conditional jump has side
3751 effects and could therefore not be optimized away.
3752 Make the basic block to end with a barrier in order
3753 to prevent rtl_verify_flow_info from complaining. */
3754 if (!e_fall)
3755 {
3756 gcc_assert (!onlyjump_p (bb_end_jump)
3757 || returnjump_p (bb_end_jump)
3758 || (e_taken->flags & EDGE_CROSSING));
3759 emit_barrier_after (bb_end_jump);
3760 continue;
3761 }
3762
3763 /* If the old fallthru is still next, nothing to do. */
3764 if (bb->aux == e_fall->dest
3765 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3766 continue;
3767
3768 /* The degenerated case of conditional jump jumping to the next
3769 instruction can happen for jumps with side effects. We need
3770 to construct a forwarder block and this will be done just
3771 fine by force_nonfallthru below. */
3772 if (!e_taken)
3773 ;
3774
3775 /* There is another special case: if *neither* block is next,
3776 such as happens at the very end of a function, then we'll
3777 need to add a new unconditional jump. Choose the taken
3778 edge based on known or assumed probability. */
3779 else if (bb->aux != e_taken->dest)
3780 {
3781 rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3782
3783 if (note
3784 && XINT (note, 0) < REG_BR_PROB_BASE / 2
3785 && invert_jump (bb_end_jump,
3786 (e_fall->dest
3787 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3788 ? NULL_RTX
3789 : label_for_bb (e_fall->dest)), 0))
3790 {
3791 e_fall->flags &= ~EDGE_FALLTHRU;
3792 gcc_checking_assert (could_fall_through
3793 (e_taken->src, e_taken->dest));
3794 e_taken->flags |= EDGE_FALLTHRU;
3795 update_br_prob_note (bb);
3796 e = e_fall, e_fall = e_taken, e_taken = e;
3797 }
3798 }
3799
3800 /* If the "jumping" edge is a crossing edge, and the fall
3801 through edge is non-crossing, leave things as they are. */
3802 else if ((e_taken->flags & EDGE_CROSSING)
3803 && !(e_fall->flags & EDGE_CROSSING))
3804 continue;
3805
3806 /* Otherwise we can try to invert the jump. This will
3807 basically never fail, however, keep up the pretense. */
3808 else if (invert_jump (bb_end_jump,
3809 (e_fall->dest
3810 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3811 ? NULL_RTX
3812 : label_for_bb (e_fall->dest)), 0))
3813 {
3814 e_fall->flags &= ~EDGE_FALLTHRU;
3815 gcc_checking_assert (could_fall_through
3816 (e_taken->src, e_taken->dest));
3817 e_taken->flags |= EDGE_FALLTHRU;
3818 update_br_prob_note (bb);
3819 if (LABEL_NUSES (ret_label) == 0
3820 && single_pred_p (e_taken->dest))
3821 delete_insn (as_a<rtx_insn *> (ret_label));
3822 continue;
3823 }
3824 }
3825 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3826 {
3827 /* If the old fallthru is still next or if
3828 asm goto doesn't have a fallthru (e.g. when followed by
3829 __builtin_unreachable ()), nothing to do. */
3830 if (! e_fall
3831 || bb->aux == e_fall->dest
3832 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3833 continue;
3834
3835 /* Otherwise we'll have to use the fallthru fixup below. */
3836 }
3837 else
3838 {
3839 /* Otherwise we have some return, switch or computed
3840 jump. In the 99% case, there should not have been a
3841 fallthru edge. */
3842 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3843 continue;
3844 }
3845 }
3846 else
3847 {
3848 /* No fallthru implies a noreturn function with EH edges, or
3849 something similarly bizarre. In any case, we don't need to
3850 do anything. */
3851 if (! e_fall)
3852 continue;
3853
3854 /* If the fallthru block is still next, nothing to do. */
3855 if (bb->aux == e_fall->dest)
3856 continue;
3857
3858 /* A fallthru to exit block. */
3859 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3860 continue;
3861 }
3862
3863 /* We got here if we need to add a new jump insn.
3864 Note force_nonfallthru can delete E_FALL and thus we have to
3865 save E_FALL->src prior to the call to force_nonfallthru. */
3866 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3867 if (nb)
3868 {
3869 nb->aux = bb->aux;
3870 bb->aux = nb;
3871 /* Don't process this new block. */
3872 bb = nb;
3873 }
3874 }
3875
3876 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3877
3878 /* Annoying special case - jump around dead jumptables left in the code. */
3879 FOR_EACH_BB_FN (bb, cfun)
3880 {
3881 edge e = find_fallthru_edge (bb->succs);
3882
3883 if (e && !can_fallthru (e->src, e->dest))
3884 force_nonfallthru (e);
3885 }
3886
3887 /* Ensure goto_locus from edges has some instructions with that locus
3888 in RTL. */
3889 if (!optimize)
3890 FOR_EACH_BB_FN (bb, cfun)
3891 {
3892 edge e;
3893 edge_iterator ei;
3894
3895 FOR_EACH_EDGE (e, ei, bb->succs)
3896 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3897 && !(e->flags & EDGE_ABNORMAL))
3898 {
3899 edge e2;
3900 edge_iterator ei2;
3901 basic_block dest, nb;
3902 rtx_insn *end;
3903
3904 insn = BB_END (e->src);
3905 end = PREV_INSN (BB_HEAD (e->src));
3906 while (insn != end
3907 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3908 insn = PREV_INSN (insn);
3909 if (insn != end
3910 && INSN_LOCATION (insn) == e->goto_locus)
3911 continue;
3912 if (simplejump_p (BB_END (e->src))
3913 && !INSN_HAS_LOCATION (BB_END (e->src)))
3914 {
3915 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3916 continue;
3917 }
3918 dest = e->dest;
3919 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3920 {
3921 /* Non-fallthru edges to the exit block cannot be split. */
3922 if (!(e->flags & EDGE_FALLTHRU))
3923 continue;
3924 }
3925 else
3926 {
3927 insn = BB_HEAD (dest);
3928 end = NEXT_INSN (BB_END (dest));
3929 while (insn != end && !NONDEBUG_INSN_P (insn))
3930 insn = NEXT_INSN (insn);
3931 if (insn != end && INSN_HAS_LOCATION (insn)
3932 && INSN_LOCATION (insn) == e->goto_locus)
3933 continue;
3934 }
3935 nb = split_edge (e);
3936 if (!INSN_P (BB_END (nb)))
3937 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3938 nb);
3939 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3940
3941 /* If there are other incoming edges to the destination block
3942 with the same goto locus, redirect them to the new block as
3943 well, this can prevent other such blocks from being created
3944 in subsequent iterations of the loop. */
3945 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3946 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3947 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3948 && e->goto_locus == e2->goto_locus)
3949 redirect_edge_and_branch (e2, nb);
3950 else
3951 ei_next (&ei2);
3952 }
3953 }
3954 }
3955 \f
3956 /* Perform sanity checks on the insn chain.
3957 1. Check that next/prev pointers are consistent in both the forward and
3958 reverse direction.
3959 2. Count insns in chain, going both directions, and check if equal.
3960 3. Check that get_last_insn () returns the actual end of chain. */
3961
3962 DEBUG_FUNCTION void
3963 verify_insn_chain (void)
3964 {
3965 rtx_insn *x, *prevx, *nextx;
3966 int insn_cnt1, insn_cnt2;
3967
3968 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
3969 x != 0;
3970 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
3971 gcc_assert (PREV_INSN (x) == prevx);
3972
3973 gcc_assert (prevx == get_last_insn ());
3974
3975 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
3976 x != 0;
3977 nextx = x, insn_cnt2++, x = PREV_INSN (x))
3978 gcc_assert (NEXT_INSN (x) == nextx);
3979
3980 gcc_assert (insn_cnt1 == insn_cnt2);
3981 }
3982 \f
3983 /* If we have assembler epilogues, the block falling through to exit must
3984 be the last one in the reordered chain when we reach final. Ensure
3985 that this condition is met. */
3986 static void
3987 fixup_fallthru_exit_predecessor (void)
3988 {
3989 edge e;
3990 basic_block bb = NULL;
3991
3992 /* This transformation is not valid before reload, because we might
3993 separate a call from the instruction that copies the return
3994 value. */
3995 gcc_assert (reload_completed);
3996
3997 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
3998 if (e)
3999 bb = e->src;
4000
4001 if (bb && bb->aux)
4002 {
4003 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4004
4005 /* If the very first block is the one with the fall-through exit
4006 edge, we have to split that block. */
4007 if (c == bb)
4008 {
4009 bb = split_block_after_labels (bb)->dest;
4010 bb->aux = c->aux;
4011 c->aux = bb;
4012 BB_FOOTER (bb) = BB_FOOTER (c);
4013 BB_FOOTER (c) = NULL;
4014 }
4015
4016 while (c->aux != bb)
4017 c = (basic_block) c->aux;
4018
4019 c->aux = bb->aux;
4020 while (c->aux)
4021 c = (basic_block) c->aux;
4022
4023 c->aux = bb;
4024 bb->aux = NULL;
4025 }
4026 }
4027
4028 /* In case there are more than one fallthru predecessors of exit, force that
4029 there is only one. */
4030
4031 static void
4032 force_one_exit_fallthru (void)
4033 {
4034 edge e, predecessor = NULL;
4035 bool more = false;
4036 edge_iterator ei;
4037 basic_block forwarder, bb;
4038
4039 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4040 if (e->flags & EDGE_FALLTHRU)
4041 {
4042 if (predecessor == NULL)
4043 predecessor = e;
4044 else
4045 {
4046 more = true;
4047 break;
4048 }
4049 }
4050
4051 if (!more)
4052 return;
4053
4054 /* Exit has several fallthru predecessors. Create a forwarder block for
4055 them. */
4056 forwarder = split_edge (predecessor);
4057 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4058 (e = ei_safe_edge (ei)); )
4059 {
4060 if (e->src == forwarder
4061 || !(e->flags & EDGE_FALLTHRU))
4062 ei_next (&ei);
4063 else
4064 redirect_edge_and_branch_force (e, forwarder);
4065 }
4066
4067 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4068 exit block. */
4069 FOR_EACH_BB_FN (bb, cfun)
4070 {
4071 if (bb->aux == NULL && bb != forwarder)
4072 {
4073 bb->aux = forwarder;
4074 break;
4075 }
4076 }
4077 }
4078 \f
4079 /* Return true in case it is possible to duplicate the basic block BB. */
4080
4081 static bool
4082 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4083 {
4084 /* Do not attempt to duplicate tablejumps, as we need to unshare
4085 the dispatch table. This is difficult to do, as the instructions
4086 computing jump destination may be hoisted outside the basic block. */
4087 if (tablejump_p (BB_END (bb), NULL, NULL))
4088 return false;
4089
4090 /* Do not duplicate blocks containing insns that can't be copied. */
4091 if (targetm.cannot_copy_insn_p)
4092 {
4093 rtx_insn *insn = BB_HEAD (bb);
4094 while (1)
4095 {
4096 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4097 return false;
4098 if (insn == BB_END (bb))
4099 break;
4100 insn = NEXT_INSN (insn);
4101 }
4102 }
4103
4104 return true;
4105 }
4106
4107 rtx_insn *
4108 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4109 {
4110 rtx_insn *insn, *next, *copy;
4111 rtx_note *last;
4112
4113 /* Avoid updating of boundaries of previous basic block. The
4114 note will get removed from insn stream in fixup. */
4115 last = emit_note (NOTE_INSN_DELETED);
4116
4117 /* Create copy at the end of INSN chain. The chain will
4118 be reordered later. */
4119 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4120 {
4121 switch (GET_CODE (insn))
4122 {
4123 case DEBUG_INSN:
4124 /* Don't duplicate label debug insns. */
4125 if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4126 break;
4127 /* FALLTHRU */
4128 case INSN:
4129 case CALL_INSN:
4130 case JUMP_INSN:
4131 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4132 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4133 && ANY_RETURN_P (JUMP_LABEL (insn)))
4134 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4135 maybe_copy_prologue_epilogue_insn (insn, copy);
4136 break;
4137
4138 case JUMP_TABLE_DATA:
4139 /* Avoid copying of dispatch tables. We never duplicate
4140 tablejumps, so this can hit only in case the table got
4141 moved far from original jump.
4142 Avoid copying following barrier as well if any
4143 (and debug insns in between). */
4144 for (next = NEXT_INSN (insn);
4145 next != NEXT_INSN (to);
4146 next = NEXT_INSN (next))
4147 if (!DEBUG_INSN_P (next))
4148 break;
4149 if (next != NEXT_INSN (to) && BARRIER_P (next))
4150 insn = next;
4151 break;
4152
4153 case CODE_LABEL:
4154 break;
4155
4156 case BARRIER:
4157 emit_barrier ();
4158 break;
4159
4160 case NOTE:
4161 switch (NOTE_KIND (insn))
4162 {
4163 /* In case prologue is empty and function contain label
4164 in first BB, we may want to copy the block. */
4165 case NOTE_INSN_PROLOGUE_END:
4166
4167 case NOTE_INSN_DELETED:
4168 case NOTE_INSN_DELETED_LABEL:
4169 case NOTE_INSN_DELETED_DEBUG_LABEL:
4170 /* No problem to strip these. */
4171 case NOTE_INSN_FUNCTION_BEG:
4172 /* There is always just single entry to function. */
4173 case NOTE_INSN_BASIC_BLOCK:
4174 /* We should only switch text sections once. */
4175 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4176 break;
4177
4178 case NOTE_INSN_EPILOGUE_BEG:
4179 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4180 emit_note_copy (as_a <rtx_note *> (insn));
4181 break;
4182
4183 default:
4184 /* All other notes should have already been eliminated. */
4185 gcc_unreachable ();
4186 }
4187 break;
4188 default:
4189 gcc_unreachable ();
4190 }
4191 }
4192 insn = NEXT_INSN (last);
4193 delete_insn (last);
4194 return insn;
4195 }
4196
4197 /* Create a duplicate of the basic block BB. */
4198
4199 static basic_block
4200 cfg_layout_duplicate_bb (basic_block bb)
4201 {
4202 rtx_insn *insn;
4203 basic_block new_bb;
4204
4205 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4206 new_bb = create_basic_block (insn,
4207 insn ? get_last_insn () : NULL,
4208 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4209
4210 BB_COPY_PARTITION (new_bb, bb);
4211 if (BB_HEADER (bb))
4212 {
4213 insn = BB_HEADER (bb);
4214 while (NEXT_INSN (insn))
4215 insn = NEXT_INSN (insn);
4216 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4217 if (insn)
4218 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4219 }
4220
4221 if (BB_FOOTER (bb))
4222 {
4223 insn = BB_FOOTER (bb);
4224 while (NEXT_INSN (insn))
4225 insn = NEXT_INSN (insn);
4226 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4227 if (insn)
4228 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4229 }
4230
4231 return new_bb;
4232 }
4233
4234 \f
4235 /* Main entry point to this module - initialize the datastructures for
4236 CFG layout changes. It keeps LOOPS up-to-date if not null.
4237
4238 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4239
4240 void
4241 cfg_layout_initialize (int flags)
4242 {
4243 rtx_insn_list *x;
4244 basic_block bb;
4245
4246 /* Once bb partitioning is complete, cfg layout mode should not be
4247 re-entered. Entering cfg layout mode may require fixups. As an
4248 example, if edge forwarding performed when optimizing the cfg
4249 layout required moving a block from the hot to the cold
4250 section. This would create an illegal partitioning unless some
4251 manual fixup was performed. */
4252 gcc_assert (!crtl->bb_reorder_complete || !crtl->has_bb_partition);
4253
4254 initialize_original_copy_tables ();
4255
4256 cfg_layout_rtl_register_cfg_hooks ();
4257
4258 record_effective_endpoints ();
4259
4260 /* Make sure that the targets of non local gotos are marked. */
4261 for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4262 {
4263 bb = BLOCK_FOR_INSN (x->insn ());
4264 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4265 }
4266
4267 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4268 }
4269
4270 /* Splits superblocks. */
4271 void
4272 break_superblocks (void)
4273 {
4274 bool need = false;
4275 basic_block bb;
4276
4277 auto_sbitmap superblocks (last_basic_block_for_fn (cfun));
4278 bitmap_clear (superblocks);
4279
4280 FOR_EACH_BB_FN (bb, cfun)
4281 if (bb->flags & BB_SUPERBLOCK)
4282 {
4283 bb->flags &= ~BB_SUPERBLOCK;
4284 bitmap_set_bit (superblocks, bb->index);
4285 need = true;
4286 }
4287
4288 if (need)
4289 {
4290 rebuild_jump_labels (get_insns ());
4291 find_many_sub_basic_blocks (superblocks);
4292 }
4293 }
4294
4295 /* Finalize the changes: reorder insn list according to the sequence specified
4296 by aux pointers, enter compensation code, rebuild scope forest. */
4297
4298 void
4299 cfg_layout_finalize (void)
4300 {
4301 checking_verify_flow_info ();
4302 free_dominance_info (CDI_DOMINATORS);
4303 force_one_exit_fallthru ();
4304 rtl_register_cfg_hooks ();
4305 if (reload_completed && !targetm.have_epilogue ())
4306 fixup_fallthru_exit_predecessor ();
4307 fixup_reorder_chain ();
4308
4309 rebuild_jump_labels (get_insns ());
4310 delete_dead_jumptables ();
4311
4312 if (flag_checking)
4313 verify_insn_chain ();
4314 checking_verify_flow_info ();
4315 }
4316
4317
4318 /* Same as split_block but update cfg_layout structures. */
4319
4320 static basic_block
4321 cfg_layout_split_block (basic_block bb, void *insnp)
4322 {
4323 rtx insn = (rtx) insnp;
4324 basic_block new_bb = rtl_split_block (bb, insn);
4325
4326 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4327 BB_FOOTER (bb) = NULL;
4328
4329 return new_bb;
4330 }
4331
4332 /* Redirect Edge to DEST. */
4333 static edge
4334 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4335 {
4336 basic_block src = e->src;
4337 edge ret;
4338
4339 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4340 return NULL;
4341
4342 if (e->dest == dest)
4343 return e;
4344
4345 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4346 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4347 {
4348 df_set_bb_dirty (src);
4349 return ret;
4350 }
4351
4352 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4353 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4354 {
4355 if (dump_file)
4356 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4357 e->src->index, dest->index);
4358
4359 df_set_bb_dirty (e->src);
4360 redirect_edge_succ (e, dest);
4361 return e;
4362 }
4363
4364 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4365 in the case the basic block appears to be in sequence. Avoid this
4366 transformation. */
4367
4368 if (e->flags & EDGE_FALLTHRU)
4369 {
4370 /* Redirect any branch edges unified with the fallthru one. */
4371 if (JUMP_P (BB_END (src))
4372 && label_is_jump_target_p (BB_HEAD (e->dest),
4373 BB_END (src)))
4374 {
4375 edge redirected;
4376
4377 if (dump_file)
4378 fprintf (dump_file, "Fallthru edge unified with branch "
4379 "%i->%i redirected to %i\n",
4380 e->src->index, e->dest->index, dest->index);
4381 e->flags &= ~EDGE_FALLTHRU;
4382 redirected = redirect_branch_edge (e, dest);
4383 gcc_assert (redirected);
4384 redirected->flags |= EDGE_FALLTHRU;
4385 df_set_bb_dirty (redirected->src);
4386 return redirected;
4387 }
4388 /* In case we are redirecting fallthru edge to the branch edge
4389 of conditional jump, remove it. */
4390 if (EDGE_COUNT (src->succs) == 2)
4391 {
4392 /* Find the edge that is different from E. */
4393 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4394
4395 if (s->dest == dest
4396 && any_condjump_p (BB_END (src))
4397 && onlyjump_p (BB_END (src)))
4398 delete_insn (BB_END (src));
4399 }
4400 if (dump_file)
4401 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4402 e->src->index, e->dest->index, dest->index);
4403 ret = redirect_edge_succ_nodup (e, dest);
4404 }
4405 else
4406 ret = redirect_branch_edge (e, dest);
4407
4408 /* We don't want simplejumps in the insn stream during cfglayout. */
4409 gcc_assert (!simplejump_p (BB_END (src)));
4410
4411 df_set_bb_dirty (src);
4412 return ret;
4413 }
4414
4415 /* Simple wrapper as we always can redirect fallthru edges. */
4416 static basic_block
4417 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4418 {
4419 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4420
4421 gcc_assert (redirected);
4422 return NULL;
4423 }
4424
4425 /* Same as delete_basic_block but update cfg_layout structures. */
4426
4427 static void
4428 cfg_layout_delete_block (basic_block bb)
4429 {
4430 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4431 rtx_insn **to;
4432
4433 if (BB_HEADER (bb))
4434 {
4435 next = BB_HEAD (bb);
4436 if (prev)
4437 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4438 else
4439 set_first_insn (BB_HEADER (bb));
4440 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4441 insn = BB_HEADER (bb);
4442 while (NEXT_INSN (insn))
4443 insn = NEXT_INSN (insn);
4444 SET_NEXT_INSN (insn) = next;
4445 SET_PREV_INSN (next) = insn;
4446 }
4447 next = NEXT_INSN (BB_END (bb));
4448 if (BB_FOOTER (bb))
4449 {
4450 insn = BB_FOOTER (bb);
4451 while (insn)
4452 {
4453 if (BARRIER_P (insn))
4454 {
4455 if (PREV_INSN (insn))
4456 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4457 else
4458 BB_FOOTER (bb) = NEXT_INSN (insn);
4459 if (NEXT_INSN (insn))
4460 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4461 }
4462 if (LABEL_P (insn))
4463 break;
4464 insn = NEXT_INSN (insn);
4465 }
4466 if (BB_FOOTER (bb))
4467 {
4468 insn = BB_END (bb);
4469 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4470 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4471 while (NEXT_INSN (insn))
4472 insn = NEXT_INSN (insn);
4473 SET_NEXT_INSN (insn) = next;
4474 if (next)
4475 SET_PREV_INSN (next) = insn;
4476 else
4477 set_last_insn (insn);
4478 }
4479 }
4480 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4481 to = &BB_HEADER (bb->next_bb);
4482 else
4483 to = &cfg_layout_function_footer;
4484
4485 rtl_delete_block (bb);
4486
4487 if (prev)
4488 prev = NEXT_INSN (prev);
4489 else
4490 prev = get_insns ();
4491 if (next)
4492 next = PREV_INSN (next);
4493 else
4494 next = get_last_insn ();
4495
4496 if (next && NEXT_INSN (next) != prev)
4497 {
4498 remaints = unlink_insn_chain (prev, next);
4499 insn = remaints;
4500 while (NEXT_INSN (insn))
4501 insn = NEXT_INSN (insn);
4502 SET_NEXT_INSN (insn) = *to;
4503 if (*to)
4504 SET_PREV_INSN (*to) = insn;
4505 *to = remaints;
4506 }
4507 }
4508
4509 /* Return true when blocks A and B can be safely merged. */
4510
4511 static bool
4512 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4513 {
4514 /* If we are partitioning hot/cold basic blocks, we don't want to
4515 mess up unconditional or indirect jumps that cross between hot
4516 and cold sections.
4517
4518 Basic block partitioning may result in some jumps that appear to
4519 be optimizable (or blocks that appear to be mergeable), but which really
4520 must be left untouched (they are required to make it safely across
4521 partition boundaries). See the comments at the top of
4522 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4523
4524 if (BB_PARTITION (a) != BB_PARTITION (b))
4525 return false;
4526
4527 /* Protect the loop latches. */
4528 if (current_loops && b->loop_father->latch == b)
4529 return false;
4530
4531 /* If we would end up moving B's instructions, make sure it doesn't fall
4532 through into the exit block, since we cannot recover from a fallthrough
4533 edge into the exit block occurring in the middle of a function. */
4534 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4535 {
4536 edge e = find_fallthru_edge (b->succs);
4537 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4538 return false;
4539 }
4540
4541 /* There must be exactly one edge in between the blocks. */
4542 return (single_succ_p (a)
4543 && single_succ (a) == b
4544 && single_pred_p (b) == 1
4545 && a != b
4546 /* Must be simple edge. */
4547 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4548 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4549 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4550 /* If the jump insn has side effects, we can't kill the edge.
4551 When not optimizing, try_redirect_by_replacing_jump will
4552 not allow us to redirect an edge by replacing a table jump. */
4553 && (!JUMP_P (BB_END (a))
4554 || ((!optimize || reload_completed)
4555 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4556 }
4557
4558 /* Merge block A and B. The blocks must be mergeable. */
4559
4560 static void
4561 cfg_layout_merge_blocks (basic_block a, basic_block b)
4562 {
4563 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
4564 rtx_insn *insn;
4565
4566 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4567
4568 if (dump_file)
4569 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4570 a->index);
4571
4572 /* If there was a CODE_LABEL beginning B, delete it. */
4573 if (LABEL_P (BB_HEAD (b)))
4574 {
4575 delete_insn (BB_HEAD (b));
4576 }
4577
4578 /* We should have fallthru edge in a, or we can do dummy redirection to get
4579 it cleaned up. */
4580 if (JUMP_P (BB_END (a)))
4581 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4582 gcc_assert (!JUMP_P (BB_END (a)));
4583
4584 /* When not optimizing and the edge is the only place in RTL which holds
4585 some unique locus, emit a nop with that locus in between. */
4586 if (!optimize)
4587 emit_nop_for_unique_locus_between (a, b);
4588
4589 /* Move things from b->footer after a->footer. */
4590 if (BB_FOOTER (b))
4591 {
4592 if (!BB_FOOTER (a))
4593 BB_FOOTER (a) = BB_FOOTER (b);
4594 else
4595 {
4596 rtx_insn *last = BB_FOOTER (a);
4597
4598 while (NEXT_INSN (last))
4599 last = NEXT_INSN (last);
4600 SET_NEXT_INSN (last) = BB_FOOTER (b);
4601 SET_PREV_INSN (BB_FOOTER (b)) = last;
4602 }
4603 BB_FOOTER (b) = NULL;
4604 }
4605
4606 /* Move things from b->header before a->footer.
4607 Note that this may include dead tablejump data, but we don't clean
4608 those up until we go out of cfglayout mode. */
4609 if (BB_HEADER (b))
4610 {
4611 if (! BB_FOOTER (a))
4612 BB_FOOTER (a) = BB_HEADER (b);
4613 else
4614 {
4615 rtx_insn *last = BB_HEADER (b);
4616
4617 while (NEXT_INSN (last))
4618 last = NEXT_INSN (last);
4619 SET_NEXT_INSN (last) = BB_FOOTER (a);
4620 SET_PREV_INSN (BB_FOOTER (a)) = last;
4621 BB_FOOTER (a) = BB_HEADER (b);
4622 }
4623 BB_HEADER (b) = NULL;
4624 }
4625
4626 /* In the case basic blocks are not adjacent, move them around. */
4627 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4628 {
4629 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4630
4631 emit_insn_after_noloc (insn, BB_END (a), a);
4632 }
4633 /* Otherwise just re-associate the instructions. */
4634 else
4635 {
4636 insn = BB_HEAD (b);
4637 BB_END (a) = BB_END (b);
4638 }
4639
4640 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4641 We need to explicitly call. */
4642 update_bb_for_insn_chain (insn, BB_END (b), a);
4643
4644 /* Skip possible DELETED_LABEL insn. */
4645 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4646 insn = NEXT_INSN (insn);
4647 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4648 BB_HEAD (b) = BB_END (b) = NULL;
4649 delete_insn (insn);
4650
4651 df_bb_delete (b->index);
4652
4653 /* If B was a forwarder block, propagate the locus on the edge. */
4654 if (forwarder_p
4655 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
4656 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4657
4658 if (dump_file)
4659 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4660 }
4661
4662 /* Split edge E. */
4663
4664 static basic_block
4665 cfg_layout_split_edge (edge e)
4666 {
4667 basic_block new_bb =
4668 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4669 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4670 NULL_RTX, e->src);
4671
4672 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4673 BB_COPY_PARTITION (new_bb, e->src);
4674 else
4675 BB_COPY_PARTITION (new_bb, e->dest);
4676 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4677 redirect_edge_and_branch_force (e, new_bb);
4678
4679 return new_bb;
4680 }
4681
4682 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4683
4684 static void
4685 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4686 {
4687 }
4688
4689 /* Return true if BB contains only labels or non-executable
4690 instructions. */
4691
4692 static bool
4693 rtl_block_empty_p (basic_block bb)
4694 {
4695 rtx_insn *insn;
4696
4697 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4698 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4699 return true;
4700
4701 FOR_BB_INSNS (bb, insn)
4702 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4703 return false;
4704
4705 return true;
4706 }
4707
4708 /* Split a basic block if it ends with a conditional branch and if
4709 the other part of the block is not empty. */
4710
4711 static basic_block
4712 rtl_split_block_before_cond_jump (basic_block bb)
4713 {
4714 rtx_insn *insn;
4715 rtx_insn *split_point = NULL;
4716 rtx_insn *last = NULL;
4717 bool found_code = false;
4718
4719 FOR_BB_INSNS (bb, insn)
4720 {
4721 if (any_condjump_p (insn))
4722 split_point = last;
4723 else if (NONDEBUG_INSN_P (insn))
4724 found_code = true;
4725 last = insn;
4726 }
4727
4728 /* Did not find everything. */
4729 if (found_code && split_point)
4730 return split_block (bb, split_point)->dest;
4731 else
4732 return NULL;
4733 }
4734
4735 /* Return 1 if BB ends with a call, possibly followed by some
4736 instructions that must stay with the call, 0 otherwise. */
4737
4738 static bool
4739 rtl_block_ends_with_call_p (basic_block bb)
4740 {
4741 rtx_insn *insn = BB_END (bb);
4742
4743 while (!CALL_P (insn)
4744 && insn != BB_HEAD (bb)
4745 && (keep_with_call_p (insn)
4746 || NOTE_P (insn)
4747 || DEBUG_INSN_P (insn)))
4748 insn = PREV_INSN (insn);
4749 return (CALL_P (insn));
4750 }
4751
4752 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4753
4754 static bool
4755 rtl_block_ends_with_condjump_p (const_basic_block bb)
4756 {
4757 return any_condjump_p (BB_END (bb));
4758 }
4759
4760 /* Return true if we need to add fake edge to exit.
4761 Helper function for rtl_flow_call_edges_add. */
4762
4763 static bool
4764 need_fake_edge_p (const rtx_insn *insn)
4765 {
4766 if (!INSN_P (insn))
4767 return false;
4768
4769 if ((CALL_P (insn)
4770 && !SIBLING_CALL_P (insn)
4771 && !find_reg_note (insn, REG_NORETURN, NULL)
4772 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4773 return true;
4774
4775 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4776 && MEM_VOLATILE_P (PATTERN (insn)))
4777 || (GET_CODE (PATTERN (insn)) == PARALLEL
4778 && asm_noperands (insn) != -1
4779 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4780 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4781 }
4782
4783 /* Add fake edges to the function exit for any non constant and non noreturn
4784 calls, volatile inline assembly in the bitmap of blocks specified by
4785 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4786 that were split.
4787
4788 The goal is to expose cases in which entering a basic block does not imply
4789 that all subsequent instructions must be executed. */
4790
4791 static int
4792 rtl_flow_call_edges_add (sbitmap blocks)
4793 {
4794 int i;
4795 int blocks_split = 0;
4796 int last_bb = last_basic_block_for_fn (cfun);
4797 bool check_last_block = false;
4798
4799 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4800 return 0;
4801
4802 if (! blocks)
4803 check_last_block = true;
4804 else
4805 check_last_block = bitmap_bit_p (blocks,
4806 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4807
4808 /* In the last basic block, before epilogue generation, there will be
4809 a fallthru edge to EXIT. Special care is required if the last insn
4810 of the last basic block is a call because make_edge folds duplicate
4811 edges, which would result in the fallthru edge also being marked
4812 fake, which would result in the fallthru edge being removed by
4813 remove_fake_edges, which would result in an invalid CFG.
4814
4815 Moreover, we can't elide the outgoing fake edge, since the block
4816 profiler needs to take this into account in order to solve the minimal
4817 spanning tree in the case that the call doesn't return.
4818
4819 Handle this by adding a dummy instruction in a new last basic block. */
4820 if (check_last_block)
4821 {
4822 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4823 rtx_insn *insn = BB_END (bb);
4824
4825 /* Back up past insns that must be kept in the same block as a call. */
4826 while (insn != BB_HEAD (bb)
4827 && keep_with_call_p (insn))
4828 insn = PREV_INSN (insn);
4829
4830 if (need_fake_edge_p (insn))
4831 {
4832 edge e;
4833
4834 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4835 if (e)
4836 {
4837 insert_insn_on_edge (gen_use (const0_rtx), e);
4838 commit_edge_insertions ();
4839 }
4840 }
4841 }
4842
4843 /* Now add fake edges to the function exit for any non constant
4844 calls since there is no way that we can determine if they will
4845 return or not... */
4846
4847 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4848 {
4849 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4850 rtx_insn *insn;
4851 rtx_insn *prev_insn;
4852
4853 if (!bb)
4854 continue;
4855
4856 if (blocks && !bitmap_bit_p (blocks, i))
4857 continue;
4858
4859 for (insn = BB_END (bb); ; insn = prev_insn)
4860 {
4861 prev_insn = PREV_INSN (insn);
4862 if (need_fake_edge_p (insn))
4863 {
4864 edge e;
4865 rtx_insn *split_at_insn = insn;
4866
4867 /* Don't split the block between a call and an insn that should
4868 remain in the same block as the call. */
4869 if (CALL_P (insn))
4870 while (split_at_insn != BB_END (bb)
4871 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4872 split_at_insn = NEXT_INSN (split_at_insn);
4873
4874 /* The handling above of the final block before the epilogue
4875 should be enough to verify that there is no edge to the exit
4876 block in CFG already. Calling make_edge in such case would
4877 cause us to mark that edge as fake and remove it later. */
4878
4879 if (flag_checking && split_at_insn == BB_END (bb))
4880 {
4881 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4882 gcc_assert (e == NULL);
4883 }
4884
4885 /* Note that the following may create a new basic block
4886 and renumber the existing basic blocks. */
4887 if (split_at_insn != BB_END (bb))
4888 {
4889 e = split_block (bb, split_at_insn);
4890 if (e)
4891 blocks_split++;
4892 }
4893
4894 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4895 }
4896
4897 if (insn == BB_HEAD (bb))
4898 break;
4899 }
4900 }
4901
4902 if (blocks_split)
4903 verify_flow_info ();
4904
4905 return blocks_split;
4906 }
4907
4908 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4909 the conditional branch target, SECOND_HEAD should be the fall-thru
4910 there is no need to handle this here the loop versioning code handles
4911 this. the reason for SECON_HEAD is that it is needed for condition
4912 in trees, and this should be of the same type since it is a hook. */
4913 static void
4914 rtl_lv_add_condition_to_bb (basic_block first_head ,
4915 basic_block second_head ATTRIBUTE_UNUSED,
4916 basic_block cond_bb, void *comp_rtx)
4917 {
4918 rtx_code_label *label;
4919 rtx_insn *seq, *jump;
4920 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4921 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4922 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4923 machine_mode mode;
4924
4925
4926 label = block_label (first_head);
4927 mode = GET_MODE (op0);
4928 if (mode == VOIDmode)
4929 mode = GET_MODE (op1);
4930
4931 start_sequence ();
4932 op0 = force_operand (op0, NULL_RTX);
4933 op1 = force_operand (op1, NULL_RTX);
4934 do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label, -1);
4935 jump = get_last_insn ();
4936 JUMP_LABEL (jump) = label;
4937 LABEL_NUSES (label)++;
4938 seq = get_insns ();
4939 end_sequence ();
4940
4941 /* Add the new cond, in the new head. */
4942 emit_insn_after (seq, BB_END (cond_bb));
4943 }
4944
4945
4946 /* Given a block B with unconditional branch at its end, get the
4947 store the return the branch edge and the fall-thru edge in
4948 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
4949 static void
4950 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
4951 edge *fallthru_edge)
4952 {
4953 edge e = EDGE_SUCC (b, 0);
4954
4955 if (e->flags & EDGE_FALLTHRU)
4956 {
4957 *fallthru_edge = e;
4958 *branch_edge = EDGE_SUCC (b, 1);
4959 }
4960 else
4961 {
4962 *branch_edge = e;
4963 *fallthru_edge = EDGE_SUCC (b, 1);
4964 }
4965 }
4966
4967 void
4968 init_rtl_bb_info (basic_block bb)
4969 {
4970 gcc_assert (!bb->il.x.rtl);
4971 bb->il.x.head_ = NULL;
4972 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
4973 }
4974
4975 /* Returns true if it is possible to remove edge E by redirecting
4976 it to the destination of the other edge from E->src. */
4977
4978 static bool
4979 rtl_can_remove_branch_p (const_edge e)
4980 {
4981 const_basic_block src = e->src;
4982 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
4983 const rtx_insn *insn = BB_END (src);
4984 rtx set;
4985
4986 /* The conditions are taken from try_redirect_by_replacing_jump. */
4987 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
4988 return false;
4989
4990 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4991 return false;
4992
4993 if (BB_PARTITION (src) != BB_PARTITION (target))
4994 return false;
4995
4996 if (!onlyjump_p (insn)
4997 || tablejump_p (insn, NULL, NULL))
4998 return false;
4999
5000 set = single_set (insn);
5001 if (!set || side_effects_p (set))
5002 return false;
5003
5004 return true;
5005 }
5006
5007 static basic_block
5008 rtl_duplicate_bb (basic_block bb)
5009 {
5010 bb = cfg_layout_duplicate_bb (bb);
5011 bb->aux = NULL;
5012 return bb;
5013 }
5014
5015 /* Do book-keeping of basic block BB for the profile consistency checker.
5016 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
5017 then do post-pass accounting. Store the counting in RECORD. */
5018 static void
5019 rtl_account_profile_record (basic_block bb, int after_pass,
5020 struct profile_record *record)
5021 {
5022 rtx_insn *insn;
5023 FOR_BB_INSNS (bb, insn)
5024 if (INSN_P (insn))
5025 {
5026 record->size[after_pass]
5027 += insn_rtx_cost (PATTERN (insn), false);
5028 if (bb->count.initialized_p ())
5029 record->time[after_pass]
5030 += insn_rtx_cost (PATTERN (insn), true) * bb->count.to_gcov_type ();
5031 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5032 record->time[after_pass]
5033 += insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
5034 }
5035 }
5036
5037 /* Implementation of CFG manipulation for linearized RTL. */
5038 struct cfg_hooks rtl_cfg_hooks = {
5039 "rtl",
5040 rtl_verify_flow_info,
5041 rtl_dump_bb,
5042 rtl_dump_bb_for_graph,
5043 rtl_create_basic_block,
5044 rtl_redirect_edge_and_branch,
5045 rtl_redirect_edge_and_branch_force,
5046 rtl_can_remove_branch_p,
5047 rtl_delete_block,
5048 rtl_split_block,
5049 rtl_move_block_after,
5050 rtl_can_merge_blocks, /* can_merge_blocks_p */
5051 rtl_merge_blocks,
5052 rtl_predict_edge,
5053 rtl_predicted_by_p,
5054 cfg_layout_can_duplicate_bb_p,
5055 rtl_duplicate_bb,
5056 rtl_split_edge,
5057 rtl_make_forwarder_block,
5058 rtl_tidy_fallthru_edge,
5059 rtl_force_nonfallthru,
5060 rtl_block_ends_with_call_p,
5061 rtl_block_ends_with_condjump_p,
5062 rtl_flow_call_edges_add,
5063 NULL, /* execute_on_growing_pred */
5064 NULL, /* execute_on_shrinking_pred */
5065 NULL, /* duplicate loop for trees */
5066 NULL, /* lv_add_condition_to_bb */
5067 NULL, /* lv_adjust_loop_header_phi*/
5068 NULL, /* extract_cond_bb_edges */
5069 NULL, /* flush_pending_stmts */
5070 rtl_block_empty_p, /* block_empty_p */
5071 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5072 rtl_account_profile_record,
5073 };
5074
5075 /* Implementation of CFG manipulation for cfg layout RTL, where
5076 basic block connected via fallthru edges does not have to be adjacent.
5077 This representation will hopefully become the default one in future
5078 version of the compiler. */
5079
5080 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5081 "cfglayout mode",
5082 rtl_verify_flow_info_1,
5083 rtl_dump_bb,
5084 rtl_dump_bb_for_graph,
5085 cfg_layout_create_basic_block,
5086 cfg_layout_redirect_edge_and_branch,
5087 cfg_layout_redirect_edge_and_branch_force,
5088 rtl_can_remove_branch_p,
5089 cfg_layout_delete_block,
5090 cfg_layout_split_block,
5091 rtl_move_block_after,
5092 cfg_layout_can_merge_blocks_p,
5093 cfg_layout_merge_blocks,
5094 rtl_predict_edge,
5095 rtl_predicted_by_p,
5096 cfg_layout_can_duplicate_bb_p,
5097 cfg_layout_duplicate_bb,
5098 cfg_layout_split_edge,
5099 rtl_make_forwarder_block,
5100 NULL, /* tidy_fallthru_edge */
5101 rtl_force_nonfallthru,
5102 rtl_block_ends_with_call_p,
5103 rtl_block_ends_with_condjump_p,
5104 rtl_flow_call_edges_add,
5105 NULL, /* execute_on_growing_pred */
5106 NULL, /* execute_on_shrinking_pred */
5107 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5108 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5109 NULL, /* lv_adjust_loop_header_phi*/
5110 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5111 NULL, /* flush_pending_stmts */
5112 rtl_block_empty_p, /* block_empty_p */
5113 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5114 rtl_account_profile_record,
5115 };
5116
5117 #include "gt-cfgrtl.h"